Sebaran Peluang kontinyu Sebagian besar kegiatan di alam ini mengikuti sebaran kontinyu Salah satu sebaran kontinyu adalah sebaran normal. Sebaran nor

Save this PDF as:
 WORD  PNG  TXT  JPG

Ukuran: px
Mulai penontonan dengan halaman:

Download "Sebaran Peluang kontinyu Sebagian besar kegiatan di alam ini mengikuti sebaran kontinyu Salah satu sebaran kontinyu adalah sebaran normal. Sebaran nor"

Transkripsi

1

2 Sebaran Peluang kontinyu Sebagian besar kegiatan di alam ini mengikuti sebaran kontinyu Salah satu sebaran kontinyu adalah sebaran normal. Sebaran normal menjadi syarat untuk dilakukan Analisis varian, dalam Perancangan Percobaan. Contoh sebaran kontinyu : luas lahan, tinggi tanaman, tebal lapisan olah tanah, bobot buah, diameter batang, hasil panen dll

3 Perbedaan dg sebaran diskrit Berbeda dengan sebaran peluang diskrit, apabila X kontinyu, maka : P(a< X b) = P(a < X < b) + P (X=b) = P (a < X < b) Dimana tidak ada bedanya apakah kita memasukkan titik ujung selang atau tidak. Pada sebaran kontinyu tidak ditentukan batas tegas antara titik b dan titik <b. Contoh : berapakah batas tegas antara 2 dan kurang dari 2?? Tentu tidak dapat didefinisikan.

4 Fungsi kepekatan Sebaran ini tak dapat disajikan dalam bentuk tabel, tetapi dapat dalam bentuk rumus yang dapat digambarkan sebagai suatu kurva kontinyu dan disebut fungsi kepekatan peluang atau disingkat fungsi kepekatan Secara lengkap akan dijelaskan kemudian

5 Kuswanto, 2011

6 Sebaran NORMAL Sebaran peluang kontinyu yang paling penting dalam bidang statistika adalah sebaran normal. Grafiknya disebut kurva normal, yaitu grafik berbentuk genta (shape-bell) seperti yang terlihat di bawah. Grafik ini digunakan banyak sekali untuk gugusan data yang terjadi di alam, industri dan penelitian. Bentuk persamaan kurva normal :

7 Bentuk persamaan normal f(x) = e 1/ ( x ) untuk - < x <, = 3,14159, e = 2,71828 f(x) bentuk kurva normal (shape-bell) Dibidang pertanian, kita akan lebih sering menerapkan rumus tersebut. Yang tertarik mempelajari asal usul rumus tersebut, dapat membaca di buku-buku statistika

8 Ciri kurva normal μ -σ μ μ+σ ada 2 parameter, yaitu (mean) dan (sigma=standar deviasi) grafiknya disebut kurva Distribusi normal dituliskan dengan X ~ N (μ, σ) Dibaca : X menyebar normal, dengan rerata mu dan standar deviasi sigma normal lihat gambar dibawah Ciri : - simetris terhadap μ - mempunyai titik belok x = μ + σ

9 Distribusi normal baku Fungsi normal juga sudah ditabelkan, tetapi khusus untuk μ=0 dan σ=1. Dapat diakses darin internet, atau dari buku statistika. Distribusi normal dengan mean 0 dan standar deviasi 1 disebut Distribusi Normal Baku dan diberi notasi Z~N(0,1) dan Z = (x- μ)/σ Yang tersedia tabel P(Z zo)

10 Gambar distribusi Z (normal baku)

11 Luas kurva distribusi normal baku Mengingat distribusi normal mempunyai sifat simetris dan luas dibawah kurva sama dengan 1, maka P(Z 0) = P(Z 0) = 0,5

12 Contoh tabel normal

13 Contoh : a. Hitung peluang P(Z<1,37) dan P(Z>1,37) Dengan melihat tabel kurva normal P(Z<1,37) = 0,9147 artinya peluang terjadinya Z<1,37 adalah 0,9147 P(Z>1,37) = 1 - P(Z<1,37) = 1-0,9147 = 0,0853 artinya peluang terjadinya Z>1,37 adalah0,0853 0, ,37

14 b. P(-1,55 Z 1,60) = P(Z 1,60) - P(Z -1,55) = 0,9452-0,0606 = 0,8846 (apa artinya?) 0,8846-1,55 1,60 c. Tentukan harga Zo sedemikian hingga P(Z>Zo) = 0,025 Dengan cara dibalik, maka P(Z Zo) = 1-0,025 = 0,975 (apa artinya?) Dicari di tabel (ingat soal dibalik) Zo = 1,96

15 Normal baku Karena Distribusi normal X ~ N (μ, σ) dengan transformasi menjadi baku Z = x-μ maka Z ~ N (0,1) σ Soal d. Rata-rata kalori humburger yang dihidangkan untuk makan siang adalah 200 dengan standar deviasi 5. Bila kalori mengikuti distribusi normal, tentukan : P(X>208) dan P(190< x <200) Jawab: P(x>208) = P[(x-200)/5] > ( )/5] 200)/5] = P(Z>1,6) = 1 - P(Z 1,6) = 1-0,9452 = 0,0548 (artinya peluang kalori humberger >208 kal adalah 0,0548)

16 Soal kedua P(190< x <200) = P[( )/5 < = P(-2 < Z < 0) = 0,5 - P(Z<-2) = 0,5-0,0228 = 0,4772 (apa artinya?) (x-200)/5 < ( )/5] 200)/5]

17 Bila diambil contok acak n Dari teorema limit pusat, misalkan diambil contok acak berukuran n dari suatu populasi yang mempunyai mean μ dan standar deviasi σ, maka x1+ x2 + x3 + + xn x x = n akan mempunyai distribusi normal dengan mean μ dan varian σ²/n Dalam praktek n, dapat didekati untuk n 30. Teorema limit pusat ini membuat peranan distribusi normal menjadi penting.

18 Dengan pengambilan contoh acak n, maka bentuk kurva normal dapat dilukiskan sebagai : μ-σ/n μ μ+σ/n titik belok titik belok σ biasanya juga tidak diketahui dan bisa diduga s (standar deviasi contoh)

19 Contoh : Suatu populasi mempunyai rata-rata = 82 dan standar deviasi =12. Diambil contoh acak sebanyak n = 64. Tentukan P(80,8 x 83,2) dan P( x > 93,2). Menurut teorema limit pusat x x ~ (82,144/64) dimana μ = 82 dan σ x = σ/ n = 12/8 = 1,5, maka P(80,8 x 83,2) = P[(80,8-82)/1,5 82)/1,5 ( x -82)/1,5 (83,2-82)/1,5] 82)/1,5] = P(-1,2/1,5 Z 1,2/1,5) = P(-0,8 Z 0,8) = P(Z 0,8) - P(Z -0,8) = 0,7881-0,2119 = 0,5762 (peluang rerata 80,8 x 83,2 adalah 0,5762)

20 P( x > 93,2) = P[(x-82)/1,5 > (93,2-82)/1,5] = P(Z> 11,2/1,5) = P(Z > 7,46) = 1 - P(Z 7,46) = 1-1 = 0 (apa artinya?)

21

22 The Normal Distribution: 68.27% 95.44% f 99.73% 3 2 X 2 3 There is an equation which describes the height of the normal curve in relation to its standard dev ( )

23 Normal distribution with σ = 1, with varying means μ = 0 μ = 1 μ = 2 ƒ If you get difficulties to keep this term, read statistics books

24 Normal distribution with μ = 0, with varying standard deviations σ = 1 ƒ σ = 1.5 σ =

25

26 Exercises, normal distribution 1. For the standard normal random variable Z, find P(Z < 0,42), P(-1,2 < Z < 2,1), P( Z < 1,64) 2. Find z-value in each of the following cases : P( Z < z ) = 0,1736 P(Z > z ) = 0,10 P(-z < Z < z) = 0,954 P(-0,6 < Z < z ) = 0,50

27 3. Scores on certain nationwide college entrance examination follow a normal distribution with a mean of 500 and a standard deviation of 100. Find the probability that a student will score : Over 650 Less than 250 Between 325 and 675

28 Soal 4. Sebuah perusahaan alat listrik memproduksi bohlam yang umurnya menyebar normal dengan nilai tengah 800 jam dan simpangan baku 40 jam. Hitunglah peluang sebuah bohlam hasil produksinya akan mencapai umur antara 778 dan 834 jam. Tunjukkan luas daerahnya dalam gambar sebaran normal. 5. Find normal distribution cases in your daily needed, at least 2 cases. You must be explain it completely, consist of stetement, sample of data and the figure illustration. Write all in English fluently.

29

Haryoso Wicaksono, S.Si., M.M., M.Kom. 26

Haryoso Wicaksono, S.Si., M.M., M.Kom. 26 Distribusi probabilita kontinu, yaitu apabila random variabel yang digunakan kontinu. Probabilita dihitung untuk nilai dalam suatu interval tertentu. Probabilita di suatu titik = 0. Probabilita untuk random

Lebih terperinci

Distribusi Normal, Skewness dan Qurtosis

Distribusi Normal, Skewness dan Qurtosis Distribusi Normal, Skewness dan Qurtosis Departemen Biostatistika FKM UI 1 2 SAP Statistika 1, minggu ke-4 4 Membekali mahasiswa agar lebih paham dan menguasai teori terkait: menghitung ukuran penyimpangan

Lebih terperinci

The Central Limit Theorem

The Central Limit Theorem Kesumawati Prodi Statistika FMIPA-UII March 30, 2015 Sifat-Sifat Distribusi Sampel Sifat-sifat dari distribusi sampel tersebut dikenal dengan Central Limit Theorem 1. Bentuk distribusi dari rata-rata sampel

Lebih terperinci

MA5283 STATISTIKA Bab 3 Inferensi Untuk Mean

MA5283 STATISTIKA Bab 3 Inferensi Untuk Mean MA5283 STATISTIKA Bab 3 Inferensi Untuk Mean Orang Cerdas Belajar Statistika Silabus Silabus dan Tujuan Peubah acak kontinu, distribusi dan Tabel normal, penaksiran titik dan selang, uji hipotesis untuk

Lebih terperinci

Populasi dan Sampel. Materi 1 Distribusi Sampling

Populasi dan Sampel. Materi 1 Distribusi Sampling Materi 1 Distribusi Sampling UNIVERSITAS GUNADARMA 2013 Populasi dan Sampel Populasi : keseluruhan objek yang menjadi pusat perhatian dalam statistika Parameter besaran yang menggambarkan karakteristik

Lebih terperinci

DISTRIBUSI NORMAL. Pertemuan 3. 1 Pertemuan 3_Statistik Inferensial

DISTRIBUSI NORMAL. Pertemuan 3. 1 Pertemuan 3_Statistik Inferensial DISTRIBUSI NORMAL Pertemuan 3 1 Pertemuan 3_Statistik Inferensial Distribusi Normal Pertama kali diperkenalkan oleh Abraham de Moivre (1733). De Moivre menemukan persamaan matematika untuk kurva normal

Lebih terperinci

DISTRIBUSI NORMAL. Pertemuan 3. Distribusi Normal_M. Jainuri, M.Pd 1

DISTRIBUSI NORMAL. Pertemuan 3. Distribusi Normal_M. Jainuri, M.Pd 1 DISTRIBUSI NORMAL Pertemuan 3 1 Distribusi Normal Pertama kali diperkenalkan oleh Abraham de Moivre (1733). De Moivre menemukan persamaan matematika untuk kurva normal yang menjadi dasar dalam banyak teori

Lebih terperinci

Statistika Farmasi

Statistika Farmasi Bab 3: Distribusi Data Statistika FMIPA Universitas Islam Indonesia Distribusi Data Teori dalam statistika berkaitan dengan peluang Konsep dasar peluang tersebut berkaitan dengan peluang distribusi, yaitu

Lebih terperinci

Distribusi Normal. Statistika (MAM 4137) Syarifah Hikmah JS

Distribusi Normal. Statistika (MAM 4137) Syarifah Hikmah JS Distribusi Normal Statistika (MAM 4137) Syarifah Hikmah JS Outline Kurva normal Luas daerah di bawah kurva normal Penerapan sebaran normal DISTRIBUSI NORMAL model distribusi kontinyu yang paling penting

Lebih terperinci

Probabilitas dan Statistika Distribusi Peluang Kontinyu 1. Adam Hendra Brata

Probabilitas dan Statistika Distribusi Peluang Kontinyu 1. Adam Hendra Brata Probabilitas dan Statistika Distribusi Peluang Kontinyu 1 Adam Hendra Brata Variabel Acak Kontinyu - Variabel Acak Kontinyu Suatu variabel yang memiliki nilai pecahan didalam range tertentu Distribusi

Lebih terperinci

Distribusi Teoritis Probabilitas

Distribusi Teoritis Probabilitas Distribusi Teoritis Probabilitas Topik Distribusi teoritis Binomial Distribusi teoritis Poisson Distribusi teoiritis Normal 2 Distribusi Teoritis Probabilitas Distr. Teoritis Probabilitas Diskrit Kontinyu

Lebih terperinci

Distribusi Diskrit dan Kontinu yang Penting. Oleh Azimmatul Ihwah

Distribusi Diskrit dan Kontinu yang Penting. Oleh Azimmatul Ihwah Distribusi Diskrit dan Kontinu yang Penting Oleh Azimmatul Ihwah Distribusi Diskrit Fungsi probabilitas dari variabel random diskrit dapat dinyatakan dalam formula matematik tertentu yang dinamakan fungsi

Lebih terperinci

Rerata. Variance = Ragam. Varian/ragam (S 2 ) : Standar Deviasi : s = s 2

Rerata. Variance = Ragam. Varian/ragam (S 2 ) : Standar Deviasi : s = s 2 II. KOMPONEN VARIAN SIFAT KUANTITATIF Kuswanto, 2012 1.Statistik sifat kuantitatif Karena sifat kuantitatif akan membentuk distribusi kontinyu dari penotip, maka sifat-sifat tersebut dianalisis dengan

Lebih terperinci

Statistik Bisnis 1. Week 5 Variation, Shape and Exploring Numerical Data

Statistik Bisnis 1. Week 5 Variation, Shape and Exploring Numerical Data Statistik Bisnis 1 Week 5 Variation, Shape and Exploring Numerical Data Agenda 15 Minutes 75 Minutes Attendance check Discussion and Exercise Objectives To describe the properties of variation, and shape

Lebih terperinci

BAB 9 DISTRIBUSI PELUANG KONTINU

BAB 9 DISTRIBUSI PELUANG KONTINU BAB 9 DISTRIBUSI PELUANG KONTINU A. Pengertian Distribusi Peluang Kontinu Distribusi peluang kontinu adalah peubah acak yang dapat memperoleh semua nilai pada skala kontinu. Ruang sampel kontinu adalah

Lebih terperinci

STK511 Analisis Statistika. Pertemuan 4 Sebaran Penarikan Contoh

STK511 Analisis Statistika. Pertemuan 4 Sebaran Penarikan Contoh STK511 Analisis Statistika Pertemuan 4 Sebaran Penarikan Contoh Konsep Dasar Suatu statistik, misalnya, adalah fungsi dari peubah acak sering kita tulis. Idea dasaranya : Karena adalah peubah acak, maka

Lebih terperinci

DISTRIBUSI PELUANG KONTINYU DISTRIBUSI PROBABILITAS

DISTRIBUSI PELUANG KONTINYU DISTRIBUSI PROBABILITAS DISTRIBUSI PROBABILITAS Berbeda dengan variabel random diskrit, sebuah variabel random kontinyu adalah variabel yang dapat mencakup nilai pecahan maupun mencakup range/ rentang nilai tertentu. Karena terdapat

Lebih terperinci

Distribusi Teoritis Probabilitas. Distribusi Teoritis Probabilitas. Distribusi Binomial. Distribusi Binomial. Distribusi Binomial

Distribusi Teoritis Probabilitas. Distribusi Teoritis Probabilitas. Distribusi Binomial. Distribusi Binomial. Distribusi Binomial Distribusi Teoritis Probabilitas Topik Distribusi teoritis Binomial Distribusi teoritis Poisson Distribusi teoiritis Normal 3 4 Distribusi Teoritis Probabilitas Distr. Teoritis Probabilitas Diskrit Kontinyu

Lebih terperinci

STATISTIKA. Muhamad Nursalman Pendilkom/Ilkom UPI

STATISTIKA. Muhamad Nursalman Pendilkom/Ilkom UPI STATISTIKA Muhamad Nursalman Pendilkom/Ilkom UPI 1 Daftar Isi Bab 1 Peluang Bab Peubah Acak Bab 3 Distribusi Peluang Diskret Bab 4 Distribusi Peluang Kontinu Bab 5 Fungsi Peubah Acak Bab 6 Teori Penaksiran

Lebih terperinci

STATISTICS. Oleh: Hanung N. Prasetyo DISTRIBUSI NORMAL WEEK 6 TELKOM POLTECH/HANUNG NP

STATISTICS. Oleh: Hanung N. Prasetyo DISTRIBUSI NORMAL WEEK 6 TELKOM POLTECH/HANUNG NP STATISTICS WEEK 6 Oleh: Hanung N. Prasetyo DISTRIBUSI NORMAL Pengantar: Dalam pokok bahasan disini memuat beberapa distribusi kontinyu yang sangat penting di bidang statistika. diantaranya distribusi normal.

Lebih terperinci

Bab 2 DISTRIBUSI PELUANG

Bab 2 DISTRIBUSI PELUANG Bab 2 DISTRIBUSI PELUANG PENDAHULUAN Setiap peristiwa akan mempunyai peluangnya masingmasing, dan peluang terjadinya peristiwa itu akan mempunyai penyebaran yang mengikuti suatu pola tertentu yang di sebut

Lebih terperinci

SEBARAN PENARIKAN CONTOH

SEBARAN PENARIKAN CONTOH STATISTIK A (MAM 4137) SEBARAN PENARIKAN CONTOH By Syarifah Hikmah Julinda Outline Sebaran Penarikan Contoh Sebaran Penarikan Contoh Bagi Nilai Tengah Sebaran t Sebaran Penarikan contoh bagi beda dua mean

Lebih terperinci

Diskripsi: Types of Statistics dan Penyajian Data

Diskripsi: Types of Statistics dan Penyajian Data Diskripsi: Types of Statistics dan Penyajian Data summary, diskripsi data dengan angka: Mean, Median, Range, Standard Deviation, Variance, Min, Max, etc. Descriptive statistics of a POPULATION mean N population

Lebih terperinci

Pertemuan ke Nilai Harapan (Mean atau Rata rata) dan Varians Distribusi Kontinu

Pertemuan ke Nilai Harapan (Mean atau Rata rata) dan Varians Distribusi Kontinu Pertemuan ke 5 4.1 Nilai Harapan (Mean atau Rata rata) dan Varians Distribusi Kontinu Fungsi Probabilitas dengan variabel kontinu terdiri dari : 1. Distribusi Normal 2. Distribusi T 3. Distribusi Chi Kuadrat

Lebih terperinci

Distribusi Sampling. Ayundyah K., M.Si. PROGRAM STUDI STATISTIKA UNIVERSITAS ISLAM INDONESIA 2015

Distribusi Sampling. Ayundyah K., M.Si. PROGRAM STUDI STATISTIKA UNIVERSITAS ISLAM INDONESIA 2015 Distribusi Sampling Ayundyah K., M.Si. PROGRAM STUDI STATISTIKA UNIVERSITAS ISLAM INDONESIA 2015 Populasi dan Sampel Unit adalah entitas (wujud) tunggal, biasanya orang atau suatu obyek, yang diinginkan

Lebih terperinci

Distribusi Sampling 6.2. Debrina Puspita Andriani /

Distribusi Sampling 6.2. Debrina Puspita Andriani    / 6. Debrina Puspita Andriani E-mail : debrina.ub@gmail.com / debrina@ub.ac.id Outline Pengertian dan Konsep Dasar Distribusi Sampling Distribusi Sampling Mean Distribusi Sampling Proporsi Distribusi Sampling

Lebih terperinci

ESTIMASI. Arna Fariza PENDAHULUAN

ESTIMASI. Arna Fariza PENDAHULUAN ESTIMASI Arna Fariza PENDAHULUAN MATERI LALU Karena adanya berbagai alasan seperti banyaknya individu dalam populasi amatan, maka penelitian keseluruhan terhadap populasi tersebut tidaklah ekonomis, baik

Lebih terperinci

STATISTIKA II IT

STATISTIKA II IT STATISTIKA II IT-011227 Ummu Kalsum UNIVERSITAS GUNADARMA 2017 Keterlambatan : KONTRAK KULIAH MOHON KETERLAMBATAN TIDAK LEBIH 15 MENIT Sanksi atau hukuman, sebagai contoh: Menguraikan pengetahuan tentang

Lebih terperinci

DISTRIBUSI TEORITIS. Variabel Acak Distribusi Teoritis Binomial Normal

DISTRIBUSI TEORITIS. Variabel Acak Distribusi Teoritis Binomial Normal DISTRIBUSI TEORITIS DISTRIBUSI TEORITIS Variabel Acak Distribusi Teoritis Binomial Normal Variabel acak adalah sebuah besaran yang merupakan hasil dari percobaan acak yang secara untung-untungan, dapat

Lebih terperinci

STATISTIK PERTEMUAN VII

STATISTIK PERTEMUAN VII STATISTIK PERTEMUAN VII Distribusi Sampling Distribusi Sampling merupakan distribusi teoritis (distribusi kemungkinan) dari semua hasil sampel yang mungkin, dengan ukuran sampel yang tetap N, pada statistik

Lebih terperinci

Metode Statistika (STK211)

Metode Statistika (STK211) Metode Statistika (STK211) Peubah Acak dan Sebaran Peluang (Random Variable and Probability Distribution) Dr. Ir. Kusman Sadik, M.Si Dept. Statistika IPB, 2015 1 Konsep Peubah Acak (Random Variable) Peubah

Lebih terperinci

DISTRIBUSI TEORITIS. P(M) = p = probabilitas untuk mendapat bola merah (sukses) 30

DISTRIBUSI TEORITIS. P(M) = p = probabilitas untuk mendapat bola merah (sukses) 30 DISTRIBUSI TEORITIS Distribusi teoritis merupakan alat bagi kita untuk menentukan apa yang dapat kita harapkan, apabila asumsi-asumsi yang kita buat benar. Distribusi teoritis memungkinkan para pembuat

Lebih terperinci

MINGGU KE-X: DISTRIBUSI CONTINOUS

MINGGU KE-X: DISTRIBUSI CONTINOUS MINGGU KE-: DISTRIBUSI CONTINOUS Tujuan Instruksional Umum : 1. Mahasiswa memahami apa yang dimaksud dengan distribusi continuous 2. Mahasiswa memahami perbedaan antara distribusi diskrit dengan distribusi

Lebih terperinci

Ukuran Sebaran (Keragaman) Data

Ukuran Sebaran (Keragaman) Data Ukuran Sebaran (Keragaman) Data Dr. Akhmad Rizali Ukuran keragaman Dari tiga ukuran pemusatan, belum dapat memberikan deskripsi yang lengkap bagi suatu data Perlu juga diketahui seberapa jauh pengamatanpengamatan

Lebih terperinci

BAB IV METODE PENELITIAN

BAB IV METODE PENELITIAN BAB IV METODE PENELITIAN 4.1. Waktu dan Tempat Penelitian Penelitian dilaksanakan pada bulan Maret hingga April 2011 dengan lokasi penelitian berada di Hutan Pendidikan Gunung Walat, Kabupaten Sukabumi.

Lebih terperinci

Pembahsan Tugas 9 Probabilitas dan Statistika Distribusi Peluang Diskrit dan Distribusi Peluang Kontinyu

Pembahsan Tugas 9 Probabilitas dan Statistika Distribusi Peluang Diskrit dan Distribusi Peluang Kontinyu Pembahsan Tugas 9 Probabilitas dan Statistika Distribusi Peluang Diskrit dan Distribusi Peluang Kontinyu Distribusi Peluang Diskrit 1. Hitunglah P( < 10) dengan distribusi binomial untuk n = 15, p = 0,4!

Lebih terperinci

MODUL II DISTRIBUSI PELUANG DISKRIT DAN KONTINU

MODUL II DISTRIBUSI PELUANG DISKRIT DAN KONTINU DISTRIBUSI PELUANG DISKRIT DAN KONTINU A. TUJUAN PRAKTIKUM Melalui praktikum Modul II ini diharapkan praktikan dapat: 1. Mengenal jenis dan karakteristik dari beberapa distribusi peluang. 2. Menguji dan

Lebih terperinci

Materi 1 : Review Statistika Inferensia Pengujian Hipotesis PERANCANGAN PERCOBAAN

Materi 1 : Review Statistika Inferensia Pengujian Hipotesis PERANCANGAN PERCOBAAN Materi : Review Statistika Inferensia Pengujian Hipotesis PERANCANGAN PERCOBAAN Pendahuluan Suatu pernyataan / anggapan yang mempunyai nilai mungkin benar / salah atau suatu pernyataan /anggapan yang mengandung

Lebih terperinci

Statistika Variansi dan Kovariansi. Adam Hendra Brata

Statistika Variansi dan Kovariansi. Adam Hendra Brata Statistika dan Adam Hendra Brata Kita sudah memahami bahwa nilai harapan peubah acak X seringkali disebut rataan (mean) dan dilambangkan dengan μ. Tetapi, rataan tidak memberikan gambaran dispersi atau

Lebih terperinci

DISTRIBUSI TEORITIS DISTRIBUSI TEORITIS

DISTRIBUSI TEORITIS DISTRIBUSI TEORITIS DISTRIBUSI TEORITIS DISTRIBUSI TEORITIS Variabel Acak Distribusi Teoritis Binomial Normal 1 Variabel acak adalah sebuah besaran yang merupakan hasil dari percobaan acak yang secara untung-untungan, dapat

Lebih terperinci

PENAKSIRAN PARAMETER TM_3

PENAKSIRAN PARAMETER TM_3 PENAKSIRAN PARAMETER TM_3 Pendahuluan Statistik inverensial membicarakan bgmn mengeneralisasi informasi yg telah diperoleh. Segala aturan, dan cara, yg dpt di pakai sebagai alat dlm mencoba menarik kesimpulan

Lebih terperinci

STATISTIKA. Distribusi Binomial. Ingat contoh pemilihan 1 kegiatan (Kegiatan A) dari 4 kegiatan untuk didanai. Distribusi Normal

STATISTIKA. Distribusi Binomial. Ingat contoh pemilihan 1 kegiatan (Kegiatan A) dari 4 kegiatan untuk didanai. Distribusi Normal STATISTIKA Distribusi Normal Distribusi Binomial Ingat contoh pemilihan 1 kegiatan (Kegiatan A) dari 4 kegiatan untuk didanai Distribusi Binomial Histogram Distribusi Probabilitas Sukses Statistika Distribusi

Lebih terperinci

BAB III UJI STATISTIK DAN SIMULASI. Menggunakan karakteristik dari distribusi tersebut dan transformasi / = ( ) (3.1.1) / = ( ) (3.1.

BAB III UJI STATISTIK DAN SIMULASI. Menggunakan karakteristik dari distribusi tersebut dan transformasi / = ( ) (3.1.1) / = ( ) (3.1. 11 BAB III UJI STATISTIK DAN SIMULASI 3.1 Interval Kepercayaan Sebuah interval kepercayaan terdiri dari berbagai nilai-nilai bersama-sama dengan persentase yang menentukan seberapa yakin bahwa parameter

Lebih terperinci

STATISTIKA II IT

STATISTIKA II IT STATISTIKA II IT-021259 Ummu Kalsum UNIVERSITAS GUNADARMA 2016 KONTRAK KULIAH Waktu: Rabu, 7.30 10.30 dan 12.30 15.30 Jam mulai : 3 sks, maka: Mulai: 8. 00 Selesai: 3 x 50 menit = 150 menit 10.30 Keterlambatan

Lebih terperinci

OUT LINE. Distribusi Probabilitas Normal. Pengertian Distribusi Probabilitas Normal. Distribusi Probabilitas Normal Standar

OUT LINE. Distribusi Probabilitas Normal. Pengertian Distribusi Probabilitas Normal. Distribusi Probabilitas Normal Standar 3 OUT LINE Pengertian Distribusi Probabilitas Normal Distribusi Probabilitas Normal Distribusi Probabilitas Normal Standar Penerapan Distribusi Probabilitas Normal Standar Pendekatan Normal Terhadap Binomial

Lebih terperinci

MA2181 Analisis Data - U. Mukhaiyar 1

MA2181 Analisis Data - U. Mukhaiyar 1 DISTRIBUSI KONTINU Uniform Normal Gamma & Eksponensial MA 2181 Analisis Data Utriweni Mukhaiyar September 20 By NN 2008 DISTRIBUSI UNIFORM Distribusi kontinu yang paling sederhana Notasi: X ~ U (a,b) f.k.p:

Lebih terperinci

PENS. Probability and Random Process. Topik 5. Beberapa jenis Distribusi Variabel Acak. Prima Kristalina April 2015

PENS. Probability and Random Process. Topik 5. Beberapa jenis Distribusi Variabel Acak. Prima Kristalina April 2015 Program Pasca Sarjana Terapan Politeknik Elektronika Negeri Surabaya Probability and Random Process Topik 5. Beberapa jenis Distribusi Variabel Acak Prima Kristalina April 215 1 Outline 1. Beberapa macam

Lebih terperinci

DISTRIBUSI KONTINU. Uniform Normal Gamma & Eksponensial. MA3181 Teori Peluang 3 November 2014 Utriweni Mukhaiyar

DISTRIBUSI KONTINU. Uniform Normal Gamma & Eksponensial. MA3181 Teori Peluang 3 November 2014 Utriweni Mukhaiyar DISTRIBUSI KONTINU Uniform Normal Gamma & Eksponensial MA3181 Teori Peluang 3 November 2014 Utriweni Mukhaiyar Distribusi Uniform 2 Distribusi kontinu yang paling sederhana Notasi: X ~ U (a,b) f.k.p: f(x)

Lebih terperinci

STATISTIKA EKONOMI I Chapter 4 Distribusi Probabilitas Normal dan Binomial Chapter 5 Teori Sampling

STATISTIKA EKONOMI I Chapter 4 Distribusi Probabilitas Normal dan Binomial Chapter 5 Teori Sampling STATISTIKA EKONOMI I Chapter 4 Distribusi Probabilitas Normal dan Binomial Chapter 5 Teori Sampling Rengganis Banitya Rachmat rengganis.rachmat@gmail.com 4. Distribusi Probabilitas Normal dan Binomial

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA 5 BAB II TINJAUAN PUSTAKA Dalam bab ini dijelaskan beberapa definisi dan teorema yang digunakan dalam pembahasan berikutnya. 2.1 Teori Peluang Definisi 2.1.1 (Percobaan Acak) (Ross 2000) Suatu percobaan

Lebih terperinci

SEBARAN PENARIKAN CONTOH

SEBARAN PENARIKAN CONTOH STATISTIK (MAM 4137) SEBARAN PENARIKAN CONTOH Ledhyane Ika Harlyan 2 Outline Sebaran Penarikan Contoh Sebaran Penarikan Contoh Bagi Nilai Tengah Sebaran t Sebaran Penarikan contoh bagi beda dua mean Parameter

Lebih terperinci

Statistik Bisnis. Week 2 Numerical Descriptive Measures

Statistik Bisnis. Week 2 Numerical Descriptive Measures Statistik Bisnis Week 2 Numerical Descriptive Measures Agenda Time Activity First Session 90 minutes Central Tendency Second Session 60 minutes Variation and Shape 30 minutes Exploring Numerical Data Objectives

Lebih terperinci

Metode Statistika STK211/ 3(2-3)

Metode Statistika STK211/ 3(2-3) Metode Statistika STK211/ 3(2-3) Pertemuan V Peubah Acak dan Sebaran Peubah Acak Septian Rahardiantoro - STK IPB 1 Pertemuan minggu lalu kita sudah belajar mengenai cara untuk membuat daftar kemungkinan-kemungkinan

Lebih terperinci

SEBARAN PENARIKAN CONTOH (SAMPLING DISTRIBUTION)

SEBARAN PENARIKAN CONTOH (SAMPLING DISTRIBUTION) SEBARAN PENARIKAN CONTOH (SAMPLING DISTRIBUTION) Andaikan ada suatu populasi dengan jumlah anggotanya sebanyak N diambil contoh sebanyak n. Apabila dari setiap kemungkinan contoh tersebut dihitung suatu

Lebih terperinci

DISTRIBUTIONS OF RANDOM VARIABLE DISTRIBUSI VARIABEL RANDOM

DISTRIBUTIONS OF RANDOM VARIABLE DISTRIBUSI VARIABEL RANDOM 1.11 Chebyshev s Inequality DISTRIBUTIONS OF RANDOM VARIABLE (Ketaksamaan Chebyshev) A. Pendahuluan DISTRIBUSI VARIABEL RANDOM Konsep atau rumus yang berhubungan dengan Ketaksamaan Chebyshev Ekspektasi

Lebih terperinci

Distribusi Peluang Kontinyu STATISTIK INDUSTRI 1. Distribusi Peluang Kontinyu. Distribusi Diskrit Uniform. Distribusi Diskrit Uniform 13/11/2013

Distribusi Peluang Kontinyu STATISTIK INDUSTRI 1. Distribusi Peluang Kontinyu. Distribusi Diskrit Uniform. Distribusi Diskrit Uniform 13/11/2013 3//203 STATISTIK INDUSTRI Agustina Eunike, ST., MT., MBA Rata-rata dan Variansi Rumus Umum: Distribusi Peluang Diskrit dan Kontinyu UNIFORM Distribusi Diskrit Uniform Distribusi Diskrit Uniform Contoh:

Lebih terperinci

statistika untuk penelitian

statistika untuk penelitian statistika untuk penelitian Kelompok Ilmiah Remaja (KIR) Delayota Experiment Team (D Expert) 2013 Freeaninationwallpaper.blogspot.com Apa itu Statistika? Statistika adalah ilmu yang mempelajari cara pengumpulan,

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Distribusi Normal Salah satu distribusi frekuensi yang paling penting dalam statistika adalah distribusi normal. Distribusi normal berupa kurva berbentuk lonceng setangkup yang

Lebih terperinci

BI5106 ANALISIS BIOSTATISTIK Bab 3 Peubah Acak dan Dist

BI5106 ANALISIS BIOSTATISTIK Bab 3 Peubah Acak dan Dist BI5106 ANALISIS BIOSTATISTIK Bab 3 Peubah Acak dan Distribusi Orang Biologi Tidak Anti Statistika Silabus Silabus dan Tujuan Konsep peubah acak, fungsi peluang (probability density function), fungsi distribusi

Lebih terperinci

UJI STATISTIK NON PARAMETRIK. Widha Kusumaningdyah, ST., MT

UJI STATISTIK NON PARAMETRIK. Widha Kusumaningdyah, ST., MT UJI STATISTIK NON PARAMETRIK Widha Kusumaningdyah, ST., MT SIGN TEST Sign Test Digunakan untuk menguji hipotesa tentang MEDIAN dan DISTRIBUSI KONTINYU. Pengamatan dilakukan pada median dari sebuah distribusi

Lebih terperinci

STK511 Analisis Statistika. Pertemuan 5 Statistika Inferensia (1)

STK511 Analisis Statistika. Pertemuan 5 Statistika Inferensia (1) STK511 Analisis Statistika Pertemuan 5 Statistika Inferensia (1) Pendugaan Parameter mengacu pada suatu proses yang menggunakan data contoh untuk menduga nilai suatu parameter (populasi). 5. Statistika

Lebih terperinci

Metode Statistika (STK 211) Pertemuan ke-5

Metode Statistika (STK 211) Pertemuan ke-5 Metode Statistika (STK 211) Pertemuan ke-5 rrahmaanisa@apps.ipb.ac.id Memahami definisi dan aplikasi peubah acak (peubah acak sebagai fungsi, peubah acak diskrit dan kontinu) Memahami sebaran peubah acak

Lebih terperinci

Bab 5 Distribusi Sampling

Bab 5 Distribusi Sampling Bab 5 Distribusi Sampling Pendahuluan Untuk mempelajari populasi kita memerlukan sampel yang diambil dari populasi yang bersangkutan. Meskipun kita dapat mengambil lebih dari sebuah sampel berukuran n

Lebih terperinci

MK Statistik Bisnis 2 MultiVariate. Haryoso Wicaksono, S.Si., M.M., M.Kom. 1

MK Statistik Bisnis 2 MultiVariate. Haryoso Wicaksono, S.Si., M.M., M.Kom. 1 Haryoso Wicaksono, S.Si., M.M., M.Kom. 1 Descriptive Statistics mengandung metoda dan prosedur yang digunakan untuk pengumpulan, pengorganisasian, presentasi dan memberikan karakteristik terhadap himpunan

Lebih terperinci

Statistik Bisnis. Week 2 Numerical Descriptive Measures

Statistik Bisnis. Week 2 Numerical Descriptive Measures Statistik Bisnis Week 2 Numerical Descriptive Measures Agenda Time Activity First Session 90 minutes Central Tendency Second Session 60 minutes Variation and Shape 30 minutes Exploring Numerical Data Objectives

Lebih terperinci

Jurusan Teknik Sipil dan Lingkungan Universitas Gadjah Mada STATISTIKA. Distribusi Normal. 1-Sep-14

Jurusan Teknik Sipil dan Lingkungan Universitas Gadjah Mada STATISTIKA. Distribusi Normal. 1-Sep-14 Jurusan Teknik Sipil dan Lingkungan Universitas Gadjah Mada STATISTIKA Distribusi Normal 1-Sep-14 http://istiarto.staff.ugm.ac.id 1 Distribusi Binomial Ingat contoh pemilihan 1 kegiatan (Kegiatan A) dari

Lebih terperinci

DISTRIBUSI KONTINU. Utriweni Mukhaiyar

DISTRIBUSI KONTINU. Utriweni Mukhaiyar DISTRIBUSI KONTINU Uniform Normal Gamma & Eksponensial MA 2081 Statistika ti tik Dasar Utriweni Mukhaiyar Maret 2012 By NN 2008 Distribusi Uniform Distribusi kontinu yang paling sederhana Notasi: X ~ U

Lebih terperinci

KULIAH ANALISIS STATISTIK DATA SIMULASI Tipe-tipe simulasi berdasarkan analisis output:

KULIAH ANALISIS STATISTIK DATA SIMULASI Tipe-tipe simulasi berdasarkan analisis output: KULIAH ANALISIS STATISTIK DATA SIMULASI Tipe-tipe simulasi berdasarkan analisis output: 1. Terminating simulation 2. Nonterminating simulation: a. Steady-state parameters b. Steady-state cycle parameters

Lebih terperinci

Konsep Dasar Statistik dan Probabilitas

Konsep Dasar Statistik dan Probabilitas Konsep Dasar Statistik dan Probabilitas Pengendalian Kualitas Statistika Ayundyah Kesumawati Prodi Statistika FMIPA-UII October 7, 2015 Ayundyah (UII) Konsep Dasar Statistik dan Probabilitas October 7,

Lebih terperinci

Penentuan Momen ke-5 dari Distribusi Gamma

Penentuan Momen ke-5 dari Distribusi Gamma Jurnal Penelitian Sains Volume 6 Nomor (A) April 0 Penentuan Momen ke-5 dari Distribusi Gamma Robinson Sitepu, Putra B.J. Bangun, dan Heriyanto Jurusan Matematika Fakultas MIPA Universitas Sriwijaya, Indonesia

Lebih terperinci

BAHAN KULIAH. Konsep Probabilitas Probabilitas Diskrit dan Kontinyu

BAHAN KULIAH. Konsep Probabilitas Probabilitas Diskrit dan Kontinyu BAHAN KULIAH Konsep Probabilitas Probabilitas Diskrit dan Kontinyu Soal UTS periode November 00 Mata Kuliah : Statistika & Probabilitas Waktu : 0 menit. Suatu sistem pipa seperti ditunjukkan pada gambar

Lebih terperinci

Kumpulan pasangan nilai-nilai dari variabel acak X dengan probabilitas nilai-nilai variabel random X, yaitu P(X=x) disebut distribusi probabilitas X

Kumpulan pasangan nilai-nilai dari variabel acak X dengan probabilitas nilai-nilai variabel random X, yaitu P(X=x) disebut distribusi probabilitas X Kumpulan pasangan nilai-nilai dari variabel acak X dengan probabilitas nilai-nilai variabel random X, yaitu P(X=) disebut distribusi probabilitas X (distribusi X) Diskrit Seragam Binomial Hipergeometrik

Lebih terperinci

(ESTIMASI/ PENAKSIRAN)

(ESTIMASI/ PENAKSIRAN) ESTIMASI PENDAHULUAN Karena adanya berbagai alasan seperti banyaknya individu dalam populasi amatan, maka penelitian keseluruhan terhadap populasi tersebut tidaklah ekonomis, baik tenaga, waktu, maupun

Lebih terperinci

MA2082 BIOSTATISTIKA Bab 3 Peubah Acak dan Distribusi

MA2082 BIOSTATISTIKA Bab 3 Peubah Acak dan Distribusi MA2082 BIOSTATISTIKA Bab 3 Peubah Acak dan Distribusi Orang Biologi Tidak Anti Statistika Silabus Silabus dan Tujuan Konsep peubah acak, fungsi peluang (probability density function), fungsi distribusi

Lebih terperinci

STK 511 Analisis statistika. Materi 3 Sebaran Peubah Acak

STK 511 Analisis statistika. Materi 3 Sebaran Peubah Acak STK 511 Analisis statistika Materi 3 Sebaran Peubah Acak 1 Konsep Peluang 2 Peluang Peluang dapat diartikan sebagai ukuran kemungkinan terjadinya suatu kejadian Untuk memahami peluang diperlukan pemahaman

Lebih terperinci

Nilai Harapan / Nilai Ekspektasi

Nilai Harapan / Nilai Ekspektasi EKSPEKTASI Misalkan sebuah eksperimen menghasilkan k peristiwa, dan peluang masing-masing peristiwa P 1, P, P k dan untuk tiap peristiwa terdapat satuan (bobot d 1, d d k ) maka ekspektasi eksperimen itu

Lebih terperinci

STK 211 Metode statistika. Materi 4 Peubah Acak dan Sebaran Peluang

STK 211 Metode statistika. Materi 4 Peubah Acak dan Sebaran Peluang STK 211 Metode statistika Materi 4 Peubah Acak dan Sebaran Peluang 1 Pendahuluan Soal ujian masuk PT diselenggarakan dengan sistem pilihan berganda. Jika jawaban benar diberi nilai 4, salah dikurangi 1

Lebih terperinci

Ummu Kalsum UNIVERSITAS GUNADARMA

Ummu Kalsum UNIVERSITAS GUNADARMA Ummu Kalsum UNIVERSITAS GUNADARMA 2016 Inferensia Statistika : Mencakup semua metode yang digunakan untuk penarikan kesimpulan atau generalisasi mengenai populasi dengan melakukan pengambilan sampel (sampling)

Lebih terperinci

Pengertian Statistika

Pengertian Statistika Pengertian Statistika Dr. Akhmad Rizali Pendahuluan Kompetensi Pemahaman tentang statistika, data, asal dan macam data, proses data menjdi informasi, macam statistika, contoh dan populasi, statisik dan

Lebih terperinci

Distribusi Peluang Kontinyu STATISTIK INDUSTRI 1. Distribusi Peluang Kontinyu. Distribusi Diskrit Uniform. Distribusi Diskrit Uniform 17/12/2014

Distribusi Peluang Kontinyu STATISTIK INDUSTRI 1. Distribusi Peluang Kontinyu. Distribusi Diskrit Uniform. Distribusi Diskrit Uniform 17/12/2014 STATISTIK INDUSTRI 1 Agustina Eunike, ST., MT., MBA Rata-rata dan Variansi Rumus Umum: Distribusi Peluang Diskrit dan Kontinyu UNIFORM Distribusi Diskrit Uniform Distribusi Diskrit Uniform Contoh: Suatu

Lebih terperinci

LANDASAN TEORI. Generalized Lambda Distribution (GLD) awalnya diusulkan oleh Ramberg dan

LANDASAN TEORI. Generalized Lambda Distribution (GLD) awalnya diusulkan oleh Ramberg dan 4 II. LANDASAN TEORI Generalized Lambda Distribution (GLD) awalnya diusulkan oleh Ramberg dan Schmeiser (1974), yang memiliki empat parameter dari pengembangan distribusi Lambda Tukey. Keluarga distribusi

Lebih terperinci

Randy Toleka Ririhena, Nur Salam * dan Dewi Sri Susanti Program Studi Matematika Fakultas MIPA Universitas Lambung Mangkurat ABSTRACT

Randy Toleka Ririhena, Nur Salam * dan Dewi Sri Susanti Program Studi Matematika Fakultas MIPA Universitas Lambung Mangkurat ABSTRACT PERKIRAAN SELANG KEPERCAYAAN UNTUK NILAI RATA-RATA PADA DISTRIBUSI POISSON Randy Toleka Ririhena, Nur Salam * dan Dewi Sri Susanti Program Studi Matematika Fakultas MIPA Universitas Lambung Mangkurat *email:

Lebih terperinci

Statistik Bisnis 1. Week 10 Continuous Probability Normal Distribution

Statistik Bisnis 1. Week 10 Continuous Probability Normal Distribution Statistik Bisnis 1 Week 10 Continuous Probability Normal Distribution Learning Objectives In this chapter, you learn: To compute probabilities from the normal distribution To use the normal probability

Lebih terperinci

BAB I PENDAHULUAN. dapat dianggap mendekati normal dengan mean μ = μ dan variansi

BAB I PENDAHULUAN. dapat dianggap mendekati normal dengan mean μ = μ dan variansi BAB I PENDAHULUAN 1.1 Latar Belakang Masalah Matematika merupakan salah satu cabang ilmu pengetahuan yang melambangkan kemajuan zaman. Oleh karena itu matematika banyak digunakan oleh cabang ilmu lain

Lebih terperinci

STK 511 Analisis statistika. Materi 4 Sebaran Penarikan Contoh

STK 511 Analisis statistika. Materi 4 Sebaran Penarikan Contoh STK 511 Analisis statistika Materi 4 Sebaran Penarikan Contoh 1 Pengantar Pada dasarnya data contoh diperoleh dengan dua cara: Data telah ada Teknik Penarikan Contoh Data belum tersedia Perancangan Percobaan

Lebih terperinci

STUDI KRITIS ATAS UJI KECUKUPAN DATA

STUDI KRITIS ATAS UJI KECUKUPAN DATA STUDI KRITIS ATAS UJI KECUKUPA DATA Budi Aribowo 1 ABSTRACT Data proficiency test that often used in research, especially in ergonomic and working system design to determine whether the number of the sample

Lebih terperinci

Distribusi Peluang. Dr. Akhmad Rizali

Distribusi Peluang. Dr. Akhmad Rizali Distribusi Peluang Dr. Akhmad Rizali Peubah Acak Peubah acak adalah suatu kejadian yang dapat diucapkan dalam bentuk bilangan nyata Notasi yang sering digunakan adalah X, Y, Z 1 Jenis Peubah Acak Peubah

Lebih terperinci

PEUBAH ACAK. Materi 4 - STK211 Metode Statistika. October 2, Okt, Department of Statistics, IPB. Dr. Agus Mohamad Soleh

PEUBAH ACAK. Materi 4 - STK211 Metode Statistika. October 2, Okt, Department of Statistics, IPB. Dr. Agus Mohamad Soleh PEUBAH ACAK Materi 4 - STK211 Metode Statistika October 2, 2017 Okt, 2017 1 Pendahuluan Pernahkah bertanya, mengapa dalam soal ujian penerimaan mahasiswa baru, jika jawaban benar diberi nilai 4, salah

Lebih terperinci

4. Sebaran Peluang Kontinyu

4. Sebaran Peluang Kontinyu 4. Sebaran Peluang Kontinyu EL00-Probabilitas dan Statistik Dosen: Andriyan B. Suksmono Isi 1. Sebaran normal/gauss. Luas daerah di bawah kurva normal 3. Hampiran normal untuk sebaran binomial 4. Sebaran

Lebih terperinci

Pertemuan V Konsep Peubah Acak dan Sebaran Peluang (Random Variable Concept and Probability Distribution)

Pertemuan V Konsep Peubah Acak dan Sebaran Peluang (Random Variable Concept and Probability Distribution) Pertemuan V Konsep Peubah Acak dan Sebaran Peluang (Random Variable Concept and Probability Distribution) Peubah acak merupakan suatu fungsi yang memetakan ruang kejadian (daerah fungsi) ke ruang bilangan

Lebih terperinci

Binomial Distribution. Dyah Adila

Binomial Distribution. Dyah Adila Binomial Distribution Dyah Adila Binomial Distribution adalah bentuk percobaan yang memiliki syarat-syarat sebagai berikut: 1. Percobaan dilakukan sebanyak n kali. 2. Setiap percobaan memiliki dua hasil

Lebih terperinci

SEBARAN PENARIKAN SAMPEL LOGO

SEBARAN PENARIKAN SAMPEL LOGO SEBARAN PENARIKAN SAMPEL LOGO KOMPETENSI menentukan sebaran penarikan sampel bagi suatu statistik A menentukan sebaran penarikan sampel bagi nilai tengah menentukan sebaran penarikan sampel bagi selisih

Lebih terperinci

BEBERAPA DISTRIBUSI PELUANG KONTINU. Normal, Gamma, Eksponensial, Khi-Kuadrat, Student dan F

BEBERAPA DISTRIBUSI PELUANG KONTINU. Normal, Gamma, Eksponensial, Khi-Kuadrat, Student dan F BEBERAPA DISTRIBUSI PELUANG KONTINU Normal, Gamma, Eksponensial, Khi-Kuadrat, Student dan F Distribusi Normal Distribusi yang terpenting dalam bidang statistika, penemu : DeMoivre (733) dan Gauss Bergantung

Lebih terperinci

LAB MANAJEMEN DASAR MODUL STATISTIKA 1

LAB MANAJEMEN DASAR MODUL STATISTIKA 1 LAB MANAJEMEN DASAR MODUL STATISTIKA 1 Nama : NPM/Kelas : Fakultas/Jurusan : Hari dan Shift Praktikum : Fakultas Ekonomi Universitas Gunadarma Kelapa dua E531 1 UKURAN STATISTIK Pendahuluan Ukuran statistik

Lebih terperinci

MODUL TEORI ESTIMASI ATAU MENAKSIR TEORI ESTIMASI ATAU MENAKSIR

MODUL TEORI ESTIMASI ATAU MENAKSIR TEORI ESTIMASI ATAU MENAKSIR TEORI ESTIMASI ATAU MENAKSIR MODUL 9 TEORI ESTIMASI ATAU MENAKSIR. Pendahuluan Untuk menginginkan mengumpulkan populasi kita lakukan dengan statistik berdasarkan data yang diambil secara sampling yang

Lebih terperinci

Teorema Newman Pearson

Teorema Newman Pearson pengujian terbaik Andi Kresna Jaya andikresna@yahoo.com Jurusan Matematika October 6, 2014 Outline 1 Review 2 Uji dua sisi untuk mean 3 Teorema Neyman-Pearson Back Outline 1 Review 2 Uji dua sisi untuk

Lebih terperinci

MODUL PRAKTIKUM STATISTIKA 2. Laboratorium Jurusan. Manajemen Dasar. Fakultas Ekonomi UNIVERSITAS GUNADARMA. Versi 3.1. Tahun Penyusunan 2012

MODUL PRAKTIKUM STATISTIKA 2. Laboratorium Jurusan. Manajemen Dasar. Fakultas Ekonomi UNIVERSITAS GUNADARMA. Versi 3.1. Tahun Penyusunan 2012 MODUL PRAKTIKUM STATISTIKA 2 Versi 3.1 Tahun Penyusunan 2012 Tim Penyusun 1. Ir. Rina Sugiarti, MM 2. Lies Handrijaningsih, SE.,MM 3. Budi Sulistyo SE.,MM 4. Oktavia Anna Rahayu 5. Intan Permatasari Laboratorium

Lebih terperinci

BAB II TINJAUAN TEORITIS. Menurut Darnius, O (2006, Hal : 53) simulasi dapat diartikan sebagai suatu

BAB II TINJAUAN TEORITIS. Menurut Darnius, O (2006, Hal : 53) simulasi dapat diartikan sebagai suatu BAB II TINJAUAN TEORITIS 2.1 Pendahulauan Menurut Darnius, O (2006, Hal : 53) simulasi dapat diartikan sebagai suatu rekayasa suatu model logika ilmiah untuk melihat kebenaran/kenyataan model tersebut.

Lebih terperinci

BAB II DISTRIBUSI PROBABILITAS

BAB II DISTRIBUSI PROBABILITAS BAB II DISTRIBUSI PROBABILITAS.1. VARIABEL RANDOM Definisi 1: Variabel random adalah suatu fungsi yang memetakan ruang sampel (S) ke himpunan bilangan Real (R), dan ditulis X : S R Contoh (Variabel random)

Lebih terperinci

15Ilmu. Uji t-student dan Uji Z (Distribusi Normal)

15Ilmu. Uji t-student dan Uji Z (Distribusi Normal) Modul ke: Fakultas 15Ilmu Komunikasi Uji t-student dan Uji Z (Distribusi Normal) Untuk sebaran distribusi sampel kecil, dikembangkan suatu distribusi khusus yang disebut distribusi t atau t-student Dra.

Lebih terperinci