Relasi. Oleh Cipta Wahyudi

dokumen-dokumen yang mirip
MATEMATIKA DISKRIT RELASI

R = {(Amir, IF251), (Amir, IF323), (Budi, IF221), (Budi, IF251), (Cecep, IF323) }

Relasi. Relasi biner R antara himpunan A dan B adalah himpunan bagian dari A B. Notasi: R (A B).

DEFINISI. Relasi biner R antara himpunan A dan B adalah himpunan bagian dari A B. Notasi: R (A B).

Relasi Adalah hubungan antara elemen himpunan dengan elemen himpunan yang lain. Cara paling mudah untuk menyatakan hubungan antara elemen 2 himpunan

Matriks. Contoh matriks simetri. Matriks zero-one (0/1) adalah matriks yang setiap elemennya hanya bernilai 0 atau 1. Contoh matriks 0/1:

KALKULUS (Relasi) Instruktur : Ferry Wahyu Wibowo, S.Si., M.Cs.

Relasi dan Fungsi. Program Studi Teknik Informatika FTI-ITP

RELASI DAN FUNGSI. /Nurain Suryadinata, M.Pd

Matriks, Relasi, dan Fungsi

Matematika Diskret (Relasi dan Fungsi) Instruktur : Ferry Wahyu Wibowo, S.Si., M.Cs.

RELASI DAN FUNGSI. Nur Hasanah, M.Cs

Matriks. Matriks adalah adalah susunan skalar elemen-elemen dalam bentuk baris dan kolom.

Matriks. Contoh matriks simetri. Matriks zero-one (0/1) adalah matriks yang setiap elemennya hanya bernilai 0 atau 1. Contoh matriks 0/1:

Matematika Komputasi RELASI. Gembong Edhi Setyawan

BAB II RELASI DAN FUNGSI

Kode MK/ Nama MK. Cakupan 8/29/2014. Himpunan, Relasi dan fungsi Kombinatorial. Teori graf. Pohon (Tree) dan pewarnaan graf. Matematika Diskrit

Matriks, Relasi, dan Fungsi Teknik Neurofuzzy

MATEMATIKA DASAR PROGRAM STUDI AGROTEKNOLOGI

Matematika Diskret. Mahmud Imrona Rian Febrian Umbara RELASI. Pemodelan dan Simulasi

Materi 3: Relasi dan Fungsi

Mata Kuliah : Matematika Diskrit Program Studi : Teknik Informatika Minggu ke : 2

2. Matrix, Relation and Function. Discrete Mathematics 1

MATEMATIKA SISTEM INFORMASI 1

Adri Priadana ilkomadri.com. Relasi

Relasi dan Fungsi Matematika Diskret (TKE132107) Program Studi Teknik Elektro, Unsoed

Hasil kali kartesian antara himpunan A dan himpunan B, ditulis AxB adalah semua pasangan terurut (a, b) untuk a A dan b B.

Diberikan sebarang relasi R dari himpunan A ke B. Invers dari R yang dinotasikan dengan R adalah relasi dari B ke A sedemikian sehingga

Pengantar Matematika Diskrit

22 Matematika Diskrit

BAB 5 POSET dan LATTICE

Oleh : Winda Aprianti

Definisi 1. Relasi biner R antara A dan B adalah himpunan bagian dari A x B. A x B = {(a, b) a A dan b B}.

Definisi 1. Relasi biner R antara A dan B adalah himpunan bagian dari A x B. A x B = {(a, b) a A dan b B}.

Himpunan (set) Himpunan (set) adalah kumpulan objekobjek yang berbeda. Objek di dalam himpunan disebut elemen, unsur, atau anggota.

Makalah Himpunan dan Logika Matematika Poset dan Lattice

BAB II RELASI & FUNGSI

MATEMATIKA DISKRIT BAB 2 RELASI

BAB 5 POSET dan LATTICE

BAB II RELASI. 2. Relasi Definisi 2 Relasi antara A dan B disebut relasi biner. Relasi biner R antara A dan B adalah himpunan bagian dari A x B

POLITEKNIK TELKOM BANDUNG

Relasi. Learning is not child's play, we cannot learn without pain. - Aristotle. Matema(ka Komputasi - Relasi dan Fungsi. Agi Putra Kharisma, ST., MT.

BAB 2 RELASI. 1. Produk Cartesian

Relasi & Fungsi. Kuliah Matematika Diskrit 20 April Pusat Pengembangan Pendidikan - Universitas Gadjah Mada

MATEMATIKA DASAR (Himpunan Terurut Parsial (Poset))

9.1 RELATIONS AND THEIR PROPERTIES

PERTEMUAN Relasi dan Fungsi

Diketahui : A = {1,2,3,4,5,6,7} B = {1,2,3,5,6,12} C = {2,4,8,12,20} (A B) C = {1,3,5,6} {x x ϵ A dan x ϵ B} (B C) = {2,12}

KALKULUS (Relasi Ekivalen) Instruktur : Ferry Wahyu Wibowo, S.Si., M.Cs.

Aplikasi Relasi dalam Pengelolaan Basis Data

PELABELAN TOTAL TITIK AJAIB PADA GRAF LENGKAP DENGAN METODE MODIFIKASI MATRIK BUJURSANGKAR AJAIB DENGAN n GANJIL, n 3

RELASI PERTEMUAN 2. Dosen : Ir. Hasanuddin Sirait, MT

Dasar-Dasar Teori Graf. Sistem Informasi Universitas Gunadarma 2012/2013

BAB 2 TINJAUAN PUSTAKA

PERKALIAN CARTESIAN DAN RELASI

Bagaimana merepresentasikan struktur berikut? A E

RELASI BINER. 1. Hasil Kali Cartes

MATRIKS. Notasi yang digunakan NOTASI MATRIKS

BAB 2 GRAF PRIMITIF. Gambar 2.1. Contoh Graf

BILANGAN BULAT. Operasi perkalian juga bersifat tertutup pada bilangan Asli dan bilangan Cacah.

BAB 2 GRAF PRIMITIF. 2.1 Definisi Graf

KALKULUS (Relasi Ekivalen) Instruktur : Ferry Wahyu Wibowo, S.Si., M.Cs.

BAHAN KULIAH LOGIKA MATEMATIKA

BAB II LANDASAN TEORI

Modul ke: Penyajian Himpunan. operasi-operasi dasar himpunan. Sediyanto, ST. MM. 01Fakultas FASILKOM. Program Studi Teknik Informatika

BAB 1 OPERASI PADA HIMPUNAN BAHAN AJAR STRUKTUR ALJABAR, BY FADLI

PEWARNAAN GRAF: POLINOMIAL KROMATIK DAN TEOREMA INVERSI MOBIUS

Materi Ke_2 (dua) Himpunan

= himpunan tidak-kosong dan berhingga dari simpul-simpul (vertices) = himpunan sisi (edges) yang menghubungkan sepasang simpul

BAB 2 GRAF PRIMITIF. 2.1 Definisi Graf

BAB II LANDASAN TEORI

BAB 3 FUNGSI. f : x y

Relasi dan Fungsi. Panca Mudjirahardjo, ST.MT. Relasi dan fungsi

BAB II KAJIAN PUSTAKA. operasi matriks, determinan dan invers matriks), aljabar max-plus, matriks atas

SIFAT NILAI EIGEN MATRIKS ANTI ADJACENCY DARI GRAF SIMETRIK

II. TINJAUAN PUSTAKA. negatifnya. Yang termasuk dalam bilangan cacah yaitu 0,1,2,3,4, sehingga

BAB II KERANGKA TEORITIS. komposisi biner atau lebih dan bersifat tertutup. A = {x / x bilangan asli} dengan operasi +

MATEMATIKA MATEMATIK A DISKRIT : : MAT-3615/ 3 : : VI

Pertemuan 2 Matriks, part 2

PENDAHULUAN. 1. Himpunan

3. FUNGSI DAN GRAFIKNYA

HIMPUNAN MATEMATIKA. Program Studi Agroteknologi Universitas Gunadarma

6- Operasi Matriks. MEKANIKA REKAYASA III MK Unnar-Dody Brahmantyo 1

BAB I HIMPUNAN. Matematika Infomatika. Universitas Gunadarma Halaman 1

Aturan Penilaian & Grade Penilaian. Deskripsi. Matematika Diskrit 9/7/2011

BAB 2 LANDASAN TEORI

BAB II LANDASAN TEORI

Minggu ke II. Dua isomer hidrokarbon dengan rumus molekul C 4 H 10 disajikan pada Gambar 2.1. H H H H C C C C H H H H H H H H. Gambar 2.

MA3051 Pengantar Teori Graf. Semester /2014 Pengajar: Hilda Assiyatun

DEFINISI. Himpunan (set) adalah kumpulan objekobjek yang berbeda. Objek di dalam himpunan disebut elemen, unsur, atau anggota.

BAB 2 LANDASAN TEORI

Graf. Program Studi Teknik Informatika FTI-ITP

SATUAN ACARA PERKULIAHAN STMIK PARNA RAYA MANADO TAHUN 2010

LATIHAN ALGORITMA-INTEGER

BAB III SIFAT SIFAT LINE DIGRAPH. Bab ini khusus membahas mengenai definisi serta sifat sifat dari line

RELASI FUNGSI. (Kajian tentang karakteristik, operasi, representasi fungsi)

Himpunan Matematika Diskret (TKE132107) Program Studi Teknik Elektro, Unsoed

1.2 PENULISAN HIMPUNAN

LOGIKA MATEMATIKA. 3 SKS By : Sri Rezeki Candra Nursari

II. TINJAUAN PUSTAKA. Pada bab ini akan diuraikan teori grup dan teori ring yang akan digunakan dalam

Transkripsi:

Relasi Oleh Cipta Wahyudi

Definisi Relasi biner R antara himpunan A dan B adalah himpunan bagian dari A B. Notasi: R (A B). a R b adalah notasi untuk (a, b) R, yang artinya a dihubungankan dengan b oleh R a R b adalah notasi untuk (a, b) R, yang artinya a tidak dihubungkan oleh b oleh relasi R. Himpunan A disebut daerah asal (domain) dari R, dan himpunan B disebut daerah hasil (range) dari R. 2

Contoh 3. Misalkan A = {Amir, Budi, Cecep}, B = {IF22, IF25, IF342, IF323} A B = {(Amir, IF22), (Amir, IF25), (Amir, IF342), (Amir, IF323), (Budi, IF22), (Budi, IF25), (Budi, IF342), (Budi, IF323), (Cecep, IF22), (Cecep, IF25), (Cecep, IF342), (Cecep, IF323) } Misalkan R adalah relasi yang menyatakan mata kuliah yang diambil oleh mahasiswa pada Semester Ganjil, yaitu R = {(Amir, IF25), (Amir, IF323), (Budi, IF22), (Budi, IF25), (Cecep, IF323) } - Dapat dilihat bahwa R (A B), - A adalah daerah asal R, dan B adalah daerah hasil R. - (Amir, IF25) R atau Amir R IF25 - (Amir, IF342) R atau Amir R IF342. 3

Contoh 4. Misalkan P = {2, 3, 4} dan Q = {2, 4, 8, 9, 5}. Jika kita definisikan relasi R dari P ke Q dengan (p, q) R jika p habis membagi q maka kita peroleh R = {(2, 2), (2, 4), (4, 4), (2,??? 8), (4, 8), (3, 9), (3, 5) } Relasi pada sebuah himpunan adalah relasi yang khusus Relasi pada himpunan A adalah relasi dari A A. Relasi pada himpunan A adalah himpunan bagian dari A A. 4

Representasi Relasi. Representasi Relasi dengan Diagram Panah A Amir Budi Cecep B IF22 IF25 IF342 IF323 P 2 3 4 Q 2 4 8 9 5 A 2 3 4 8 9 A 2 3 4 8 9 5

. Representasi Relasi dengan Tabel Kolom pertama tabel menyatakan daerah asal, sedangkan kolom kedua menyatakan daerah hasil. Tabel Tabel 2 Tabel 3 A B P Q A A Amir IF25 2 2 2 2 Amir IF323 2 4 2 4 Budi IF22 4 4 2 8 Budi IF25 2 8 3 3 Cecep IF323 4 8 3 3 3 9 3 5 6

7 3. Representasi Relasi dengan Matriks Misalkan R adalah relasi dari A = {a, a 2,, a m } dan B = {b, b 2,, b n }. Relasi R dapat disajikan dengan matriks M = [m ij ], b b 2 b n M = mn m m n n m m m m m m m m m m a a a 2 2 22 2 2 2 yang dalam hal ini R b a R b a m j i j i ij ), (, ), (,

Contoh 6. Relasi R pada Contoh 3 dapat dinyatakan dengan matriks dalam hal ini, a = Amir, a 2 = Budi, a 3 = Cecep, dan b = IF22, b 2 = IF25, b 3 = IF342, dan b 4 = IF323. Relasi R pada Contoh 4 dapat dinyatakan dengan matriks yang dalam hal ini, a = 2, a 2 = 3, a 3 = 4, dan b = 2, b 2 = 4, b 3 = 8, b 4 = 9, b 5 = 5. 8

4. Representasi Relasi dengan Graf Berarah Relasi pada sebuah himpunan dapat direpresentasikan secara grafis dengan graf berarah (directed graph atau digraph) Graf berarah tidak didefinisikan untuk merepresentasikan relasi dari suatu himpunan ke himpunan lain. Tiap elemen himpunan dinyatakan dengan sebuah titik (disebut juga simpul atau vertex), dan tiap pasangan terurut dinyatakan dengan busur (arc) Jika (a, b) R, maka sebuah busur dibuat dari simpul a ke simpul b. Simpul a disebut simpul asal (initial vertex) dan simpul b disebut simpul tujuan (terminal vertex). Pasangan terurut (a, a) dinyatakan dengan busur dari simpul a ke simpul a sendiri. Busur semacam itu disebut gelang atau kalang (loop). 9

Contoh 7. Misalkan R = {(a, a), (a, b), (b, a), (b, c), (b, d), (c, a), (c, d), (d, b)} adalah relasi pada himpunan {a, b, c, d}. R direpresentasikan dengan graf berarah sbb: a b c d

Sifat-sifat Relasi Biner Relasi biner yang didefinisikan pada sebuah himpunan mempunyai beberapa sifat.. Refleksif (reflexive) Relasi R pada himpunan A disebut refleksif jika (a, a) R untuk setiap a A. Relasi R pada himpunan A tidak refleksif jika ada a A sedemikian sehingga (a, a) R.

Contoh 8. Misalkan A = {, 2, 3, 4}, dan relasi R di bawah ini didefinisikan pada himpunan A, maka (a) Relasi R = {(, ), (, 3), (2, ), (2, 2), (3, 3), (4, 2), (4, 3), (4, 4) } bersifat refleksif karena terdapat elemen relasi yang berbentuk (a, a), yaitu (, ), (2, 2), (3, 3), dan (4, 4). (b) Relasi R = {(, ), (2, 2), (2, 3), (4, 2), (4, 3), (4, 4) } tidak bersifat refleksif karena (3, 3) R. Contoh 9. Relasi habis membagi pada himpunan bilangan bulat positif bersifat refleksif karena setiap bilangan bulat positif habis dibagi dengan dirinya sendiri, sehingga (a, a)r untuk setiap a A. Contoh. Tiga buah relasi di bawah ini menyatakan relasi pada himpunan bilangan bulat positif N. R : x lebih besar dari y, S : x + y = 5, T : 3x + y = Tidak satupun dari ketiga relasi di atas yang refleksif karena, misalkan (2, 2) bukan anggota R, S, maupun T. 2

Relasi yang bersifat refleksif mempunyai matriks yang elemen diagonal utamanya semua bernilai, atau m ii =, untuk i =, 2,, n, Graf berarah dari relasi yang bersifat refleksif dicirikan adanya gelang pada setiap simpulnya. 3

2. Menghantar (transitive) Relasi R pada himpunan A disebut menghantar jika (a, b) R dan (b, c) R, maka (a, c) R, untuk a, b, c A. 4

Contoh. Misalkan A = {, 2, 3, 4}, dan relasi R di bawah ini didefinisikan pada himpunan A, maka (a) R = {(2, ), (3, ), (3, 2), (4, ), (4, 2), (4, 3) } bersifat menghantar. Lihat tabel berikut: Pasangan berbentuk (a, b) (b, c) (a, c) (3, 2) (2, ) (3, )? (4, 2) (2, ) (4, ) (4, 3) (3, ) (4, ) (4, 3) (3, 2) (4, 2) (b) R = {(, ), (2, 3), (2, 4), (4, 2) } tidak manghantar karena (2, 4) dan (4, 2) R, tetapi (2, 2) R, begitu juga (4, 2) dan (2, 3) R, tetapi (4, 3) R. (c) Relasi R = {(, ), (2, 2), (3, 3), (4, 4) } jelas menghantar (d) Relasi R = {(, 2), (3, 4)} menghantar karena tidak ada (a, b) R dan (b, c) R sedemikian sehingga (a, c) R. (e) Relasi yang hanya berisi satu elemen seperti R = {(4, 5)} selalu menghantar. 5

Contoh 2. Relasi habis membagi pada himpunan bilangan bulat positif bersifat menghantar. Misalkan bahwa a habis membagi b dan b habis membagi c. Maka terdapat bilangan positif m dan n sedemikian sehingga b = ma dan c = nb. Di sini c = nma, sehingga a habis membagi c. Jadi, relasi habis membagi bersifat menghantar. Contoh 3. Tiga buah relasi di bawah ini menyatakan relasi pada himpunan bilangan bulat positif N. R : x lebih besar dari y, S : x + y = 6, T : 3x + y = - R adalah relasi menghantar karena jika x > y dan y > z maka x > z. - S tidak menghantar karena, misalkan (4, 2) dan (2, 4) adalah anggota S tetapi (4, 4) S. - T = {(, 7), (2, 4), (3, )} menghantar. 6

Relasi yang bersifat menghantar tidak mempunyai ciri khusus pada matriks representasinya Sifat menghantar pada graf berarah ditunjukkan oleh: jika ada busur dari a ke b dan dari b ke c, maka juga terdapat busur berarah dari a ke c. 7

3. Setangkup (symmetric) dan tolak-setangkup (antisymmetric) Relasi R pada himpunan A disebut setangkup jika (a, b) R, maka (b, a) R untuk a, b A. Relasi R pada himpunan A tidak setangkup jika (a, b) R sedemikian sehingga (b, a) R. Relasi R pada himpunan A sedemikian sehingga (a, b) R dan (b, a) R hanya jika a = b untuk a, b A disebut tolaksetangkup. Relasi R pada himpunan A tidak tolak-setangkup jika ada elemen berbeda a dan b sedemikian sehingga (a, b) R dan (b, a) R. 8

Contoh 4. Misalkan A = {, 2, 3, 4}, dan relasi R di bawah ini didefinisikan pada himpunan A, maka (a) Relasi R = {(, ), (, 2), (2, ), (2, 2), (2, 4), (4, 2), (4, 4) } bersifat setangkup karena jika (a, b) R maka (b, a) juga R. Di sini (, 2) dan (2, ) R, begitu juga (2, 4) dan (4, 2) R. (b) Relasi R = {(, ), (2, 3), (2, 4), (4, 2) } tidak setangkup karena (2, 3) R, tetapi (3, 2) R. (c) Relasi R = {(, ), (2, 2), (3, 3) } tolak-setangkup karena = dan (, ) R, 2 = 2 dan (2, 2) R, dan 3 = 3 dan (3, 3) R. Perhatikan bahwa R juga setangkup. (d) Relasi R = {(, ), (, 2), (2, 2), (2, 3) } tolak-setangkup karena (, ) R dan = dan, (2, 2) R dan 2 = 2 dan. Perhatikan bahwa R tidak setangkup. (e) Relasi R = {(, ), (2, 4), (3, 3), (4, 2) } tidak tolaksetangkup karena 2 4 tetapi (2, 4) dan (4, 2) anggota R. Relasi R pada (a) dan (b) di atas juga tidak tolak-setangkup. (f) Relasi R = {(, 2), (2, 3), (, 3) } tidak setangkup tetapi tolak-setangkup. Relasi R = {(, ), (2, 2), (2, 3), (3, 2), (4, 2), (4, 4)} tidak setangkup dan tidak tolak-setangkup. R tidak setangkup karena (4, 2) R tetapi (2, 4) R. R tidak tolak-setangkup karena (2, 3) R dan (3, 2) R tetap 2 3. 9

Contoh 5. Relasi habis membagi pada himpunan bilangan bulat positif tidak setangkup karena jika a habis membagi b, b tidak habis membagi a, kecuali jika a = b. Sebagai contoh, 2 habis membagi 4, tetapi 4 tidak habis membagi 2. Karena itu, (2, 4) R tetapi (4, 2) R. Relasi habis membagi tolak-setangkup karena jika a habis membagi b dan b habis membagi a maka a = b. Sebagai contoh, 4 habis membagi 4. Karena itu, (4, 4) R dan 4 = 4. Contoh 6. Tiga buah relasi di bawah ini menyatakan relasi pada himpunan bilangan bulat positif N. R : x lebih besar dari y, S : x + y = 6, T : 3x + y = - R bukan relasi setangkup karena, misalkan 5 lebih besar dari 3 tetapi 3 tidak lebih besar dari 5. - S relasi setangkup karena (4, 2) dan (2, 4) adalah anggota S. - T tidak setangkup karena, misalkan? (3, ) adalah anggota T tetapi (, 3) bukan anggota T. - S bukan relasi tolak-setangkup karena, misalkan (4, 2) S dan (4, 2) S tetapi 4 2. - Relasi R dan T keduanya tolak-setangkup (tunjukkan!). 2

Relasi yang bersifat setangkup mempunyai matriks yang elemen-elemen di bawah diagonal utama merupakan pencerminan dari elemen-elemen di atas diagonal utama, atau m ij = m ji =, untuk i =, 2,, n : Sedangkan graf berarah dari relasi yang bersifat setangkup dicirikan oleh: jika ada busur dari a ke b, maka juga ada busur dari b ke a. 2

Matriks dari relasi tolak-setangkup mempunyai sifat yaitu jika m ij = dengan i j, maka m ji =. Dengan kata lain, matriks dari relasi tolak-setangkup adalah jika salah satu dari m ij = atau m ji = bila i j : Sedangkan graf berarah dari relasi yang bersifat tolaksetangkup dicirikan oleh: jika dan hanya jika tidak pernah ada dua busur dalam arah berlawanan antara dua simpul berbeda. 22

Relasi Inversi Misalkan R adalah relasi dari himpunan A ke himpunan B. Invers dari relasi R, dilambangkan dengan R, adalah relasi dari B ke A yang didefinisikan oleh R = {(b, a) (a, b) R } 23

Contoh 7. Misalkan P = {2, 3, 4} dan Q = {2, 4, 8, 9, 5}. Jika kita definisikan relasi R dari P ke Q dengan (p, q) R jika p habis membagi q maka kita peroleh R = {(2, 2), (2, 4), (4, 4), (2, 8), (4, 8), (3, 9), (3, 5) } R adalah invers dari relasi R, yaitu relasi dari Q ke P dengan (q, p) R jika q adalah kelipatan dari p maka kita peroleh 24

25 Jika M adalah matriks yang merepresentasikan relasi R, M = maka matriks yang merepresentasikan relasi R, misalkan N, diperoleh dengan melakukan transpose terhadap matriks M, N = M T =

Mengkombinasikan Relasi Karena relasi biner merupakan himpunan pasangan terurut, maka operasi himpunan seperti irisan, gabungan, selisih, dan beda setangkup antara dua relasi atau lebih juga berlaku. Jika R dan R 2 masing-masing adalah relasi dari himpuna A ke himpunan B, maka R R 2, R R 2, R R 2, dan R R 2 juga adalah relasi dari A ke B. 26

Contoh 8. Misalkan A = {a, b, c} dan B = {a, b, c, d}. Relasi R = {(a, a), (b, b), (c, c)} Relasi R 2 = {(a, a), (a, b), (a, c), (a, d)} R R 2 = {(a, a)} R R 2 = {(a, a), (b, b), (c, c), (a, b), (a, c), (a, d)} R R 2 = {(b, b), (c, c)} R 2 R = {(a, b), (a, c), (a, d)} R R 2 = {(b, b), (c, c), (a, b), (a, c), (a, d)} 27

Jika relasi R dan R 2 masing-masing dinyatakan dengan matriks M R dan M R2, maka matriks yang menyatakan gabungan dan irisan dari kedua relasi tersebut adalah M R R2 = M R M R2 dan M R R2 = M R M R2 28

29 Contoh 9. Misalkan bahwa relasi R dan R 2 pada himpunan A dinyatakan oleh matriks R = dan R 2 = maka M R R2 = M R M R2 = M R R2 = M R M R2 =

Komposisi Relasi Cara lain mengkombinasikan relasi adalah mengkomposisikan dua buah relasi atau lebih. Misalkan R adalah relasi dari himpunan A ke himpunan B, dan S adalah relasi dari himpunan B ke himpunan C. Komposisi R dan S, dinotasikan dengan S R, adalah relasi dari A ke C yang didefinisikan oleh S R = {(a, c) a A, c C, dan untuk beberapa b B, (a, b) R dan (b, c) S } 3

Contoh 2. Misalkan R = {(, 2), (, 6), (2, 4), (3, 4), (3, 6), (3, 8)} adalah relasi dari himpunan {, 2, 3} ke himpunan {2, 4, 6, 8} dan S = {(2, u), (4, s), (4, t), (6, t), (8, u)} adalah relasi dari himpunan {2, 4, 6, 8} ke himpunan {s, t, u}. Maka komposisi relasi R dan S adalah S R = {(, u), (, t), (2, s), (2, t), (3, s), (3, t), (3, u) } 3

Komposisi relasi R dan S lebih jelas jika diperagakan dengan diagram panah: 2 3 2 4 6 8 s t u 32

Jika relasi R dan R 2 masing-masing dinyatakan dengan matriks M R dan M R2, maka matriks yang menyatakan komposisi dari kedua relasi tersebut adalah M R2 R = M R M R2 yang dalam hal ini operator. sama seperti pada perkalian matriks biasa, tetapi dengan mengganti tanda kali dengan dan tanda tambah dengan. 33

Contoh 2. Misalkan bahwa relasi R dan R 2 pada himpunan A dinyatakan oleh matriks R = dan R 2 = maka matriks yang menyatakan R 2 R adalah M R2 R = M R. M R2 = ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) = 34

Relasi Kesetaraan DEFINISI. Relasi R pada himpunan A disebut relasi kesetaraan (equivalence relation) jika ia refleksif, setangkup dan menghantar. 35

Secara intuitif, di dalam relasi kesetaraan, dua benda berhubungan jika keduanya memiliki beberapa sifat yang sama atau memenuhi beberapa persyaratan yang sama. Dua elemen yang dihubungkan dengan relasi kesetaraan dinamakan setara (equivalent). 36

Contoh: A = himpunan mahasiswa, R relasi pada A: (a, b) R jika a satu angkatan dengan b. R refleksif: setiap mahasiswa seangkatan dengan dirinya sendiri R setangkup: jika a seangkatan dengan b, maka b pasti seangkatan dengan a. R menghantar: jika a seangkatan dengan b dan b seangkatan dengan c, maka pastilah a seangkatan dengan c. Dengan demikian, R adalah relasi kesetaraan. 37

Relasi Pengurutan Parsial DEFINISI. Relasi R pada himpunan S dikatakan relasi pengurutan parsial (partial ordering relation) jika ia refleksif, tolaksetangkup, dan menghantar. Himpunan S bersama-sama dengan relasi R disebut himpunan terurut secara parsial (partially ordered set, atau poset), dan dilambangkan dengan (S, R). 38

Contoh: Relasi pada himpunan bilangan bulat adalah relasi pengurutan parsial. Alasan: Relasi refleksif, karena a a untuk setiap bilangan bulat a; Relasi tolak-setangkup, karena jika a b dan b a, maka a = b; Relasi menghantar, karena jika a b dan b c maka a c. 39

Contoh: Relasi habis membagi pada himpunan bilangan bulat adalah relasi pengurutan parsial. Alasan: relasi habis membagi bersifat refleksif, tolak-setangkup, dan menghantar. 4

Secara intuitif, di dalam relasi pengurutan parsial, dua buah benda saling berhubungan jika salah satunya - - lebih kecil (lebih besar) daripada, - atau lebih rendah (lebih tinggi) daripada lainnya menurut sifat atau kriteria tertentu. 4

Istilah pengurutan menyatakan bahwa bendabenda di dalam himpunan tersebut dirutkan berdasarkan sifat atau kriteria tersebut. Ada juga kemungkinan dua buah benda di dalam himpunan tidak berhubungan dalam suatu relasi pengurutan parsial. Dalam hal demikian, kita tidak dapat membandingkan keduanya sehingga tidak dapat diidentifikasi mana yang lebih besar atau lebih kecil. Itulah alasan digunakan istilah pengurutan parsial atau pengurutan tak-lengkap 42

See U Next Week 43