LOGIKA DAN PEMBUKTIAN

Ukuran: px
Mulai penontonan dengan halaman:

Download "LOGIKA DAN PEMBUKTIAN"

Transkripsi

1 BAB I LOGIKA DAN PEMBUKTIAN A. PENGANTAR Prinsip dari logika matematika memiliki korelasi dengan pembuktian kebenaran yang dilakukan menggunakan tabel kebenaran ataupun tanpa menggunakan tabel kebenaran dan juga prisip logika matematika berkolerasi dengan kalimat berkuantor tunggal dan ganda. B. PROPOSISI Proposisi (statement) merupakan sebuah kalimat yang memiliki tepat satu kebenararan, yaitu bisa bernilai True atau False tetapi tidak dapat sekaligus keduanya (yaitu true dan false). Contoh Proposisi : Monas berada di Jakarta Kalimat tersebut bernilai TRUE = 230 Kalimat tersebut bernilai FALSE = 2 Kalimat tersebut bernilai TRUE 5 > 35 Kalimat tersebut bernilai FALSE Contoh Bukan Proposisi : Siapa Namamu? x + y = 5 Kerjakan dengan teliti Proposisi sendiri di bagi menjadi beberapa macam, yaitu : 1. Proposisi Primitif : suatu proposisi yang tidak menggunakan kata penghubung. Contoh : Monas berada di Jakarta 1

2 2. Proposisi Majemuk : suatu proposisi yang menggunakan kata penghubung(connectives) Contoh : BJ Habibie adalah seorang mantan presiden dan wakil presiden C. KATA PENGHUBUNG ( CONNECTIVES) Kata penghubung (connectives) dipergunakan untuk mengkombinasikan dua atau lebih kalimat/pernyataan/statement menjadi satu adalah : Nama Simbol Contoh Arti Negasi a Negasi a Konjungsi a b a dan b Disjungsi a b a atau b Implikasi a b Jika a maka b Biimplikasi a b a Jika dan hanya jika b Contoh pengaplikasian kata penghubung dalam suatu proposisi : Diketahui proposisi berikut : p : hari ini hujan q : murid-murid di liburkan dari sekolah Maka : Nama Simbol Bentuk Proposisi Majemuk Negasi p Hari ini tidak hujan Konjungsi p q Hari ini hujan dan murid-murid diliburkan dari sekolah Disjungsi p q Hari ini hujan atau murid-murid di liburkan dari sekolah Implikasi p q Jika hari ini hujan, maka murid-murid diliburkan dari sekolah Biimplikasi q p murid-murid diliburkan dari sekolah jika dan hanya jika Hari ini hujan 2

3 D. TABEL KEBENARAN Tabel kebenaran digunakan untuk mengevaluasi apakah sebuah proposisi majemuk bernilai benar atau salah. Contoh : p q q p ^ q p v q p q p q S S B S S S S S B S S B B B B S B S B S B B B S B B B S DO YOU KNOW 1. Sebuah proposisi majemuk jika bernilai benar pada semua kasus disebut tautologi 2. Sebuah proposisi majemuk jika bernilai salah pada semua kasus disebut kontradiksi E. PENJELASAN TENTANG KATA PENGHUBUNG ( CONNECTIVES) Seperti yang sudah disebutkan sebelumnya penghubung kalimat/connectives terdiri dari beberapa macam, yaitu : 1. NEGASI (NOT) Negasi disebut juga sebagai ingkaran. Suatu pernyataan dapat menggunakan kata penghubung negasi. Kata penghubung negasi sendiri biasanya di bentuk dengan menambahkan kata TIDAK atau BUKAN dalam suatu kalimat yang tepat. Simbol dari sebuah negasi adalah. Apabila di gambarkan menggunakan tabel kebenaran : p B S p S B Contoh : p : Hari senin libur p : Hari senin TIDAK libur DO YOU KNOW 1. Terdapat beberapa literature dalam penulisan notasi negasi, yaitu p, ~p, p 2. Kata Tidak dapat dituliskan ditengah pernyataan. Jika kata Tidak dicantumkan diawal kalimat biasanya diberi tambahan kata benar, sehingga menjadi kalimat tidak benar. 3

4 2. KONJUNGSI (AND) Konjungsi merupakan kata penghubung yang dapat digunakan pada kombinasi proposisi menggunakannya dengan cara menambahkan kata DAN dalam suatu kombinasi kalimat yang tepat. Simbol dari sebuah konjungsi adalah ^. Suatu pernyataan yang mengandung konjungsi akan bernilai B (Benar) apabila nilai seluruh proposisi bernilai B(Benar) juga. Apabila di gambarkan menggunakan tabel kebenaran : p q p ^q Contoh : S S S p : Hari Minggu libur S B S q : Hari Senin Upacara Bendera B S S p^q : Hari Minggu libur DAN Hari Senin Upacara B B B Bendera 3. DISJUNGSI (OR) Disjungsi merupakan kata penghubung yang dapat digunakan pada kombinasi proposisi menggunakannya dengan cara menambahkan kata OR dalam suatu kombinasi kalimat yang tepat. Simbol dari sebuah disjungsi adalah v. Suatu pernyataan yang mengandung konjungsi akan bernilai S (Salah) apabila nilai seluruh proposisi bernilai S(Salah) juga dan akan bernilai B(Benar) apabila salah satunya bernilai B(Benar). Apabila di gambarkan menggunakan tabel kebenaran : p q p v q S S S S B B B S B B B B Contoh : p : para pegawai Google diwajibkan mahir bahasa pemrograman PHP q : para pegawai Google diwajibkan mahir bahasa pemrograman ASP pvq : para pegawai Google diwajibkan mahir bahasa pemrograman PHP atau ASP 4

5 4. IMPLIKASI Implikasi atau kondisional merupakan kata penghubung yang dapat digunakan pada kombinasi proposisi. Penggunaannya dengan cara menambahkan kata JIKA... MAKA... dalam suatu kombinasi kalimat yang tepat. Simbol dari sebuah implikasi adalah. Suatu pernyataan p q memiliki nilai kebenaran S(Salah) jika nilai kebenaran p bernilai B(Benar) dan nilai kebenaran dari q bernilai S (Salah) jika selainnya maka akan bernilai B(Benar). Apabila di gambarkan menggunakan tabel kebenaran : p q p q Contoh : S S B p : Anda membayar lunas S B B q : Anda mendapatkan potongan 10% dari biaya B S S pengembangan B B B p q : JIKA anda membayar lunas MAKA mendapatkan potongan 10% dari biaya pengembangan 5. BI-IMPLIKASI Bi-implikasi atau bikondisional merupakan kata penghubung yang dapat digunakan pada kombinasi proposisi. Penggunaannya dengan cara menambahkan kata...jika DAN HANYA JIKA... dalam suatu kombinasi kalimat yang tepat. Simbol dari sebuah biimplikasi adalah. Suatu pernyataan p q memiliki nilai kebenaran B(Benar) jika nilai kebenaran p bernilai B(Benar) dan q bernilai B(Benar) atau nilai kebenaran dari p bernilai (Salah) dan q bernilai S (Salah) jika selainnya maka akan bernilai S(Salah). Apabila di gambarkan menggunakan tabel kebenaran : p q p q Contoh : S S B p : Anda menggunakan jas hujan S B S q : Hari ini hujan B S S p q : Anda menggunakan jas hujan JIKA DAN HANYA JIKA B B B hari ini hujan 5

6 F. PENJELASAN TENTANG EKUIVALENSI LOGIKA Disebut ekuivalensi apabila logika tersebut memiliki arti yang sama, artinya ketika dibandingkan memiliki arti yang sama. Berikut tabel yang berisi hukum ekuivalensi logika : 1. Hukum Komutatif : p ^q = q ^ p P v q = q v P 2. Hukum Asosiatif : (p ^q) ^r = p^( q ^ r) (p v q) v r = p v ( q v r) 3. Hukum Distributif : p ^ (q v r) = (p ^ q) v (p ^ r) p v ( q ^ r) =( p v q) ^ (p v r) 4. Hukum Identitas : p ^T = p p v F = p 5. Hukum Ikatan (Dominasi/null) : p ^F = F p v T = T 6. Hukum Negasi : p v p = T p ^ p = F : Buktikan ekuivalensi pernyataan berikut : Jawab : (p v q) v ( p ^ q) Ξ p 7. Hukum Negasi Ganda/Involusi : ( p) =p 8. Hukum Idempoten : p ^p = p p v p =p 9. Hukum De Morgan : (p ^q) = p v q (p v q) = p ^ q 10. Hukum Penyerapan/ Absorpsi : p v (p ^q) =p p^ (p v q) =p 11. Negasi T dan F : T = F F = T (p v q) v ( p ^ q) = ( p ^ q) v ( p ^ q) = p ^ (q v q) = p ^ T = p Sehingga terbukti bahwa : (p v q) v ( p ^ q) Ξ p G. PENJELASAN TENTANG DISJUNGSI EKSKLUSIF DAN DENIAL JOIN Simbol disebut sebagai disjungsi ekslusif. Penulisanp q di baca sebagai p atau q tetapi tidak keduanya. 6

7 Apabila di gambarkan menggunakan tabel kebenaran : p q p q S S S S B B B S B B B S Contoh : p : Jika hujan Anda dapat menggunakan jas hujan q : Jika hujan Anda dapat menggunakan payung p q : Jika hujan Anda dapat menggunakan jas hujan atau payung Denial Join / penyangkalan dalam proposisi menggunakan simbol, sehingga apabila menuliskan p q akan dibaca bukan p maupun q. Apabila di gambarkan menggunakan tabel kebenaran : p q p q S S B S B S B S S B B S H. KONVERS, INVERS DAN KONTRAPOSISI Dari suatu implikasi dapat ditentukan konvers, invers dan kontraposisi dengan cara : Implikasi : p q Konvers : q p Invers : p q Kontraposisi : q p Dengan menggunakan tabel kebenaran atau tidak maka dapat dibuktikan bahwa implikasi ekuivalen dengan kontraposisi dan konvers ekuivalen dengan invers. Pembuktian menggunakan tabel kebenaran : p q p q p q q p p q q p S S B B B B B B S B B S B S S B B S S B S B B S B B S S B B B B 7

8 Terdapat pernyataan implikasi((p q) : Jika ia rajin belajar, maka ia akan lulus UN. Tentukan konvers, invers dan kontraposisinya. Jawab : Konvers : Jika ia lulus UN, maka ia rajin belajar (q p) Invers : Jika ia tidak rajin belajar, maka ia tidak akan lulus UN ( p q) Kontraposisi : Jika ia tidak lulus UN, maka ia tidak rajin belajar ( q p) I. INFERENSI LOGIKA Misalkan p dan q merupakan proposisi. Proposisi majemuk Jika p, maka q disebut sebagai proposisi bersyarat(implikasi). Disimbolkan : p q. Proposisi p disebut hipotesis/antesenden/kondisi/premis. Proposisi q disebut konklusi/konsekuen. Metode Inferensi merupakan teknik yang digunakan untuk menurunkan kesimpulan berdasarkan hipotesa yang ada dengan tidak menggunakan tabel kebenaran. Beberapa metode inferensi adalah sebagai berikut : --- Simbol di baca sebagai jadi atau karena itu a. Modus Ponens/ Law Of Detachment Inferensi modus Ponens. Apabila dituliskan : p q..hipotesis p..hipotesis q..konklusi Terdapat implikasi : Jika 15 habis dibagi 3, maka 15 adalah bilangan ganjil Jika 15 habis dibagi 3, maka 15 adalah bilangan ganjil 15 habis dibagi 3 15 adalah bilangan ganjil 8

9 b. Modus Tollen Inferensi modus Tollen. Apabila dituliskan : p q..hipotesis q..hipotesis p..konklusi Terdapat implikasi : Jika Komputer adalah manusia, maka dia dapat berlari Jika Komputer adalah manusia, maka dia dapat berlari Komputer tidak dapat berlari Komputer bukan manusia c. Silogisme Hipotesis Jika p q benar dan q r benar, maka p r benar. Apabila ditulis : p q..hipotesis q r..hipotesis p r..konklusi Terdapat implikasi : Jika saya rajin belajar, maka saya lulus ujian SNMPTN (p q) Dan implikasi Jika saya lulus ujian SNMPTN, maka saya masuk PTN (q r) Jika saya rajin belajar, maka saya lulus ujian SNMPTN Jika saya lulus ujian SNMPTN, maka saya masuk PTN Jika saya rajin belajar, maka saya masuk PTN d. Silogisme Disjungtif Kaidah silogisme disjungtif dapat ditulis dengan cara : p V q..hipotesis p..hipotesis q..konklusi Terdapat disjungsi : Saya belajar dengan giat atau saya menikah tahun depan Saya belajar dengan giat atau saya menikah tahun depan Saya tidak belajar dengan giat Saya menikah tahun depan 9

10 e. Konjungsi Kaidah konjungsi dapat ditulis dengan cara : p..hipotesis q..hipotesis p ^q..konklusi Terdapat kesimpulan berikut : Saya belajar dengan giat. saya menikah tahun depan. Karena itu, Saya belajar dengan giat dan menikah tahun depan. Saya belajar dengan giat saya menikah tahun depan Saya belajar dengan giat dan menikah tahun depan f. Dilema (Pembagian dalam beberapa kasus) Kaidah dilema dapat ditulis sbb : p V q p r q r r Terdapat kesimpulan berikut : Nanti malam Tora mengajak virnie menonton atau menraktir makan di restoran. Jika Tora mengajak virnie nonton, maka virnie akan senang. Jika tora menraktir virnie makan direstoran, maka virnie akan senang. Nanti malam Tora mengajak virnie menonton atau menraktir makan di restoran.jika Tora mengajak virnie nonton, maka virnie akan senang Jika tora menraktir virnie makan direstoran, maka virnie akan senang Virnie akan senang 9

11 LATIHAN SOAL 1. Berikan contoh 2 buah kalimat proposisi dan 2 buah kalimat bukan proposisi. 2. Buatlah tabel kebenaran dari rumus berikut : (q^(p q)) p 3. Diketahui : p : Inong bisa berbahasa Jerman q : Inong bisa berbahasa Inggris r : Inong bisa berbahasa Jepang Terjemahkan kalimat majemuk berikut ke bentuk simbolik : a. Inong bisa berbahasa Inggris dan Jerman b. Tidak benar Inong bisa berbahasa Jepang dan Jerman c. Jika Inong bisa berbahasa Jerman, maka Inong bisa berbahasa Inggris 4. Diketahui : p: Dadi sedang bermain di kolam q: Dadi ada didalam rumah r: Dadi sedang mengerjakan PR s: dadi sedang menonton televisi Nyatakan bentuk simbolik berikut ke dalam pernyataan majemuk : a. p^ q b. ( p^r) c. ( p V q) ^ ( r V s) d. (p r) V (q s) 5. Buktikan ekuivalensi pernyataan berikut : a. p V (p^q) Ξ p b. p^ ( p V q) Ξ p^q 6. Ada sebuah kampung yang penduduknya selalu mengatakan hal yang benar atau selalu bohong. Penduduk kampung hanya memberikan jawaban YA atau TIDAK terhadap pertayaan yang diajukan oleh para pendatang. Misalkan Ajushi adalah seorang pendatang yang baru sampai ke kampung tersebut dan hendak pergi ke kampung lain. Ajushi sedang berada pada sebuah pertigaan jalan. Satu cabang menuju ke kota, sedang cabang lainnya menuju ke jurang, namun Ajushi tidak tahu cabang mana yang mengarah ke kota tujuan karena tidak adanya penunjuk arah. Kebetulan dioertigaan jalan tersebut terdapat seorang warga kampung sedang berdiri, sebut saja dia Bunga. Sebutkan sebuah pertanyaan yang harus Ajushi ajukan kepada Bunga untuk menentukan arah cabang jalan mana yang harus Ajushi ambil? Petunjuk : Misalkan p adalah pertanyaan, Bunga selalu mengatakan yang sebenarnya dan q pernyataan jalan yang berbelok ke kiri menuju ke kota. Formulasikan pertanyaan A yang tersusun dari p dan q sedemikian rupa, sehingga Bunga akan menjawab pertanyaan Apakah A benar dengan YA jika dan hanya jika q bernilai benar.

PENGERTIAN. Proposisi Kalimat deklaratif yang bernilai benar (true) atau salah (false), tetapi tidak keduanya. Nama lain proposisi: kalimat terbuka.

PENGERTIAN. Proposisi Kalimat deklaratif yang bernilai benar (true) atau salah (false), tetapi tidak keduanya. Nama lain proposisi: kalimat terbuka. BAB 2 LOGIKA PENGERTIAN Logika Logika merupakan dasar dari semua penalaran (reasoning). Penalaran didasarkan pada hubungan antara proposisi atau pernyataan (statements). Proposisi Kalimat deklaratif yang

Lebih terperinci

Matematika Industri I

Matematika Industri I LOGIKA MATEMATIKA TIP FTP - UB Pokok Bahasan Proposisi dan negasinya Nilai kebenaran dari proposisi Tautologi Ekuivalen Kontradiksi Kuantor Validitas pembuktian Pokok Bahasan Proposisi dan negasinya Nilai

Lebih terperinci

Logika Logika merupakan dasar dari semua penalaran (reasoning). Penalaran didasarkan pada hubungan antara proposisi atau pernyataan (statements).

Logika Logika merupakan dasar dari semua penalaran (reasoning). Penalaran didasarkan pada hubungan antara proposisi atau pernyataan (statements). Logika (logic) 1 Logika Logika merupakan dasar dari semua penalaran (reasoning). Penalaran didasarkan pada hubungan antara proposisi atau pernyataan (statements). Proposisi Kalimat deklaratif yang bernilai

Lebih terperinci

Materi 4: Logika. I Nyoman Kusuma Wardana. STMIK STIKOM Bali

Materi 4: Logika. I Nyoman Kusuma Wardana. STMIK STIKOM Bali Materi 4: Logika I Nyoman Kusuma Wardana STMIK STIKOM Bali Logika merupakan dasar dr semua penalaran (reasoning). Penalaran didasarkan pada hubungan antara pernyataan-pernyataan (statements). Dalam Logika

Lebih terperinci

EKUIVALENSI LOGIS. Dr. Julan HERNADI & (Asrul dan Enggar) Pertemuan 3 FONDASI MATEMATIKA. Program Studi Pendidikan Matematika FKIP Unmuh Ponorogo

EKUIVALENSI LOGIS. Dr. Julan HERNADI & (Asrul dan Enggar) Pertemuan 3 FONDASI MATEMATIKA. Program Studi Pendidikan Matematika FKIP Unmuh Ponorogo Program Studi Pendidikan Matematika FKIP Unmuh Ponorogo Pertemuan 3 FONDASI MATEMATIKA Variasi bentuk implikasi Berangkat dari implikasi p q kita dapat membentuk tiga pernyataan implikasi relevan yang

Lebih terperinci

MATEMATIKA DISKRIT LOGIKA

MATEMATIKA DISKRIT LOGIKA MATEMATIKA DISKRIT LOGIKA Logika Perhatikan argumen di bawah ini: Jika anda mahasiswa Informatika maka anda tidak sulit belajar Bahasa Java. Jika anda tidak suka begadang maka anda bukan mahasiswa Informatika.

Lebih terperinci

LOGIKA (LOGIC) Logika merupakan dasar dari semua penalaran (reasoning). Penalaran didasarkan pada hubungan antara pernyataanpernyataan

LOGIKA (LOGIC) Logika merupakan dasar dari semua penalaran (reasoning). Penalaran didasarkan pada hubungan antara pernyataanpernyataan LOGIKA (LOGIC) Logika merupakan dasar dari semua penalaran (reasoning). Penalaran didasarkan pada hubungan antara pernyataanpernyataan (statements). Proposisi kalimat deklaratif yang bernilai benar (true)

Lebih terperinci

DASAR-DASAR LOGIKA. Pertemuan 2 Matematika Diskrit

DASAR-DASAR LOGIKA. Pertemuan 2 Matematika Diskrit DASAR-DASAR LOGIKA Pertemuan 2 Matematika Diskrit 25-2-2013 Materi Pembelajaran 1. Kalimat Deklaratif 2. Penghubung kalimat 3. Tautologi dan Kontradiksi 4. Konvers, Invers, dan Kontraposisi 5. Inferensi

Lebih terperinci

LOGIKA & PEMBUKTIAN. Anita T. Kurniawati, MSi LOGIKA

LOGIKA & PEMBUKTIAN. Anita T. Kurniawati, MSi LOGIKA LOGIKA & PEMBUKTIAN Anita T. Kurniawati, MSi LOGIKA Logika merupakan dasar dari semua penalaran (reasoning). Penalaran didasarkan pada hubungan antara pernyataan (statements). 1 Definisi: Kalimat deklaratif

Lebih terperinci

Matematika Diskrit LOGIKA

Matematika Diskrit LOGIKA Matematika Diskrit LOGIKA 1 Logika Logika merupakan dasar dari semua penalaran (reasoning). Penalaran didasarkan pada hubungan antara pernyataan (statements). Proposisi Pernyataan atau kalimat deklaratif

Lebih terperinci

Dasar-dasar Logika. (Review)

Dasar-dasar Logika. (Review) Dasar-dasar Logika (Review) Intro Logika berhubungan dengan kalimat-kalimat dan hubungan antar kalimat. Tujuan: menentukan apakah suatu kalimat / masalah bernilai benar (TRUE) atau salah (FALSE) Kalimat

Lebih terperinci

6. LOGIKA MATEMATIKA

6. LOGIKA MATEMATIKA 6. LOGIKA MATEMATIKA A. Negasi (Ingkaran) Negasi adalah pengingkaran terhadap nilai kebenaran suatu pernyataan. ~ p : tidak p p ~ p B S S B B. Operator Logika 1) Konjungsi adalah penggabungan dua pernyataan

Lebih terperinci

BAB 6 LOGIKA MATEMATIKA

BAB 6 LOGIKA MATEMATIKA A 6 LOGIKA MATEMATIKA A RINGKAAN MATERI 1. Pengertian Logika adalah suatu metode yang diciptakan untuk meneliti ketepatan penalaran (bentuk pemikiran yang masuk akal). Pernyataan adalah kalimat yang hanya

Lebih terperinci

Logika Matematik. Saripudin, M.Pd.

Logika Matematik. Saripudin, M.Pd. Logika Matematik Saripudin, M.Pd. 1 Logika Logika merupakan dasar dari semua penalaran (reasoning). Penalaran didasarkan pada hubungan antara pernyataan (statements). Proposisi Pernyataan atau kalimat

Lebih terperinci

LOGIKA MATEMATIKA I. PENDAHULUAN

LOGIKA MATEMATIKA I. PENDAHULUAN LOGIKA MATEMATIKA I. PENDAHULUAN Logika adalah dasar dan alat berpikir yang logis dalam matematika dan pelajaran-pelajaran lainnya, sehingga dapat membantu dan memberikan bekal tambahan untuk menyampaikan

Lebih terperinci

Logika Logika merupakan dasar dari semua penalaran (reasoning). Penalaran didasarkan pada hubungan antara proposisi atau pernyataan (statements).

Logika Logika merupakan dasar dari semua penalaran (reasoning). Penalaran didasarkan pada hubungan antara proposisi atau pernyataan (statements). Logika (logic) 1 Logika Logika merupakan dasar dari semua penalaran (reasoning). Penalaran didasarkan pada hubungan antara proposisi atau pernyataan (statements). Proposisi Kalimat deklaratif yang bernilai

Lebih terperinci

LOGIKA MATEMATIKA. Tabel kebenarannya sbb : p ~ p B S S B

LOGIKA MATEMATIKA. Tabel kebenarannya sbb : p ~ p B S S B LOGIKA MATEMATIKA A. Pernyataan, kalimat terbuka, dan ingkaran pernyataan. 1. Pernyataan Pernyataan adalah kalimat yang mengandung nilai benar atau salah tetapi tidak sekaligus kedua-duanya. a. Hasil kali

Lebih terperinci

Silogisme Hipotesis Ekspresi Jika A maka B. Jika B maka C. Diperoleh, jika A maka C

Silogisme Hipotesis Ekspresi Jika A maka B. Jika B maka C. Diperoleh, jika A maka C MSH1B3 Logika Matematika Dosen: Aniq A Rohmawati, M.Si Kalkulus Proposisi [Definisi] Metode yang digunakan untuk meninjau nilai kebenaran suatu proposisi atau kalimat Jika Anda belajar di Tel-U maka Anda

Lebih terperinci

BAB I DASAR-DASAR LOGIKA

BAB I DASAR-DASAR LOGIKA BAB I DASAR-DASAR LOGIKA 11 Pendahuluan Logika adalah suatu displin yang berhubungan dengan metode berpikir Pada tingkat dasar, logika memberikan aturan-aturan dan teknik-teknik untuk menentukan apakah

Lebih terperinci

MateMatika Diskrit. Logika (logic) STMIK Parna Raya Manado Ir. Hasanuddin Sirait, M.T

MateMatika Diskrit. Logika (logic) STMIK Parna Raya Manado Ir. Hasanuddin Sirait, M.T MateMatika Diskrit Logika (logic) STMIK Parna Raya Manado Ir. Hasanuddin Sirait, M.T 1 Logika Logika merupakan dasar dari semua penalaran (reasoning). Penalaran didasarkan pada hubungan antara pernyataan

Lebih terperinci

Selamat datang di Perkuliahan LOGIKA MATEMATIKA Logika Matematika Teori Himpunan Teori fungsi

Selamat datang di Perkuliahan LOGIKA MATEMATIKA Logika Matematika Teori Himpunan Teori fungsi Selamat datang di Perkuliahan LOGIKA MAEMAIKA Logika Matematika eori Himpunan eori fungsi Dosen : Dr. Julan HERNADI PUSAKA : Kenneth H Rossen, Discrete mathematics and its applications, fifth edition.

Lebih terperinci

BAB 4 PROPOSISI. 1. Pernyataan dan Nilai Kebenaran

BAB 4 PROPOSISI. 1. Pernyataan dan Nilai Kebenaran BAB 4 PROPOSISI 1. Pernyataan dan Nilai Kebenaran Ilmu logika adalah berhubungan dengan kalimat-kalimat (argumen-argumen) dan hubungan yang ada diantara kalimat-kalimat tersebut. Tujuannya adalah memberikan

Lebih terperinci

Logika Matematika. Logika Matematika. Jurusan Informatika FMIPA Unsyiah. September 26, 2012

Logika Matematika. Logika Matematika. Jurusan Informatika FMIPA Unsyiah. September 26, 2012 Jurusan Informatika FMIPA Unsyiah September 26, 2012 Cara menentukan nilai kebenaran pernyataan majemuk dengan menggunakan tabel kebenaran, yaitu dengan membagi beberapa bagian (kolom). Nilai kebenarannya

Lebih terperinci

Proposition Logic. (Logika Proposisional) Bimo Sunarfri Hantono

Proposition Logic. (Logika Proposisional) Bimo Sunarfri Hantono Proposition Logic (Logika Proposisional) Bimo Sunarfri Hantono bimo@te.ugm.ac.id Proposition (pernyataan) Merupakan komponen penyusun logika dasar yang dilambangkan dengan huruf kecil (p, q, r,...) yang

Lebih terperinci

kusnawi.s.kom, M.Eng version

kusnawi.s.kom, M.Eng version Propositional Logic 3 kusnawi.s.kom, M.Eng version 1.0.0.2009 Adalah sifat-sifat yang dimiliki oleh kalimat logika. Ada 3 sifat logika yaitu : - Valid(Tautologi) - Kontradiksi - Satisfiable(Contingent).

Lebih terperinci

BAB VI. LOGIKA MATEMATIKA

BAB VI. LOGIKA MATEMATIKA BAB VI. LOGIKA MATEMATIKA Ingkaran, Disjungsi, Konjungsi, Implikasi, Biimplikasi : Konvers, Invers, Kontraposisi : Tabel Kebenaran : p q ~ p ~ q p q p q p q p q B B S S B B B B B S S B B S S S S B B S

Lebih terperinci

PERNYATAAN MAJEMUK & NILAI KEBENARAN

PERNYATAAN MAJEMUK & NILAI KEBENARAN PERNYATAAN MAJEMUK & NILAI KEBENARAN 1. Pernyataan Majemuk Perhatikan pernyataan hari ini hujan dan aku berjalan-jalan. Pernyataan tersebut terdiri dari dua pernyataan pokok/tunggal (prime sentence), yaitu

Lebih terperinci

LOGIKA MATEMATIKA LOGIKA. Altien Jonathan Rindengan, S.Si, M.Kom

LOGIKA MATEMATIKA LOGIKA. Altien Jonathan Rindengan, S.Si, M.Kom LOGIKA MATEMATIKA LOGIKA Altien Jonathan Rindengan, S.Si, M.Kom Pendahuluan Untuk menemukan suatu gagasan baru dari informasi dan gagasan yang telah ada, diperlukan proses berpikir. Proses ini dikenal

Lebih terperinci

LOGIKA MATEMATIKA SOAL DAN PENYELESAIAN Logika, Himpunan, Relasi, Fungsi JONG JEK SIANG Kita menjalani hidup dari apa yang kita dapatkan Tetapi kita menikmati hidup dari apa yang kita berikan Jong Jek

Lebih terperinci

CBT Psikotes CBT UN SMA IPA SBMPTN. FPM Matematika. Tes Buta Warna

CBT Psikotes CBT UN SMA IPA SBMPTN. FPM Matematika. Tes Buta Warna GENTA GROUP in PLAY STORE CBT UN SMA IPA Aplikasi CBT UN SMA IPA android dapat di download di play store dengan kata kunci genta group atau gunakan qr-code di bawah. CBT Psikotes Aplikasi CBT Psikotes

Lebih terperinci

BAB 1. Logika. Benteng kehidupan yang terkuat adalah kebenaran. (Anonim)

BAB 1. Logika. Benteng kehidupan yang terkuat adalah kebenaran. (Anonim) BAB 1 Logika Benteng kehidupan yang terkuat adalah kebenaran. (Anonim) Materi Matematika Diskrit di dalam buku ini dimulai dari pokok bahasan logika. Logika merupakan studi penalaran (reasoning). Dalam

Lebih terperinci

TABEL KEBENARAN. Liduina Asih Primandari, S.Si.,M.Si. P a g e 8

TABEL KEBENARAN. Liduina Asih Primandari, S.Si.,M.Si. P a g e 8 P a g e 8 TABEL KEBENARAN A. Logika Proposisional dan Predikat Logika proposional adalah logika dasar yang harus dipahami programmer karena logika ini yang menjadi dasar dalam penentuan nilai kebenaran

Lebih terperinci

RENCANA PELAKSANAAN PEMBELAJARAN

RENCANA PELAKSANAAN PEMBELAJARAN RENCANA PELAKSANAAN PEMBELAJARAN Materi Pelajaran : Matematika Kelas/ Semester : X / 2 Pertemuan ke : 1,2 Alokasi Waktu : 5 x 45 menit Standar Kompetensi : Menerapkan logika matematika dalam pemecahan

Lebih terperinci

MODUL LOGIKA MATEMATIKA

MODUL LOGIKA MATEMATIKA PERENCANAAN PEMBELAJARAN MATEMATIKA MODUL LOGIKA MATEMATIKA AUTHOR: Navel Mangelep UNIVERSITAS NEGERI MANADO FAKULTAS MATEMATIKA & ILMU PENGETAHUAN ALAM JURUSAN MATEMATIKA KATA PENGANTAR Salah satu penunjang

Lebih terperinci

RENCANA PELAKSANAAN PEMBELAJARAN (RPP) Nama Sekolah : SMK... Mata Pelajaran : Matematika Kelas : XI Program Keahlian : Akuntansi dan Penjualan

RENCANA PELAKSANAAN PEMBELAJARAN (RPP) Nama Sekolah : SMK... Mata Pelajaran : Matematika Kelas : XI Program Keahlian : Akuntansi dan Penjualan RENCANA PELAKSANAAN PEMBELAJARAN (RPP) Nama Sekolah : SMK... Mata Pelajaran : Matematika Kelas : XI Program Keahlian : Akuntansi dan Penjualan Standar Kompetensi Kompetensi Dasar Indikator Alokasi Waktu

Lebih terperinci

Logika Matematika. ILFA STEPHANE, M.Si. September Teknik Sipil dan Geodesi Institut Teknologi Padang

Logika Matematika. ILFA STEPHANE, M.Si. September Teknik Sipil dan Geodesi Institut Teknologi Padang ILFA STEPHANE, M.Si September 2012 Teknik Sipil dan Geodesi Institut Teknologi Padang Definisi 1 Logika adalah usaha dalam memutuskan ya atau tidaknya (whether or not) suatu keputusan yang sah. Oleh karena

Lebih terperinci

Logika Matematika. Cece Kustiawan, FPMIPA, UPI

Logika Matematika. Cece Kustiawan, FPMIPA, UPI Logika Matematika 1. Pengertian Logika 2. Pernyataan Matematika 3. Nilai Kebenaran 4. Operasi Uner 5. Operasi Biner 6. Tabel kebenaran Pernyataan 7. Tautologi, Kontradiksi dan Kontingen 8. Pernyataan-pernyataan

Lebih terperinci

BAHAN KULIAH LOGIKA MATEMATIKA

BAHAN KULIAH LOGIKA MATEMATIKA BAHAN KULIAH LOGIKA MATEMATIKA O L E H A. Rahman H., S.Si, MT & Muhammad Khaidir STTIKOM Insan unggul Jl. S.A. tirtayasa no. 146 Komp. Istana Cilegon blok B 25-28 Cilegon Banten 42414 http://didir.co.cc

Lebih terperinci

I. PERNYATAAN DAN NEGASINYA

I. PERNYATAAN DAN NEGASINYA 1 I. PERNYATAAN DAN NEGASINYA A. Pernyataan. Pernyataan adalah suatu kalimat yang mempunyai nilai benar atau salah, tetapi tidak sekaligus keduanya. Benar atau salahnya suatu pernyataan dapat ditunjukkan

Lebih terperinci

Logika. Apakah kesimpulan dari argumen di atas valid? Alat bantu untuk memahami argumen tsb adalah Logika

Logika. Apakah kesimpulan dari argumen di atas valid? Alat bantu untuk memahami argumen tsb adalah Logika Pengantar Logika 1 Logika Perhatikan argumen di bawah ini: Jika anda mahasiswa Informatika maka anda pasti belajar Bahasa Java. Jika anda tidak suka begadang maka anda bukan mahasiswa Informatika. Tetapi,

Lebih terperinci

BAB 6 EKUIVALENSI LOGIS

BAB 6 EKUIVALENSI LOGIS BAB 6 EKUIVALENSI LOGIS 1. Pendahuluan Bab ini akan membahas persamaan-persamaan antara dua buah ekspresi logika yang mungkin ekuivalen (sama), mungkin berbeda, yang kesamaan atau perbedaan tadi akan dibuktikan

Lebih terperinci

1.3 Pembuktian Tautologi dan Kontradiksi. Pernyataan majemuk yang selalu bernilai benar bagaimanapun nilai proposisi

1.3 Pembuktian Tautologi dan Kontradiksi. Pernyataan majemuk yang selalu bernilai benar bagaimanapun nilai proposisi 1.3 Pembuktian 1.3.1 Tautologi dan Kontradiksi Pernyataan majemuk yang selalu bernilai benar bagaimanapun nilai proposisi yang membentuknya disebut toutologi, sedangkan proposisi yang selalu bernilai salah

Lebih terperinci

PETA PERKULIAHAN MATA KULIAH : LOGIKA MATEMATIKA KODE MATA KULIAH : GD 321. SEMESTER : GANJIL (5) DOSEN : MAULANA, S.Pd., M.Pd.

PETA PERKULIAHAN MATA KULIAH : LOGIKA MATEMATIKA KODE MATA KULIAH : GD 321. SEMESTER : GANJIL (5) DOSEN : MAULANA, S.Pd., M.Pd. Doc Logika Matematika PGSD Maulana 1 PETA PERKULIAHAN MATA KULIAH : LOGIKA MATEMATIKA KODE MATA KULIAH : GD 321 BOBOT SKS : 2 (DUA) TAHUN AKADEMIK : 2007/2008 PROGRAM : PGSD S-1 KELAS SEMESTER : GANJIL

Lebih terperinci

Matematika Diskret (Logika) Instruktur : Ferry Wahyu Wibowo, S.Si., M.Cs.

Matematika Diskret (Logika) Instruktur : Ferry Wahyu Wibowo, S.Si., M.Cs. Matematika Diskret (Logika) Instruktur : Ferry Wahyu Wibowo, S.Si., M.Cs. 1 Logika Perhatikan argumen di bawah ini: Jika anda mahasiswa Informatika maka anda tidak akan sulit belajar Bahasa Java. Jika

Lebih terperinci

Logika Matematika. Logika Matematika. Jurusan Informatika FMIPA Unsyiah. September 26, 2012

Logika Matematika. Logika Matematika. Jurusan Informatika FMIPA Unsyiah. September 26, 2012 Jurusan Informatika FMIPA Unsyiah September 26, 2012 yang diharapkan Dasar: Menggunakan logika matematika. Indikator Esensial: 1 Mengidentifikasi suatu tautologi 2 Menentukan ingkaran suatu pernyataan

Lebih terperinci

KALKULUS PERNYATAAN. Totologi & Kontradiksi. Tingkat Kekuatan Operator. Tabel Kebenaran 9/30/2013. Nur Insani, M.Sc

KALKULUS PERNYATAAN. Totologi & Kontradiksi. Tingkat Kekuatan Operator. Tabel Kebenaran 9/30/2013. Nur Insani, M.Sc KALKULUS PERNYATAAN Totologi & Kontradiksi Nur Insani, M.Sc Satu atau lebih proposisi dapat dikombinasikan untuk menghasilkan proposisi baru lewat penggunaan operator logika: negasi (-), dan (^), atau

Lebih terperinci

BAB II TAUTOLOGI DAN PRINSIP-PRINSIP PEMBUKTIAN

BAB II TAUTOLOGI DAN PRINSIP-PRINSIP PEMBUKTIAN BAB II TAUTOLOGI DAN PRINSIP-PRINSIP PEMBUKTIAN 2.1 Pendahuluan Pada bab ini akan dibicarakan rumus-rumus tautologi dan prinsip-prinsip pembuktian yang tidak saja digunakan di bidang matematika, tetapi

Lebih terperinci

2.1. Definisi Logika Proposisi Logika proposisi Atomic proposition compound proposition

2.1. Definisi Logika Proposisi Logika proposisi Atomic proposition compound proposition 2. LOGIKA PROPOSISI 2.1. Definisi Logika Proposisi Logika proposisi adalah logika pernyataan majemuk yang disusun dari pernyataanpernyataan sederhana yang dihubungkan dengan penghubung Boolean (Boolean

Lebih terperinci

Matematika Diskret (Logika) Instruktur : Ferry Wahyu Wibowo, S.Si., M.Cs.

Matematika Diskret (Logika) Instruktur : Ferry Wahyu Wibowo, S.Si., M.Cs. Matematika Diskret (Logika) Instruktur : Ferry Wahyu Wibowo, S.Si., M.Cs. 1 Logika Perhatikan argumen di bawah ini: Jika anda mahasiswa Informatika maka anda tidak akan sulit belajar Bahasa Java. Jika

Lebih terperinci

Logika Proposisi. Rudi Susanto

Logika Proposisi. Rudi Susanto Logika Proposisi Rudi Susanto 1 Logika Perhatikan argumen di bawah ini: Jika anda mahasiswa Informatika maka anda tidak sulit belajar Bahasa Java. Jika anda tidak suka begadang maka anda bukan mahasiswa

Lebih terperinci

FONDASI MATEMATIKA. Julan HERNADI. December 13, 2011 BUKU TEKS WAJIB. (Dasar berpikir deduktif dalam matematika)

FONDASI MATEMATIKA. Julan HERNADI. December 13, 2011 BUKU TEKS WAJIB. (Dasar berpikir deduktif dalam matematika) FONDASI MATEMATIKA (Dasar berpikir deduktif dalam matematika) Julan HERNADI December 13, 2011 BUKU TEKS WAJIB DAFTAR ISI 1 PROPOSISI DAN KONEKTIVITAS 1 1.1 Proposisi dan nilai kebenaran......................

Lebih terperinci

BAHAN AJAR LOGIKA MATEMATIKA

BAHAN AJAR LOGIKA MATEMATIKA 1 BAHAN AJAR LOGIKA MATEMATIKA DI SUSUN OLEH : DRS. ABD. SALAM,MM KELAS X BM & PAR SMK NEGERI 1 SURABAYA LOGIKA MATEMATIKA Standar Kompetensi : Menerapkan logika matematika dalam pemecahan masalah yang

Lebih terperinci

LOGIKA SIMBOLIK. Bagian II. September 2005 Pengantar Dasar Matematika 1

LOGIKA SIMBOLIK. Bagian II. September 2005 Pengantar Dasar Matematika 1 LOGIKA IMOLIK agian II eptember 2005 Pengantar Dasar Matematika 1 LOGIKA Realitas Kalimat/ Pernyataan Logis LOGIKA eptember 2005 Pengantar Dasar Matematika 2 Apakah logika itu? Logika: Ilmu untuk berpikir

Lebih terperinci

LOGIKA MATEMATIKA. Pernyataan

LOGIKA MATEMATIKA. Pernyataan LOGIKA MATEMATIKA 1 PERNYATAAN DAN UKAN PERNYATAAN A Pengertian logika Matematika Logika adalah ilmu untuk berpikir dan menalar dengan benar. Logika matematika (logika simbolik) adalah ilmu tentang penyimpulan

Lebih terperinci

BAB 1 PENDAHULUAN MATEMATIKA DISKRIT 1. 1 APAKAH MATEMATIKA DISKRIT ITU?

BAB 1 PENDAHULUAN MATEMATIKA DISKRIT 1. 1 APAKAH MATEMATIKA DISKRIT ITU? BAB PENDAHULUAN. APAKAH MATEMATIKA DISKRIT ITU? Matematika diskrit adalah salah satu cabang dari matematika yang mengkaji objek-objek diskrit. Benda disebut diskrit jika terdiri dari sejumlah berhingga

Lebih terperinci

LOGIKA MATEMATIKA. Modul Matematika By : Syaiful Hamzah Nasution

LOGIKA MATEMATIKA. Modul Matematika By : Syaiful Hamzah Nasution LOGIKA MATEMATIKA Logika matematika mempunyai peranan mendasar dalam perkembangan teknologi computer. Karena logika digunakan dalam berbagai aspek di bidang computer seperti pemrograman, ersitektur computer,

Lebih terperinci

Materi Kuliah Matematika Komputasi. Oleh: Gembong Edhi Setyawan. Program Teknologi Informasi dan Ilmu Komputer Universitas Brawijaya

Materi Kuliah Matematika Komputasi. Oleh: Gembong Edhi Setyawan. Program Teknologi Informasi dan Ilmu Komputer Universitas Brawijaya Materi Kuliah Matematika Komputasi Oleh: Gembong Edhi Setyawan Program Teknologi Informasi dan Ilmu Komputer Universitas Brawijaya 1 Logika Perhatikan argumen di bawah ini: Jika anda mahasiswa Informatika

Lebih terperinci

Oleh: Anita T. Kurniawati, MSi Diah Arianti, S.Kom

Oleh: Anita T. Kurniawati, MSi Diah Arianti, S.Kom BUKU AJAR (DIKTAT) MATEMATIKA DISKRIT Oleh: Anita T. Kurniawati, MSi Diah Arianti, S.Kom JURUSAN TEKNIK INFORMATIKA FAKULTAS TEKNOLOGI INFORMASI INSTITUT TEKNOLOGI ADHI TAMA SURABAYA SUARABAYA 2010 KATA

Lebih terperinci

Aljabar Bentuk Pernyataan

Aljabar Bentuk Pernyataan Modul 1 Aljabar Bentuk Pernyataan Prof. R. Soemantri B PENDAHULUAN ahasa adalah suatu bentuk pengungkapan yang sangat kompleks dan fleksibel. Bahasa dapat digunakan untuk menyampaikan emosi yang sangat

Lebih terperinci

Logika Matematika. Bab 1

Logika Matematika. Bab 1 Bab 1 Sumber: pkss.co.id Pada bab ini, Anda akan diajak untuk memecahkan masalah yang ber - hubungan dengan konsep, di antaranya mendeskripsikan pernyataan dan bukan pernyataan (kalimat terbuka), mendeskripsikan

Lebih terperinci

Logika Matematika. Bab 1

Logika Matematika. Bab 1 Bab 1 Sumber: pkss.co.id Pada bab ini, Anda akan diajak untuk memecahkan masalah yang ber - hubungan dengan konsep, di antaranya mendeskripsikan pernyataan dan bukan pernyataan (kalimat terbuka), mendeskripsikan

Lebih terperinci

Logika Proposisi. Matema(ka Komputasi - Logika Proposisi. Agi Putra Kharisma, ST., MT.

Logika Proposisi. Matema(ka Komputasi - Logika Proposisi. Agi Putra Kharisma, ST., MT. Logika Proposisi Agi Putra Kharisma, S., M. 1 Proposisi/Statement Kalimat (sentence) deklara?f yang bernilai RUE atau ALSE, namun IDAK sekaligus keduanya Contoh Proposisi Ibukota Jawa imur adalah Surabaya

Lebih terperinci

FONDASI MATEMATIKA Dasar berfikir deduktif dalam matematika. Julan HERNADI

FONDASI MATEMATIKA Dasar berfikir deduktif dalam matematika. Julan HERNADI FONDASI MATEMATIKA Dasar berfikir deduktif dalam matematika Julan HERNADI FONDASI MATEMATKA Julan HERNADI October 10, 2011 BUKU TEKS WAJIB Pada Program Studi Pendidikan Matematika FKIP UNMUH PONOROGO DAFTAR

Lebih terperinci

PENALARAN DALAM MATEMATIKA

PENALARAN DALAM MATEMATIKA PENALARAN DALAM MATEMATIKA A. PENDAHULUAN Siswa belajar dimulai dari mengamati contoh-contoh atau fenomena Dari informasi-informasi yang diperoleh secara khusus siswa mencoba melakukan generalisasi secara

Lebih terperinci

Bab 5 Proposisi Lanjutan 29 BAB V PROPOSISI LANJUTAN TUJUAN PRAKTIKUM TEORI PENUNJANG

Bab 5 Proposisi Lanjutan 29 BAB V PROPOSISI LANJUTAN TUJUAN PRAKTIKUM TEORI PENUNJANG Bab 5 Proosisi Lanjutan 29 BAB V PROPOSISI LANJUTAN TUJUAN PRAKTIKUM 1. Memahami tentang Inferensi 2. Memahami tentang Argumentasi dan roosisi 3. Memahami dan menyelesaikan ermasalahan Inferensi TEORI

Lebih terperinci

Silabus. Kegiatan Pembelajaran Instrumen

Silabus. Kegiatan Pembelajaran Instrumen NAMA SEKOLAH : MATA PELAJARAN : Matematika KELAS : XI STANDAR KOMPETENSI : Menerapkan logika matematka dalam pemecahan masalah yang berkaitan dengan pernyataan majemuk dan pernyataan berkuantor KODE KOMPETENSI

Lebih terperinci

K13 Revisi Antiremed Kelas 11

K13 Revisi Antiremed Kelas 11 K13 Revisi Antiremed Kelas 11 Latihan Soal Logika halaman 1 01. Misalkan p adalah pernyataan yang bernilai benar dan q adalah pernyataan yang benar. Dari tiga pernyataan berikut: (1) yang bernilai benar

Lebih terperinci

RENCANA PEMBELAJARAN

RENCANA PEMBELAJARAN ISO 91 : 28 Disusun Oleh Diperiksa Oleh Disetujui Oleh Tanggal Berlaku 1 September 2015 Diana, M.Kom A.Haidar Mirza, M.Kom M. Izman Hardiansyah, Ph.D Mata Kuliah : Logika Informatika Semester : Kode :

Lebih terperinci

RENCANA PELAKSANAAN PEMBELAJARAN (RPP)

RENCANA PELAKSANAAN PEMBELAJARAN (RPP) Kurikulim MK Negeri 1 urabaya RENCANA PELAKANAAN PEMELAJARAN (RPP) Nama ekolah : MK Negeri 1 urabaya Program Keahlian : Mata Pelajaran : Matematika Kelas / emester : tandar Kompetensi : Menerapkan logika

Lebih terperinci

Unit 5 PENALARAN/LOGIKA MATEMATIKA. Wahyudi. Pendahuluan

Unit 5 PENALARAN/LOGIKA MATEMATIKA. Wahyudi. Pendahuluan Unit 5 PENALARAN/LOGIKA MATEMATIKA Wahyudi Pendahuluan D alam menyelesaikan permasalahan matematika, penalaran matematis sangat diperlukan. Penalaran matematika menjadi pedoman atau tuntunan sah atau tidaknya

Lebih terperinci

Logika Informatika. Bambang Pujiarto

Logika Informatika. Bambang Pujiarto Logika Informatika Bambang Pujiarto LOGIKA mempelajari atau berkaitan dengan prinsip-prinsip dari penalaran argument yang valid studi tentang kriteria-kriteria untuk mengevaluasi argumenargumen dengan

Lebih terperinci

MATEMATIKA DASAR (Ekivalensi dan Kuantifikasi)

MATEMATIKA DASAR (Ekivalensi dan Kuantifikasi) MATEMATIKA DASAR (Ekivalensi dan Kuantifikasi) Antonius Cahya Prihandoko Universitas Jember Indonesia Jember, 2015 Antonius Cahya Prihandoko (UNEJ) MDAS - Ekivalensi dan Kuantifikasi Jember, 2015 1 / 20

Lebih terperinci

Keterampilan Berpikir Kritis dengan Prinsip Logika

Keterampilan Berpikir Kritis dengan Prinsip Logika Keterampilan Berpikir Kritis dengan Prinsip Logika Rahmi Yuwan (13510031) Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung, Jl. Ganesha 10 Bandung 40132,

Lebih terperinci

Logika Matematika. Bab 1

Logika Matematika. Bab 1 Bab 1 Sumber: pkss.co.id Pada bab ini, Anda akan diajak untuk memecahkan masalah yang ber - hubungan dengan konsep, di antaranya mendeskripsikan pernyataan dan bukan pernyataan (kalimat terbuka), mendeskripsikan

Lebih terperinci

5. 1 Mendeskripsikan pernyataan dan bukan pernyataan (kalimat terbuka)

5. 1 Mendeskripsikan pernyataan dan bukan pernyataan (kalimat terbuka) Sumber: Art and Gallery Standar Kompetensi 5. Menerapkan logika matematika dalam pemecahan masalah yang berkaitan dengan pernyataan majemuk dan pernyataan berkuantor Kompetensi Dasar 5. 1 Mendeskripsikan

Lebih terperinci

Logika & Himpunan 2013 LOGIKA MATEMATIKA. Oleh NUR INSANI, M.SC. Disadur dari BUDIHARTI, S.Si.

Logika & Himpunan 2013 LOGIKA MATEMATIKA. Oleh NUR INSANI, M.SC. Disadur dari BUDIHARTI, S.Si. LOGIKA MATEMATIKA Oleh NUR INSANI, M.SC Disadur dari BUDIHARTI, S.Si. Logika adalah ilmu yang mempelajari secara sistematis kaidah-kaidah penalaran yang absah/valid. Ada dua macam penalaran, yaitu: penalaran

Lebih terperinci

IT105 MATEMATIKA DISKRIT. Ramos Somya, S.Kom., M.Cs.

IT105 MATEMATIKA DISKRIT. Ramos Somya, S.Kom., M.Cs. IT105 MATEMATIKA DISKRIT Ramos Somya, S.Kom., M.Cs. TUJUAN Mahasiswa Memahami dan menguasai konsep dasar logika matematika Mahasiswa mempunyai daya nalar yang semakin tajam. POKOK BAHASAN Pernyataan dan

Lebih terperinci

Logika adalah jantung dari algoritma dan pemrograman. Contoh: if x mod 2 = 0 then x:=x + 1 else x:=x 1

Logika adalah jantung dari algoritma dan pemrograman. Contoh: if x mod 2 = 0 then x:=x + 1 else x:=x 1 LOGIKA 1 2 Logika adalah jantung dari algoritma dan pemrograman. Contoh: if x mod 2 = 0 then x:=x + 1 else x:=x 1 3 Contoh 4. Diketahui proposisi-proposisi berikut: p : Pemuda itu tinggi q : Pemuda itu

Lebih terperinci

50. Mata Pelajaran Matematika Kelompok Akuntansi dan Pertanian untuk Sekolah Menengah Kejuruan (SMK)/Madrasah Aliyah Kejuruan (MAK) A.

50. Mata Pelajaran Matematika Kelompok Akuntansi dan Pertanian untuk Sekolah Menengah Kejuruan (SMK)/Madrasah Aliyah Kejuruan (MAK) A. 50. Mata Pelajaran Matematika Kelompok Akuntansi dan Pertanian untuk Sekolah Menengah Kejuruan (SMK)/Madrasah Aliyah Kejuruan (MAK) A. Latar Belakang Matematika merupakan ilmu universal yang mendasari

Lebih terperinci

PERTEMUAN 1. PERNYATAAN PENGHUBUNG PERNYATAAN A.Jerry W Jeki C.S. jekichas.weebly.com

PERTEMUAN 1. PERNYATAAN PENGHUBUNG PERNYATAAN A.Jerry W Jeki C.S. jekichas.weebly.com PERTEMUAN 1 IT 030 G PERNYATAAN PENGHUBUNG PERNYATAAN A.Jerry W Jeki C.S jekichas.weebly.com Peraturan Keterlambatanyang penting tdk keterlaluan dan tdk tertinggal pre test (tidak ada pre test susulan)

Lebih terperinci

E-LOGIC. Nama : Eko Budi Pranyoto. Nim : Abstrak

E-LOGIC. Nama : Eko Budi Pranyoto. Nim : Abstrak E-LOGIC Nama : Eko Budi Pranyoto Nim : 10004148 Abstrak Logika merupakan hal sangat penting dalam matematika. Hampir semua bidang dalam matematika dimulai dari logika. Sebagian besar perkembangan matematika

Lebih terperinci

KISI KISI LOMBA KOMPETENSI SISWA SMK TINGKAT PROVINSI JAWA TIMUR 2014

KISI KISI LOMBA KOMPETENSI SISWA SMK TINGKAT PROVINSI JAWA TIMUR 2014 LKS SMK 214 Bidang : Matematika Teknologi KISI KISI LOMBA KOMPETENSI SISWA SMK TINGKAT PROVINSI JAWA TIMUR 214 1 Memecahkan masalah berkaitan dengan konsep aljabar memaham, mengaplikasikan, menganalisai

Lebih terperinci

Logika. Modul 1 PENDAHULUAN

Logika. Modul 1 PENDAHULUAN Modul 1 Logika Drs. Sukirman, M.Pd. L PENDAHULUAN ogika merupakan salah satu bidang ilmu yang mengkaji prinsip-prinsip penalaran yang benar dan penarikan kesimpulan yang absah, baik yang bersifat deduktif

Lebih terperinci

1. SET. Descrete Mathematics 1

1. SET. Descrete Mathematics 1 1. SET 1 Discrete Mathematics 1. Set and Logic 2. Relation 3. Function 4. Induction 5. Boolean Algebra and Number Theory MID 6. Graf dan Tree/Pohon 7. Combinatorial 8. Discrete Probability UAS 2 SET (CONT..)

Lebih terperinci

MODUL 3 OPERATOR LOGIKA

MODUL 3 OPERATOR LOGIKA STMIK STIKOM BALIKPAPAN 1 MODUL 3 OPERATOR LOGIKA 1. TEMA DAN TUJUAN KEGIATAN PEMBELAJARAN 1. Tema : Operator Logika 2. Fokus Pembahasan Materi Pokok : 1. Operator Logika Konjungsi 2. Operator Logika Disjungsi

Lebih terperinci

1.Asas Logik dan Pembuktian

1.Asas Logik dan Pembuktian 1.Asas Logik dan Pembuktian ASAS LOGIK Logik merupakan dasar dari semua penaakulan (reasoning). Penaakulan didasarkan pada hubungan antara pernyataanpernyataan (statements). Pernyataan Ayat deklaratif

Lebih terperinci

LOGIKA MATEMATIKA. Materi SMA/SMK/MA. kelas X

LOGIKA MATEMATIKA. Materi SMA/SMK/MA. kelas X LOGIKA MATEMATIKA Materi SMA/SMK/MA kelas X Orang yang paling sempurna bukanlah orang dengan otak yang sempurna, melainkan orang yang dapat mempergunakan sebaiknya-baiknya dari bagian otaknya yang kurang

Lebih terperinci

Teori Dasar Logika (Lanjutan)

Teori Dasar Logika (Lanjutan) Teori Dasar Logika (Lanjutan) Inferensi Logika Logika selalu berhubungan dengan pernyataan-pernyataan yang ditentukan nilai kebenarannya. Untuk menentukan benar tidaknya kesimpulan berdasarkan sejumlah

Lebih terperinci

SILABUS. Menyimak pemahaman tentang bentuk pangkat, akar dan logaritma beserta keterkaitannya. Mendefinisikan bentuk pangkat, akar dan logaritma.

SILABUS. Menyimak pemahaman tentang bentuk pangkat, akar dan logaritma beserta keterkaitannya. Mendefinisikan bentuk pangkat, akar dan logaritma. SILABUS Nama Sekolah : SMA NEGERI 6 PONTIANAK Mata Pelajaran : MATEMATIKA Kelas/Program : X Semester : 1 STANDAR KOMPETENSI: 1. Memecahkan masalah yang berkaitan dengan bentuk pangkat, akar, dan logaritma.

Lebih terperinci

SILABUS PEMBELAJARAN

SILABUS PEMBELAJARAN SILABUS PEMBELAJARAN Nama Sekolah :... Mata Pelajaran : MATEMATIKA Kelas / Program : X / UMUM Semester : GENAP STANDAR KOMPETENSI: 4. Menggunakan logika matematika dalam pemecahan masalah yang berkaitan

Lebih terperinci

Definisi 2.1. : Sebuah pernyataan yang bernilai benar atau salah disebut dengan proposisi (proposition)

Definisi 2.1. : Sebuah pernyataan yang bernilai benar atau salah disebut dengan proposisi (proposition) Bab II Kalkulus Proposisi Bab pertama ini menyampaikan sejumlah argumen logika. Semua argumen logika meliputi proposisi proposisi atomik (atomic proposition), yang tidak dapat dibagi lagi. Proposisi atomik

Lebih terperinci

1. Memahami pengertian proposisi dan predikat. 3. Memahami penggunaan penghubung dan tabel kebenaran

1. Memahami pengertian proposisi dan predikat. 3. Memahami penggunaan penghubung dan tabel kebenaran Modul 1 Logika Matematika Pendahuluan Pada Modul ini akan dibahas materi yang berkaitan dengan logika proposisi dan logika predikat, serta berbagai macam manipulasi didalamnya. Tujuan Instruksional Umum

Lebih terperinci

SILABUS. Menyimak pemahaman tentang bentuk pangkat, akar dan logaritma beserta keterkaitannya. Mendefinisikan bentuk pangkat, akar dan logaritma.

SILABUS. Menyimak pemahaman tentang bentuk pangkat, akar dan logaritma beserta keterkaitannya. Mendefinisikan bentuk pangkat, akar dan logaritma. SILABUS Nama Sekolah : SMA PGRI 1 AMLAPURA Mata Pelajaran : MATEMATIKA Kelas/Program : X Semester : 1 STANDAR KOMPETENSI: 1. Memecahkan masalah yang berkaitan dengan bentuk pangkat, akar, dan logaritma.

Lebih terperinci

Matematika diskrit Bagian dari matematika yang mempelajari objek diskrit.

Matematika diskrit Bagian dari matematika yang mempelajari objek diskrit. Matematika diskrit Bagian dari matematika yang mempelajari objek diskrit. Banyak masalah yang dapat diatasi dengan menggunakan konsep yang ada di MATDIS, antara lain : 1. Berapa besar kemungkinan kita

Lebih terperinci

LOGIKA. Ratna Wardani Pendidikan Teknik Informatika. 10/28/2008> Pertemuan-1-2 1

LOGIKA. Ratna Wardani Pendidikan Teknik Informatika. 10/28/2008> Pertemuan-1-2 1 LOGIKA Ratna Wardani Pendidikan Teknik Informatika 10/28/2008> Pertemuan-1-2 1 Materi Perkuliahan Konsep Proposisi Majemuk Manfaat Skema Parsing Precedence Rules Tautologi, Kontradiksi dan Contingen 10/28/2008>

Lebih terperinci

BIDANG MATEMATIKA TEKNOLOGI DAN MATEMATIKA NON-TEKNOLOGI

BIDANG MATEMATIKA TEKNOLOGI DAN MATEMATIKA NON-TEKNOLOGI BIDANG MATEMATIKA TEKNOLOGI DAN MATEMATIKA NON-TEKNOLOGI JENIS SOAL TULIS KOMPUTER JENIS SOAL : TULIS PILIHAN GANDA 20 S0AL ISIAN SINGKAT 10 SOAL ESSAY 10 SOAL SESI 1 120 MENIT SESI 2 90 MENIT JENIS SOAL

Lebih terperinci

Unit 6 PENALARAN MATEMATIKA. Clara Ika Sari Budhayanti. Pendahuluan. Selamat belajar, semoga Anda sukses.

Unit 6 PENALARAN MATEMATIKA. Clara Ika Sari Budhayanti. Pendahuluan. Selamat belajar, semoga Anda sukses. Unit 6 PENALARAN MATEMATIKA Clara Ika Sari Budhayanti Pendahuluan D alam menyelesaikan permasalahan matematika, penalaran matematis sangat diperlukan baik di bidang aritmatika, aljabar, geometri dan pengukuran,

Lebih terperinci

BAB 6 ALJABAR BOOLE. 1. Definisi Dasar. Teorema 1 MATEMATIKA DISKRIT

BAB 6 ALJABAR BOOLE. 1. Definisi Dasar. Teorema 1 MATEMATIKA DISKRIT BAB 6 ALJABAR BOOLE 1. Definisi Dasar Himpunan dan proposisi mempunyai sifat yang serupa yaitu memenuhi hukum identitas. Hukum ini digunakan untuk mendefinisikan struktur matematika abstrak yang disebut

Lebih terperinci

ARGUMEN DAN METODE PENARIKAN KESIMPULAN

ARGUMEN DAN METODE PENARIKAN KESIMPULAN 1 RGUMEN DN METODE PENRIKN KESIMPULN rgumen adalah rangkaian pernyataan-pernyataan yang mempunyai ungkapan pernyataan penarikan kesimpulan (inferensi). rgumen terdiri dari pernyataanpernyataan yang terdiri

Lebih terperinci

bab 1 Logika MATEMATIKA

bab 1 Logika MATEMATIKA bab 1 Logika MATEMATIKA, RINGKASAN MATERI A. PERNYATAAN DAN INGKARANNYA Pengertian Pernyataan Pernyataan adalah kalimat yang bernilai benar atau salah saja. Pernyataan biasanya dinotasikan dengan huruf

Lebih terperinci