Jenis Distribusi. 1. Distribusi Probabilitas 2. Distribusi Binomial (Bernaulli) 3. Distribusi Multinomial 4. Distribusi Normal (Gauss)

Save this PDF as:
 WORD  PNG  TXT  JPG

Ukuran: px
Mulai penontonan dengan halaman:

Download "Jenis Distribusi. 1. Distribusi Probabilitas 2. Distribusi Binomial (Bernaulli) 3. Distribusi Multinomial 4. Distribusi Normal (Gauss)"

Transkripsi

1 Ir Tito Adi Dewanto

2 Jenis Distribusi 1. Distribusi Probabilitas 2. Distribusi Binomial (Bernaulli) 3. Distribusi Multinomial 4. Distribusi Normal (Gauss)

3 Pengantar Kunci aplikasi probabilitas dalam statistik adalah memperkirakan terjadinya peluang/probabilitas yang dihubungkan dengan terjadinya peristiwa tersebut dalam beberapa keadaan. Jika kita mengetahui keseluruhan probabilitas dari kemungkinan outcome yang terjadi, seluruh probabilitas kejadian tersebut akan membentuk suatu distribusi probabilitas.

4 1. Distribusi Probabilitas Variabel Random : adalah suatu fungsi yang menghubungkan sebuah bilangan riil dengan setiap unsur didalam ruang sampel S. Untuk menyatakan variabel random digunakan sebuah huruf besar, misalkan X. Misal S = {BBB, BBC, BCB, CBB, BCC, CBC, CCB, CCC}, dengan B menunjukkan tanpa cacat (baik) dan C menunjukkan cacat. Variabel random X yang menyatakan jumlah barang yang cacat pada saat tiga komponen elektronik diuji, maka ditulis X = 0, 1, 2, 3. X=0, artinya jumlah cacat adalah 0 4

5 X = 1, Artinya jumlah cacat adalah 1 X = 3, Artinya jumlah cacat adalah 3 dll Distribusi Probabilitas merupakan sebuah daftar dari keseluruhan hasil suatu percobaan yang disertai dengan probabilitas masing-masing hasil tersebut. Mean x Varians = = E(x) = x.f(x) x.f(x) = x.p Contoh 1 : 3 Uang Logam dilemparkan ke udara, tentukan distribusi probabilitas dari percobaan tersebut? Dan tentukan peluang munculnya salah satu keluar mata angka?

6 Ruang Sampel Percobaan Pertama Kedua Ketiga Jumlah mata angka (X=) 1 A A A 3 2 A A G 2 3 A G G 1 4 G G G 0 5 G A A 2 6 G G A 1 7 G A G 1 8 A G A 2

7 HASIL DISTRIBUSI PROBABILITAS JUMLAH MATA ANGKA PROBABILITAS X 0 1/8 = /8 = /8 = /8 = TOTAL 8/8 = 1

8 Contoh 2: 1. Diketahui distribusi probabilitas sbb : Hitung : a) Mean x b) Variansi x

9 Jawab : a). Mean x = E(x) = x.f(x) = 3,30 b). Var (x) = = 12,8 (3,3) 2 = 12,8 10,89 = 1,91

10 Harapan Matematis /Expectasi /E(X) E(x) = x.f(x) = x.p Contoh Seseorang ingin membeli undian berhadiah dengan kondisi Peluang memenangkan hadiah I sebesar Rp adalah 0,001 Peluang memenangkan hadiah II sebesar Rp adalah 0,003 Peluang memenangkan hadiah III sebesar Rp adalah 0,005 Berapakah harga yang pantas untuk harga undian tersebut? Jawab : Harapan Matematis (Expectasi) = x.p Maka Harga yang Pantas adalah Rp = ( )x(0,001)+( ) x(0,003)+( )x(0,005) = Rp 3.750

11 2. Distribusi Binomial Merupakan distribusi probabilitas deskrit yag paling banyak digunakan di segala bidang. Menggambarkan fenomena dengan dua hasil atau outcome. Contoh: peluang sukses atau gagal, hasil pengobatan sembuh atau tidak, sehat atau sakit, dsb. Ditemukan oleh sahli matematika dari Inggris, Jacob Bernoulli, sehingga dikenal juga sebagai Distribusi Bernaulli.

12 Rumus : P n! s!(n s)! s n s s ( s) nc s. p. q p. Dimana : P = probabilitas yg diinginkan p = peluang sukses, q = peluang gagal, q = 1 p n = banyaknya peristiwa (trial) s = jumlah sukses yg diinginkan q n s

13 Rata-Rata, Ragam dan Simpangan Baku Distribusi Binomial Rata-rata = µ = n. p Ragam = ð 2 = n. p. q Simpangan Baku = ð= n. p. q n : ukuran populasi p : peluang berhasil dalam setiap ulangan q : peluang gagal, dimana q = 1 - p dalam setiap ulangan 13

14 3 syarat yg harus dipenuhi untuk menggunakan distribusi binomial : 1. Jumlah trial merupakan bilangan bulat. Contoh melambungkan coin 2 kali, tidak mungkin 2 ½ kali. 2. Setiap eksperiman mempunyai dua outcome (hasil). Contoh: sukses/gagal, laki/perempuan, sehat/sakit, setuju/tidaksetuju. 3. Peluang sukses sama setiap eksperimen. Contoh: Jika lemparan dadu, yang diharapkan adalah keluar mata lima, maka dikatakan peluang sukses adalah 1/6, sedangkan peluang gagal adalah 5/6. Untuk itu peluang sukses dilambangkan p, sedangkan peluang gagal adalah (1-p) atau biasa juga dilambangkan q, di mana q = 1-p.

15 Catatan : Agar anda mudah dalam membedakan p dengan q, anda harus dapat menetapkan mana kejadian SUKSES dan mana kejadian GAGAL. Anda dapat menetapkan bahwa kejadian yang menjadi pertanyaan atau yang ditanyakan adalah = kejadian SUKSES (S). 15

16 Contoh 1 Kita ingin mengetahui besarnya peluang kelahiran 2 bayi laki-laki dari 3 kelahiran. p = 0,5 q = 1-p = 0,5 n = 3 s = 2 Dengan menggunakan rumus di atas : P = n! s!(n-s)! p r q n-s p = 3x2x1 (0,5) 2 0,5 2x1x1 P = 0,375

17 Contoh 2 distribusi binomial : Berdasarkan data biro perjalanan PT Mandala Wisata air, yang khusus menangani perjalanan wisata turis manca negara, 20% dari turis menyatakan sangat puas berkunjung ke Indonesia, 40% menyatakan puas, 25% menyatakan biasa saja dan sisanya menyatakan kurang puas. Apabila kita bertemu dengan 5 orang dari peserta wisata turis manca negara yang pernah berkunjung ke Indonesia, berapakah probabilitas bahwa paling banyak 2 diantaranya menyatakan sangat puas!? 17

18 Jawab : s 2 Lihat tabel dan lakukan penjumlahan sebagai berikut : P= 5 c s p s q n-s P= = atau P(s=0) = 5C0 (0.20) 0 (0.80) 5 = P(s=1) = 5C1 (0.20) 1 (0.80) 4 = P(s=2) = 5C2 (0.20) 2 (0.80) 3 = Maka hasil s < = 2 adalah =

19 Contoh 3 Dari 100 kali lemparan sebuah koin, Tentukan a) Rata-rata jumlah burung yang muncul b) Standar Deviasi (Simpangan Baku) Jawab n = 100, p = ½, q = ½ a) Rata-rata jumlah burung yang muncul = µ = n. p = 100. ½ = 50 b) Standar Deviasi (Simpangan Baku) 1 1 n. p. q

20 Latihan : 1. Berapa probabilitas keluarnya angka 5, sebanyak 2 kali bila sebuah dadu dilambungkan 3 kali? 2. Dari kali lemparan sebuah koin, Tentukan a) Rata-rata jumlah burung yang muncul b) Standar Deviasi (Simpangan Baku) 3. Tentukan distribusi probabilitas anak laki2 dan perempuan dalam sebuah keluarga yang punya 3 anak. 4.Peluang Ronaldo membuat Gol dalam sebuah finalti adalah 0,75, tentukan peluang Ronaldo gagal membuat 4 kali Gol dalam 5 kali kesempatan

21 3. Distribusi Multinomial Dalam satu peristiwa kadang menghasilkan lebih dari dua event maka distribusi yg dihasilkan disebut distribusi multinomial. Contoh : Hasil dari pengobatan sembuh, cacat, dan mati Rumus Dimana : p = n! r 1!r 2!r 3! (P 1 ) r 1 (P 2 ) r 2 (P 3 ) r 3 r 1 + r 2 + r 3 r k = n p 1 + p 2 + p 3 p k = 1

22 Contoh 1: Seorang dokter melakukan pengobatan sebanyak 6 kali terhadap 6 orang penderita gagal jantung dengan hasil sembuh sempurna, sembuh dengan gejala sisa, dan meninggal. Berapa besar probabilitas dari 6 kali pengobatan tersebut menghasilkan 2 orang sembuh sempurna, 2 orang sembuh dengan gejala sisa, dan 2 orang meninggal. p = n! r 1!r 2 r 3! (P 1 r 1 ) (P 1 r 1 ) (P 1 r 1 ) p = 6! 2! 2! 2! (1/3) 2 (1/3) 2 (1/3) 2 P = 0,123 = 12,3%

23 4. Distribusi Normal Merupakan distribusi probabilitas dengan variabel kontinu atau numerik Pertama kali diuraikan oleh Abraham de Moivre dan dipopulerkan oleh Carl Fredreich Gauss dengan percobaannya Distribusi Gauss. Bila percobaan dilakukan berulang 2 yg paling sering muncul adalah nilai rata 2 Penyimpangan dari nilai rata2 (error) makin sedikit terbentuk distribusi yg simetris distribusi normal.

24 KARAKTERISTIK DISTRIBUSI KURVA NORMAL m 1. Kurva berbentuk genta (m= Md= Mo) 2. Kurva berbentuk simetris 3. Kurva normal berbentuk asimptotis 4. Kurva mencapai puncak pada saat X= m 5. Luas daerah di bawah kurva adalah 1; ½ di sisi kanan nilai tengah dan ½ di sisi kiri.

25 TAHAPAN PERHITUNGAN DISTRIBUSI NORMAL TRANSFORMASI NILAI X MENJADI NILAI Z-SCORE Z = X - m / GAMBAR DISTRIBUSI NORMAL TENTUKAN NILAI Z BERADA CARI NILAI P DARI TABEL DISTRIBUSI NORMAL PAHAMI KONTEKS PERTANYAAN DALAM SOAL.

26 CONTOH SOAL 1 Diketahui suatu distribusi normal dengan m 50 dan 10 Carilah probabilitas bahawa X mendapat nilai antara 45 dan 62 Jawab: Dicari nilai z yang berpadaan dengan z dan z Jadi: P( 45 x 62) P( 0, 5 z 1. 2) x1 45 dan x2 62 adalah P( 45 x 62) Ganbar 6.7 Luas daerah contoh P( 0, 5 z 1. 2) 26

27 Gunakan tabel distribusi normal standart, diperoleh: P(45<x<62)=P(-0,5 < Z < 1,2) P(z<1,2) + P(z<0,5) = 0,5764 Tabel 6.1. Luas daerah di bawah kurva normal z : : : : : :

28 Contoh 2 PT Hari Jaya memproduksi barang pecah belah seperti gelas, piring, dan lain-lain. Perusahaan memberikan kesempatan kepada konsumen untuk menukar barang yang telah dibeli dalam hari itu apabila ditemui barang cacat. Selama pelaksanaan program ini, ada 10 orang rata-rata yang menukarkan barang karena cacat dengan standar deviasi 4 orang per hari. Berapa peluang ada lebih dari 20 orang (X>20) yang melakukan penukaran barang pada suatu hari? 28

29 Jawab: Nilai Z = (20-10)/4 = 2,50 P(X>20) = P(Z>2,50) = 0,5 0,4938 = 0,0062 Jadi peluang lebih dari 20 orang yang menukarkan barang dalam 1 hari adalah 0,0062 atau 0,62%. 29

30 Contoh 3 BrainTest dari 600 capeg PDAM Jambi berdistribusi mendekati normal dengan rata-rata 115 dan simpangan baku 12. bila PDAM hanya menerima BT paling rendah 95, berapa banyak pelamar yang akn ditolak jk berdasarkan kententuan tersebut, tanpa melihat ability lainnya? 30

31 Jawab Z=-1,67 µ= 115, σ=12, n= 600, Z= x-µ / σ = / 12 = (lihat Tabel =0,4525)... Z= 0,5 0,4525 = P (x<95) = P (z < -1.67) = or 4.75% Jadi banyaknya pelamar yang akan ditolak: =4.75% x 600 = 28,5 atau 29 orang. 31

32 Contoh 4: Hitung Luas Pergunakanlah tabel distribusi normal standard untuk menghitung luas daerah : a) Di sebelah kanan z=1.84 b) Antara z=-1.97 s/d z=0.86 Jawab. Ingat bahwa luas yg diberikan dalam tabel distribusi normal kumulatif adalah luas dari z=- s/d z 0 tertentu: P(z<z 0 ). a) P(z>1.84) = 0,5 P(z 1.84) = 0, = b) P(-1.97 <z<0.86) = P(z<0.86) + P(z<1.97) = =

33 Contoh 5 Penerapan Distribusi Normal Sebuah perusahaan bolam lampu mengetahui bahwa umur lampunya (sebelum putus) terdistribusi secara normal dengan rata-rata umurnya 800 jam dan standard deviasinya 40 jam. Carilah probabilitas bahwa sebuah bolam produksinya akan Berumur antara 778 jam dan 834 jam Jawab. μ= 800 σ=40. P(778<x<834) x 1 =778 z 1 = (x 1 -μ)/σ = ( )/40 = x 2 =834 z 2 = (x 2 -μ)/σ = ( )/40 = 0.85 P(778<x<834) = P(-0.55<z<0.85) = = z 1 μ z 2

34 Soal Distribusi Normal 1. Harga saham di BEJ mempunyai nilai tengah (X)=490,7 dan standar deviasinya 144,7. Berapa nilai Z untuk harga saham 600? 2. PT GS mengklaim rata-rata berat buah mangga B adalah 350 gram dengan standar deviasi 50 gram. Bila berat mangga mengikuti distribusi normal, berapa probabilitas bahwa berat buah mangga mencapai kurang dari 250 gram, sehingga akan diprotes oleh konsumen.

35 MENGGUNAKAN MS EXCEL Contoh 9-1 Buka program MS Excel dari Start, pilih MS Excel Letakkan kursor pada cell yang ada di sheet MS Excel, dan klik icon fx, atau klik icon insert dan pilih fx function Pilih statistical pada function category dan pilih Normdist pada function nama, Anda tekan OK. 35

36 MENGGUNAKAN MS EXCEL Anda akan menemui kotak dialog seperti berikut: NORMDIST X.. (isilah nilai x, misal 600) Mean.. (isilah nilai mean, misal 490) Standard_dev.. (isilah nilai, misal 144,7 Cumulative.. (ketik True untuk kumulatif, dan False untuk nilai tunggal) Hasil nilai p = 0,76 akan muncul pada formula result atau tanda = 36

37 MENGGUNAKAN MS EXCEL Hasil nilai p = 0,7764 akan muncul pada formula result atau tanda = Catatan: Bila menggunakan tabel Z pada lampiran 3, probabilitas adalah luas daerah yang diarsir, yaitu dari Z=0 ke kanan kurva (infiniti positif). Sedangkan dengan MS Excel, probabilitas adalah luas daerah dari kiri kurva (infiniti negatif) ke kanan (sampai nilai X yang dimaksud). 37

38 38

39 39

40 Thank You

DISTRIBUSI PROBABILITAS NORMAL

DISTRIBUSI PROBABILITAS NORMAL DISTRIBUSI PROBABILITAS NORMAL 1 OUTLINE BAGIAN II Probabilitas dan Teori Keputusan Konsep-konsep Dasar Probabilitas Distribusi Probabilitas Diskret Distribusi Normal Teori Keputusan Pengertian dan Karakteristik

Lebih terperinci

Pertemuan ke Nilai Harapan (Mean atau Rata rata) dan Varians Distribusi Kontinu

Pertemuan ke Nilai Harapan (Mean atau Rata rata) dan Varians Distribusi Kontinu Pertemuan ke 5 4.1 Nilai Harapan (Mean atau Rata rata) dan Varians Distribusi Kontinu Fungsi Probabilitas dengan variabel kontinu terdiri dari : 1. Distribusi Normal 2. Distribusi T 3. Distribusi Chi Kuadrat

Lebih terperinci

DISTRIBUSI PROBABILITAS NORMAL

DISTRIBUSI PROBABILITAS NORMAL DISTRIBUSI PROBABILITAS NORMAL 1 KARAKTERISTIK DISTRIBUSI KURVA NORMAL 1. Kurva berbentuk genta ( = Md= Mo) 2. Kurva berbentuk simetris 3. Kurva normal berbentuk asimptotis 4. Kurva mencapai puncak pada

Lebih terperinci

Nilai harapan suatu variabel acak x ditulis E (x) didefinisikan E (x) = Σ x. f (x) Var (x) = σ x 2 = E [ x E (x) ] 2 = E (x 2 ) { E (x) } 2

Nilai harapan suatu variabel acak x ditulis E (x) didefinisikan E (x) = Σ x. f (x) Var (x) = σ x 2 = E [ x E (x) ] 2 = E (x 2 ) { E (x) } 2 Pertemuan ke- 4 BAB III POPULASI, SAMPEL & DISTRIBUSI TEORITIS VARIABEL DISKRIT DAN FUNGSI PROBABILITAS 3.1 Variabel Random atau Variabel Acak Variabel yang nilainya merupakan suatu bilangan yang ditentukan

Lebih terperinci

PENDAHULUAN Definisi: Contoh Kasus:

PENDAHULUAN Definisi: Contoh Kasus: DISTRIBUSI PROBABILITAS 1 PENDAHULUAN Definisi: Distribusi probabilitas adalah sebuah susunan distribusi yang mempermudah mengetahui probabilitas sebuah peristiwa. Merupakan hasil dari setiap peluang peristiwa.

Lebih terperinci

KARAKTERISTIK DISTRIBUSI KURVA NORMAL

KARAKTERISTIK DISTRIBUSI KURVA NORMAL DISTRIBUSI PROBABILITAS NORMAL 1 KARAKTERISTIK DISTRIBUSI KURVA NORMAL 1. Kurva berbentuk genta ( = Md= Mo) 2. Kurva berbentuk simetris 3. Kurva mencapai puncak pada saat X= 4. Luas daerah di bawah kurva

Lebih terperinci

DISTRIBUSI NORMAL. Fitri Yulianti

DISTRIBUSI NORMAL. Fitri Yulianti DISTRIBUSI NORMAL Fitri Yulianti KARAKTERISTIK DISTRIBUSI KURVA NORMAL 1. Kurva berbentuk genta ( = Md= Mo) 2. Kurva berbentuk simetris 3. Kurva normal berbentuk asimptotis 4. Kurva mencapai puncak padaa

Lebih terperinci

OUT LINE. Distribusi Probabilitas Normal. Pengertian Distribusi Probabilitas Normal. Distribusi Probabilitas Normal Standar

OUT LINE. Distribusi Probabilitas Normal. Pengertian Distribusi Probabilitas Normal. Distribusi Probabilitas Normal Standar 3 OUT LINE Pengertian Distribusi Probabilitas Normal Distribusi Probabilitas Normal Distribusi Probabilitas Normal Standar Penerapan Distribusi Probabilitas Normal Standar Pendekatan Normal Terhadap Binomial

Lebih terperinci

Distribusi Probabilitas Diskrit: Binomial, Multinomial, & Binomial Negatif

Distribusi Probabilitas Diskrit: Binomial, Multinomial, & Binomial Negatif Distribusi Probabilitas Diskrit: Binomial, Multinomial, & Binomial Negatif 6 Debrina Puspita Andriani E-mail : debrina.ub@gmail.com / debrina@ub.ac.id 2 Outline Distribusi Variabel Acak Diskrit Distribusi

Lebih terperinci

DISTRIBUSI NORMAL. Pertemuan 3. Distribusi Normal_M. Jainuri, M.Pd 1

DISTRIBUSI NORMAL. Pertemuan 3. Distribusi Normal_M. Jainuri, M.Pd 1 DISTRIBUSI NORMAL Pertemuan 3 1 Distribusi Normal Pertama kali diperkenalkan oleh Abraham de Moivre (1733). De Moivre menemukan persamaan matematika untuk kurva normal yang menjadi dasar dalam banyak teori

Lebih terperinci

DISTRIBUSI TEORITIS. P(M) = p = probabilitas untuk mendapat bola merah (sukses) 30

DISTRIBUSI TEORITIS. P(M) = p = probabilitas untuk mendapat bola merah (sukses) 30 DISTRIBUSI TEORITIS Distribusi teoritis merupakan alat bagi kita untuk menentukan apa yang dapat kita harapkan, apabila asumsi-asumsi yang kita buat benar. Distribusi teoritis memungkinkan para pembuat

Lebih terperinci

DISTRIBUSI TEORITIS. Variabel Acak Distribusi Teoritis Binomial Normal

DISTRIBUSI TEORITIS. Variabel Acak Distribusi Teoritis Binomial Normal DISTRIBUSI TEORITIS DISTRIBUSI TEORITIS Variabel Acak Distribusi Teoritis Binomial Normal Variabel acak adalah sebuah besaran yang merupakan hasil dari percobaan acak yang secara untung-untungan, dapat

Lebih terperinci

D I S T R I B U S I P R O B A B I L I T A S

D I S T R I B U S I P R O B A B I L I T A S D I S T R I B U S I P R O B A B I L I T A S Amiyella Endista Email : amiyella.endista@yahoo.com Website : www.berandakami.wordpress.com Distribusi Probabilitas Kunci aplikasi probabilitas dalam statistik

Lebih terperinci

Distribusi Probabilitas Diskrit: Binomial & Multinomial

Distribusi Probabilitas Diskrit: Binomial & Multinomial Distribusi Probabilitas Diskrit: Binomial & Multinomial 6 Debrina Puspita Andriani E-mail : debrina.ub@gmail.com / debrina@ub.ac.id 2 Outline Distribusi Variabel Acak Diskrit Distribusi Binomial Distribusi

Lebih terperinci

DISTRIBUSI NORMAL. Pertemuan 3. 1 Pertemuan 3_Statistik Inferensial

DISTRIBUSI NORMAL. Pertemuan 3. 1 Pertemuan 3_Statistik Inferensial DISTRIBUSI NORMAL Pertemuan 3 1 Pertemuan 3_Statistik Inferensial Distribusi Normal Pertama kali diperkenalkan oleh Abraham de Moivre (1733). De Moivre menemukan persamaan matematika untuk kurva normal

Lebih terperinci

DISTRIBUSI TEORITIS DISTRIBUSI TEORITIS

DISTRIBUSI TEORITIS DISTRIBUSI TEORITIS DISTRIBUSI TEORITIS DISTRIBUSI TEORITIS Variabel Acak Distribusi Teoritis Binomial Normal 1 Variabel acak adalah sebuah besaran yang merupakan hasil dari percobaan acak yang secara untung-untungan, dapat

Lebih terperinci

Distribusi Normal. Statistika (MAM 4137) Syarifah Hikmah JS

Distribusi Normal. Statistika (MAM 4137) Syarifah Hikmah JS Distribusi Normal Statistika (MAM 4137) Syarifah Hikmah JS Outline Kurva normal Luas daerah di bawah kurva normal Penerapan sebaran normal DISTRIBUSI NORMAL model distribusi kontinyu yang paling penting

Lebih terperinci

Bab 2 DISTRIBUSI PELUANG

Bab 2 DISTRIBUSI PELUANG Bab 2 DISTRIBUSI PELUANG PENDAHULUAN Setiap peristiwa akan mempunyai peluangnya masingmasing, dan peluang terjadinya peristiwa itu akan mempunyai penyebaran yang mengikuti suatu pola tertentu yang di sebut

Lebih terperinci

15Ilmu. Uji t-student dan Uji Z (Distribusi Normal)

15Ilmu. Uji t-student dan Uji Z (Distribusi Normal) Modul ke: Fakultas 15Ilmu Komunikasi Uji t-student dan Uji Z (Distribusi Normal) Untuk sebaran distribusi sampel kecil, dikembangkan suatu distribusi khusus yang disebut distribusi t atau t-student Dra.

Lebih terperinci

Probabilitas dan Statistika Distribusi Peluang Kontinyu 1. Adam Hendra Brata

Probabilitas dan Statistika Distribusi Peluang Kontinyu 1. Adam Hendra Brata Probabilitas dan Statistika Distribusi Peluang Kontinyu 1 Adam Hendra Brata Variabel Acak Kontinyu - Variabel Acak Kontinyu Suatu variabel yang memiliki nilai pecahan didalam range tertentu Distribusi

Lebih terperinci

DISTRIBUSI BINOMIAL STKIP SILIWANGI BANDUNG LUVY S ZANTHY KAPSEL SMA

DISTRIBUSI BINOMIAL STKIP SILIWANGI BANDUNG LUVY S ZANTHY KAPSEL SMA DISTRIBUSI BINOMIAL STKIP SILIWANGI BANDUNG LUVY S ZANTHY KAPSEL SMA 1 LUVY S. ZANTHY KAPSEL SMA 2 LUVY S. ZANTHY KAPSEL SMA 3 Distribusi Binomial O Dalam suatu percobaan statistik sering dijumpai pengulangan

Lebih terperinci

DISTRIBUSI PROBABILITAS DISKRET

DISTRIBUSI PROBABILITAS DISKRET DISTRIBUSI PROBABILITAS DISKRET 1 OUTLINE BAGIAN II Probabilitas dan Teori Keputusan Konsep-konsep Dasar Probabilitas Diskret Distribusi Normal Teori Keputusan Pengertian Distribusi Probabilitas Binomial

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Teori Probabilitas (Peluang) Probabilitas adalah suatu nilai untuk mengukur tingkat kemungkinan terjadinya suatu peristiwa (event) akan terjadi di masa mendatang yang hasilnya

Lebih terperinci

: Distribusi Peluang. : D. Rizal Riadi

: Distribusi Peluang. : D. Rizal Riadi MATERI 3 Mata Kuliah Dosen : Distribusi Peluang : Statistik : D. Rizal Riadi Mengingat data kuantitatif dipengaruhi faktor-faktor ketidakpastian dan variasi yang disebabkan akurasi instrumen penelitian

Lebih terperinci

Haryoso Wicaksono, S.Si., M.M., M.Kom. 26

Haryoso Wicaksono, S.Si., M.M., M.Kom. 26 Distribusi probabilita kontinu, yaitu apabila random variabel yang digunakan kontinu. Probabilita dihitung untuk nilai dalam suatu interval tertentu. Probabilita di suatu titik = 0. Probabilita untuk random

Lebih terperinci

STATISTIKA EKONOMI I Chapter 4 Distribusi Probabilitas Normal dan Binomial Chapter 5 Teori Sampling

STATISTIKA EKONOMI I Chapter 4 Distribusi Probabilitas Normal dan Binomial Chapter 5 Teori Sampling STATISTIKA EKONOMI I Chapter 4 Distribusi Probabilitas Normal dan Binomial Chapter 5 Teori Sampling Rengganis Banitya Rachmat rengganis.rachmat@gmail.com 4. Distribusi Probabilitas Normal dan Binomial

Lebih terperinci

BAB II DISTRIBUSI PROBABILITAS

BAB II DISTRIBUSI PROBABILITAS BAB II DISTRIBUSI PROBABILITAS.1. VARIABEL RANDOM Definisi 1: Variabel random adalah suatu fungsi yang memetakan ruang sampel (S) ke himpunan bilangan Real (R), dan ditulis X : S R Contoh (Variabel random)

Lebih terperinci

BAB 1 PENDAHULUAN. Universitas Sumatera Utara

BAB 1 PENDAHULUAN. Universitas Sumatera Utara BAB 1 PENDAHULUAN 1.1 Latar Belakang Dalam teori probabilitas dan statistika, distribusi binomial adalah distribusi probabilitas diskret jumlah keberhasilan dalam n percobaan ya/tidak (berhasil/gagal)

Lebih terperinci

BAB II TINJAUAN TEORITIS. Menurut Darnius, O (2006, Hal : 53) simulasi dapat diartikan sebagai suatu

BAB II TINJAUAN TEORITIS. Menurut Darnius, O (2006, Hal : 53) simulasi dapat diartikan sebagai suatu BAB II TINJAUAN TEORITIS 2.1 Pendahulauan Menurut Darnius, O (2006, Hal : 53) simulasi dapat diartikan sebagai suatu rekayasa suatu model logika ilmiah untuk melihat kebenaran/kenyataan model tersebut.

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2. Probabilitas Probabilitas adalah suatu nilai untuk mengukur tingkat kemungkinan terjadinya suatu peristiwa (event) akan terjadi di masa mendatang yang hasilnya tidak pasti (uncertain

Lebih terperinci

KONSEP DASAR PROBABILITAS DAN DISTRIBUSI PROBABILITAS LELY RIAWATI, ST, MT.

KONSEP DASAR PROBABILITAS DAN DISTRIBUSI PROBABILITAS LELY RIAWATI, ST, MT. KONSEP DASAR PROBABILITAS DAN DISTRIBUSI PROBABILITAS LELY RIAWATI, ST, MT. EKSPERIMEN suatu percobaan yang dapat diulang-ulang dengan kondisi yang sama CONTOH : Eksperimen : melempar dadu 1 kali Hasilnya

Lebih terperinci

STATISTICS. Oleh: Hanung N. Prasetyo DISTRIBUSI NORMAL WEEK 6 TELKOM POLTECH/HANUNG NP

STATISTICS. Oleh: Hanung N. Prasetyo DISTRIBUSI NORMAL WEEK 6 TELKOM POLTECH/HANUNG NP STATISTICS WEEK 6 Oleh: Hanung N. Prasetyo DISTRIBUSI NORMAL Pengantar: Dalam pokok bahasan disini memuat beberapa distribusi kontinyu yang sangat penting di bidang statistika. diantaranya distribusi normal.

Lebih terperinci

Kumpulan pasangan nilai-nilai dari variabel acak X dengan probabilitas nilai-nilai variabel random X, yaitu P(X=x) disebut distribusi probabilitas X

Kumpulan pasangan nilai-nilai dari variabel acak X dengan probabilitas nilai-nilai variabel random X, yaitu P(X=x) disebut distribusi probabilitas X Kumpulan pasangan nilai-nilai dari variabel acak X dengan probabilitas nilai-nilai variabel random X, yaitu P(X=) disebut distribusi probabilitas X (distribusi X) Diskrit Seragam Binomial Hipergeometrik

Lebih terperinci

Probabilitas & Distribusi Probabilitas

Probabilitas & Distribusi Probabilitas Probabilitas & Distribusi Probabilitas Probabilitas Definisi peluang untuk terjadi atau tidak terjadi Probabilitas untuk keluarnya mata satu dalam pelemparan satu kali sebuah dadu? Berapakah peluang seorang

Lebih terperinci

Tipe Peubah Acak. Diskret. Kontinu

Tipe Peubah Acak. Diskret. Kontinu 2 N i 1 x i N 2 Tipe Peubah Acak Diskret Segugus nilai dari suatu peubah acak yang dapat dicacah (countable) Misalkan X = banyaknya tendangan penalti yang berhasil dilakukan oleh pemain A Kontinu Nilai-nilai

Lebih terperinci

PERMUTASI, KOMBINASI DAN PELUANG. Kaidah pencacahan membantu dalam memecahkan masalah untuk menghitung

PERMUTASI, KOMBINASI DAN PELUANG. Kaidah pencacahan membantu dalam memecahkan masalah untuk menghitung PERMUTASI, KOMBINASI DAN PELUANG A. KAIDAH PENCACAHAN Kaidah pencacahan membantu dalam memecahkan masalah untuk menghitung berapa banyaknya cara yang mungkjin terjadi dalam suatu percobaan. Kaidah pencacahan

Lebih terperinci

THEORY. By: Hanung N. Prasetyo PEUBAH ACAK TELKOM POLYTECHNIC/HANUNGNP

THEORY. By: Hanung N. Prasetyo PEUBAH ACAK TELKOM POLYTECHNIC/HANUNGNP THEORY By: Hanung N. Prasetyo PEUBAH ACAK Variabel acak adalah suatu variabel yang nilainya bisa berapa saja Variabel acak merupakan deskripsi numerik dari outcome beberapa percobaan / eksperimen VARIABEL

Lebih terperinci

Distribusi Diskrit dan Kontinu yang Penting. Oleh Azimmatul Ihwah

Distribusi Diskrit dan Kontinu yang Penting. Oleh Azimmatul Ihwah Distribusi Diskrit dan Kontinu yang Penting Oleh Azimmatul Ihwah Distribusi Diskrit Fungsi probabilitas dari variabel random diskrit dapat dinyatakan dalam formula matematik tertentu yang dinamakan fungsi

Lebih terperinci

Statistika Farmasi

Statistika Farmasi Bab 3: Distribusi Data Statistika FMIPA Universitas Islam Indonesia Distribusi Data Teori dalam statistika berkaitan dengan peluang Konsep dasar peluang tersebut berkaitan dengan peluang distribusi, yaitu

Lebih terperinci

6.1 Distribusi Chi Kuadrat Gambar distribusi Chi kuadrat. α Jika x berdistribusi χ 2 (v) dengan v = derajat kebebasan = n 1 maka P (c 1.

6.1 Distribusi Chi Kuadrat Gambar distribusi Chi kuadrat. α Jika x berdistribusi χ 2 (v) dengan v = derajat kebebasan = n 1 maka P (c 1. Pertemuan ke- BAB IV POPULASI, SAMPEL, DISTRIBUSI TEORITIS, VARIABEL KONTINU, DAN FUNGSI PROBABILITAS. Distribusi Chi Kuadrat Gambar distribusi Chi kuadrat α Jika x berdistribusi χ (v) dengan v = derajat

Lebih terperinci

PENS. Probability and Random Process. Topik 5. Beberapa jenis Distribusi Variabel Acak. Prima Kristalina April 2015

PENS. Probability and Random Process. Topik 5. Beberapa jenis Distribusi Variabel Acak. Prima Kristalina April 2015 Program Pasca Sarjana Terapan Politeknik Elektronika Negeri Surabaya Probability and Random Process Topik 5. Beberapa jenis Distribusi Variabel Acak Prima Kristalina April 215 1 Outline 1. Beberapa macam

Lebih terperinci

MK Statistik Bisnis 2 MultiVariate. Haryoso Wicaksono, S.Si., M.M., M.Kom. 1

MK Statistik Bisnis 2 MultiVariate. Haryoso Wicaksono, S.Si., M.M., M.Kom. 1 Haryoso Wicaksono, S.Si., M.M., M.Kom. 1 Descriptive Statistics mengandung metoda dan prosedur yang digunakan untuk pengumpulan, pengorganisasian, presentasi dan memberikan karakteristik terhadap himpunan

Lebih terperinci

Pembahsan Tugas 9 Probabilitas dan Statistika Distribusi Peluang Diskrit dan Distribusi Peluang Kontinyu

Pembahsan Tugas 9 Probabilitas dan Statistika Distribusi Peluang Diskrit dan Distribusi Peluang Kontinyu Pembahsan Tugas 9 Probabilitas dan Statistika Distribusi Peluang Diskrit dan Distribusi Peluang Kontinyu Distribusi Peluang Diskrit 1. Hitunglah P( < 10) dengan distribusi binomial untuk n = 15, p = 0,4!

Lebih terperinci

LAB MANAJEMEN DASAR MODUL STATISTIKA 1

LAB MANAJEMEN DASAR MODUL STATISTIKA 1 LAB MANAJEMEN DASAR MODUL STATISTIKA 1 Nama : NPM/Kelas : Fakultas/Jurusan : Hari dan Shift Praktikum : Fakultas Ekonomi Universitas Gunadarma Kelapa dua E531 1 UKURAN STATISTIK Pendahuluan Ukuran statistik

Lebih terperinci

MODUL II DISTRIBUSI PELUANG DISKRIT DAN KONTINU

MODUL II DISTRIBUSI PELUANG DISKRIT DAN KONTINU DISTRIBUSI PELUANG DISKRIT DAN KONTINU A. TUJUAN PRAKTIKUM Melalui praktikum Modul II ini diharapkan praktikan dapat: 1. Mengenal jenis dan karakteristik dari beberapa distribusi peluang. 2. Menguji dan

Lebih terperinci

Binomial Distribution. Dyah Adila

Binomial Distribution. Dyah Adila Binomial Distribution Dyah Adila Binomial Distribution adalah bentuk percobaan yang memiliki syarat-syarat sebagai berikut: 1. Percobaan dilakukan sebanyak n kali. 2. Setiap percobaan memiliki dua hasil

Lebih terperinci

Modul Responsi. Statistika Dasar. Dosen Pengampu: Widiarti, M.Si. Penyusun:

Modul Responsi. Statistika Dasar. Dosen Pengampu: Widiarti, M.Si. Penyusun: Daftar Isi Modul Responsi Statistika Dasar Dosen Pengampu: Widiarti, M.Si. Penyusun: Firmansyah Feri Krisnanto Mei Rusfandi Ichwan Almaza Muammar Rizki F.I. Faiz Azmi Rekatama Edisi 1 (2017) Laboratorium

Lebih terperinci

STATISTIK PERTEMUAN V

STATISTIK PERTEMUAN V STATISTIK PERTEMUAN V Variabel Random/ Acak variabel yg nilai-nilainya ditentukan oleh kesempatan/ variabel yang bernilai numerik yg didefinisikan dlm suatu ruang sampel 1. Variabel Random diskrit Variabel

Lebih terperinci

Metode Statistika STK211/ 3(2-3)

Metode Statistika STK211/ 3(2-3) Metode Statistika STK211/ 3(2-3) Pertemuan V Peubah Acak dan Sebaran Peubah Acak Septian Rahardiantoro - STK IPB 1 Pertemuan minggu lalu kita sudah belajar mengenai cara untuk membuat daftar kemungkinan-kemungkinan

Lebih terperinci

PEUBAH ACAK. Materi 4 - STK211 Metode Statistika. October 2, Okt, Department of Statistics, IPB. Dr. Agus Mohamad Soleh

PEUBAH ACAK. Materi 4 - STK211 Metode Statistika. October 2, Okt, Department of Statistics, IPB. Dr. Agus Mohamad Soleh PEUBAH ACAK Materi 4 - STK211 Metode Statistika October 2, 2017 Okt, 2017 1 Pendahuluan Pernahkah bertanya, mengapa dalam soal ujian penerimaan mahasiswa baru, jika jawaban benar diberi nilai 4, salah

Lebih terperinci

Statistika (MMS-1001)

Statistika (MMS-1001) Statistika (MMS-1001) Dr. Danardono, MPH danardono@ugm.ac.id Program Studi Statistika Jurusan Matematika FMIPA UGM Materi dan Jadual Tatap Muka Pokok Bahasan Sub Pokok Bahasan 1. Statistika Deskriptif

Lebih terperinci

PELUANG DAN PEUBAH ACAK

PELUANG DAN PEUBAH ACAK PELUANG DAN PEUBAH ACAK Materi 3 - STK511 Analisis Statistika October 3, 2017 Okt, 2017 1 Konsep Peluang 2 Pendahuluan Kejadian di dunia: pasti (deterministik) atau tidak pasti (probabilistik) Contoh kejadian

Lebih terperinci

BAHAN AJAR STATISTIKA DASAR Matematika STKIP Tuanku Tambusai Bangkinang 4. BEBERAPA DISTRIBUSI PELUANG DISKRET

BAHAN AJAR STATISTIKA DASAR Matematika STKIP Tuanku Tambusai Bangkinang 4. BEBERAPA DISTRIBUSI PELUANG DISKRET Pertemuan 7. BAHAN AJAR STATISTIKA DASAR Matematika STKIP Tuanku Tambusai Bangkinang 4. BEBERAPA DISTRIBUSI PELUANG DISKRET 4. Pendahuluan 4.2 Distribusi seragam diskret 4.3 Distribusi binomial dan multinomial

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Distribusi Normal Salah satu distribusi frekuensi yang paling penting dalam statistika adalah distribusi normal. Distribusi normal berupa kurva berbentuk lonceng setangkup yang

Lebih terperinci

Statistika (MMS-1001)

Statistika (MMS-1001) Statistika (MMS-1001) Dr. Danardono, MPH danardono@ugm.ac.id Program Studi Statistika Jurusan Matematika FMIPA UGM Materi dan Jadual Tatap Muka Pokok Bahasan Sub Pokok Bahasan 1. Statistika Deskriptif

Lebih terperinci

Statistika (MMS-1403)

Statistika (MMS-1403) Statistika (MMS-1403) Dr. Danardono, MPH danardono@ugm.ac.id Program Studi Statistika Jurusan Matematika FMIPA UGM Materi dan Jadual Minggu ke- Pokok Bahasan Sub Pokok Bahasan 1. Pendahuluan 1 Perkuliahan

Lebih terperinci

Distribusi Normal, Skewness dan Qurtosis

Distribusi Normal, Skewness dan Qurtosis Distribusi Normal, Skewness dan Qurtosis Departemen Biostatistika FKM UI 1 2 SAP Statistika 1, minggu ke-4 4 Membekali mahasiswa agar lebih paham dan menguasai teori terkait: menghitung ukuran penyimpangan

Lebih terperinci

DISTRIBUSI PROBABILITAS VARIABEL RANDOM

DISTRIBUSI PROBABILITAS VARIABEL RANDOM Universitas Gadjah Mada Fakultas Teknik Departemen Teknik Sipil dan Lingkungan DISTRIBUSI PROBABILITAS VARIABEL RANDOM Statistika dan Probabilitas 2 Distribusi probabilitas variabel random diskrit Distribusi

Lebih terperinci

BAB IV. DISTRIBUSI PROBABILITAS DISKRIT

BAB IV. DISTRIBUSI PROBABILITAS DISKRIT BAB IV. DISTRIBUSI PROBABILITAS DISKRIT A. Variabel random diskrit. Variabel random diskrit X adalah : Cara memberi nilai angka pada setiap elemen ruang sampel X(a) : Ukuran karakteristik tertentu dari

Lebih terperinci

Achmad Samsudin, M.Pd. Jurdik Fisika FPMIPA Universitas Pendidikan Indonesia

Achmad Samsudin, M.Pd. Jurdik Fisika FPMIPA Universitas Pendidikan Indonesia Achmad Samsudin, M.Pd. Jurdik Fisika FPMIPA Universitas Pendidikan Indonesia VARIABEL ACAK VARIABEL ACAK : suatu fungsi yang nilainya berupa bilangan nyata yang ditentukan oleh setiap unsur dalam ruang

Lebih terperinci

Tujuan. Distribution. Variation in Continues and Categorical Data 1) CONTINUES DISTRIBUTION. Widya Rahmawati

Tujuan. Distribution. Variation in Continues and Categorical Data 1) CONTINUES DISTRIBUTION. Widya Rahmawati Tujuan Distribution Widya Rahmawati Untukmengetahuikonsepcontinuous probability distribution dan distribusi normal dan untuk menghitung probabilitas suatu nilai terjadi pada distribusi tertentu Untukmengetahuikonsepdescretprobability

Lebih terperinci

STK 511 Analisis statistika. Materi 3 Sebaran Peubah Acak

STK 511 Analisis statistika. Materi 3 Sebaran Peubah Acak STK 511 Analisis statistika Materi 3 Sebaran Peubah Acak 1 Konsep Peluang 2 Peluang Peluang dapat diartikan sebagai ukuran kemungkinan terjadinya suatu kejadian Untuk memahami peluang diperlukan pemahaman

Lebih terperinci

Materi dan Jadual Tatap Pokok Bahasan Sub Pokok Bahasan Statistika (MMS 2401) Muka Materi dan Jadual Materi dan Jadual

Materi dan Jadual Tatap Pokok Bahasan Sub Pokok Bahasan Statistika (MMS 2401) Muka Materi dan Jadual Materi dan Jadual Materi dan Jadual Statistika(MMS 2401) Dr. Danardono, MPH danardono@ugm.ac.id Program Studi Statistika Jurusan Matematika FMIPA UGM Tatap Muka Pokok Bahasan 1. Statistika Deskriptif 2. Statistika Deskriptif

Lebih terperinci

DISTRIBUSI PROBABILITAS

DISTRIBUSI PROBABILITAS BAB 7 DISTRIBUSI PROBABILITAS Kompetensi Menjelaskan distribusi probabilitas Indikator 1. Menjelaskan distribusi hipergeometris 2. Menjelaskan distribusi binomial 3. Menjelaskan distribusi multinomial

Lebih terperinci

STATISTIKA. Muhamad Nursalman Pendilkom/Ilkom UPI

STATISTIKA. Muhamad Nursalman Pendilkom/Ilkom UPI STATISTIKA Muhamad Nursalman Pendilkom/Ilkom UPI 1 Daftar Isi Bab 1 Peluang Bab Peubah Acak Bab 3 Distribusi Peluang Diskret Bab 4 Distribusi Peluang Kontinu Bab 5 Fungsi Peubah Acak Bab 6 Teori Penaksiran

Lebih terperinci

Distribusi Sampling 6.2. Debrina Puspita Andriani /

Distribusi Sampling 6.2. Debrina Puspita Andriani    / 6. Debrina Puspita Andriani E-mail : debrina.ub@gmail.com / debrina@ub.ac.id Outline Pengertian dan Konsep Dasar Distribusi Sampling Distribusi Sampling Mean Distribusi Sampling Proporsi Distribusi Sampling

Lebih terperinci

BI5106 ANALISIS BIOSTATISTIK Bab 3 Peubah Acak dan Dist

BI5106 ANALISIS BIOSTATISTIK Bab 3 Peubah Acak dan Dist BI5106 ANALISIS BIOSTATISTIK Bab 3 Peubah Acak dan Distribusi Orang Biologi Tidak Anti Statistika Silabus Silabus dan Tujuan Konsep peubah acak, fungsi peluang (probability density function), fungsi distribusi

Lebih terperinci

KONSEP PROBABILITAS & DISTRIBUSI PROBABILITAS

KONSEP PROBABILITAS & DISTRIBUSI PROBABILITAS KONSEP PROBABILITAS & DISTRIBUSI PROBABILITAS 5 Pengendalian Kualitas Debrina Puspita Andriani Teknik Industri Universitas Brawijaya e- Mail : debrina@ub.ac.id Blog : hbp://debrina.lecture.ub.ac.id/ 2

Lebih terperinci

MA2082 BIOSTATISTIKA Bab 3 Peubah Acak dan Distribusi

MA2082 BIOSTATISTIKA Bab 3 Peubah Acak dan Distribusi MA2082 BIOSTATISTIKA Bab 3 Peubah Acak dan Distribusi Orang Biologi Tidak Anti Statistika Silabus Silabus dan Tujuan Konsep peubah acak, fungsi peluang (probability density function), fungsi distribusi

Lebih terperinci

Kompetens n i s : Mahasiswa mam a pu p menjel enj a el s a ka k n gejala ekonomi dengan meng guna k n a konsep probabil i i l t i as

Kompetens n i s : Mahasiswa mam a pu p menjel enj a el s a ka k n gejala ekonomi dengan meng guna k n a konsep probabil i i l t i as Kompetensi: Mahasiswa mampu menjelaskan gejala ekonomi dengan menggunakan konsep probabilitas Hal. 9- Penelitian itu Penuh Kemungkinan (tdk pasti) Mengubah Saya tidak yakin Menjadi Saya yakin akan sukses

Lebih terperinci

STATISTIKA. Distribusi Binomial. Ingat contoh pemilihan 1 kegiatan (Kegiatan A) dari 4 kegiatan untuk didanai. Distribusi Normal

STATISTIKA. Distribusi Binomial. Ingat contoh pemilihan 1 kegiatan (Kegiatan A) dari 4 kegiatan untuk didanai. Distribusi Normal STATISTIKA Distribusi Normal Distribusi Binomial Ingat contoh pemilihan 1 kegiatan (Kegiatan A) dari 4 kegiatan untuk didanai Distribusi Binomial Histogram Distribusi Probabilitas Sukses Statistika Distribusi

Lebih terperinci

Distribusi Probabilitas Diskrit. Dadan Dasari

Distribusi Probabilitas Diskrit. Dadan Dasari Distribusi Probabilitas Diskrit Dadan Dasari Daftar Isi DIstribusi Uniform Distribusi Binomial DIstribusi Multinomial Distribusi Hipergeometrik Distribusi Poisson Distribusi Probabilitas Uniform Diskrit

Lebih terperinci

VARIABEL RANDOM DAN DISTRIBUSI PELUANG

VARIABEL RANDOM DAN DISTRIBUSI PELUANG 1 VARIABEL RANDOM DAN DISTRIBUSI PELUANG Dr. Vita Ratnasari, M.Si Definisi Variabel Random 2 Variabel random ialah Suatu fungsi yang mengaitkan suatu bilangan real pada setiap unsur dalam ruang sampel.

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang 1 BAB 1 PENDAHULUAN 1.1 Latar Belakang Dalam teori probabilitas dan statistika, distribusi Binomial adalah distribusi probabilitas diskrit jumlah keberhasilan dalam n percobaan ya/tidak(berhasil/gagal)

Lebih terperinci

STK 211 Metode statistika. Materi 4 Peubah Acak dan Sebaran Peluang

STK 211 Metode statistika. Materi 4 Peubah Acak dan Sebaran Peluang STK 211 Metode statistika Materi 4 Peubah Acak dan Sebaran Peluang 1 Pendahuluan Soal ujian masuk PT diselenggarakan dengan sistem pilihan berganda. Jika jawaban benar diberi nilai 4, salah dikurangi 1

Lebih terperinci

Metode Statistika (STK 211) Pertemuan ke-5

Metode Statistika (STK 211) Pertemuan ke-5 Metode Statistika (STK 211) Pertemuan ke-5 rrahmaanisa@apps.ipb.ac.id Memahami definisi dan aplikasi peubah acak (peubah acak sebagai fungsi, peubah acak diskrit dan kontinu) Memahami sebaran peubah acak

Lebih terperinci

Distribusi Teoritis Probabilitas. Distribusi Teoritis Probabilitas. Distribusi Binomial. Distribusi Binomial. Distribusi Binomial

Distribusi Teoritis Probabilitas. Distribusi Teoritis Probabilitas. Distribusi Binomial. Distribusi Binomial. Distribusi Binomial Distribusi Teoritis Probabilitas Topik Distribusi teoritis Binomial Distribusi teoritis Poisson Distribusi teoiritis Normal 3 4 Distribusi Teoritis Probabilitas Distr. Teoritis Probabilitas Diskrit Kontinyu

Lebih terperinci

DISTRIBUSI PELUANG.

DISTRIBUSI PELUANG. DISTRIBUSI PELUANG readonee@yahoo.com Distribusi? Peluang? Distribusi Peluang? Distribusi = sebaran, pencaran, susunan data Peluang : Ukuran/derajat ketidakpastian suatu peristiwa Distribusi Peluang adalah

Lebih terperinci

SEBARAN PENARIKAN CONTOH

SEBARAN PENARIKAN CONTOH STATISTIK A (MAM 4137) SEBARAN PENARIKAN CONTOH By Syarifah Hikmah Julinda Outline Sebaran Penarikan Contoh Sebaran Penarikan Contoh Bagi Nilai Tengah Sebaran t Sebaran Penarikan contoh bagi beda dua mean

Lebih terperinci

Peubah Acak. 14-Sep-07 TPADF (Kelas Ganjil/ Rahmat) Lecture 2 page 1

Peubah Acak. 14-Sep-07 TPADF (Kelas Ganjil/ Rahmat) Lecture 2 page 1 Peubah Acak 14-Sep-07 TPADF (Kelas Ganjil/ Rahmat) Lecture 2 page 1 Definisi Peubah Acak Peubah acak adalah peubah yang mengkarakterisasikan setiap elemen dalam ruang sampel dengan suatu bilangan real.

Lebih terperinci

Distribusi Teoritis Probabilitas

Distribusi Teoritis Probabilitas Distribusi Teoritis Probabilitas Topik Distribusi teoritis Binomial Distribusi teoritis Poisson Distribusi teoiritis Normal 2 Distribusi Teoritis Probabilitas Distr. Teoritis Probabilitas Diskrit Kontinyu

Lebih terperinci

DISTRIBUSI PELUANG KONTINYU DISTRIBUSI PROBABILITAS

DISTRIBUSI PELUANG KONTINYU DISTRIBUSI PROBABILITAS DISTRIBUSI PROBABILITAS Berbeda dengan variabel random diskrit, sebuah variabel random kontinyu adalah variabel yang dapat mencakup nilai pecahan maupun mencakup range/ rentang nilai tertentu. Karena terdapat

Lebih terperinci

matematika DISTRIBUSI VARIABEL ACAK DAN DISTRIBUSI BINOMIAL K e l a s A. Penarikan Sampel dari Suatu Populasi Kurikulum 2013 Tujuan Pembelajaran

matematika DISTRIBUSI VARIABEL ACAK DAN DISTRIBUSI BINOMIAL K e l a s A. Penarikan Sampel dari Suatu Populasi Kurikulum 2013 Tujuan Pembelajaran Kurikulum 20 matematika K e l a s XI DISTRIBUSI VARIABEL ACAK DAN DISTRIBUSI BINOMIAL Tujuan Pembelajaran Setelah mempelajari materi ini, kamu diharapkan memiliki kemampuan berikut.. Memahami perbedaan

Lebih terperinci

Jurusan Teknik Sipil dan Lingkungan Universitas Gadjah Mada STATISTIKA. Distribusi Normal. 1-Sep-14

Jurusan Teknik Sipil dan Lingkungan Universitas Gadjah Mada STATISTIKA. Distribusi Normal. 1-Sep-14 Jurusan Teknik Sipil dan Lingkungan Universitas Gadjah Mada STATISTIKA Distribusi Normal 1-Sep-14 http://istiarto.staff.ugm.ac.id 1 Distribusi Binomial Ingat contoh pemilihan 1 kegiatan (Kegiatan A) dari

Lebih terperinci

KURVA NORMAL. (Sumber: Buku Metode Statistika tulisan Sudjana)

KURVA NORMAL. (Sumber: Buku Metode Statistika tulisan Sudjana) KURVA NORMAL (Sumber: Buku Metode Statistika tulisan Sudjana) Distribusi Normal (Distribusi GAUSSE) Kurva Normal Suatu alat statistik yang sangat penting untuk menaksir dan meramalkan peristiwa-peristiwa

Lebih terperinci

Pengantar Proses Stokastik

Pengantar Proses Stokastik Bab 1: Dasar-Dasar Probabilitas Statistika FMIPA Universitas Islam Indonesia Peluang Percobaan adalah kegiatan yang menghasilkan keluaran/hasil yang mungkin secara acak. Contoh: pelemparan sebuah dadu.

Lebih terperinci

DISPERSI DATA. - Jangkauan (Range) - Simpangan/deviasi Rata-rata (Mean Deviation) - Variansi (Variance) - Standar Deviasi (Standart Deviation)

DISPERSI DATA. - Jangkauan (Range) - Simpangan/deviasi Rata-rata (Mean Deviation) - Variansi (Variance) - Standar Deviasi (Standart Deviation) DISPERSI DISPERSI DATA Ukuran penyebaran suatu kelompok data terhadap pusat data. - Jangkauan (Range) - Simpangan/deviasi Rata-rata (Mean Deviation) - Variansi (Variance) - Standar Deviasi (Standart Deviation)

Lebih terperinci

BAHAN AJAR STATISTIKA DASAR Matematika STKIP Tuanku Tambusai Bangkinang 3. HARAPAN MATEMATIK

BAHAN AJAR STATISTIKA DASAR Matematika STKIP Tuanku Tambusai Bangkinang 3. HARAPAN MATEMATIK Pertemuan 6. BAHAN AJAR STATISTIKA DASAR Matematika STKIP Tuanku Tambusai Bangkinang. Variansi dan kovariansi. HARAPAN MATEMATIK Keragaman suatu peubah acak X diperoleh dengan mengambil g(x) = (X µ). Rataan

Lebih terperinci

4.1.1 Distribusi Binomial

4.1.1 Distribusi Binomial 4.1.1 Distribusi Binomial Perhatikan sebuah percobaan dengan ciri-ciri sebagai berikut : Hanya menghasilkan (diperhatikan) dua peristiwa atau kategori, misal S (sukses) dan G (gagal) Dilakukan sebanyak

Lebih terperinci

BAB 8 DISTRIBUSI PELUANG DISKRIT

BAB 8 DISTRIBUSI PELUANG DISKRIT BAB 8 DISTRIBUSI PELUANG DISKRIT A. Peluang Peluang atau yang sering disebut sebagai probabilitas dapat dipandang sebagai cara untuk mengungkapkan ukuran ketidakpastian/ ketidakyakinan/ kemungkinan suatu

Lebih terperinci

Tugas Kelompok. Mata Kuliah Metodologi Penelitian Kuantitatif. Judul Makalah Revisi DISTRIBUSI PELUANG

Tugas Kelompok. Mata Kuliah Metodologi Penelitian Kuantitatif. Judul Makalah Revisi DISTRIBUSI PELUANG Tugas Kelompok Mata Kuliah Metodologi Penelitian Kuantitatif Judul Makalah Revisi DISTRIBUSI PELUANG Kajian Buku Pengantar Statistika Pengarang Nana Sudjana Tugas dibuat untuk memenuhi tugas mata kuliah

Lebih terperinci

Probabilitas dan Statistika Variabel Acak dan Fungsi Distribusi Peluang Diskrit. Adam Hendra Brata

Probabilitas dan Statistika Variabel Acak dan Fungsi Distribusi Peluang Diskrit. Adam Hendra Brata dan Statistika dan Fungsi Peluang Adam Hendra Brata acak adalah sebuah fungsi yang memetakan hasil kejadian yang ada di alam (seperti : buka dan tutup; terang, redup dan gelap; merah, kuning dan hijau;

Lebih terperinci

Statistika (MMS-1403)

Statistika (MMS-1403) Statistika (MMS-1403) Dr. Danardono, MPH danardono@ugm.ac.id Program Studi Statistika Jurusan Matematika FMIPA UGM MMS-1403 p.1/93 Distribusi Sampling Statistik Populasi: himpunan keseluruhan obyek yang

Lebih terperinci

STATISTICS. WEEK 4 Hanung N. Prasetyo POLYTECHNIC TELKOM/HANUNG NP

STATISTICS. WEEK 4 Hanung N. Prasetyo POLYTECHNIC TELKOM/HANUNG NP STATISTICS WEEK 4 Hanung N. Prasetyo Pendahuluan: Penyajian distribusi probabilitas dalam bentuk grafis, tabel atau melalui rumusan tidak masalah, yang ingin dilukiskan adalah perilaku (kelakuan) perubah

Lebih terperinci

STATISTIKA LINGKUNGAN

STATISTIKA LINGKUNGAN STATISTIKA LINGKUNGAN TEORI PROBABILITAS Probabilitas -pendahuluan Statistika deskriptif : menggambarkan data Statistik inferensi kesimpulan valid dan perkiraan akurat ttg populasi dengan mengobservasi

Lebih terperinci

Metode Statistika. Konsep Peubah Acak dan Sebaran Peluang (Random Variable Concept and Probability Distribution)

Metode Statistika. Konsep Peubah Acak dan Sebaran Peluang (Random Variable Concept and Probability Distribution) Metode Statistika Konsep Peubah Acak dan Sebaran Peluang (Random Variable Concept and Probability Distribution) Konsep Peubah Acak Peubah acak merupakan suatu fungsi yang memetakan ruang kejadian (daerah

Lebih terperinci

STATISTIKA BISNIS PENDUGAAN STATISTIKA. Deden Tarmidi, SE., M.Ak., BKP. Modul ke: Fakultas Ekonomi dan Bisnis. Program Studi Akuntansi

STATISTIKA BISNIS PENDUGAAN STATISTIKA. Deden Tarmidi, SE., M.Ak., BKP. Modul ke: Fakultas Ekonomi dan Bisnis. Program Studi Akuntansi Modul ke: STATISTIKA BISNIS PENDUGAAN STATISTIKA Fakultas Ekonomi dan Bisnis Deden Tarmidi, SE., M.Ak., BKP. Program Studi Akuntansi www.mercubuana.ac.id PENDAHULUAN Data yang sudah didapat dari populasi

Lebih terperinci

DISTRIBUSI PROBABILITAS DISKRET Distribusi Binomial. Nur Hayati, S.ST, MT Yogyakarta, Maret 2016

DISTRIBUSI PROBABILITAS DISKRET Distribusi Binomial. Nur Hayati, S.ST, MT Yogyakarta, Maret 2016 DISTRIBUSI PROBABILITAS DISKRET Distribusi Binomial Nur Hayati, S.ST, MT Yogyakarta, Maret 2016 Distribusi Binomial Perhatikan kembali setiap hasil percobaan statistik pada pembahasan sebelumnya, dari

Lebih terperinci

Model dan Simulasi Universitas Indo Global Mandiri

Model dan Simulasi Universitas Indo Global Mandiri Model dan Simulasi Universitas Indo Global Mandiri Nomor random >> angka muncul secara acak (random/tidak terurut) dengan probabilitas untuk muncul yang sama. Probabilitas/Peluang merupakan ukuran kecenderungan

Lebih terperinci

Contoh: Aturan Penjumlahan. Independen. P(A dan B) = P(A) x P(B)

Contoh: Aturan Penjumlahan. Independen. P(A dan B) = P(A) x P(B) Aturan Penjumlahan Mutually Exclusive: Kemungkinan terjadi peristiwa A dan B: P(A atau B)= P(A)+P(B) Not Mutually Exclusive: Kemungkinan terjadi peristiwa A dan B: P(Aatau B): P(A)+P(B) P(A dan B) Contoh:

Lebih terperinci