LOGIKA DAN PEMBUKTIAN

Save this PDF as:
 WORD  PNG  TXT  JPG

Ukuran: px
Mulai penontonan dengan halaman:

Download "LOGIKA DAN PEMBUKTIAN"

Transkripsi

1 BAB I LOGIKA DAN PEMBUKTIAN A. PENGANTAR Prinsip dari logika matematika memiliki korelasi dengan pembuktian kebenaran yang dilakukan menggunakan tabel kebenaran ataupun tanpa menggunakan tabel kebenaran dan juga prisip logika matematika berkolerasi dengan kalimat berkuantor tunggal dan ganda. B. PROPOSISI Proposisi (statement) merupakan sebuah kalimat yang memiliki tepat satu kebenararan, yaitu bisa bernilai True atau False tetapi tidak dapat sekaligus keduanya (yaitu true dan false). Contoh Proposisi : Monas berada di Jakarta Kalimat tersebut bernilai TRUE = 230 Kalimat tersebut bernilai FALSE = 2 Kalimat tersebut bernilai TRUE 5 > 35 Kalimat tersebut bernilai FALSE Contoh Bukan Proposisi : Siapa Namamu? x + y = 5 Kerjakan dengan teliti Proposisi sendiri di bagi menjadi beberapa macam, yaitu : 1. Proposisi Primitif : suatu proposisi yang tidak menggunakan kata penghubung. Contoh : Monas berada di Jakarta 1

2 2. Proposisi Majemuk : suatu proposisi yang menggunakan kata penghubung(connectives) Contoh : BJ Habibie adalah seorang mantan presiden dan wakil presiden C. KATA PENGHUBUNG ( CONNECTIVES) Kata penghubung (connectives) dipergunakan untuk mengkombinasikan dua atau lebih kalimat/pernyataan/statement menjadi satu adalah : Nama Simbol Contoh Arti Negasi a Negasi a Konjungsi a b a dan b Disjungsi a b a atau b Implikasi a b Jika a maka b Biimplikasi a b a Jika dan hanya jika b Contoh pengaplikasian kata penghubung dalam suatu proposisi : Diketahui proposisi berikut : p : hari ini hujan q : murid-murid di liburkan dari sekolah Maka : Nama Simbol Bentuk Proposisi Majemuk Negasi p Hari ini tidak hujan Konjungsi p q Hari ini hujan dan murid-murid diliburkan dari sekolah Disjungsi p q Hari ini hujan atau murid-murid di liburkan dari sekolah Implikasi p q Jika hari ini hujan, maka murid-murid diliburkan dari sekolah Biimplikasi q p murid-murid diliburkan dari sekolah jika dan hanya jika Hari ini hujan 2

3 D. TABEL KEBENARAN Tabel kebenaran digunakan untuk mengevaluasi apakah sebuah proposisi majemuk bernilai benar atau salah. Contoh : p q q p ^ q p v q p q p q S S B S S S S S B S S B B B B S B S B S B B B S B B B S DO YOU KNOW 1. Sebuah proposisi majemuk jika bernilai benar pada semua kasus disebut tautologi 2. Sebuah proposisi majemuk jika bernilai salah pada semua kasus disebut kontradiksi E. PENJELASAN TENTANG KATA PENGHUBUNG ( CONNECTIVES) Seperti yang sudah disebutkan sebelumnya penghubung kalimat/connectives terdiri dari beberapa macam, yaitu : 1. NEGASI (NOT) Negasi disebut juga sebagai ingkaran. Suatu pernyataan dapat menggunakan kata penghubung negasi. Kata penghubung negasi sendiri biasanya di bentuk dengan menambahkan kata TIDAK atau BUKAN dalam suatu kalimat yang tepat. Simbol dari sebuah negasi adalah. Apabila di gambarkan menggunakan tabel kebenaran : p B S p S B Contoh : p : Hari senin libur p : Hari senin TIDAK libur DO YOU KNOW 1. Terdapat beberapa literature dalam penulisan notasi negasi, yaitu p, ~p, p 2. Kata Tidak dapat dituliskan ditengah pernyataan. Jika kata Tidak dicantumkan diawal kalimat biasanya diberi tambahan kata benar, sehingga menjadi kalimat tidak benar. 3

4 2. KONJUNGSI (AND) Konjungsi merupakan kata penghubung yang dapat digunakan pada kombinasi proposisi menggunakannya dengan cara menambahkan kata DAN dalam suatu kombinasi kalimat yang tepat. Simbol dari sebuah konjungsi adalah ^. Suatu pernyataan yang mengandung konjungsi akan bernilai B (Benar) apabila nilai seluruh proposisi bernilai B(Benar) juga. Apabila di gambarkan menggunakan tabel kebenaran : p q p ^q Contoh : S S S p : Hari Minggu libur S B S q : Hari Senin Upacara Bendera B S S p^q : Hari Minggu libur DAN Hari Senin Upacara B B B Bendera 3. DISJUNGSI (OR) Disjungsi merupakan kata penghubung yang dapat digunakan pada kombinasi proposisi menggunakannya dengan cara menambahkan kata OR dalam suatu kombinasi kalimat yang tepat. Simbol dari sebuah disjungsi adalah v. Suatu pernyataan yang mengandung konjungsi akan bernilai S (Salah) apabila nilai seluruh proposisi bernilai S(Salah) juga dan akan bernilai B(Benar) apabila salah satunya bernilai B(Benar). Apabila di gambarkan menggunakan tabel kebenaran : p q p v q S S S S B B B S B B B B Contoh : p : para pegawai Google diwajibkan mahir bahasa pemrograman PHP q : para pegawai Google diwajibkan mahir bahasa pemrograman ASP pvq : para pegawai Google diwajibkan mahir bahasa pemrograman PHP atau ASP 4

5 4. IMPLIKASI Implikasi atau kondisional merupakan kata penghubung yang dapat digunakan pada kombinasi proposisi. Penggunaannya dengan cara menambahkan kata JIKA... MAKA... dalam suatu kombinasi kalimat yang tepat. Simbol dari sebuah implikasi adalah. Suatu pernyataan p q memiliki nilai kebenaran S(Salah) jika nilai kebenaran p bernilai B(Benar) dan nilai kebenaran dari q bernilai S (Salah) jika selainnya maka akan bernilai B(Benar). Apabila di gambarkan menggunakan tabel kebenaran : p q p q Contoh : S S B p : Anda membayar lunas S B B q : Anda mendapatkan potongan 10% dari biaya B S S pengembangan B B B p q : JIKA anda membayar lunas MAKA mendapatkan potongan 10% dari biaya pengembangan 5. BI-IMPLIKASI Bi-implikasi atau bikondisional merupakan kata penghubung yang dapat digunakan pada kombinasi proposisi. Penggunaannya dengan cara menambahkan kata...jika DAN HANYA JIKA... dalam suatu kombinasi kalimat yang tepat. Simbol dari sebuah biimplikasi adalah. Suatu pernyataan p q memiliki nilai kebenaran B(Benar) jika nilai kebenaran p bernilai B(Benar) dan q bernilai B(Benar) atau nilai kebenaran dari p bernilai (Salah) dan q bernilai S (Salah) jika selainnya maka akan bernilai S(Salah). Apabila di gambarkan menggunakan tabel kebenaran : p q p q Contoh : S S B p : Anda menggunakan jas hujan S B S q : Hari ini hujan B S S p q : Anda menggunakan jas hujan JIKA DAN HANYA JIKA B B B hari ini hujan 5

6 F. PENJELASAN TENTANG EKUIVALENSI LOGIKA Disebut ekuivalensi apabila logika tersebut memiliki arti yang sama, artinya ketika dibandingkan memiliki arti yang sama. Berikut tabel yang berisi hukum ekuivalensi logika : 1. Hukum Komutatif : p ^q = q ^ p P v q = q v P 2. Hukum Asosiatif : (p ^q) ^r = p^( q ^ r) (p v q) v r = p v ( q v r) 3. Hukum Distributif : p ^ (q v r) = (p ^ q) v (p ^ r) p v ( q ^ r) =( p v q) ^ (p v r) 4. Hukum Identitas : p ^T = p p v F = p 5. Hukum Ikatan (Dominasi/null) : p ^F = F p v T = T 6. Hukum Negasi : p v p = T p ^ p = F : Buktikan ekuivalensi pernyataan berikut : Jawab : (p v q) v ( p ^ q) Ξ p 7. Hukum Negasi Ganda/Involusi : ( p) =p 8. Hukum Idempoten : p ^p = p p v p =p 9. Hukum De Morgan : (p ^q) = p v q (p v q) = p ^ q 10. Hukum Penyerapan/ Absorpsi : p v (p ^q) =p p^ (p v q) =p 11. Negasi T dan F : T = F F = T (p v q) v ( p ^ q) = ( p ^ q) v ( p ^ q) = p ^ (q v q) = p ^ T = p Sehingga terbukti bahwa : (p v q) v ( p ^ q) Ξ p G. PENJELASAN TENTANG DISJUNGSI EKSKLUSIF DAN DENIAL JOIN Simbol disebut sebagai disjungsi ekslusif. Penulisanp q di baca sebagai p atau q tetapi tidak keduanya. 6

7 Apabila di gambarkan menggunakan tabel kebenaran : p q p q S S S S B B B S B B B S Contoh : p : Jika hujan Anda dapat menggunakan jas hujan q : Jika hujan Anda dapat menggunakan payung p q : Jika hujan Anda dapat menggunakan jas hujan atau payung Denial Join / penyangkalan dalam proposisi menggunakan simbol, sehingga apabila menuliskan p q akan dibaca bukan p maupun q. Apabila di gambarkan menggunakan tabel kebenaran : p q p q S S B S B S B S S B B S H. KONVERS, INVERS DAN KONTRAPOSISI Dari suatu implikasi dapat ditentukan konvers, invers dan kontraposisi dengan cara : Implikasi : p q Konvers : q p Invers : p q Kontraposisi : q p Dengan menggunakan tabel kebenaran atau tidak maka dapat dibuktikan bahwa implikasi ekuivalen dengan kontraposisi dan konvers ekuivalen dengan invers. Pembuktian menggunakan tabel kebenaran : p q p q p q q p p q q p S S B B B B B B S B B S B S S B B S S B S B B S B B S S B B B B 7

8 Terdapat pernyataan implikasi((p q) : Jika ia rajin belajar, maka ia akan lulus UN. Tentukan konvers, invers dan kontraposisinya. Jawab : Konvers : Jika ia lulus UN, maka ia rajin belajar (q p) Invers : Jika ia tidak rajin belajar, maka ia tidak akan lulus UN ( p q) Kontraposisi : Jika ia tidak lulus UN, maka ia tidak rajin belajar ( q p) I. INFERENSI LOGIKA Misalkan p dan q merupakan proposisi. Proposisi majemuk Jika p, maka q disebut sebagai proposisi bersyarat(implikasi). Disimbolkan : p q. Proposisi p disebut hipotesis/antesenden/kondisi/premis. Proposisi q disebut konklusi/konsekuen. Metode Inferensi merupakan teknik yang digunakan untuk menurunkan kesimpulan berdasarkan hipotesa yang ada dengan tidak menggunakan tabel kebenaran. Beberapa metode inferensi adalah sebagai berikut : --- Simbol di baca sebagai jadi atau karena itu a. Modus Ponens/ Law Of Detachment Inferensi modus Ponens. Apabila dituliskan : p q..hipotesis p..hipotesis q..konklusi Terdapat implikasi : Jika 15 habis dibagi 3, maka 15 adalah bilangan ganjil Jika 15 habis dibagi 3, maka 15 adalah bilangan ganjil 15 habis dibagi 3 15 adalah bilangan ganjil 8

9 b. Modus Tollen Inferensi modus Tollen. Apabila dituliskan : p q..hipotesis q..hipotesis p..konklusi Terdapat implikasi : Jika Komputer adalah manusia, maka dia dapat berlari Jika Komputer adalah manusia, maka dia dapat berlari Komputer tidak dapat berlari Komputer bukan manusia c. Silogisme Hipotesis Jika p q benar dan q r benar, maka p r benar. Apabila ditulis : p q..hipotesis q r..hipotesis p r..konklusi Terdapat implikasi : Jika saya rajin belajar, maka saya lulus ujian SNMPTN (p q) Dan implikasi Jika saya lulus ujian SNMPTN, maka saya masuk PTN (q r) Jika saya rajin belajar, maka saya lulus ujian SNMPTN Jika saya lulus ujian SNMPTN, maka saya masuk PTN Jika saya rajin belajar, maka saya masuk PTN d. Silogisme Disjungtif Kaidah silogisme disjungtif dapat ditulis dengan cara : p V q..hipotesis p..hipotesis q..konklusi Terdapat disjungsi : Saya belajar dengan giat atau saya menikah tahun depan Saya belajar dengan giat atau saya menikah tahun depan Saya tidak belajar dengan giat Saya menikah tahun depan 9

10 e. Konjungsi Kaidah konjungsi dapat ditulis dengan cara : p..hipotesis q..hipotesis p ^q..konklusi Terdapat kesimpulan berikut : Saya belajar dengan giat. saya menikah tahun depan. Karena itu, Saya belajar dengan giat dan menikah tahun depan. Saya belajar dengan giat saya menikah tahun depan Saya belajar dengan giat dan menikah tahun depan f. Dilema (Pembagian dalam beberapa kasus) Kaidah dilema dapat ditulis sbb : p V q p r q r r Terdapat kesimpulan berikut : Nanti malam Tora mengajak virnie menonton atau menraktir makan di restoran. Jika Tora mengajak virnie nonton, maka virnie akan senang. Jika tora menraktir virnie makan direstoran, maka virnie akan senang. Nanti malam Tora mengajak virnie menonton atau menraktir makan di restoran.jika Tora mengajak virnie nonton, maka virnie akan senang Jika tora menraktir virnie makan direstoran, maka virnie akan senang Virnie akan senang 9

11 LATIHAN SOAL 1. Berikan contoh 2 buah kalimat proposisi dan 2 buah kalimat bukan proposisi. 2. Buatlah tabel kebenaran dari rumus berikut : (q^(p q)) p 3. Diketahui : p : Inong bisa berbahasa Jerman q : Inong bisa berbahasa Inggris r : Inong bisa berbahasa Jepang Terjemahkan kalimat majemuk berikut ke bentuk simbolik : a. Inong bisa berbahasa Inggris dan Jerman b. Tidak benar Inong bisa berbahasa Jepang dan Jerman c. Jika Inong bisa berbahasa Jerman, maka Inong bisa berbahasa Inggris 4. Diketahui : p: Dadi sedang bermain di kolam q: Dadi ada didalam rumah r: Dadi sedang mengerjakan PR s: dadi sedang menonton televisi Nyatakan bentuk simbolik berikut ke dalam pernyataan majemuk : a. p^ q b. ( p^r) c. ( p V q) ^ ( r V s) d. (p r) V (q s) 5. Buktikan ekuivalensi pernyataan berikut : a. p V (p^q) Ξ p b. p^ ( p V q) Ξ p^q 6. Ada sebuah kampung yang penduduknya selalu mengatakan hal yang benar atau selalu bohong. Penduduk kampung hanya memberikan jawaban YA atau TIDAK terhadap pertayaan yang diajukan oleh para pendatang. Misalkan Ajushi adalah seorang pendatang yang baru sampai ke kampung tersebut dan hendak pergi ke kampung lain. Ajushi sedang berada pada sebuah pertigaan jalan. Satu cabang menuju ke kota, sedang cabang lainnya menuju ke jurang, namun Ajushi tidak tahu cabang mana yang mengarah ke kota tujuan karena tidak adanya penunjuk arah. Kebetulan dioertigaan jalan tersebut terdapat seorang warga kampung sedang berdiri, sebut saja dia Bunga. Sebutkan sebuah pertanyaan yang harus Ajushi ajukan kepada Bunga untuk menentukan arah cabang jalan mana yang harus Ajushi ambil? Petunjuk : Misalkan p adalah pertanyaan, Bunga selalu mengatakan yang sebenarnya dan q pernyataan jalan yang berbelok ke kiri menuju ke kota. Formulasikan pertanyaan A yang tersusun dari p dan q sedemikian rupa, sehingga Bunga akan menjawab pertanyaan Apakah A benar dengan YA jika dan hanya jika q bernilai benar.

Logika. Arum Handini Primandari, M.Sc. Ayundyah Kesumawati, M.Si.

Logika. Arum Handini Primandari, M.Sc. Ayundyah Kesumawati, M.Si. Logika Arum Handini Primandari, M.Sc. Ayundyah Kesumawati, M.Si. Logika Matematika Kalimat Terbuka dan Tertutup Kalimat terbuka adalah kalimat yang tidak mengandung nilai kebenaran Contoh: Semoga kamu

Lebih terperinci

Matematika Industri I

Matematika Industri I LOGIKA MATEMATIKA TIP FTP - UB Pokok Bahasan Proposisi dan negasinya Nilai kebenaran dari proposisi Tautologi Ekuivalen Kontradiksi Kuantor Validitas pembuktian Pokok Bahasan Proposisi dan negasinya Nilai

Lebih terperinci

PENGERTIAN. Proposisi Kalimat deklaratif yang bernilai benar (true) atau salah (false), tetapi tidak keduanya. Nama lain proposisi: kalimat terbuka.

PENGERTIAN. Proposisi Kalimat deklaratif yang bernilai benar (true) atau salah (false), tetapi tidak keduanya. Nama lain proposisi: kalimat terbuka. BAB 2 LOGIKA PENGERTIAN Logika Logika merupakan dasar dari semua penalaran (reasoning). Penalaran didasarkan pada hubungan antara proposisi atau pernyataan (statements). Proposisi Kalimat deklaratif yang

Lebih terperinci

Pertemuan 2. Proposisi Bersyarat

Pertemuan 2. Proposisi Bersyarat Pertemuan 2 Proposisi ersyarat Proposisi ersyarat Definisi 4 Misalkan p dan q adalah proposisi. Proposisi majemuk jika p, maka q disebut proposisi bersyarat (implikasi dan dilambangkan dengan p q Proposisi

Lebih terperinci

LOGIKA. /Nurain Suryadinata, M.Pd

LOGIKA. /Nurain Suryadinata, M.Pd Nama Mata Kuliah Kode Mata Kuliah/SKS Program Studi Semester Dosen Pengampu : Matematika Diskrit : MAT-3615/ 3 sks : Pendidikan Matematika : VI (Enam) : Nego Linuhung, M.Pd /Nurain Suryadinata, M.Pd Referensi

Lebih terperinci

BAB I PENDAHULUAN. a. Apa sajakah hukum-hukum logika dalam matematika? b. Apa itu preposisi bersyarat?

BAB I PENDAHULUAN. a. Apa sajakah hukum-hukum logika dalam matematika? b. Apa itu preposisi bersyarat? BAB I PENDAHULUAN 1.1 LATAR BELAKANG Secara etimologi, istilah Logika berasal dari bahasa Yunani, yaitu logos yang berarti kata, ucapan, pikiran secara utuh, atau bisa juga ilmu pengetahuan. Dalam arti

Lebih terperinci

Logika Proposisi 1. Definisi 1. (Proposisi) Proposisi adalah kalimat yang bernilai benar atau salah, tetapi tidak keduanya sekaligus.

Logika Proposisi 1. Definisi 1. (Proposisi) Proposisi adalah kalimat yang bernilai benar atau salah, tetapi tidak keduanya sekaligus. Logika Proposisi 1 I. Logika Proposisi Logika adalah bagian dari matematika, tetapi pada saat yang sama juga merupakan bahasa matematika. Pada akhir abad ke-19 dan awal abad ke-20, ada kepercayaan bahwa

Lebih terperinci

Logika Logika merupakan dasar dari semua penalaran (reasoning). Penalaran didasarkan pada hubungan antara proposisi atau pernyataan (statements).

Logika Logika merupakan dasar dari semua penalaran (reasoning). Penalaran didasarkan pada hubungan antara proposisi atau pernyataan (statements). Logika (logic) 1 Logika Logika merupakan dasar dari semua penalaran (reasoning). Penalaran didasarkan pada hubungan antara proposisi atau pernyataan (statements). Proposisi Kalimat deklaratif yang bernilai

Lebih terperinci

Materi 4: Logika. I Nyoman Kusuma Wardana. STMIK STIKOM Bali

Materi 4: Logika. I Nyoman Kusuma Wardana. STMIK STIKOM Bali Materi 4: Logika I Nyoman Kusuma Wardana STMIK STIKOM Bali Logika merupakan dasar dr semua penalaran (reasoning). Penalaran didasarkan pada hubungan antara pernyataan-pernyataan (statements). Dalam Logika

Lebih terperinci

EKUIVALENSI LOGIS. Dr. Julan HERNADI & (Asrul dan Enggar) Pertemuan 3 FONDASI MATEMATIKA. Program Studi Pendidikan Matematika FKIP Unmuh Ponorogo

EKUIVALENSI LOGIS. Dr. Julan HERNADI & (Asrul dan Enggar) Pertemuan 3 FONDASI MATEMATIKA. Program Studi Pendidikan Matematika FKIP Unmuh Ponorogo Program Studi Pendidikan Matematika FKIP Unmuh Ponorogo Pertemuan 3 FONDASI MATEMATIKA Variasi bentuk implikasi Berangkat dari implikasi p q kita dapat membentuk tiga pernyataan implikasi relevan yang

Lebih terperinci

LOGIKA. Arum Handini Primandari

LOGIKA. Arum Handini Primandari LOGIKA Arum Handini Primandari LOGIKA MATEMATIKA KALIMAT TERBUKA DAN TERTUTUP Kalimat terbuka adalah kalimat yang tidak mengandung nilai kebenaran Contoh: Apakah kamu tahu pencipta lagu PPAP? Semoga ujian

Lebih terperinci

- Mahasiswa memahami dan mampu membuat kalimat, mengevaluasi kalimat dan menentukan validitas suatu kalimat

- Mahasiswa memahami dan mampu membuat kalimat, mengevaluasi kalimat dan menentukan validitas suatu kalimat LOGIKA Tujuan umum : - Mahasiswa memahami dan mampu membuat kalimat, mengevaluasi kalimat dan menentukan validitas suatu kalimat Tujuan Khusus: - mahasiswa diharapkan dapat : 1. memahami pengertian proposisi,

Lebih terperinci

MODUL PERKULIAHAN EDISI 1 MATEMATIKA DISKRIT

MODUL PERKULIAHAN EDISI 1 MATEMATIKA DISKRIT MODUL PERKULIAHAN EDISI 1 MATEMATIKA DISKRIT Penulis : Nelly Indriani Widiastuti S.Si., M.T. JURUSAN TEKNIK INFORMATIKA UNIVERSITAS KOMPUTER INDONESIA BANDUNG 2011 DAFTAR ISI Daftar Isi. 2 Bab 1 LOGIKA

Lebih terperinci

MATEMATIKA DISKRIT LOGIKA

MATEMATIKA DISKRIT LOGIKA MATEMATIKA DISKRIT LOGIKA Logika Perhatikan argumen di bawah ini: Jika anda mahasiswa Informatika maka anda tidak sulit belajar Bahasa Java. Jika anda tidak suka begadang maka anda bukan mahasiswa Informatika.

Lebih terperinci

PROPOSISI MATEMATIKA SISTEM INFORMASI 1

PROPOSISI MATEMATIKA SISTEM INFORMASI 1 PROPOSISI MATEMATIKA SISTEM INFORMASI 1 Logika Logika merupakan dasar dari semua penalaran (reasoning). Penalaran didasarkan pada hubungan antara pernyataan (statements). Proposisi Pernyataan atau kalimat

Lebih terperinci

Konvers, Invers dan Kontraposisi

Konvers, Invers dan Kontraposisi MODUL 5 Konvers, Invers dan Kontraposisi Represented by : Firmansyah,.Kom A. TEMA DAN TUJUAN KEGIATAN PEMELAJARAN 1. Tema Konvers, Invers dan Kontraposisi 2. Fokus Pembahasan Materi Pokok 1. Konvers, invers

Lebih terperinci

LOGIKA & PEMBUKTIAN. Anita T. Kurniawati, MSi LOGIKA

LOGIKA & PEMBUKTIAN. Anita T. Kurniawati, MSi LOGIKA LOGIKA & PEMBUKTIAN Anita T. Kurniawati, MSi LOGIKA Logika merupakan dasar dari semua penalaran (reasoning). Penalaran didasarkan pada hubungan antara pernyataan (statements). 1 Definisi: Kalimat deklaratif

Lebih terperinci

RUMUS LOGIKA MATEMATIKA DAN TABEL KEBENARAN

RUMUS LOGIKA MATEMATIKA DAN TABEL KEBENARAN RUMUS LOGIKA MATEMATIKA DAN TABEL KEBENARAN Updated by Admin of Bahan Belajar Logika matematika merupakan salah satu materi pelajaran matematika dan cabang logika yang mengandung kajian matematis logika.

Lebih terperinci

LOGIKA MATEMATIKA. MATEMATiKA DISKRET S1-SISTEM INFORMATIKA STMIK AMIKOM. proposisi conjungsi tautologi inferensi

LOGIKA MATEMATIKA. MATEMATiKA DISKRET S1-SISTEM INFORMATIKA STMIK AMIKOM. proposisi conjungsi tautologi inferensi LOGIKA MATEMATIKA MATEMATiKA DISKRET S1-SISTEM INFORMATIKA STMIK AMIKOM Definisi Proposisi adalah suatu kalimat yang bernilai benar atau salah dan tidak keduanya Proposisi Kalimat Deklaratif Proposisi

Lebih terperinci

PERTEMUAN KE 3 F T T F T F T F

PERTEMUAN KE 3 F T T F T F T F PEREMUAN KE 3 E. DISJUNGSI EKSLUSI (Exclusive OR) Misalkan p dan q adalah proposisi. Exclusive or p dan q, dinyatakan dengan notasi, adalah proposisi yang bernilai benar bila hanya salah satu dari p dan

Lebih terperinci

DASAR-DASAR LOGIKA. Pertemuan 2 Matematika Diskrit

DASAR-DASAR LOGIKA. Pertemuan 2 Matematika Diskrit DASAR-DASAR LOGIKA Pertemuan 2 Matematika Diskrit 25-2-2013 Materi Pembelajaran 1. Kalimat Deklaratif 2. Penghubung kalimat 3. Tautologi dan Kontradiksi 4. Konvers, Invers, dan Kontraposisi 5. Inferensi

Lebih terperinci

LOGIKA (LOGIC) Logika merupakan dasar dari semua penalaran (reasoning). Penalaran didasarkan pada hubungan antara pernyataanpernyataan

LOGIKA (LOGIC) Logika merupakan dasar dari semua penalaran (reasoning). Penalaran didasarkan pada hubungan antara pernyataanpernyataan LOGIKA (LOGIC) Logika merupakan dasar dari semua penalaran (reasoning). Penalaran didasarkan pada hubungan antara pernyataanpernyataan (statements). Proposisi kalimat deklaratif yang bernilai benar (true)

Lebih terperinci

Pernyataan adalah kalimat yang bernilai benar atau salah tetapi tidak sekaligus benar dan salah.

Pernyataan adalah kalimat yang bernilai benar atau salah tetapi tidak sekaligus benar dan salah. LOGIKA MATEMATIKA 1. Pernyataan Pernyataan adalah kalimat yang bernilai benar atau salah tetapi tidak sekaligus benar dan salah. Pernyataan dilambangkan dengan huruf kecil, misalnya p, q, r dan seterusnya.

Lebih terperinci

Pusat Pengembangan Pendidikan Universitas Gadjah Mada 1

Pusat Pengembangan Pendidikan Universitas Gadjah Mada 1 2. ALJABAR LOGIKA 2.1 Pernyataan / Proposisi Pernyataan adalah suatu kalimat yang mempunyai nilai kebenaran (benar atau salah), tetapi tidak keduanya. Contoh 1 : P = Tadi malam BBM mulai naik (memiliki

Lebih terperinci

LOGIKA MATEMATIKA. LA - WB (Lembar Aktivitas Warga Belajar) MATEMATIKA PAKET C TINGKAT V DERAJAT MAHIR 1 SETARA KELAS X

LOGIKA MATEMATIKA. LA - WB (Lembar Aktivitas Warga Belajar) MATEMATIKA PAKET C TINGKAT V DERAJAT MAHIR 1 SETARA KELAS X LA - WB (Lembar Aktivitas Warga Belajar) LOGIKA MATEMATIKA Oleh: Hj. ITA YULIANA, S.Pd, M.Pd MATEMATIKA PAKET C TINGKAT V DERAJAT MAHIR 1 SETARA KELAS X Created By Ita Yuliana 37 Logika Matematika Kompetensi

Lebih terperinci

Matematika Diskrit LOGIKA

Matematika Diskrit LOGIKA Matematika Diskrit LOGIKA 1 Logika Logika merupakan dasar dari semua penalaran (reasoning). Penalaran didasarkan pada hubungan antara pernyataan (statements). Proposisi Pernyataan atau kalimat deklaratif

Lebih terperinci

6. LOGIKA MATEMATIKA

6. LOGIKA MATEMATIKA 6. LOGIKA MATEMATIKA A. Negasi (Ingkaran) Negasi adalah pengingkaran terhadap nilai kebenaran suatu pernyataan. ~ p : tidak p p ~ p B S S B B. Operator Logika 1) Konjungsi adalah penggabungan dua pernyataan

Lebih terperinci

Modul ke: Logika Matematika. Proposisi & Kuantor. Fakultas FASILKOM BAGUS PRIAMBODO. Program Studi SISTEM INFORMASI.

Modul ke: Logika Matematika. Proposisi & Kuantor. Fakultas FASILKOM BAGUS PRIAMBODO. Program Studi SISTEM INFORMASI. Modul ke: 5 Logika Matematika Proposisi & Kuantor Fakultas FASILKOM BAGUS PRIAMBODO Program Studi SISTEM INFORMASI http://www.mercubuana.ac.id Materi Pembelajaran Kalkulus Proposisi Konjungsi Disjungsi

Lebih terperinci

Logika Matematika Diskret (TKE132107) Program Studi Teknik Elektro, Unsoed

Logika Matematika Diskret (TKE132107) Program Studi Teknik Elektro, Unsoed Logika Matematika Diskret (TKE132107) Program Studi Teknik Elektro, Unsoed Iwan Setiawan Tahun Ajaran 2013/2014 Logika Klasik Matematika Diskret (TKE132107) - Program Studi Teknik

Lebih terperinci

MATEMATIKA DISKRIT. Logika

MATEMATIKA DISKRIT. Logika MATEMATIKA DISKRIT Logika SILABUS KULIAH 1. Logika 2. Himpunan 3. Matriks, Relasi dan Fungsi 4. Induksi Matematika 5. Algoritma dan Bilangan Bulat 6. Aljabar Boolean 7. Graf 8. Pohon REFERENSI Rinaldi

Lebih terperinci

PERTEMUAN 2 TABEL KEBENARAN DADANG MULYANA. TABEL KEBENARAN (TB) digunakan untuk menyajikan hubungan antara nilai kebenaran sejumlah proposisi.

PERTEMUAN 2 TABEL KEBENARAN DADANG MULYANA. TABEL KEBENARAN (TB) digunakan untuk menyajikan hubungan antara nilai kebenaran sejumlah proposisi. PEREMUAN 2 ABEL KEBENARAN DADANG MULYANA ABEL KEBENARAN (B) digunakan untuk menyajikan hubungan antara nilai kebenaran sejumlah proposisi. ABEL 1 : B untuk proposisi dan negasinya p p MASALAH LOGIKA 1

Lebih terperinci

Berdasarkan tabel 1 diperoleh bahwa p q = q p.

Berdasarkan tabel 1 diperoleh bahwa p q = q p. PEMAHAAN 1. Pengertian Kata LOGIKA mengacu pada suatu metode atau cara yang sistematis dalam berpikir (reasoning), dan terdapat dua sistem khusus yaitu : suatu metode dasar yang disebut dengan Kalkulus

Lebih terperinci

Pengantar Logika. Didin Astriani Prasetyowati, M.Stat UIGM

Pengantar Logika. Didin Astriani Prasetyowati, M.Stat UIGM Pengantar Logika Didin Astriani Prasetyowati, M.Stat UIGM 1 BAB I PENGANTAR LOGIKA Konsep Logika Apakah logika itu? Seringkali Logika didefinisikan sebagai ilmu untuk berfikir dan menalar dengan benar

Lebih terperinci

BAB 6 LOGIKA MATEMATIKA

BAB 6 LOGIKA MATEMATIKA A 6 LOGIKA MATEMATIKA A RINGKAAN MATERI 1. Pengertian Logika adalah suatu metode yang diciptakan untuk meneliti ketepatan penalaran (bentuk pemikiran yang masuk akal). Pernyataan adalah kalimat yang hanya

Lebih terperinci

NAMA LAMBANG KATA PERNYATAAN LOGIKANYA PENGHUBUNG

NAMA LAMBANG KATA PERNYATAAN LOGIKANYA PENGHUBUNG LOGIKA MATEMATIKA A. PERNYATAAN DAN KALIMAT TERBUKA Kalimat terbuka adalah kalimat yang belum dapat ditentukan nilai kebenarannya (benar dan salah). 1. Gadis itu cantik. 2. Bersihkan lantai itu. 3. Pernyataan/kalimat

Lebih terperinci

LOGIKA. Logika Nilai kebenaran pernyataan majemuk Ingkaran suatu pernyataan Penarikan kesimpulan. A. Pernyataan, Kalimat Terbuka, Ingkaran.

LOGIKA. Logika Nilai kebenaran pernyataan majemuk Ingkaran suatu pernyataan Penarikan kesimpulan. A. Pernyataan, Kalimat Terbuka, Ingkaran. LOGIKA Standar Kompetensi Lulusan (SKL) Memahami pernyataan dalam matematika dan ingkarannya, menentukan nilai kebenaran pernyataan majemuk, serta mampu menggunakan prinsip logika matematika dalam pemecahan

Lebih terperinci

BAB I LOGIKA MATEMATIKA

BAB I LOGIKA MATEMATIKA BAB I LOGIKA MATEMATIKA A. Ringkasan Materi 1. Pernyataan dan Bukan Pernyataan Pernyataan adalah kalimat yang mempunyai nilai benar atau salah, tetapi tidak sekaligus benar dan salah. (pernyataan disebut

Lebih terperinci

Dasar-dasar Logika. (Review)

Dasar-dasar Logika. (Review) Dasar-dasar Logika (Review) Intro Logika berhubungan dengan kalimat-kalimat dan hubungan antar kalimat. Tujuan: menentukan apakah suatu kalimat / masalah bernilai benar (TRUE) atau salah (FALSE) Kalimat

Lebih terperinci

LOGIKA PROPOSISI. Bagian Keempat : Logika Proposisi

LOGIKA PROPOSISI. Bagian Keempat : Logika Proposisi LOGIKA PROPOSISI Bagian Keempat : Logika Proposisi ARI FADLI, S.T. Logika Proposisi Tujuan : Mahasiswa dapat menyebutkan tentang logika proposisi, operator dan sifat proposisi Proposisi Definisi : Setiap

Lebih terperinci

LOGIKA MATEMATIKA I. PENDAHULUAN

LOGIKA MATEMATIKA I. PENDAHULUAN LOGIKA MATEMATIKA I. PENDAHULUAN Logika adalah dasar dan alat berpikir yang logis dalam matematika dan pelajaran-pelajaran lainnya, sehingga dapat membantu dan memberikan bekal tambahan untuk menyampaikan

Lebih terperinci

Silogisme Hipotesis Ekspresi Jika A maka B. Jika B maka C. Diperoleh, jika A maka C

Silogisme Hipotesis Ekspresi Jika A maka B. Jika B maka C. Diperoleh, jika A maka C MSH1B3 Logika Matematika Dosen: Aniq A Rohmawati, M.Si Kalkulus Proposisi [Definisi] Metode yang digunakan untuk meninjau nilai kebenaran suatu proposisi atau kalimat Jika Anda belajar di Tel-U maka Anda

Lebih terperinci

Logika Logika merupakan dasar dari semua penalaran (reasoning). Penalaran didasarkan pada hubungan antara proposisi atau pernyataan (statements).

Logika Logika merupakan dasar dari semua penalaran (reasoning). Penalaran didasarkan pada hubungan antara proposisi atau pernyataan (statements). Logika (logic) 1 Logika Logika merupakan dasar dari semua penalaran (reasoning). Penalaran didasarkan pada hubungan antara proposisi atau pernyataan (statements). Proposisi Kalimat deklaratif yang bernilai

Lebih terperinci

PENARIKAN KESIMPULAN/ INFERENSI

PENARIKAN KESIMPULAN/ INFERENSI PENARIKAN KESIMPULAN/ INFERENSI Proses penarikan kesimpulan dari beberapa proposisi disebut inferensi (inference). Argumen Valid/Invalid Kaidah-kaidah Inferensi Modus Ponens Modus Tollens Silogisme Hipotesis

Lebih terperinci

Selamat datang di Perkuliahan LOGIKA MATEMATIKA Logika Matematika Teori Himpunan Teori fungsi

Selamat datang di Perkuliahan LOGIKA MATEMATIKA Logika Matematika Teori Himpunan Teori fungsi Selamat datang di Perkuliahan LOGIKA MAEMAIKA Logika Matematika eori Himpunan eori fungsi Dosen : Dr. Julan HERNADI PUSAKA : Kenneth H Rossen, Discrete mathematics and its applications, fifth edition.

Lebih terperinci

Logika Proposisi. Pertemuan 2 (Chapter 10 Schaum, Set Theory) (Chapter 3/4 Schaum, Theory Logic)

Logika Proposisi. Pertemuan 2 (Chapter 10 Schaum, Set Theory) (Chapter 3/4 Schaum, Theory Logic) Logika Proposisi Pertemuan 2 (Chapter 10 Schaum, Set Theory) (Chapter 3/4 Schaum, Theory Logic) Logika Proposisional Tujuan pembicaraan kali ini adalah untuk menampilkan suatu bahasa daripada kalimat abstrak

Lebih terperinci

Logika Logika merupakan dasar dari semua penalaran (reasoning). Penalaran didasarkan pada hubungan antara pernyataan (statements).

Logika Logika merupakan dasar dari semua penalaran (reasoning). Penalaran didasarkan pada hubungan antara pernyataan (statements). Logika Matematik 1 Logika Logika merupakan dasar dari semua penalaran (reasoning). Penalaran didasarkan pada hubungan antara pernyataan (statements). Proposisi Pernyataan atau kalimat deklaratif yang bernilai

Lebih terperinci

Logika Matematika. Logika Matematika. Jurusan Informatika FMIPA Unsyiah. September 26, 2012

Logika Matematika. Logika Matematika. Jurusan Informatika FMIPA Unsyiah. September 26, 2012 Jurusan Informatika FMIPA Unsyiah September 26, 2012 Cara menentukan nilai kebenaran pernyataan majemuk dengan menggunakan tabel kebenaran, yaitu dengan membagi beberapa bagian (kolom). Nilai kebenarannya

Lebih terperinci

LOGIKA MATEMATIKA. Tabel kebenarannya sbb : p ~ p B S S B

LOGIKA MATEMATIKA. Tabel kebenarannya sbb : p ~ p B S S B LOGIKA MATEMATIKA A. Pernyataan, kalimat terbuka, dan ingkaran pernyataan. 1. Pernyataan Pernyataan adalah kalimat yang mengandung nilai benar atau salah tetapi tidak sekaligus kedua-duanya. a. Hasil kali

Lebih terperinci

BAB I DASAR-DASAR LOGIKA

BAB I DASAR-DASAR LOGIKA BAB I DASAR-DASAR LOGIKA 11 Pendahuluan Logika adalah suatu displin yang berhubungan dengan metode berpikir Pada tingkat dasar, logika memberikan aturan-aturan dan teknik-teknik untuk menentukan apakah

Lebih terperinci

Proposition Logic. (Logika Proposisional) Bimo Sunarfri Hantono

Proposition Logic. (Logika Proposisional) Bimo Sunarfri Hantono Proposition Logic (Logika Proposisional) Bimo Sunarfri Hantono bimo@te.ugm.ac.id Proposition (pernyataan) Merupakan komponen penyusun logika dasar yang dilambangkan dengan huruf kecil (p, q, r,...) yang

Lebih terperinci

Logika Matematik. Saripudin, M.Pd.

Logika Matematik. Saripudin, M.Pd. Logika Matematik Saripudin, M.Pd. 1 Logika Logika merupakan dasar dari semua penalaran (reasoning). Penalaran didasarkan pada hubungan antara pernyataan (statements). Proposisi Pernyataan atau kalimat

Lebih terperinci

KONSEP DASAR LOGIKA MATEMATIKA. Riri Irawati, M.Kom Logika Matematika - 3 sks

KONSEP DASAR LOGIKA MATEMATIKA. Riri Irawati, M.Kom Logika Matematika - 3 sks KONSEP DASAR LOGIKA MATEMATIKA Riri Irawati, M.Kom Logika Matematika - 3 sks Agenda 2 Pengantar Logika Kalimat pernyataan (deklaratif) Jenis-jenis pernyataan Nilai kebenaran Variabel dan konstanta Kalimat

Lebih terperinci

kusnawi.s.kom, M.Eng version

kusnawi.s.kom, M.Eng version Propositional Logic 3 kusnawi.s.kom, M.Eng version 1.1.0.2009 Properties of Sentences Adalah sifat-sifat yang dimiliki oleh kalimat logika. Ada 3 sifat logika yaitu : - Valid(Tautologi) - Kontradiksi -

Lebih terperinci

BAB VI. LOGIKA MATEMATIKA

BAB VI. LOGIKA MATEMATIKA BAB VI. LOGIKA MATEMATIKA Ingkaran, Disjungsi, Konjungsi, Implikasi, Biimplikasi : Konvers, Invers, Kontraposisi : Tabel Kebenaran : p q ~ p ~ q p q p q p q p q B B S S B B B B B S S B B S S S S B B S

Lebih terperinci

4. LOGIKA MATEMATIKA

4. LOGIKA MATEMATIKA 4. LOGIKA MATEMATIKA A. Negasi (Ingkaran) Negasi adalah pengingkaran terhadap nilai kebenaran suatu pernyataan. ~ p : tidak p p ~ p B S S B B. Operator Logika 1) Konjungsi adalah penggabungan dua pernyataan

Lebih terperinci

MateMatika Diskrit. Logika (logic) STMIK Parna Raya Manado Ir. Hasanuddin Sirait, M.T

MateMatika Diskrit. Logika (logic) STMIK Parna Raya Manado Ir. Hasanuddin Sirait, M.T MateMatika Diskrit Logika (logic) STMIK Parna Raya Manado Ir. Hasanuddin Sirait, M.T 1 Logika Logika merupakan dasar dari semua penalaran (reasoning). Penalaran didasarkan pada hubungan antara pernyataan

Lebih terperinci

PERNYATAAN MAJEMUK & NILAI KEBENARAN

PERNYATAAN MAJEMUK & NILAI KEBENARAN PERNYATAAN MAJEMUK & NILAI KEBENARAN 1. Pernyataan Majemuk Perhatikan pernyataan hari ini hujan dan aku berjalan-jalan. Pernyataan tersebut terdiri dari dua pernyataan pokok/tunggal (prime sentence), yaitu

Lebih terperinci

LOGIKA MATEMATIKA LOGIKA. Altien Jonathan Rindengan, S.Si, M.Kom

LOGIKA MATEMATIKA LOGIKA. Altien Jonathan Rindengan, S.Si, M.Kom LOGIKA MATEMATIKA LOGIKA Altien Jonathan Rindengan, S.Si, M.Kom Pendahuluan Untuk menemukan suatu gagasan baru dari informasi dan gagasan yang telah ada, diperlukan proses berpikir. Proses ini dikenal

Lebih terperinci

BAB 4 PROPOSISI. 1. Pernyataan dan Nilai Kebenaran

BAB 4 PROPOSISI. 1. Pernyataan dan Nilai Kebenaran BAB 4 PROPOSISI 1. Pernyataan dan Nilai Kebenaran Ilmu logika adalah berhubungan dengan kalimat-kalimat (argumen-argumen) dan hubungan yang ada diantara kalimat-kalimat tersebut. Tujuannya adalah memberikan

Lebih terperinci

kusnawi.s.kom, M.Eng version

kusnawi.s.kom, M.Eng version Propositional Logic 3 kusnawi.s.kom, M.Eng version 1.0.0.2009 Adalah sifat-sifat yang dimiliki oleh kalimat logika. Ada 3 sifat logika yaitu : - Valid(Tautologi) - Kontradiksi - Satisfiable(Contingent).

Lebih terperinci

INGKARAN DARI PERNYATAAN

INGKARAN DARI PERNYATAAN HAND-OUT Student Name : Subject : Matematika Wajib Grade/Class : / Toic : Logika Matematika Date : Teacher(s) : Mr. Daniel Kristanto Semester : 2 Parent s Signature : LOGIKA MATEMATIKA Kalimat logika matematika

Lebih terperinci

BAB 7 PENYEDERHANAAN

BAB 7 PENYEDERHANAAN BAB 7 PENYEDERHANAAN 1. Pendahuluan Bab ini membahaspenggunaan hukum-hukum logika pada operasi logika yang dinamakan penyederhaan (simplifying). Berbagai macam ekuivalensi dari berbagai ekpresi logika

Lebih terperinci

LOGIKA PROPOSISI 3.1 Proposisi logika proposisional. Contoh : tautologi yaitu proposisi-proposisi yang nilainya selalu benar. Contoh 3.

LOGIKA PROPOSISI 3.1 Proposisi logika proposisional. Contoh : tautologi yaitu proposisi-proposisi yang nilainya selalu benar. Contoh 3. LOGIKA PROPOSISI 3.1 Proposisi Proposisi adalah suatu pernyataan yang bernilai benar atau salah, tetapi tidak dapat sekaligus keduanya. Kebenaran atau kesalahan dari sebuah kalimat disebut nilai kebenarannya.

Lebih terperinci

CBT Psikotes CBT UN SMA IPA SBMPTN. FPM Matematika. Tes Buta Warna

CBT Psikotes CBT UN SMA IPA SBMPTN. FPM Matematika. Tes Buta Warna GENTA GROUP in PLAY STORE CBT UN SMA IPA Aplikasi CBT UN SMA IPA android dapat di download di play store dengan kata kunci genta group atau gunakan qr-code di bawah. CBT Psikotes Aplikasi CBT Psikotes

Lebih terperinci

RENCANA PELAKSANAAN PEMBELAJARAN

RENCANA PELAKSANAAN PEMBELAJARAN RENCANA PELAKSANAAN PEMBELAJARAN Materi Pelajaran : Matematika Kelas/ Semester : X / 2 Pertemuan ke : 1,2 Alokasi Waktu : 5 x 45 menit Standar Kompetensi : Menerapkan logika matematika dalam pemecahan

Lebih terperinci

TABEL KEBENARAN. Liduina Asih Primandari, S.Si.,M.Si. P a g e 8

TABEL KEBENARAN. Liduina Asih Primandari, S.Si.,M.Si. P a g e 8 P a g e 8 TABEL KEBENARAN A. Logika Proposisional dan Predikat Logika proposional adalah logika dasar yang harus dipahami programmer karena logika ini yang menjadi dasar dalam penentuan nilai kebenaran

Lebih terperinci

Berpikir Komputasi. Sisilia Thya Safitri, MT Citra Wiguna, M.Kom. 3 Logika Proposisional (I)

Berpikir Komputasi. Sisilia Thya Safitri, MT Citra Wiguna, M.Kom. 3 Logika Proposisional (I) Berpikir Komputasi Sisilia Thya Safitri, MT Citra Wiguna, M.Kom 3 Logika Proposisional (I) Capaian Sub Pembelajaran Mahasiswa dapat memahami logika proposisional sebagai dasar penerapan algoritma. Outline

Lebih terperinci

LOGIKA MATEMATIKA (Pendalaman Materi SMA)

LOGIKA MATEMATIKA (Pendalaman Materi SMA) LOGIKA MATEMATIKA (Pendalaman Materi SMA) Disampaikan Pada MGMP Matematika SMA Provinsi Bengkulu Tahun Ajaran 2007/2008 Oleh: Supama Widyaiswara LPMP Bengkulu DEPARTEMEN PENDIDIKAN NASIONAL DIREKTORAT

Lebih terperinci

LOGIKA Matematika Industri I

LOGIKA Matematika Industri I LOGIKA TIP FTP UB Pokok Bahasan Pengertian Logika Pernyataan Matematika Nilai Kebenaran Operasi Uner Operasi Biner Tabel kebenaran Pernyataan Tautologi, Kontradiksi dan Kontingen Pernyataan-pernyataan

Lebih terperinci

NEGASI KALIMAT DAN KALIMAT MAJEMUK (Minggu ke-3)

NEGASI KALIMAT DAN KALIMAT MAJEMUK (Minggu ke-3) NEGASI KALIMAT DAN KALIMAT MAJEMUK (Minggu ke-3) 1 1 Kata Penghubung Kalimat 1. Konjungsi: menggunakan kata penghubung: dan 2. Disjungsi: menggunakan kata penghubung: atau 3. Implikasi: menggunakan kata

Lebih terperinci

MATERI 1 PROPOSITIONAL LOGIC

MATERI 1 PROPOSITIONAL LOGIC MATERI 1 PROPOSITIONAL LOGIC 1.1 Pengantar Beberapa pernyataan (statement) dapat langsung diterima kebenarannya tanpa harus tahu kebenaran pembentuknya Ada kehidupan di Bulan atau tidak ada kehidupan di

Lebih terperinci

Jadi penting itu baik, tapi jadi baik jauh lebih penting

Jadi penting itu baik, tapi jadi baik jauh lebih penting LOGIKA MATEMATIKA Logika Matematika - Pernyataan, Nilai Kebenaran, dan Kalimat Terbuka - Pernyataan Majemuk - Konvers, Invers, dan Kontraposisi - Kuantor Universal dan Kuantor Eksistensial - Ingkaran dari

Lebih terperinci

LOGIKA MATEMATIKA SOAL DAN PENYELESAIAN Logika, Himpunan, Relasi, Fungsi JONG JEK SIANG Kita menjalani hidup dari apa yang kita dapatkan Tetapi kita menikmati hidup dari apa yang kita berikan Jong Jek

Lebih terperinci

1.3 Pembuktian Tautologi dan Kontradiksi. Pernyataan majemuk yang selalu bernilai benar bagaimanapun nilai proposisi

1.3 Pembuktian Tautologi dan Kontradiksi. Pernyataan majemuk yang selalu bernilai benar bagaimanapun nilai proposisi 1.3 Pembuktian 1.3.1 Tautologi dan Kontradiksi Pernyataan majemuk yang selalu bernilai benar bagaimanapun nilai proposisi yang membentuknya disebut toutologi, sedangkan proposisi yang selalu bernilai salah

Lebih terperinci

BAHAN KULIAH LOGIKA MATEMATIKA

BAHAN KULIAH LOGIKA MATEMATIKA BAHAN KULIAH LOGIKA MATEMATIKA O L E H A. Rahman H., S.Si, MT & Muhammad Khaidir STTIKOM Insan unggul Jl. S.A. tirtayasa no. 146 Komp. Istana Cilegon blok B 25-28 Cilegon Banten 42414 http://didir.co.cc

Lebih terperinci

RENCANA PELAKSANAAN PEMBELAJARAN (RPP) Nama Sekolah : SMK... Mata Pelajaran : Matematika Kelas : XI Program Keahlian : Akuntansi dan Penjualan

RENCANA PELAKSANAAN PEMBELAJARAN (RPP) Nama Sekolah : SMK... Mata Pelajaran : Matematika Kelas : XI Program Keahlian : Akuntansi dan Penjualan RENCANA PELAKSANAAN PEMBELAJARAN (RPP) Nama Sekolah : SMK... Mata Pelajaran : Matematika Kelas : XI Program Keahlian : Akuntansi dan Penjualan Standar Kompetensi Kompetensi Dasar Indikator Alokasi Waktu

Lebih terperinci

Logika Matematika. Cece Kustiawan, FPMIPA, UPI

Logika Matematika. Cece Kustiawan, FPMIPA, UPI Logika Matematika 1. Pengertian Logika 2. Pernyataan Matematika 3. Nilai Kebenaran 4. Operasi Uner 5. Operasi Biner 6. Tabel kebenaran Pernyataan 7. Tautologi, Kontradiksi dan Kontingen 8. Pernyataan-pernyataan

Lebih terperinci

KATA PENGANTAR UCAPAN TERIMA KASIH ABSTRAK DAFTAR ISI DAFTAR TABEL DAFTAR BAGAN

KATA PENGANTAR UCAPAN TERIMA KASIH ABSTRAK DAFTAR ISI DAFTAR TABEL DAFTAR BAGAN DAFTAR ISI KATA PENGANTAR...i UCAPAN TERIMA KASIH...ii ABSTRAK.iii DAFTAR ISI.iv DAFTAR TABEL.vi DAFTAR BAGAN ix DAFTAR GAMBAR...x DAFTAR LAMPIRAN.xi BAB I PENDAHULUAN... 1 A. Latar Belakang Masalah..

Lebih terperinci

I. PERNYATAAN DAN NEGASINYA

I. PERNYATAAN DAN NEGASINYA 1 I. PERNYATAAN DAN NEGASINYA A. Pernyataan. Pernyataan adalah suatu kalimat yang mempunyai nilai benar atau salah, tetapi tidak sekaligus keduanya. Benar atau salahnya suatu pernyataan dapat ditunjukkan

Lebih terperinci

PERTEMUAN Logika Matematika

PERTEMUAN Logika Matematika 1-1 PERTEMUAN 1 Nama Mata Kuliah : Matematika Diskrit ( 3 SKS) Nama Dosen Pengampu : Dr. Suparman E-mail : matdis@netcourrier.com HP : 081328201198 Judul Pokok Bahasan Tujuan Pembelajaran : 1. Logika Matematika

Lebih terperinci

BAB 1. Logika. Benteng kehidupan yang terkuat adalah kebenaran. (Anonim)

BAB 1. Logika. Benteng kehidupan yang terkuat adalah kebenaran. (Anonim) BAB 1 Logika Benteng kehidupan yang terkuat adalah kebenaran. (Anonim) Materi Matematika Diskrit di dalam buku ini dimulai dari pokok bahasan logika. Logika merupakan studi penalaran (reasoning). Dalam

Lebih terperinci

PERNYATAAN (PROPOSISI)

PERNYATAAN (PROPOSISI) Logika Gambaran Umum Logika : - Logika Pernyataan membicarakan tentang pernyataan tunggal dan kata hubungnya sehingga didapat kalimat majemuk yang berupa kalimat deklaratif. - Logika Predikat menelaah

Lebih terperinci

MODUL LOGIKA MATEMATIKA

MODUL LOGIKA MATEMATIKA PERENCANAAN PEMBELAJARAN MATEMATIKA MODUL LOGIKA MATEMATIKA AUTHOR: Navel Mangelep UNIVERSITAS NEGERI MANADO FAKULTAS MATEMATIKA & ILMU PENGETAHUAN ALAM JURUSAN MATEMATIKA KATA PENGANTAR Salah satu penunjang

Lebih terperinci

SOAL PILIHAN GANDA Pilihlah salah satu jawaban yang paling benar antara pilihan a, b, c, d, atau e!

SOAL PILIHAN GANDA Pilihlah salah satu jawaban yang paling benar antara pilihan a, b, c, d, atau e! OAL PILIHAN GANDA Pilihlah salah satu jawaban yang paling benar antara pilihan a, b, c, d, atau e! 1. Ordo dari matriks A = ( ) adalah. a. 2 x 2 d. 4 b. 2 x 3 e. 6 3 x 2 2. ila ( ) ( ), maka nilai dari

Lebih terperinci

BAB 6 EKUIVALENSI LOGIS

BAB 6 EKUIVALENSI LOGIS BAB 6 EKUIVALENSI LOGIS 1. Pendahuluan Bab ini akan membahas persamaan-persamaan antara dua buah ekspresi logika yang mungkin ekuivalen (sama), mungkin berbeda, yang kesamaan atau perbedaan tadi akan dibuktikan

Lebih terperinci

KATA PENGANTAR. Assalamu alaikum Wr. Wb.

KATA PENGANTAR. Assalamu alaikum Wr. Wb. KATA PENGANTAR Assalamu alaikum Wr. Wb. Alhamdulillah.. Puji syukur kehadirat Allah SWT. atas segala rahmat dan hidayah-nya. Segala pujian hanya layak kita aturkan kepada Allah SWT. Tuhan seru sekalian

Lebih terperinci

PETA PERKULIAHAN MATA KULIAH : LOGIKA MATEMATIKA KODE MATA KULIAH : GD 321. SEMESTER : GANJIL (5) DOSEN : MAULANA, S.Pd., M.Pd.

PETA PERKULIAHAN MATA KULIAH : LOGIKA MATEMATIKA KODE MATA KULIAH : GD 321. SEMESTER : GANJIL (5) DOSEN : MAULANA, S.Pd., M.Pd. Doc Logika Matematika PGSD Maulana 1 PETA PERKULIAHAN MATA KULIAH : LOGIKA MATEMATIKA KODE MATA KULIAH : GD 321 BOBOT SKS : 2 (DUA) TAHUN AKADEMIK : 2007/2008 PROGRAM : PGSD S-1 KELAS SEMESTER : GANJIL

Lebih terperinci

LOGIKA MATEMATIKA Menuju TKD 2014

LOGIKA MATEMATIKA Menuju TKD 2014 LOGIKA MATEMATIKA Menuju TKD 2014 A. PERNYATAAN MAJEMUK Jenis-jenis pernyataan majemuk: 1. Konjungsi (^ = dan ) A: Hari ini Jowoki kampanye B: Hari ini Jowoki Umroh Konjungsi (A ^ B): Hari ini Jowoki kampanye

Lebih terperinci

Logika Matematika. ILFA STEPHANE, M.Si. September Teknik Sipil dan Geodesi Institut Teknologi Padang

Logika Matematika. ILFA STEPHANE, M.Si. September Teknik Sipil dan Geodesi Institut Teknologi Padang ILFA STEPHANE, M.Si September 2012 Teknik Sipil dan Geodesi Institut Teknologi Padang Definisi 1 Logika adalah usaha dalam memutuskan ya atau tidaknya (whether or not) suatu keputusan yang sah. Oleh karena

Lebih terperinci

RUMUS-RUMUS TAUTOLOGI. (Minggu ke-5 dan 6)

RUMUS-RUMUS TAUTOLOGI. (Minggu ke-5 dan 6) RUMUS-RUMUS TAUTOLOGI (Minggu ke-5 dan 6) 1 1 Rumus-rumus tautologi Rumus 1.1 (Komutatif) 1. p q q p 2. p q q p Bukti: p q p q q p T T T T T F F F F T F F F F F F 2 Rumus 1.2 (Distributif) 1. p (q r) (p

Lebih terperinci

Logika. Apakah kesimpulan dari argumen di atas valid? Alat bantu untuk memahami argumen tsb adalah Logika

Logika. Apakah kesimpulan dari argumen di atas valid? Alat bantu untuk memahami argumen tsb adalah Logika Pengantar Logika 1 Logika Perhatikan argumen di bawah ini: Jika anda mahasiswa Informatika maka anda pasti belajar Bahasa Java. Jika anda tidak suka begadang maka anda bukan mahasiswa Informatika. Tetapi,

Lebih terperinci

BAB III DASAR DASAR LOGIKA

BAB III DASAR DASAR LOGIKA BAB III DASAR DASAR LOGIKA 1. Kalimat Deklaratif Kalimat Deklaratif (Proposisi) adalah kalimat yang bernilai benar atau salah, tetapi tidak keduanya. Berikut ini adalah beberapa contoh Proposisi : a. 2

Lebih terperinci

LOGIKA MATEMATIKA Talisadika Maifa

LOGIKA MATEMATIKA Talisadika Maifa 22 BAB II LOGIKA MATEMATIKA Talisadika Maifa A. PENDAHULUAN Pembahasan mengenai logika sudah ada sejak lama bahkan sebelum manusia mengenal istilah logika itu sendiri. Menilik kembali kepada sejarahnya,

Lebih terperinci

KALKULUS PERNYATAAN. Totologi & Kontradiksi. Tingkat Kekuatan Operator. Tabel Kebenaran 9/30/2013. Nur Insani, M.Sc

KALKULUS PERNYATAAN. Totologi & Kontradiksi. Tingkat Kekuatan Operator. Tabel Kebenaran 9/30/2013. Nur Insani, M.Sc KALKULUS PERNYATAAN Totologi & Kontradiksi Nur Insani, M.Sc Satu atau lebih proposisi dapat dikombinasikan untuk menghasilkan proposisi baru lewat penggunaan operator logika: negasi (-), dan (^), atau

Lebih terperinci

BAB 1 : DASAR-DASAR LOGIKA

BAB 1 : DASAR-DASAR LOGIKA BAB 1 : DASAR-DASAR LOGIKA 1.1 PENGERTIAN UMUM LOGIKA Filsafat dan matematika adalah bidang pengetahuan rasional yang ada sejak dahulu. Jauh sebelum matematika berkembang seperti sekarang ini dan penerapannya

Lebih terperinci

Contoh 1.36 Diberikan pernyataan Tidak benar bahwa dia belajar Algoritma tetapi tidak belajar Matematika.

Contoh 1.36 Diberikan pernyataan Tidak benar bahwa dia belajar Algoritma tetapi tidak belajar Matematika. Contoh 1.36 Diberikan pernyataan Tidak benar bahwa dia belajar Algoritma tetapi tidak belajar Matematika. (a) Nyatakan pernyataan di atas dalam notasi simbolik (ekspresi logika) (b) Berikan pernyataan

Lebih terperinci

BAB II TAUTOLOGI DAN PRINSIP-PRINSIP PEMBUKTIAN

BAB II TAUTOLOGI DAN PRINSIP-PRINSIP PEMBUKTIAN BAB II TAUTOLOGI DAN PRINSIP-PRINSIP PEMBUKTIAN 2.1 Pendahuluan Pada bab ini akan dibicarakan rumus-rumus tautologi dan prinsip-prinsip pembuktian yang tidak saja digunakan di bidang matematika, tetapi

Lebih terperinci

Logika Matematika. Logika Matematika. Jurusan Informatika FMIPA Unsyiah. September 26, 2012

Logika Matematika. Logika Matematika. Jurusan Informatika FMIPA Unsyiah. September 26, 2012 Jurusan Informatika FMIPA Unsyiah September 26, 2012 yang diharapkan Dasar: Menggunakan logika matematika. Indikator Esensial: 1 Mengidentifikasi suatu tautologi 2 Menentukan ingkaran suatu pernyataan

Lebih terperinci

LOGIKA MATEMATIKA. d. 6 + a > -4 e. 7 adalah faktor dari 63. c. 4 x 6 2. Tentukan variabel dan himpunan penyelesaian dari: a.

LOGIKA MATEMATIKA. d. 6 + a > -4 e. 7 adalah faktor dari 63. c. 4 x 6 2. Tentukan variabel dan himpunan penyelesaian dari: a. LOGIKA MATEMATIKA A. Definisi 1). Pernyataan Pernyataan adalah suatu kalimat yang bernilai benar atau salah, tetapi tidak sekaligus benar dan salah. Air laut rasanya asin, adalah bilangan prima, urabaya

Lebih terperinci

Logika Proposisional Ema Utami STMIK AMIKOM Yogyakarta

Logika Proposisional Ema Utami STMIK AMIKOM Yogyakarta Logika Proposisional Ema Utami STMIK AMIKOM Yogyakarta Logika proposisional merupakan ilmu dasar untuk mempelajari algoritma dan logika yang terkait di dalamnya yang berperanan sangat penting dalam pemrograman.

Lebih terperinci