MATEMATIKA DASAR PROGRAM STUDI AGROTEKNOLOGI
|
|
|
- Utami Kurnia
- 9 tahun lalu
- Tontonan:
Transkripsi
1 RELASI MATEMATIKA DASAR PROGRAM STUDI AGROTEKNOLOGI
2 Apa itu Relasi? Relasi ( hubungan ) himpunan A ke B adalah pemasangan anggota-anggota A dengan anggota-anggota B.
3 RELASI R : A B, artinya R relasi dari himpunan A ke himpunan B Relasi biner R antara himpunan A dan B adalah himpunan bagian dari A B (Produk Cartesius/Perkalian Kartesius) Notasi: R (A B). a R b adalah notasi untuk (a, b) R, yang artinya a dihubungkan dengan b oleh R a R b adalah notasi untuk (a, b) R, yang artinya a tidak dihubungkan oleh b oleh relasi R. Relasi pada himpunan A adalah relasi dari himpunan A ke himpunan A, dimana R (A A).
4 Contoh Misalkan A adalah himpunan mahasiswa dan B adalah himpunan usia. A = {Ali, Budi, Candra}, B = {,2,3} AB ={(Ali,),(Ali,2),(Ali,3),(Budi,),(Budi,2),(Budi,3), (Candra,),(Candra,2),(Candra,3)} Misalkan R adalah relasi yang menyatakan hubungan himpunan A dengan usianya. Diketahui Ali berusia tahun, Budi berusia 3 tahun, dan Candra berusia tahun. Maka, R = {(Ali, ), (Budi, 3), (Candra,) } - R (A B), - A adalah daerah asal R, dan B adalah daerah hasil R. - (Ali,) R atau Ali R. - (Ali,2) R atau Ali R 2.
5 Contoh 2. Misalkan P = {2, 3, 4} dan Q = {2, 4, 8, 9, 5}. Jika kita definisikan relasi R dari P ke Q dengan (p, q) R jika p dapat membagi q maka kita peroleh: Contoh 3. R = {(2, 2), (2, 4), (4, 4), (2, 8), (3, 9), (3, 5), (4, 8) } Misalkan R adalah relasi pada A = {2, 3, 4, 8, 9} yang didefinisikan oleh (x, y) R jika x adalah faktor prima dari y. Maka kita peroleh: R = {(2, 2), (2, 4), (2, 8), (3, 3), (3, 9)}
6 PENYAJIAN RELASI Misalkan M = {Ami, Budi, Candra, Dita} dan N = {, 2, 3}. Misalkan pula, Ami berusia tahun, Budi berusia 3 tahun, Candra berusia 2 tahun dan Dita berusia tahun, maka : P = {(Ami, ), (Budi, 3), (Candra, 2), (Dita, )}. PENDAFTARAN (TABULASI), himpunan pasangan terurut dalam P = {(Ami, ), (Budi, 3), (Candra, 2), (Dita, )} 2. BENTUK PENCIRIAN, P = {(x,y) x berusia y, dimana x M dan y N}
7 3. DIAGRAM PANAH 4. DIAGRAM KOORDINAT ATAU GRAFIK RELASI
8 5. TABEL Kolom pertama tabel menyatakan daerah asal, sedangkan kolom kedua menyatakan daerah hasil. Tabel Relasi P dari M N Ami Budi 2 Candra 3 Dita
9 6. PENYAJIAN RELASI DENGAN MATRIKS Misalkan R adalah relasi dari A = {a, a 2,, a m } dan B = {b, b 2,, b n }. Relasi R dapat disajikan dengan matriks M = [m ij ], b b 2 b n M = mn m m n n m m m m m m m m m m a a a yang dalam hal ini R b a R b a m j i j i ij ), (, ), (,
10 Misalkan A = {2,3,4} dan B = {2,4,8,9,5}. Jika kita definisikan relasi R dari A ke B dengan aturan : (x, y) R jika x adalah faktor prima dari y. Maka kita peroleh: R = {(2, 2), (2, 4), (2, 8), (3, 9), (3, 5)} Relasi R pada Contoh dapat dinyatakan dengan matriks Contoh R b a R b a m j i j i ij ), (, ), (,
11 7. PENYAJIAN RELASI DENGAN GRAF BERARAH Jika (a, b) R, maka sebuah busur dibuat dari simpul a ke simpul b. Simpul a disebut simpul asal (initial vertex) dan simpul b disebut simpul tujuan (terminal vertex). Pasangan terurut (a, a) dinyatakan dengan busur dari simpul a ke simpul a sendiri. Busur semacam itu disebut gelang atau kalang (loop).
12 Contoh Misalkan R = {(a, a), (a, b), (b, a), (b, c), (b, d), (c, a), (c, d), (d, b)} adalah relasi pada himpunan {a, b, c, d}. R direpresentasikan dengan graf berarah sbb: a b c d
13 RELASI INVERS Setiap relasi R dari A ke B mempunyai sebuah relasi invers R - dari B ke A yang didefinisikan sebagai : R - = {(b,a) (a,b) R} Misalkan A={, 2, 3} dan B = {a, b} R = {(,a), (,b), (3,a)} R - = {(a,), (b,), (a,3)}
14 Contoh. Misalkan P = {2, 3, 4} dan Q = {2, 4, 8, 9, 5}. Jika kita definisikan relasi R dari P ke Q dan R? (p, q) R jika p dapat membagi q maka kita peroleh : R = {(2, 2), (2, 4), (4, 4), (2, 8), (4, 8), (3, 9), (3, 5) } R = {(2, 2), (4, 2), (4, 4), (8, 2), (8, 4), (9, 3), (5, 3) }
15 Jika M adalah matriks yang merepresentasikan relasi R, M = maka matriks yang merepresentasikan relasi R, misalkan N, diperoleh dengan melakukan transpose terhadap matriks M, N = M T =
16 Latihan Misalkan A = {, 2, 3}, B = {a, b} dan relasi R = {(,a),(2,a),(2,b),(3,a)} merupakan relasi dari A pada B. a. Invers dari relasi R dalam bentuk tabulasi? b. Invers dari relasi R dalam bentuk matriks?
17 SIFAT-SIFAT RELASI. RELASI REFLEKSIF Misalkan R = (A, A, P(x,y)) R adalah relasi refleksif bila : Untuk setiap a A, (a,a) R Misalkan V={, 2, 3, 4} R = {(,), (2,4), (3,3), (4,), (4,4)} (,) (3,3) (4,4) R R relasi refleksif (2,2) R R bukan relasi refleksif
18 Diketahui B = {2,4,5}. Pada B didefinisikan relasi R2 = {(x,y) x kelipatan dari y, x, y B}. Maka R2 = {(2,2), (4,4), (5,5), (4,2)}. Relasi R2 tersebut bersifat refleksif. Diketahui B = {2,4,5}. Pada B didefinisikan relasi R3 = {(x,y) x + y <, x,y A}. Maka R3={(2,2), (2,4), (2,5), (4,2), (4,4), (4,5), (5,2), (5,4)}. Relasi R3 tersebut tidak bersifat refleksif. Karena (5,5) R
19 2. RELASI SIMETRIS (Setangkup) Misalkan R = (A, A, P(x,y)) R adalah relasi simetris bila : (a,b) R (b,a) R Misalkan S={, 2, 3, 4} R = {(,3), (4,2), (2,4), (2,3), (3,)} (2,3) R tetapi (3,2) R R bukan relasi simetris Misalkan R = (N,N,P(x,y)) P(x,y) = x dapat membagi y (2,4) R tetapi (4,2) R R bukan relasi simetris R = R - R = simetris
20 3. RELASI ANTI-SIMETRIS (Tidak Setangkup) Jika (a, b) R, maka (b, a) R, kecuali ketika a = b. Misalkan W={, 2, 3, 4} R = {(,3), (4,2), (4,4), (2,4)} (4,2) R dan (2,4) R R bukan relasi anti-simetris R = {(,3), (4,2), (3,3), (4,4)} Anti simetri, karena (3, 3) R dan 3 = 3 dan, (4, 4) R dan 4 = 4, (, 3) & (4,2) R tetapi (3,) & (2,4) R
21 Hubungan Relasi Simetrik & Antisimetrik Simetris dan tidak antisimetris Tidak Simetris dan antisimetris Tidak Simetris dan tidak antisimetris
22 Contoh Relasi Simetris & Antisimetris Misalkan A = {, 2, 3, 4}, dan relasi R di bawah ini didefinisikan pada himpunan A, maka : Relasi R = {(, ), (, 2), (2, ), (2, 2), (2, 4), (4, 2), (4, 4) } bersifat simetris dan tidak antisimetris Karena (, 2) dan (2, ) R, begitu juga (2, 4) dan (4, 2) R. Relasi R = {(, ), (2, 3), (2, 4), (4, 2) } bersifat tidak simetris dan juga tidak antisimetris Karena (2, 3) R, tetapi (3, 2) R. Relasi R = {(, ), (2, 2), (3, 3) } bersifat antisimetrik tetapi tidak simetris. Karena = dan (, ) R, 2 = 2 dan (2, 2) R, dan 3 = 3 dan (3, 3) R.
23 Contoh Relasi Simetrik & Antisimetrik Relasi R = {(, ), (, 2), (2, 2), (2, 3) } antisimetris Karena (, ) R dan = dan, (2, 2) R dan 2 = 2. Relasi R = {(, ), (2, 2), (2, 3), (3, 2), (4, 2), (4, 4)} tidak simetrik dan tidak antisimetrik. karena (4, 2) R tetapi (2, 4) R. R tidak antisimetrik karena (2, 3) R dan (3, 2) R tetap 2 3.
24 4. RELASI TRANSITIF (Menghantar) Misalkan R = (A, A, P(x,y)) R adalah relasi transitif bila : (a,b) R dan (b,c) R (a,c) R R =(R #, R #,P(x,y) P(x,y) = x lebih kecil dari y a < b dan b < c a < c R R adalah relasi transitif
25 Misalkan A = {, 2, 3, 4}, dan relasi R di bawah ini didefinisikan pada himpunan A, maka (a) R = {(2, ), (3, ), (3, 2), (4, ), (4, 2), (4, 3) } bersifat menghantar. Lihat tabel CONTOH berikut: Pasangan berbentuk (a, b) (b, c) (a, c) (3, 2) (2, ) (3, ) (4, 2) (2, ) (4, ) (4, 3) (3, ) (4, ) (4, 3) (3, 2) (4, 2) (b) R = {(, ), (2, 3), (2, 4), (4, 2) } tidak manghantar karena (2, 4) dan (4, 2) R, tetapi (2, 2) R, begitu juga (4, 2) dan (2, 3) R, tetapi (4, 3) R. (c) Relasi R = {(, ), (2, 2), (3, 3), (4, 4) } jelas menghantar (d) Relasi yang hanya berisi satu elemen seperti R = {(4, 5)} selalu menghantar.
26 HUBUNGAN ANTARA RELASI RELASI EKIVALEN REFLEKSI + SIMETRIS + TRANSITIF RELASI PENGURUTAN SEBAGIAN REFLEKSIF + ANTISIMETRIS + TRANSITIF
27 RELASI EKIVALEN Relasi ekivalen digunakan untuk merelasikan obyekobyek yang memiliki kemiripan dalam suatu hal tertentu. Definisi. Suatu relasi pada himpunan A dikatakan sebagai relasi ekivalen jika relasi tersebut bersifat refleksif, simetris, dan transitif. Dua anggota A yang berelasi oleh suatu relasi ekivalen dikatakan ekivalen.
28 Contoh Diketahui A = {, 2, 3 }. Pada A didefinisikan relasi R = { (,), (,2), (2,2), (2,), (3,3) } JAWAB: Relasi R bersifat refleksif = (,), ( 2,2), & (3,3) Relasi R bersifat simetris = (,2) & (2,) Relasi R bersifat transitif. = (,2) (2,) >> (,) Maka A adalah relasi ekivalen
29 Contoh Diketahui B = { 2, 4, 5 }. Pada B didefinisikan relasi R2 = { (x,y) x kelipatan y, x, y B } JAWAB: maka R2 = { (2,2), (4,4), (5,5), (4,2) }. Bersifat Refleksi = (2,2), (4,4), (5,5) Ӽ Tdk Bersifat Simetris = (4,2) tidak ada (2,4) Ӽ Tdk Bersifat transitif Relasi R2 tersebut tidak bersifat simetris, oleh karena itu relasi tersebut bukan relasi ekivalen.
30 RELASI PENGURUTAN SEBAGIAN Relasi R disebut sebagai sebuah relasi pengurutan sebagian (partial ordering), jika relasi tersebut bersifat refleksif, transitif dan antisimetris.
31 Contoh Diketahui B = { 2, 4, 5 }. Pada B didefinisikan relasi R4 = { (x,y) x kelipatan y, x,y B } JAWAB: R4 = { (2,2), (4,4), (5,5), (4,2) }. Relasi R4 tersebut bersifat refleksif, antisimetris dan transitif. Relasi R bersifat refleksif = (2,2), (4,4), & (5,5) Relasi R bersifat Antisimetris = (4,2) tidak ada (2,4) Relasi R bersifat transitif. = (4,2) (2,2) >> (4,2) Oleh karena itu relasi tersebut merupakan relasi pengurutan sebagian.
32 Contoh Diketahui A = {, 2, 3 }. Pada A didefinisikan relasi R3 = { (,), (,2), (2,2), (2,), (3,3) }. JAWAB Relasi R bersifat refleksif = (,), ( 2,2), & (3,3) Relasi R bersifat simetris = (,2) & (2,) Relasi R bersifat transitif. = (,2) (2,) >> (,) Oleh karena itu relasi tersebut bukan merupakan relasi pengurutan sebagian.
33 KOMPOSISI RELASI Misalkan R adalah relasi dari himpunan A ke himpunan B, dan S adalah relasi dari himpunan B ke himpunan C. Komposisi R dan S, dinotasikan dengan S R, adalah relasi dari A ke C yang didefinisikan oleh S R = {(a, c) a A, c C, dan untuk beberapa b B, (a, b) R dan (b, c) S }
34 Contoh Misalkan relasi dari himpunan {, 2, 3} ke himpunan {2, 4, 6, 8} adalah R = {(, 2), (, 6), (2, 4), (3, 4), (3, 6), (3, 8)} relasi dari himpunan {2, 4, 6, 8} ke himpunan {s, t, u} adalah S = {(2, u), (4, s), (4, t), (6, t), (8, u)} Maka komposisi relasi R dan S adalah S R = {(, u), (, t), (2, s), (2, t), (3, s), (3, t), (3, u) }
35 S R = {(, u), (, t), (2, s), (2, t), (3, s), (3, t), (3, u) } Komposisi relasi R dan S lebih jelas jika diperagakan dengan diagram panah: s t u
36 TUGAS 2
37 TUGAS
38 TUGAS 2 4. Misalkan A = {x,y,z}, B = {a,b,c,d}, C = {,2,3,4,5}. R relasi dari A ke B dan S relasi dari B ke C. Misalkan R = {(x,a),(x,b),(y,b),(y,c),(y,d),(z,d)} dan S = {(a,),(a,3),(b,2),(b,3),(b,5),(d,3),(d,4)} Maka S R?
39 Finish...
MATEMATIKA SISTEM INFORMASI 1
RELASI MATEMATIKA SISTEM INFORMASI Apa itu Relasi? Relasi ( hubungan ) himpunan A ke B adalah pemasangan anggota-anggota A dengan anggota-anggota B. RELASI R : A B, artinya R relasi dari himpunan A ke
PERKALIAN CARTESIAN DAN RELASI
RELASI Anggota sebuah himpunan dapat dihubungkan dengan anggota himpunan lain atau dengan anggota himpunan yang sama. Hubungan tersebut dinamakan relasi. Contoh Misalkan M = {Ami, Budi, Candra, Dita} dan
R = {(Amir, IF251), (Amir, IF323), (Budi, IF221), (Budi, IF251), (Cecep, IF323) }
Pertemuan 9 Relasi Relasi Relasi biner R antara himpunan A dan B adalah himpunan bagian dari A B. Notasi: R (A B). a R b adalah notasi untuk (a, b) R, yang artinya a dihubungankan dengan b oleh R a R b
DEFINISI. Relasi biner R antara himpunan A dan B adalah himpunan bagian dari A B. Notasi: R (A B).
BAB 3 RELASI DEFINISI Relasi biner R antara himpunan A dan B adalah himpunan bagian dari A B. Notasi: R (A B). a R b adalah notasi untuk (a, b) R, yang artinya a dihubungankan dengan b oleh R a R b adalah
MATEMATIKA DISKRIT RELASI
MATEMATIKA DISKRIT RELASI Relasi Relasi biner R antara himpunan A dan B adalah himpunan bagian dari A B. Notasi: R (A B). a R b adalah notasi untuk (a, b) R, yang artinya a dihubungankan dengan b oleh
Relasi. Relasi biner R antara himpunan A dan B adalah himpunan bagian dari A B. Notasi: R (A B).
Relasi Relasi biner R antara himpunan A dan B adalah himpunan bagian dari A B. Notasi: R (A B). a R b adalah notasi untuk (a, b) R, yang artinya a dihubungankan dengan b oleh R a R b adalah notasi untuk
Relasi. Oleh Cipta Wahyudi
Relasi Oleh Cipta Wahyudi Definisi Relasi biner R antara himpunan A dan B adalah himpunan bagian dari A B. Notasi: R (A B). a R b adalah notasi untuk (a, b) R, yang artinya a dihubungankan dengan b oleh
Matriks. Contoh matriks simetri. Matriks zero-one (0/1) adalah matriks yang setiap elemennya hanya bernilai 0 atau 1. Contoh matriks 0/1:
MATRIKS & RELASI Matriks Matriks adalah adalah susunan skalar elemenelemen dalam bentuk baris dan kolom. Matriks A yang berukuran dari m baris dan n kolom (m n) adalah: A = a a M a 2 m a a a 2 22 M m 2
KALKULUS (Relasi) Instruktur : Ferry Wahyu Wibowo, S.Si., M.Cs.
KALKULUS (Relasi) Instruktur : Ferry Wahyu Wibowo, S.Si., M.Cs. Relasi Relasi biner R antara himpunan A dan B adalah himpunan bagian dari A B. Notasi: R (A B). a R b adalah notasi untuk (a, b) R, yang
Relasi Adalah hubungan antara elemen himpunan dengan elemen himpunan yang lain. Cara paling mudah untuk menyatakan hubungan antara elemen 2 himpunan
Relasi dan Fungsi Relasi Adalah hubungan antara elemen himpunan dengan elemen himpunan yang lain. Cara paling mudah untuk menyatakan hubungan antara elemen 2 himpunan adalah dengan himpunan pasangan terurut.
Matematika Komputasi RELASI. Gembong Edhi Setyawan
Matematika Komputasi RELASI Gembong Edhi Setyawan DEFINISI Relasi dari himpunan A ke himpunan B adalah pemasangan anggota-anggota himpunan A dengan anggota-anggota himpunan B Relasi Biner : Hubungan antara
RELASI. Cece Kustiawan, FPMIPA, UPI
RELASI 1. Pasangan Berurutan 2. Fungsi Proposisi dan Kalimat Terbuka 3. Himpunan Jawaban dan Grafik Relasi 4. Jenis-jenis Relasi 5. Domain dan Range suatu Relasi Pasangan Berurutan (cartesian Product)
RELASI DAN FUNGSI. /Nurain Suryadinata, M.Pd
RELASI DAN FUNGSI Nama Mata Kuliah Kode Mata Kuliah/SKS Program Studi Semester Dosen Pengampu : Matematika Diskrit : MAT-365/ 3 sks : Pendidikan Matematika : VI (Enam) : Nego Linuhung, M.Pd /Nurain Suryadinata,
RELASI DAN FUNGSI. Nur Hasanah, M.Cs
RELASI DAN FUNGSI Nur Hasanah, M.Cs Relasi Relasi biner R antara himpunan A dan B adalah himpunan bagian dari A B. Notasi: R (A B). a R b adalah notasi untuk (a, b) R, yang artinya a dihubungankan dengan
Definisi 1. Relasi biner R antara A dan B adalah himpunan bagian dari A x B. A x B = {(a, b) a A dan b B}.
Modul 2 RELASI A. Pendahuluan Definisi 1. Relasi biner R antara A dan B adalah himpunan bagian dari A x B. A x B = {(a, b) a A dan b B}. Apabila (a, b) R, maka a dihubungkan dengan b oleh relasi R, ditulis
Materi 3: Relasi dan Fungsi
Materi 3: Relasi dan Fungsi I Nyoman Kusuma Wardana STMIK STIKOM Bali Definisi Relasi & Fungsi Representasi Relasi Relasi biner Sifat-sifat relasi biner Relasi inversi Mengkombinasikan relasi Komposisi
Mata Kuliah : Matematika Diskrit Program Studi : Teknik Informatika Minggu ke : 2
Relasi Relasi antara himpunan A dan himpunan B didefinisikan sebagai cara pengawanan anggota himpunan A dengan anggota himpunan B. ilustrasi grafis dapat dilihat sebagai berikut: - Relasi Biner Relasi
22 Matematika Diskrit
.. Relasi Ekivalen Definisi : Sebuah relasi pada sebuah himpunan A disebut relasi ekivalen jika dan hanya jika relasi tersebut bersifat refleksif, simetris dan transitif. Dua elemen yang dihubungkan dengan
Matriks. Contoh matriks simetri. Matriks zero-one (0/1) adalah matriks yang setiap elemennya hanya bernilai 0 atau 1. Contoh matriks 0/1:
MATRIKS & RELASI Matriks Matriks adalah adalah susunan skalar elemenelemen dalam bentuk baris dan kolom. Matriks A yang berukuran dari m baris dan n kolom (m n) adalah: A a a a 2 m a a a 2 22 m2 a a a
MATEMATIKA DISKRIT BAB 2 RELASI
BAB 2 RELASI Kalau kita mempunyai himpunan A ={Edi, Tini, Ali, Diah} dan himpunan B = {Jakarta, Bandung, Surabaya}, kemudian misalnya Edi bertempat tinggal di Bandung, Tini di Surabaya, Ali di Jakarta,
BAB II RELASI DAN FUNGSI
9 BAB II RELASI DAN FUNGSI Dalam kehidupan nyata, senantiasa ada hubungan (relasi) antara dua hal atau unsur-unsur dalam suatu kelompok. Misalkan, hubungan antara suatu urusan dengan nomor telepon, antara
9.1 RELATIONS AND THEIR PROPERTIES
CHAPTER 9 RELATION 9. RELATIONS AND THEIR PROPERTIES 2 Relasi Hubungan antar anggota himpunan direpresentasikan dengan menggunakan struktur yang disebut relasi. Untuk mendeskripsikan relasi antar anggota
Kode MK/ Nama MK. Cakupan 8/29/2014. Himpunan, Relasi dan fungsi Kombinatorial. Teori graf. Pohon (Tree) dan pewarnaan graf. Matematika Diskrit
8/29/24 Kode MK/ Nama MK Matematika Diskrit 8/29/24 Cakupan Himpunan, Relasi dan fungsi Kombinatorial Teori graf Pohon (Tree) dan pewarnaan graf 2 8/29/24 8/29/24 Relasi dan Fungsi Tujuan Mahasiswa memahami
Matematika Diskret. Mahmud Imrona Rian Febrian Umbara RELASI. Pemodelan dan Simulasi
Matematika Diskret Mahmud Imrona Rian Febrian Umbara Pemodelan dan Simulasi RELASI 1 9/26/2017 Hasil Kali Kartesian Hasil kali kartesian antara himpunan A dan himpunan B, ditulis AxB adalah semua pasangan
Relasi dan Fungsi. Program Studi Teknik Informatika FTI-ITP
Relasi dan Fungsi Program Studi Teknik Informatika FTI-ITP 2 Matriks Matriks adalah adalah susunan skalar elemen-elemen dalam bentuk baris dan kolom. Matriks A yang berukuran dari m baris dan n kolom (m
BAB I PEMBAHASAN 1. PENGERTIAN RELASI
BAB I PEMBAHASAN 1. PENGERTIAN RELASI Misalkan relasi pada himpunan A dan B adalah dua himpunan sebarang, suatu relasi dari A ke B adalah himpunan bagian dari A x B yaitu pasangan terurut (a,b) dimana
Definisi 1. Relasi biner R antara A dan B adalah himpunan bagian dari A x B. A x B = {(a, b) a A dan b B}.
RELASI A. Pendahuluan Definisi 1. Relasi biner R antara A dan B adalah himpunan bagian dari A x B. A x B = {(a, b) a A dan b B}. Apabila (a, b) R, maka a dihubungkan dengan b oleh relasi R, ditulis a R
Diketahui : A = {1,2,3,4,5,6,7} B = {1,2,3,5,6,12} C = {2,4,8,12,20} (A B) C = {1,3,5,6} {x x ϵ A dan x ϵ B} (B C) = {2,12}
KELAS A =========================================================================== 1. Diketahui A = {1,2,3,4,5,6,7}, B = {1,2,3,5,6,12}, dan C = {2,4,8,12,20}. Tentukan hasil dari operasi himpunan berikut
Oleh : Winda Aprianti
Oleh : Winda Aprianti Relasi Definisi Relasi Relasi antara himpunan A dan himpunan B merupakan himpunan yang berisi pasangan terurut yang mengikuti aturan tertentu (relasi biner). Relasi biner R antara
2. Matrix, Relation and Function. Discrete Mathematics 1
2. Matrix, Relation and Function Discrete Mathematics Discrete Mathematics. Set and Logic 2. Relation 3. Function 4. Induction 5. Boolean Algebra and Number Theory MID 6. Graf dan Tree/Pohon 7. Combinatorial
Adri Priadana ilkomadri.com. Relasi
Adri Priadana ilkomadri.com Relasi Relasi Hubungan antara elemen himpunan dengan elemen himpunan lain dinyatakan dengan struktur yang disebut relasi. Relasi antara himpunan A dan B disebut relasi biner,
Matriks, Relasi, dan Fungsi
Matriks, Relasi, dan Fungsi 2 Matriks Matriks adalah adalah susunan skalar elemen-elemen dalam bentuk baris dan kolom. Matriks A yang berukuran dari m baris dan n kolom (m n) adalah: mn m m n n a a a a
Matriks. Matriks adalah adalah susunan skalar elemen-elemen dalam bentuk baris dan kolom.
Matriks Matriks adalah adalah susunan skalar elemen-elemen dalam bentuk baris dan kolom. Matriks A yang berukuran dari m baris dan n kolom (m n) adalah: Matriks bujursangkar adalah matriks yang berukuran
BAB 2 RELASI. 1. Produk Cartesian
BAB 2 RELASI 1. Produk Cartesian Notasi-notasi yang digunakan dari produk cartesian : (a, b) pasangan terurut dari elemen a dan b; (a 1, a 2,, a n ) n-tuple dari elemen-elemen a 1,, a n ; A x B = {(a,
Relasi & Fungsi. Kuliah Matematika Diskrit 20 April Pusat Pengembangan Pendidikan - Universitas Gadjah Mada
Relasi & Fungsi Kuliah Matematika Diskrit 20 April 2006 Hasil Kali Kartesian Misalkan A dan B adalah himpunan-himpunan. Hasil kali Kartesian A dengan B (simbol: A x B) adalah himpunan semua pasangan berurutan
Relasi. Learning is not child's play, we cannot learn without pain. - Aristotle. Matema(ka Komputasi - Relasi dan Fungsi. Agi Putra Kharisma, ST., MT.
Relasi Learning is not child's play, we cannot learn without pain. - Aristotle 1 Misal: M = {Susan, Sinta, Ami, Mila} G = {Dangdut, Blues, Jazz, Pop} S adalah relasi yang mendeskripsikan mahasiswa yang
KALKULUS (Relasi Ekivalen) Instruktur : Ferry Wahyu Wibowo, S.Si., M.Cs.
KALKULUS (Relasi Ekivalen) Instruktur : Ferry Wahyu Wibowo, S.Si., M.Cs. Relasi Ekivalen Relasi ekivalen digunakan untuk merelasikan obyek-obyek yang memiliki kemiripan dalam suatu hal tertentu. Definisi.
Relasi dan Fungsi Matematika Diskret (TKE132107) Program Studi Teknik Elektro, Unsoed
Relasi dan Fungsi Matematika Diskret (TKE132107) Program Studi Teknik Elektro, Unsoed Iwan Setiawan Tahun Ajaran 2013/2014 Himpunan. Mempunyai elemen atau anggota. Terdapat hubungan.
Matematika Diskret (Relasi dan Fungsi) Instruktur : Ferry Wahyu Wibowo, S.Si., M.Cs.
Matematika Diskret (Relasi dan Fungsi) Instruktur : Ferry Wahyu Wibowo, S.Si., M.Cs. Relasi Relasi biner R antara himpunan A dan B adalah himpunan bagian dari A B. Notasi: R (A B). a R b adalah notasi
Hasil kali kartesian antara himpunan A dan himpunan B, ditulis AxB adalah semua pasangan terurut (a, b) untuk a A dan b B.
III Relasi Banyak hal yang dibicarakan berkaitan dengan relasi. Dalam kehidupan sehari-hari kita mengenal istilah relasi bisnis, relasi pertemanan, relasi antara dosen-mahasiswa yang disebut perwalian
PERTEMUAN Relasi dan Fungsi
4-1 PERTEMUAN 4 Nama Mata Kuliah : Matematika Diskrit (3 SKS) Nama Dosen Pengampu : Dr. Suparman E-mail : [email protected] HP : 081328201198 Judul Pokok Bahasan Tujuan Pembelajaran : 4. Relasi dan
BAB 5 POSET dan LATTICE
BAB 5 POSET dan LATTICE 1. Himpunan Urut Parsial Suatu relasi R pada himpunan S dikatakan urut parsial pada S, jika R bersifat : 1. Refleksif, yaitu a R a, untuk setiap a Є s 2. Anti simetris, yaitu a
BAB I MATRIKS DEFINISI : NOTASI MATRIKS :
BAB I MATRIKS DEFINISI : Matriks adalah himpunan skalar (bilangan riil atau kompleks) yang disusun/dijajarkan berbentuk persegi panjang (menurut baris dan kolom). Skalar-skalar itu disebut elemen matriks.
RELASI SMTS 1101 / 3SKS
RELASI SMTS 0 / 3SKS LOGIKA MATEMATIKA Disusun Oleh : Dra. Noeryanti, M.Si 6 DAFTAR ISI Cover pokok bahasan... 6 Daftar isi... 7 Judul Pokok Bahasan... 8 5.. Pengantar... 8 5.2. Kompetensi... 8 5.3. Uraian
BAB 5 POSET dan LATTICE
BAB 5 POSET dan LATTICE 1. Himpunan Urut Parsial Suatu relasi R pada himpunan S dikatakan urut parsial pada S, jika R bersifat : 1. Refleksif, yaitu a R a, untuk setiap a Є s 2. Anti simetris, yaitu a
Matriks, Relasi, dan Fungsi Teknik Neurofuzzy
Matriks, Relasi, dan Fungsi Teknik Neurofuzzy Dosen Andi Hasad, S.T., M.Kom. Center for Information & Communication Technology Electrical Department, Engineering Faculty, UNISMA, Bekasi Email : [email protected]
Pertemuan 2 Matriks, part 2
Pertemuan 2 Matriks, part 2 Beberapa Jenis Matriks Khusus 1. Matriks Bujur Sangkar Suatu matriks dengan banyak baris = banyak kolom = n disebut matriks bujur sangkar berukuran n (berordo n). Barisan elemen
MATRIKS. Notasi yang digunakan NOTASI MATRIKS
MATRIKS Beberapa pengertian tentang matriks : 1. Matriks adalah himpunan skalar (bilangan riil atau kompleks) yang disusun atau dijajarkan secara empat persegi panjang menurut baris-baris dan kolom-kolom.
Makalah Himpunan dan Logika Matematika Poset dan Lattice
Makalah Himpunan dan Logika Matematika Poset dan Lattice Dosen : Dra. Linda Rosmery Tambunan, M.Si Disusun oleh : Zoelia Gurning (160384202050) Yoga (160384202054) Muhammad Wiriantara (160384202063) Eci
Bab 2 Relasi 9 BAB II RELASI TUJUAN PRAKTIKUM TEORI PENUNJANG
Bab 2 Relasi 9 BAB II RELASI TUJUAN PRAKTIKUM 1. Memahami tentang Relasi dan pengertiannya 2. Memahami tentang produk kartesius 3. Memahami sifat sifat relasi TEORI PENUNJANG Relasi Relasi dari himpunan
Pengantar Matematika Diskrit
Pengantar Matematika Diskrit Referensi : Rinaldi Munir, Matematika Diskrit, Informatika Bandung 2005 1 Matematika Diskrit? Bagian matematika yang mengkaji objek-objek diskrit Benda disebut diskrit jika
RELASI BINER. 1. Hasil Kali Cartes
RELASI BINER 1. Hasil Kali Cartes Definisi: Misalkan A dan B adalah himpunan-himpunan tak kosong. Hasil kali Cartes dari A dan B yang dilambangkan A x B adalah himpunan A x B = {(x, y) x є A, y є B} Contoh
BAB 1 OPERASI PADA HIMPUNAN BAHAN AJAR STRUKTUR ALJABAR, BY FADLI
BAB 1 OPERASI PADA HIMPUNAN Tujuan Instruksional Umum : Setelah mengikuti pokok bahasan ini mahasiswa dapat menggunakan operasi pada himpunan untuk memecahkan masalah dan mengidentifikasi suatu himpunan
BAB II RELASI. 2. Relasi Definisi 2 Relasi antara A dan B disebut relasi biner. Relasi biner R antara A dan B adalah himpunan bagian dari A x B
II RESI 9 1. Produk artesian efinisi 1 Perkalian kartesian dari himpunan dan adalah himpunan yang elemennya semua pasangan berurutan (ordered pairs) yang dibentuk dari komponen pertama dari himpunan dan
BAB II RELASI & FUNGSI
BAB II RELASI & FUNGSI. Pengantar Pada bab telah dipelajari logika proposisi, Himpunan, beserta sifat-sifat yang berlaku yang mana teori tersebut mendasari pembahasan paba bab 2. Pada bab 2 ini dibahas
Relasi dan Fungsi. Panca Mudjirahardjo, ST.MT. Relasi dan fungsi
Relasi dan Fungsi Panca Mudjirahardjo, ST.MT. Relasi dan fungsi Definisi Menyatakan relasi Sifat-sifat relasi biner Kobinasi relasi Koposisi relasi Relasi n-ary Definsi Definisi: Relasi biner R antara
MATEMATIKA DASAR (Himpunan Terurut Parsial (Poset))
MATEMATIKA DASAR (Himpunan Terurut Parsial (Poset)) Antonius Cahya Prihandoko University of Jember Indonesia Jember, 2015 Antonius Cahya Prihandoko (UNEJ) MDAS - Poset Jember, 2015 1 / 26 Outline 1 Himpunan
Bagian 2 Matriks dan Determinan
Bagian Matriks dan Determinan Materi mengenai fungsi, limit, dan kontinuitas akan kita pelajari dalam Bagian Fungsi dan Limit. Pada bagian Fungsi akan mempelajari tentang jenis-jenis fungsi dalam matematika
Himpunan. Modul 1 PENDAHULUAN
Modul 1 Himpunan Dra. Kusrini, M.Pd. PENDAHULUAN D alam Modul 1 ini ada 3 kegiatan belajar, yaitu Kegiatan Belajar 1, Kegiatan Belajar 2, dan Kegiatan Belajar 3. Dalam Kegiatan Belajar 1, Anda akan mempelajari
BAB II KERANGKA TEORITIS. komposisi biner atau lebih dan bersifat tertutup. A = {x / x bilangan asli} dengan operasi +
5 BAB II KERANGKA TEORITIS 2.1 Struktur Aljabar Struktur aljabar adalah salah satu mata kuliah dalam jurusan matematika yang mempelajari tentang himpunan (sets), proposisi, kuantor, relasi, fungsi, bilangan,
Operasi Pada Matriks a. Penjumlahan pada Matriks ( berlaku untuk matriks matriks yang berukuran sama ). Jika A = a ij. maka matriks A = ( a ij)
MATRIKS a a a... a n a a a... an A a a a... a n............... am am am... a mn Matriks A dengan m baris dan n kolom (A m n). Notasi Matriks : a, dimana a adalah elemen pada baris ke i kolom ke j Kesamaan
Aljabar Linier Lanjut. Kuliah 1
Aljabar Linier Lanjut Kuliah 1 Materi Kuliah (Review) Multiset Matriks Polinomial Relasi Ekivalensi Kardinal Aritmatika 23/8/2014 Yanita, FMIPA Matematika Unand 2 Multiset Definisi Misalkan S himpunan
RELASI PERTEMUAN 2. Dosen : Ir. Hasanuddin Sirait, MT
RELASI PERTEMUAN 2 www.hsirait.wordpress.com Dosen : Ir. Hasanuddin Sirait, MT Hubungan antara elemen himpunan dengan elemen himpunan lain dinyatakan dengan relasi. Misalkan variabel x dan y adalah bilangan
KALKULUS (Relasi Ekivalen) Instruktur : Ferry Wahyu Wibowo, S.Si., M.Cs.
KALKULUS (Relasi Ekivalen) Instruktur : Ferry Wahyu Wibowo, S.Si., M.Cs. Relasi Ekivalen Relasi ekivalen digunakan untuk merelasikan obyek-obyek yang memiliki kemiripan dalam suatu hal tertentu. Definisi.
Tujuan Instruksional Umum Mahasiswa memahami pengertian relasi, relasi ekuivalen, hasil ganda suatu
BAB IV RELASI DAN FUNGSI Tujuan Instruksional Umum Mahasiswa memahami pengertian relasi, relasi ekuivalen, hasil ganda suatu relasi, relasi invers, relasi identitas, pengertian fungsi, bayangan invers
Relasi dan Fungsi. Bab. Di unduh dari : Bukupaket.com. Relasi Fungsi Daerah asal (domain) Daerah kawan (kodomain) Daerah hasil (range)
Bab Relasi dan Fungsi A. KOMPETENSI DASAR DAN PENGALAMAN BELAJAR Kompetensi Dasar Setelah mengikuti pembelajaran ini siswa mampu: 1. Memiliki motivasi internal, kemampuan bekerjasama, konsisten, sikap
Aljabar Boole. Meliputi : Boole. Boole. 1. Definisi Aljabar Boole 2. Prinsip Dualitas dalam Aljabar
Aljabar Boole Meliputi : 1. Definisi Aljabar Boole 2. Prinsip Dualitas dalam Aljabar Boole 3. Teorema Dasar Aljabar Boole 4. Orde dalam sebuah Aljabar Boole Definisi Aljabar Boole Misalkan B adalah himpunan
ALJABAR ABSTRAK ( TEORI GRUP DAN TEORI RING ) Dr. Adi Setiawan, M. Sc
ALJABAR ABSTRAK ( TEORI GRUP DAN TEORI RING ) Dr. Adi Setiawan, M. Sc PROGRAM STUDI MATEMATIKA FAKULTAS SAINS DAN MATEMATIKA UNIVERSITAS KRISTEN SATYA WACANA SALATIGA 2011 0 KATA PENGANTAR Aljabar abstrak
Relasi dan Fungsi. Ira Prasetyaningrum
Relasi dan Fungsi Ira Prasetyaningrum Relasi Terdapat dua himpunan X dan Y, Cartesian product XxY adalah himpunan dari semua pasangan terurut (x,y) dimana x X dan y Y XxY = {(x, y) x X dan y Y} Contoh
Vektor. Vektor. 1. Pengertian Vektor
Universitas Muhammadiyah Sukabumi Artikel Aljabar Vektor dan Matriks Oleh : Zie_Zie Vektor Vektor 1. Pengertian Vektor a. Definisi Vektor adalah suatu besaran yang mempunyai nilai (besar) dan arah. Contohnya
2.4 Relasi dan Fungsi
2.4 Relasi dan Fungsi Relasi dan fungsi adalah pokok dari matematika. Relasi menggambarkan hubungan sederhana antara dua himpunan. Sedangkan fungsi akan diterangkan pada bahasan berikutnya, sebagai suatu
OPERASI BINER. Yus Mochamad Cholily Program Studi Pendidikan Matematika Universitas Muhammadiyah Malang
OPERASI BINER Yus Mochamad Cholily Program Studi Pendidikan Matematika Universitas Muhammadiyah Malang email:[email protected] March 4, 2013 1 Daftar Isi 1 Tujuan 3 2 Relasi 3 3 Fungsi 4 4 Operasi Biner
Relasi dan Fungsi. Bab. Relasi Fungsi Daerah asal (domain) Daerah kawan (kodomain) Daerah hasil (range) A. KOMPETENSI DASAR DAN PENGALAMAN BELAJAR
Bab Relasi dan Fungsi A. KOMPETENSI DASAR DAN PENGALAMAN BELAJAR Kompetensi Dasar Setelah mengikuti pembelajaran ini siswa mampu: 1. menghayati pola hidup disiplin, kritis, bertanggungjawab, konsisten
Diktat Kuliah. Oleh:
Diktat Kuliah TEORI GRUP Oleh: Dr. Adi Setiawan UNIVERSITAS KRISTEN SATYA WACANA SALATIGA 2015 Kata Pengantar Aljabar abstrak atau struktur aljabar merupakan suatu mata kuliah yang menjadi kurikulum nasional
Diberikan sebarang relasi R dari himpunan A ke B. Invers dari R yang dinotasikan dengan R adalah relasi dari B ke A sedemikian sehingga
Departent of Matheatics FMIPA UNS Lecture 3: Relation C A. Universal, Epty, and Equality Relations Diberikan sebarang hipunan A. Maka A A dan erupakan subset dari A A dan berturut-turut disebut relasi
55 LEMBAR VALIDASI MODUL BERBASIS PROBING PROMPTING UNTUK MATERI RELASI PADA MATA KULIAH MATEMATIKA DISKRIT PRODI PENDIDIKAN MATEMATIKA A. Pengantar Lembar validasi ini dibuat untuk memperoleh data yang
C. y = 2x - 10 D. y = 2x + 10
1. Diantara himpunan berikut yang merupakan himpunan kosong adalah... A. { bilangan cacah antara 19 dan 20 } B. { bilangan genap yang habis dibagi bilangan ganjil } C. { bilangan kelipatan 3 yang bukan
RELASI FUNGSI. (Kajian tentang karakteristik, operasi, representasi fungsi)
Outline RELASI DAN FUNGSI (Kajian tentang karakteristik, operasi, representasi fungsi) Drs., M.App.Sc PS. Pendidikan Matematika FKIP PS. Sistem Informasi University of Jember Indonesia Jember, 2009 Outline
03-Pemecahan Persamaan Linier (2)
-Pemecahan Persamaan Linier () Dosen: Anny Yuniarti, M.Comp.Sc Gasal - Anny Agenda Bagian : Matriks Invers Bagian : Eliminasi = Faktorisasi: A = LU Bagian : Transpos dan Permutasi Anny Bagian MATRIKS INVERS
Produk Cartesius Relasi Relasi Khusus RELASI
Produk Cartesius Relasi Relasi Khusus RELASI Jika A dan B masing-masing menyatkan himpunan yang tidak kosong, maka produk Cartesius himpunan A dan B adalah himpunan semua pasangan terutut (x,y) dengan
METODE MATRIKS (MATRIKS) Mekanika Rekayasa IV. Norma Puspita, ST. MT. a 11 a 12 a 13 a 1n a 21 a 22 a 23 a 2n
METODE MATRIKS (MATRIKS) Mekanika Rekayasa IV Norma Puspita, ST MT Matriks Matriks adlah susunan bilangan (elemen) yang disusun menurut baris dan kolom sehingga berbentuk persegi panjang Matriks dinotasikan
BAB 2 TINJAUAN PUSTAKA
BAB 2 TINJAUAN PUSTAKA Pada bagian ini akan dijelaskan beberapa konsep dasar yang berkaitan dengan permasalahan, seperti definisi dan teorema yang dijadikan landasan dalam penelitian ini. 2.1 Graf Graf
fungsi Dan Grafik fungsi
fungsi Dan Grafik fungsi Suatu fungsi adalah pemadanan dua himpunan tidak kosong dengan pasangan terurut (x, y) dimana tidak terdapat elemen kedua yang berbeda. Fungsi (pemetaan) himpunan A ke himpunan
BAB III HIMPUNAN. 2) Mahasiswa dapat menyebutkan relasi antara dua himpunan. 3) Mahasiswa dapat menentukan hasil operasi dari dua himpunan
BAB III HIMPUNAN Tujuan Instruksional Umum Mahasiswa memahami pengertian himpunan, relasi antara himpunan, operasi himpunan, aljabar himpunan, pergandaan himpunan, serta himpunan kuasa. Tujuan Instruksional
BAB II LANDASAN TEORI
BAB II LANDASAN TEORI.. Definisi Graf Secara matematis, graf G didefinisikan sebagai pasangan himpunan (V,E) ditulis dengan notasi G = (V, E), yang dalam hal ini: V = himpunan tidak-kosong dari simpul-simpul
Bagian 1 Sistem Bilangan
Bagian 1 Sistem Bilangan Dalam bagian 1 Sistem Bilangan kita akan mempelajari berbagai jenis bilangan, pemakaian tanda persamaan dan pertidaksamaan, menggambarkan himpunan penyelesaian pada selang bilangan,
Himpunan (set) Himpunan (set) adalah kumpulan objekobjek yang berbeda. Objek di dalam himpunan disebut elemen, unsur, atau anggota.
HIMPUNAN Himpunan (set) Himpunan (set) adalah kumpulan objekobjek yang berbeda. Objek di dalam himpunan disebut elemen, unsur, atau anggota. Cara Penyajian Himpunan Enumerasi Simbol-simbol Baku Notasi
LEMBAR AKTIVITAS SISWA MATRIKS
Nama Siswa Kelas : : LEMBAR AKTIVITAS SISWA MATRIKS Notasi dan Ordo Matriks Lengkapilah isian berikut! Suatu matriks biasanya dinotasikan dengan huruf kapital, misalnya: A. PENGERTIAN MATRIKS 1) Tabel
2. MATRIKS. 1. Pengertian Matriks. 2. Operasi-operasi pada Matriks
2. MATRIKS 1. Pengertian Matriks Matriks adalah himpunan skalar yang disusun secara empat persegi panjang menurut baris dan kolom. Matriks diberi nama huruf besar, sedangkan elemen-elemennya dengan huruf
= himpunan tidak-kosong dan berhingga dari simpul-simpul (vertices) = himpunan sisi (edges) yang menghubungkan sepasang simpul
Struktur Data Graf 1. PENDAHULUAN Dalam bidang matematika dan ilmu komputer, teori graf mempelajari tentang graf yaitu struktur yang menggambarkan relasi antar objek dari sebuah koleksi objek. Definisi
Definisi Aljabar Boolean
Aljabar Boolean 1 Definisi Aljabar Boolean Aljabar boolean merupakan aljabar yang berhubungan dengan variabel-variabel biner dan operasi-operasi logik. Variabel-variabel diperlihatkan dengan huruf-huruf
1.1 Pengertian Himpunan. 1.2 Macam-macam Himpunan. 1.3 Relasi Antar Himpunan. 1.4 Diagram Himpunan. 1.5 Operasi pada Himpunan. 1.
I. HIMPUNAN 1.1 Pengertian Himpunan 1.2 Macam-macam Himpunan 1.3 Relasi Antar Himpunan 1.4 Diagram Himpunan 1.5 Operasi pada Himpunan 1.6 Aljabar Himpunan Pengertian Himpunan 1. Apa yang dimaksud dengan
LEMBAR AKTIVITAS SISWA MATRIKS
Nama Siswa Kelas : : LEMBAR AKTIVITAS SISWA MATRIKS Notasi dan Ordo Matriks Lengkapilah isian berikut! Suatu matriks biasanya dinotasikan dengan huruf kapital, misalnya: A. PENGERTIAN MATRIKS 1) Tabel
1 P E N D A H U L U A N
1 P E N D A H U L U A N 1.1.Himpunan Himpunan (set) adalah kumpulan objek-objek yang terdefenisi dengan baik (well defined). Artinya bahwa untuk sebarang objek x yang diberikan, maka kita selalu akan dapat
BAB MATRIKS. Tujuan Pembelajaran. Pengantar
BAB II MATRIKS Tujuan Pembelajaran Setelah mempelajari materi bab ini, Anda diharapkan dapat: 1. menggunakan sifat-sifat dan operasi matriks untuk menunjukkan bahwa suatu matriks persegi merupakan invers
MATRIKS. a A mxn = 21 a 22 a 2n a m1 a m2 a mn a ij disebut elemen dari A yang terletak pada baris i dan kolom j.
MATRIKS A. Definisi Matriks 1. Definisi Matriks dan Ordo Matriks Matriks adalah susunan bilangan (elemen) yang disusun menurut baris dan kolom dan dibatasi dengan tanda kurung. Jika suatu matriks tersusun
LEMBAR AKTIVITAS SISWA MATRIKS
Nama Siswa Kelas : : LEMBAR AKTIVITAS SISWA MATRIKS Notasi dan Ordo Matriks Lengkapilah isian berikut! Suatu matriks biasanya dinotasikan dengan huruf kapital, misalnya: A. PENGERTIAN MATRIKS 1) Tabel
MATEMATIKA. Sesi MATRIKS A. DEFINISI MATRIKS B. UKURAN ATAU ORDO SUATU MATRIKS
MATEMATIKA KELAS XII - KURIKULUM GABUNGAN 09 Sesi N MATRIKS A. DEFINISI MATRIKS Dalam matematika, matriks adalah kumpulan bilangan, simbol, atau ekspresi, berbentuk persegi panjang yang disusun menurut
(Departemen Matematika FMIPA-IPB) Matriks Bogor, / 66
MATRIKS Departemen Matematika FMIPA-IPB Bogor, 2012 (Departemen Matematika FMIPA-IPB) Matriks Bogor, 2012 1 / 66 Topik Bahasan 1 Matriks 2 Operasi Matriks 3 Determinan matriks 4 Matriks Invers 5 Operasi
Matriks Jawab:
Matriks A. Operasi Matriks 1) Penjumlahan Matriks Jika A dan B adalah sembarang Matriks yang berordo sama, maka penjumlahan Matriks A dengan Matriks B adalah Matriks yang diperoleh dengan cara menjumlahkan
