Makalah Himpunan dan Logika Matematika Poset dan Lattice

Ukuran: px
Mulai penontonan dengan halaman:

Download "Makalah Himpunan dan Logika Matematika Poset dan Lattice"

Transkripsi

1 Makalah Himpunan dan Logika Matematika Poset dan Lattice Dosen : Dra. Linda Rosmery Tambunan, M.Si Disusun oleh : Zoelia Gurning ( ) Yoga ( ) Muhammad Wiriantara ( ) Eci Agustina Limbong ( ) Maria Magdalena Nainggolan ( ) PRODI PENDIDIKAN MATEMATIKA FAKULTAS KEGURUAN DAN ILMU PENDIDIKAN UNIVERSITAS MARITIM RAJA ALI HAJI 2017

2 KATA PENGANTAR Puji dan syukur kita ucapkan kepada Tuhan Yang Maha Esa atas berkat dan rahmat-nya kami dapat menyelesaikan makalah tentang POSET dan LATTICE ini dalam rangka memenuhi nilai tugas untuk mata kuliah Himpunan dan Logika Matematika. Penulis juga berterima kasih kepada ibu Dra. Linda Rosmery Tambunan,M.Si selaku dosen pembimbing. Penulis juga tidak lupa berterima kasih kepada rekan-rekan yang berpartisipasi dalam pembuatan makalah ini. Penulis menyadari bahwa makalah ini masih jauh dari sempurna. Meskipun penulis telah berusaha melakukan yang terbaik dalam penulisan makalah ini. Untuk itu penulis mengharapkan kritik dan saran yang bersifat membangun, demi kesempurnaan makalah ini. Semoga dengan adanya makalah ini, akan menambah informasi dan wawasan bagi para pembaca tentang poset dan lattice. Tanjung Pinang, 20 April 2017 Penyusun

3 Daftar isi JUDUL KATA PENGANTAR... BAB I PENDAHULUAN Latar Belakang Rumusan Masalah Tujuan Penulisan... BAB II PEMBAHASAN Pengertian Poset (Himpunan Pengurutan Parsial) Diagram poset Supremum dan Infimum Lattice... BAB III PENUTUP Kesimpulan Saran... DAFTAR PUSTAKA...

4 1.1 Latar Belakang 1.2 Rumusan Masalah 1. Apa pengertian poset? 2. Bagaimana diagram poset? 3. Apa itu supremum dan infimum? 4. Apa pengertian lattice? 1.3 Tujuan Penulisan BAB I PENDAHULUAN 1. Untuk mengetahui pengertian poset 2. Untuk mengetahui bagaimana diagram poset 3. Untuk mengetahui pengertian supremum dan infimum 4. Untuk mengetahui pengertian latice BAB II PEMBAHASAN

5 2.1 Pengertian Poset (Himpunan Pengurutan Parsial) Suatu relasi biner dinamakan sebagai suatu relasi pengurutan tak lengkap atau relasi pengurutan parsial ( partial ordering relation ) jika ia bersifat refleksif, anti simetris, dan transitif. 1. Refleksif, yaitu a R a, untuk setiap a Є s 2. Anti simetris, yaitu a R b dan b R a maka a = b 3. Transitif, yaitu jika a R b dan b R c maka a R c. Himpunan S berikut dengan urut parsial pada S dikatakan himpunan urut parsial atau POSET (Partially Ordered Set) Secara intuitif, didalam suatu relasi pengurutan parsial, dua benda saling berhubungan. Jika salah satunya lebih kecil ( lebih besar ) daripada atau lebih pendek ( lebih tinggi ) daripada lainnya menurut sifat atau kriteria tertentu. Memang istilah pengurutan (ordering) berarti bahwa benda-benda di dalam himpunan itu diurutkan menurut sifat atau kriteria tersebut. Akan tetapi, juga ada kemungkinan bahwa dua benda di dalam himpunan itu tidak berhubungan dalam relasi pengurutan parsial. Dalam hal demikian, kita tak dapat membandingkan keduanya dan tidak mengidentifikasi mana yang lebih kecil atau lebih rendah. Itulah alasannya digunakan istilah pengurutan parsial ( partial ordering ). Contoh : 1. Misal δ adalah sebarang kelas dari himpunan. Relasi antara himpunan mengandung atau C merupakan suatu urutan parsial pada S karena : a. ACA, untuk setiap A Є S b. Jika ACB dan BCA maka A = B c. Jika ACB dan BCC maka ACC 2. Misal N himpunan bilangan-bilangan positif. Sebut a membagi b ditulis a b, jika terdapat sebuah bilangan bulat c sedemikian sehingga ac = b. Contoh : 2 4, 3 12, 7 21, dsb. Relasi dapat dibagi tersebut adalah suatu urut parsial pada N 2.2 Diagram Poset Misal S adalah suatu himpunan urut parsial. Sebut a dalam S adalah suatu yang mendahului dari b atau b sesudah a ditulis a b jika a < b tetapi tidak ada elemen dari S yang terletak diantara a dan b, jadi tidk ada X dalam S sedemikian sehingga a < X < b.

6 Misal S adalah suatu POSET yang hingga. Maka urut pada S adalah diketahui secara lengkap jika kita mengetahui semua pasangan a, b, S sedemikiansehingga a b jadi relasi pada S. Sehingga x<y jika dan hanya jika terdapat elemen x = a0, a1, am = y sedemikian sehingga ai- 1 ai untuk I = 1,, m. Menurut diagram dari suatu POSET S yang hingga kita artikan suatu graph berarah dimana vertex adalah merupakan elemen dari S dan kan terdapat busur yang menghubungkan a dan b jika a b dalam S (dalam menggambarkan suatu arah panah dari a ke b, kita kadang-kadang menempatkan b lebih tinggi daripada a dalam diagram dan garis dari a ke b mengarah ke atas). Pada diagram S, terdapat suatu path berarah dari suatu vertex x ke vertex y dan hanya jika x<y. Juga terdapat sebarang cycle dalam diagram S karena urut relasinya adalah anti simetris. Contoh : 1. Misal A = {1, 2, 3, 4, 6, 8, 9, 12, 18, 24} dalam urut dengan relasi x membagi y. Penyelesaian : Diagram diberikan Misal B = {a, b, c, d, e}. Gambar diagramnya yang didefinisikan suatu urut parsial pada B dengan cara alfabetis. Jadi d b, d a, e a, dst. Penyelesaian : a b c d e 3. Diagram suatu himpunan urut linier yang hingga yaitu suatu chain hingga yang terdiri dari sebuah path yang sederhana. Seperti contoh pada gambar berikut yang menunjukkan diagram dari suatu chain dengan 5 elemen.

7 Y U Z Y X 2.3 Supremum dan Infimum Misal A adalah sub himpunan dari Poset S, sebuah elemen M pada S dikatakan batas atas dari A jika M didahului setiap elemen dari A jadi jika setiap x Є A, diperoleh x M Jika suatu batas atas dari A mendahului setiap batas atas yang lain dari A maka dikatakan SUPREMIUM dari A dinotasikan dengan Sup (A) atau sup (a1,, an) Dengan cara yang sama, sebuah elemen m dalam Poset S dikatakan batas bawah dari suatu sub himpunan A dari S jika m mendahului setiap elemen dari A jadi jika y dalam A, maka m y jika batas bawah dari A didahului setiap batas bawah dari A maka dikatakan INFIMUM dari A dan dinotasikan dengan Misal a,b Є Poset (A, ) Inf (A) atau inf (a1,, an) 1) c Є A, c = batas atas dari a & b bila dan hanya bila a c & b c. c Є A, c = batas atas terkecil/b.a.t (Least Upper Bound (LUB)) dari a & b bila dan hanya bila : a) c batas atas dari a & b, b) Jika d batas atas dari a & b yang lain, maka c d. 2) c Є A, c = batas bawah dari a & b bila dan hanya bila c a & c b. c Є A, c = batas bawah terbesar (Greatest Lower Bound (GLB)) dari a & b bila dan hanya bila : a). c batas bawah dari a & b, b). Jika d batas bawah dari a & b yang lain, maka d c Dalam suatu Poset, LUB tidak selalu ada. Tetapi jika LUB ada, maka LUB tersebut tunggal. Hal yang sama, juga berlaku pada GLB.

8 Contoh Soal: Misal A = { a, b, c, d, e, f, g, h, i }. Relasi Partial Order didefinisikan pada himpunan A atau (A, ) dalam diagram Hasse di bawah ini. Carilah elemen maksimal, minimal, terbesar dan terkecil! 2.4 Lattice Sebuah lattice adalah sebuah poset (L, ) yang setiap himpunan bagiannya {a,b} memiliki dua elemen yaitu a least upper bound dan a greatest lower bound. Kita notasikan least upper bound (LUB) ({a,b}) dengan a b dan kita sebut join antara a dan b, sedangkan greatest lower bound (GLB) ({a,b}) dengan a b dan disebut meet antara a dan b. struktur lattice sering terlihat dalam perhitungan dan aplikasi matematika. Teorema 1 Jika (L1, ) dan (L2, ) adalah lattice, kemudian (L, ) adalah lattice, dimana L= L1 L2 dan partial order pada L adalah product partial order. Bukti: Kita notasikan join dan meet dalam L1 dengan 1 dan 1, secara berurutan, join dan meet pada L2 dengan 2 dan 2 secara berurutan, sehingga : (a1,b1) (a2,b2) = (a1 1 a2, b1 b2)

9 (a1,b1) (a2,b2) = (a1 1 a2, b1 b2) dengan demikian L adalah lattices. Contoh 1 Pada himpunan S yang beranggotakan a dan b a b = a b a b = a b Pengertian dari a b dan a b a a b; b a b, maka (a b adalah sebuah batas atas ( an upper band ) untuk a dan b). kita dapat mengatakan demikian karena dari pertidaksamaan di atas terlihat bahwa a b selalu lebih besar atau sama dengan a atau b. sehingga dapat diambil kesimpulan a b adalah yang paling besar (upper bound). Jika a c dan b c, kemudian a b c maka a b adalah sebuah batas atas terendah (a least upper bound) untuk a dan b. a b a dan a b b maka a b adalah sebuah batas bawah untuk a dan b ( a lower bound) untuk a dan b. Jika c a dan c b, kemudian c a b, maka a b adalah batas bawah terbesar (a greatest lower bound) untuk a dan b. Isomorphic Lattices Jika f: L1 L2 adalah isomorphisme dari poset (L1, 1) ke poset (L2, 2), kemudian pada teorema 4 (4.2) menerangkan bahwa L1 adalah lattice jika dan hanya jika L2 adalah lattice. Faktanya, jika a dan b adalah elemen-elemen pada L1, kemudian f(a b) = f(a) f(b) dan f(a b)= f(a) f(b). jika kedua lattice adalah isomorphic sebagai poset, kita dapat katakan keduanya adalah isomorphic lattices. Teorema 2 misal L adalah Lattices, kemudian untuk setiaap a dan b dalam L a b = b, jika dan hanya jika a b. bukti :

10 anggap bahwa a b = b karena a a b= b, kita dapatkan a b. sebaliknya jika a b kemudian karena b b, b adalah an upper bound untuk a dan b, oleh karena itu dengan definisi least upper bound kita peroleh a b b kareana a b adalah an upper bound, b a b, sehingga a b= b. a b=a, jika dan hanya jika a b bukti : anggap bahwa a b = a karena a = a b a, kita dapatkan a a. b adalah an upper bound untuk a dan b, oleh karena itu dengan definisi greatest lower bound kita peroleh a b a kareana a b adalah a lower bound, a b a, a b= a. a b=c jika dan hanya jika a b= b. Teorema 3 Idempotan properties. a a = a a a = a Commutative properties. a b = b a a b = b a Associative properties a (b c) = (a b) c a (b c) = (a b) c Absorption Porperties a (a b) = a a (a b) = a Teorema 4

11 jika a b maka a c b c a c b c a c dan b c jika dan hanya jika a b c c a dan c b jika dan hanya jika c a b. jika a b dan c d maka a c b d a c b d Teorema 5 a a = I dan a a = 0 berarti a adalah komplemen a, dimana I adalah elemen terbesar (greatest elemen) dan 0 adalah elemen terkecil(least elemen). Dengan demikian : 0 = I dan I = 0 Teorema 6 a = a misal a dan a adalah komplemen untuk 0 L, maka a a = I a a = I a a = 0 a a = 0 dengan aturan distribusi didapat juga a = a 0 = a (a a ) = (a a ) (a a ) = I (a a ) = a a a = a 0 = a (a a )

12 = (a a ) = I (a a ) = a a (a a ) sehingga dapat dikatakan bahwa a = a. Contoh 2 Jika n adalah sebuah bilangan bulat positif, dan Dn adalah himpunan dari semua bilangan bulat positif pembagi n, Dn adalah sebuah Lattice berdasar dengan hubungan keterbagian. Dn = {1, 2, 3, 4, 5, 10, 20} Diagram Hasse untuk Dn

13 BAB III PENUTUP 3.1 Kesimpulan Suatu relasi biner dinamakan sebagai suatu relasi pengurutan tak lengkap atau relasi pengurutan parsial ( partial ordering relation ) jika ia bersifat reflexive, antisymmetric, dan transitive. Suatu relasi biner dinamakan sebagai suatu relasi pengurutan tak lengkap atau relasi pengurutan parsial ( partial ordering relation ) jika ia bersifat refleksif, anti simetris, dan transitif. 4. Refleksif, yaitu a R a, untuk setiap a Є s 5. Anti simetris, yaitu a R b dan b R a maka a = b 6. Transitif, yaitu jika a R b dan b R c maka a R c. Himpunan S berikut dengan urut parsial pada S dikatakan himpunan urut parsial atau POSET (Partially Ordered Set) Sebuah lattice adalah sebuah poset (L, ) yang setiap himpunan bagiannya {a,b} memiliki dua elemen yaitu a least upper bound dan a greatest lower bound. Kita notasikan least upper bound (LUB) ({a,b}) dengan a b dan kita sebut join antara a dan b, sedangkan greatest lower bound (GLB) ({a,b}) dengan a b dan disebut meet antara a dan b. struktur lattice sering terlihat dalam perhitungan dan aplikasi matematika. 3.2 Saran Setelah kita mempelajari apa pengertian poset dan apa pengertian lattice. Maka kita dapat mengetahui soal-soal tentang poset dan lattice.para pendidik hendaknya terus berupaya untuk membuat sebuah materi yang yang baik agar peserta didik dapat mengerti serta memahami apa-apa sajayang menarik dalam pembahasan poset dan lattice. Demikian halnya dengan peserta didik harus meningkatkan cara belajarnya dan aktif ketika pembelajaran berlangsung demi meningkatkan proses pembelajaran yang lebih baik lagi

14 Daftar Pustaka

BAB 5 POSET dan LATTICE

BAB 5 POSET dan LATTICE BAB 5 POSET dan LATTICE 1. Himpunan Urut Parsial Suatu relasi R pada himpunan S dikatakan urut parsial pada S, jika R bersifat : 1. Refleksif, yaitu a R a, untuk setiap a Є s 2. Anti simetris, yaitu a

Lebih terperinci

BAB 5 POSET dan LATTICE

BAB 5 POSET dan LATTICE BAB 5 POSET dan LATTICE 1. Himpunan Urut Parsial Suatu relasi R pada himpunan S dikatakan urut parsial pada S, jika R bersifat : 1. Refleksif, yaitu a R a, untuk setiap a Є s 2. Anti simetris, yaitu a

Lebih terperinci

Matematika Diskrit 1

Matematika Diskrit 1 dan Lattice Dr. Ahmad Sabri Universitas Gunadarma Himpunan terurut Misalkan R adalah sebuah relasi pada himpunan S dan memenuhi ketiga sifat berikut ini: Refleksif (untuk sebarang a S, berlaku (a, a) R);

Lebih terperinci

RELASI BINER. 1. Hasil Kali Cartes

RELASI BINER. 1. Hasil Kali Cartes RELASI BINER 1. Hasil Kali Cartes Definisi: Misalkan A dan B adalah himpunan-himpunan tak kosong. Hasil kali Cartes dari A dan B yang dilambangkan A x B adalah himpunan A x B = {(x, y) x є A, y є B} Contoh

Lebih terperinci

Relasi. Oleh Cipta Wahyudi

Relasi. Oleh Cipta Wahyudi Relasi Oleh Cipta Wahyudi Definisi Relasi biner R antara himpunan A dan B adalah himpunan bagian dari A B. Notasi: R (A B). a R b adalah notasi untuk (a, b) R, yang artinya a dihubungankan dengan b oleh

Lebih terperinci

22 Matematika Diskrit

22 Matematika Diskrit .. Relasi Ekivalen Definisi : Sebuah relasi pada sebuah himpunan A disebut relasi ekivalen jika dan hanya jika relasi tersebut bersifat refleksif, simetris dan transitif. Dua elemen yang dihubungkan dengan

Lebih terperinci

RELASI KLASIK 5.1 PENDAHULUAN

RELASI KLASIK 5.1 PENDAHULUAN 5 RELASI KLASIK 5.1 PENDAHULUAN Relasi Klasik (crisp relation) menggambarkan ada tidaknya interaksi atau koneksi antara elemen-elemen dari 2 atau lebih himpunan dalam urutan tertentu. Contoh: Dua orang

Lebih terperinci

Hasil kali kartesian antara himpunan A dan himpunan B, ditulis AxB adalah semua pasangan terurut (a, b) untuk a A dan b B.

Hasil kali kartesian antara himpunan A dan himpunan B, ditulis AxB adalah semua pasangan terurut (a, b) untuk a A dan b B. III Relasi Banyak hal yang dibicarakan berkaitan dengan relasi. Dalam kehidupan sehari-hari kita mengenal istilah relasi bisnis, relasi pertemanan, relasi antara dosen-mahasiswa yang disebut perwalian

Lebih terperinci

Kode MK/ Nama MK. Cakupan 8/29/2014. Himpunan, Relasi dan fungsi Kombinatorial. Teori graf. Pohon (Tree) dan pewarnaan graf. Matematika Diskrit

Kode MK/ Nama MK. Cakupan 8/29/2014. Himpunan, Relasi dan fungsi Kombinatorial. Teori graf. Pohon (Tree) dan pewarnaan graf. Matematika Diskrit 8/29/24 Kode MK/ Nama MK Matematika Diskrit 8/29/24 Cakupan Himpunan, Relasi dan fungsi Kombinatorial Teori graf Pohon (Tree) dan pewarnaan graf 2 8/29/24 8/29/24 Relasi dan Fungsi Tujuan Mahasiswa memahami

Lebih terperinci

Matematika Diskret. Mahmud Imrona Rian Febrian Umbara RELASI. Pemodelan dan Simulasi

Matematika Diskret. Mahmud Imrona Rian Febrian Umbara RELASI. Pemodelan dan Simulasi Matematika Diskret Mahmud Imrona Rian Febrian Umbara Pemodelan dan Simulasi RELASI 1 9/26/2017 Hasil Kali Kartesian Hasil kali kartesian antara himpunan A dan himpunan B, ditulis AxB adalah semua pasangan

Lebih terperinci

BAB II RELASI DAN FUNGSI

BAB II RELASI DAN FUNGSI 9 BAB II RELASI DAN FUNGSI Dalam kehidupan nyata, senantiasa ada hubungan (relasi) antara dua hal atau unsur-unsur dalam suatu kelompok. Misalkan, hubungan antara suatu urusan dengan nomor telepon, antara

Lebih terperinci

KALKULUS (Relasi) Instruktur : Ferry Wahyu Wibowo, S.Si., M.Cs.

KALKULUS (Relasi) Instruktur : Ferry Wahyu Wibowo, S.Si., M.Cs. KALKULUS (Relasi) Instruktur : Ferry Wahyu Wibowo, S.Si., M.Cs. Relasi Relasi biner R antara himpunan A dan B adalah himpunan bagian dari A B. Notasi: R (A B). a R b adalah notasi untuk (a, b) R, yang

Lebih terperinci

MATEMATIKA DASAR (Himpunan Terurut Parsial (Poset))

MATEMATIKA DASAR (Himpunan Terurut Parsial (Poset)) MATEMATIKA DASAR (Himpunan Terurut Parsial (Poset)) Antonius Cahya Prihandoko University of Jember Indonesia Jember, 2015 Antonius Cahya Prihandoko (UNEJ) MDAS - Poset Jember, 2015 1 / 26 Outline 1 Himpunan

Lebih terperinci

Matriks. Contoh matriks simetri. Matriks zero-one (0/1) adalah matriks yang setiap elemennya hanya bernilai 0 atau 1. Contoh matriks 0/1:

Matriks. Contoh matriks simetri. Matriks zero-one (0/1) adalah matriks yang setiap elemennya hanya bernilai 0 atau 1. Contoh matriks 0/1: MATRIKS & RELASI Matriks Matriks adalah adalah susunan skalar elemenelemen dalam bentuk baris dan kolom. Matriks A yang berukuran dari m baris dan n kolom (m n) adalah: A = a a M a 2 m a a a 2 22 M m 2

Lebih terperinci

KALKULUS (Relasi Ekivalen) Instruktur : Ferry Wahyu Wibowo, S.Si., M.Cs.

KALKULUS (Relasi Ekivalen) Instruktur : Ferry Wahyu Wibowo, S.Si., M.Cs. KALKULUS (Relasi Ekivalen) Instruktur : Ferry Wahyu Wibowo, S.Si., M.Cs. Relasi Ekivalen Relasi ekivalen digunakan untuk merelasikan obyek-obyek yang memiliki kemiripan dalam suatu hal tertentu. Definisi.

Lebih terperinci

MATEMATIKA DASAR PROGRAM STUDI AGROTEKNOLOGI

MATEMATIKA DASAR PROGRAM STUDI AGROTEKNOLOGI RELASI MATEMATIKA DASAR PROGRAM STUDI AGROTEKNOLOGI Apa itu Relasi? Relasi ( hubungan ) himpunan A ke B adalah pemasangan anggota-anggota A dengan anggota-anggota B. RELASI R : A B, artinya R relasi dari

Lebih terperinci

Oleh : Winda Aprianti

Oleh : Winda Aprianti Oleh : Winda Aprianti Relasi Definisi Relasi Relasi antara himpunan A dan himpunan B merupakan himpunan yang berisi pasangan terurut yang mengikuti aturan tertentu (relasi biner). Relasi biner R antara

Lebih terperinci

Relasi dan Fungsi. Program Studi Teknik Informatika FTI-ITP

Relasi dan Fungsi. Program Studi Teknik Informatika FTI-ITP Relasi dan Fungsi Program Studi Teknik Informatika FTI-ITP 2 Matriks Matriks adalah adalah susunan skalar elemen-elemen dalam bentuk baris dan kolom. Matriks A yang berukuran dari m baris dan n kolom (m

Lebih terperinci

PRA A*-ALJABAR SEBAGAI SEBUAH POSET

PRA A*-ALJABAR SEBAGAI SEBUAH POSET Jurnal Matematika UNAND Vol. 1 No. 2 Hal. 32 38 ISSN : 2303 2910 c Jurusan Matematika FMIPA UNAND PRA A*-ALJABAR SEBAGAI SEBUAH POSET WELLY RAHMAYANTI Program Studi Matematika, Fakultas Matematika dan

Lebih terperinci

Matematika Komputasi RELASI. Gembong Edhi Setyawan

Matematika Komputasi RELASI. Gembong Edhi Setyawan Matematika Komputasi RELASI Gembong Edhi Setyawan DEFINISI Relasi dari himpunan A ke himpunan B adalah pemasangan anggota-anggota himpunan A dengan anggota-anggota himpunan B Relasi Biner : Hubungan antara

Lebih terperinci

MATEMATIKA SISTEM INFORMASI 1

MATEMATIKA SISTEM INFORMASI 1 RELASI MATEMATIKA SISTEM INFORMASI Apa itu Relasi? Relasi ( hubungan ) himpunan A ke B adalah pemasangan anggota-anggota A dengan anggota-anggota B. RELASI R : A B, artinya R relasi dari himpunan A ke

Lebih terperinci

5. Sifat Kelengkapan Bilangan Real

5. Sifat Kelengkapan Bilangan Real 5. Sifat Kelengkapan Bilangan Real Sifat aljabar dan sifat urutan bilangan real telah dibahas sebelumnya. Selanjutnya, akan dijelaskan sifat kelengkapan bilangan real. Bilangan rasional ℚ juga memenuhi

Lebih terperinci

SATUAN ACARA PERKULIAHAN STMIK PARNA RAYA MANADO TAHUN 2010

SATUAN ACARA PERKULIAHAN STMIK PARNA RAYA MANADO TAHUN 2010 TAHUN DOSEN : IR. HASANUDDIN SIRAIT PERTEMUAN : 1-2 JUMLAH JAM : 200 MENIT - Himpunan - Himpunan - Diagram Venn - Operasi antar Himpunan - Aljabar Himpunan - Himpunan Hingga - Argumen & Diagram Venn -

Lebih terperinci

MATEMATIKA DISKRIT RELASI

MATEMATIKA DISKRIT RELASI MATEMATIKA DISKRIT RELASI Relasi Relasi biner R antara himpunan A dan B adalah himpunan bagian dari A B. Notasi: R (A B). a R b adalah notasi untuk (a, b) R, yang artinya a dihubungankan dengan b oleh

Lebih terperinci

DEFINISI. Relasi biner R antara himpunan A dan B adalah himpunan bagian dari A B. Notasi: R (A B).

DEFINISI. Relasi biner R antara himpunan A dan B adalah himpunan bagian dari A B. Notasi: R (A B). BAB 3 RELASI DEFINISI Relasi biner R antara himpunan A dan B adalah himpunan bagian dari A B. Notasi: R (A B). a R b adalah notasi untuk (a, b) R, yang artinya a dihubungankan dengan b oleh R a R b adalah

Lebih terperinci

KALKULUS (Relasi Ekivalen) Instruktur : Ferry Wahyu Wibowo, S.Si., M.Cs.

KALKULUS (Relasi Ekivalen) Instruktur : Ferry Wahyu Wibowo, S.Si., M.Cs. KALKULUS (Relasi Ekivalen) Instruktur : Ferry Wahyu Wibowo, S.Si., M.Cs. Relasi Ekivalen Relasi ekivalen digunakan untuk merelasikan obyek-obyek yang memiliki kemiripan dalam suatu hal tertentu. Definisi.

Lebih terperinci

Himpunan. Modul 1 PENDAHULUAN

Himpunan. Modul 1 PENDAHULUAN Modul 1 Himpunan Dra. Kusrini, M.Pd. PENDAHULUAN D alam Modul 1 ini ada 3 kegiatan belajar, yaitu Kegiatan Belajar 1, Kegiatan Belajar 2, dan Kegiatan Belajar 3. Dalam Kegiatan Belajar 1, Anda akan mempelajari

Lebih terperinci

BAHAN AJAR ANALISIS REAL 1. DOSEN PENGAMPU RINA AGUSTINA, S. Pd., M. Pd. NIDN

BAHAN AJAR ANALISIS REAL 1. DOSEN PENGAMPU RINA AGUSTINA, S. Pd., M. Pd. NIDN BAHAN AJAR ANALISIS REAL 1 DOSEN PENGAMPU RINA AGUSTINA, S. Pd., M. Pd. NIDN. 0212088701 PENDIDIKAN MATEMATIKA FAKULTAS KEGURUAN DAN ILMU PENDIDIKAN UNIVERSITAS MUHAMMADIYAH METRO 2015 1 KATA PENGANTAR

Lebih terperinci

Relasi. Relasi biner R antara himpunan A dan B adalah himpunan bagian dari A B. Notasi: R (A B).

Relasi. Relasi biner R antara himpunan A dan B adalah himpunan bagian dari A B. Notasi: R (A B). Relasi Relasi biner R antara himpunan A dan B adalah himpunan bagian dari A B. Notasi: R (A B). a R b adalah notasi untuk (a, b) R, yang artinya a dihubungankan dengan b oleh R a R b adalah notasi untuk

Lebih terperinci

Aljabar Boole. Meliputi : Boole. Boole. 1. Definisi Aljabar Boole 2. Prinsip Dualitas dalam Aljabar

Aljabar Boole. Meliputi : Boole. Boole. 1. Definisi Aljabar Boole 2. Prinsip Dualitas dalam Aljabar Aljabar Boole Meliputi : 1. Definisi Aljabar Boole 2. Prinsip Dualitas dalam Aljabar Boole 3. Teorema Dasar Aljabar Boole 4. Orde dalam sebuah Aljabar Boole Definisi Aljabar Boole Misalkan B adalah himpunan

Lebih terperinci

Pengantar Matematika Diskrit

Pengantar Matematika Diskrit Pengantar Matematika Diskrit Referensi : Rinaldi Munir, Matematika Diskrit, Informatika Bandung 2005 1 Matematika Diskrit? Bagian matematika yang mengkaji objek-objek diskrit Benda disebut diskrit jika

Lebih terperinci

RELASI EKUIVALENSI PADA SUBGRUP FUZZY

RELASI EKUIVALENSI PADA SUBGRUP FUZZY RELASI EKUIVALENSI PADA SUBGRUP FUZZY R. Sulaiman Jurusan Matematika FMIPA Universitas Negeri Surabaya Jln. Ketintang, Surabaya rsulaiman2010@gmail.com ABSTRACT Without any equivalence relation on set

Lebih terperinci

R = {(Amir, IF251), (Amir, IF323), (Budi, IF221), (Budi, IF251), (Cecep, IF323) }

R = {(Amir, IF251), (Amir, IF323), (Budi, IF221), (Budi, IF251), (Cecep, IF323) } Pertemuan 9 Relasi Relasi Relasi biner R antara himpunan A dan B adalah himpunan bagian dari A B. Notasi: R (A B). a R b adalah notasi untuk (a, b) R, yang artinya a dihubungankan dengan b oleh R a R b

Lebih terperinci

BAB I PEMBAHASAN 1. PENGERTIAN RELASI

BAB I PEMBAHASAN 1. PENGERTIAN RELASI BAB I PEMBAHASAN 1. PENGERTIAN RELASI Misalkan relasi pada himpunan A dan B adalah dua himpunan sebarang, suatu relasi dari A ke B adalah himpunan bagian dari A x B yaitu pasangan terurut (a,b) dimana

Lebih terperinci

Aljabar Linier Lanjut. Kuliah 1

Aljabar Linier Lanjut. Kuliah 1 Aljabar Linier Lanjut Kuliah 1 Materi Kuliah (Review) Multiset Matriks Polinomial Relasi Ekivalensi Kardinal Aritmatika 23/8/2014 Yanita, FMIPA Matematika Unand 2 Multiset Definisi Misalkan S himpunan

Lebih terperinci

Matriks. Contoh matriks simetri. Matriks zero-one (0/1) adalah matriks yang setiap elemennya hanya bernilai 0 atau 1. Contoh matriks 0/1:

Matriks. Contoh matriks simetri. Matriks zero-one (0/1) adalah matriks yang setiap elemennya hanya bernilai 0 atau 1. Contoh matriks 0/1: MATRIKS & RELASI Matriks Matriks adalah adalah susunan skalar elemenelemen dalam bentuk baris dan kolom. Matriks A yang berukuran dari m baris dan n kolom (m n) adalah: A a a a 2 m a a a 2 22 m2 a a a

Lebih terperinci

STRUKTUR SEMILATTICE PADA PRA A -ALJABAR

STRUKTUR SEMILATTICE PADA PRA A -ALJABAR Jurnal Matematika UNAND Vol. 3 No. 1 Hal. 63 67 ISSN : 2303 2910 c Jurusan Matematika FMIPA UNAND STRUKTUR SEMILATTICE PADA PRA A -ALJABAR ROZA ARDILLA Program Studi Matematika, Fakultas Matematika dan

Lebih terperinci

PERKALIAN CARTESIAN DAN RELASI

PERKALIAN CARTESIAN DAN RELASI RELASI Anggota sebuah himpunan dapat dihubungkan dengan anggota himpunan lain atau dengan anggota himpunan yang sama. Hubungan tersebut dinamakan relasi. Contoh Misalkan M = {Ami, Budi, Candra, Dita} dan

Lebih terperinci

Matriks, Relasi, dan Fungsi

Matriks, Relasi, dan Fungsi Matriks, Relasi, dan Fungsi 2 Matriks Matriks adalah adalah susunan skalar elemen-elemen dalam bentuk baris dan kolom. Matriks A yang berukuran dari m baris dan n kolom (m n) adalah: mn m m n n a a a a

Lebih terperinci

Keterbagian Pada Bilangan Bulat

Keterbagian Pada Bilangan Bulat Latest Update: March 8, 2017 Pengantar Teori Bilangan (Bagian 1): Keterbagian Pada Bilangan Bulat Muhamad Zaki Riyanto Program Studi Matematika Fakultas Sains dan Teknologi UIN Sunan Kalijaga Yogyakarta

Lebih terperinci

BAB 1 OPERASI PADA HIMPUNAN BAHAN AJAR STRUKTUR ALJABAR, BY FADLI

BAB 1 OPERASI PADA HIMPUNAN BAHAN AJAR STRUKTUR ALJABAR, BY FADLI BAB 1 OPERASI PADA HIMPUNAN Tujuan Instruksional Umum : Setelah mengikuti pokok bahasan ini mahasiswa dapat menggunakan operasi pada himpunan untuk memecahkan masalah dan mengidentifikasi suatu himpunan

Lebih terperinci

II. SISTEM BILANGAN RIIL. Handout Analisis Riil I (PAM 351)

II. SISTEM BILANGAN RIIL. Handout Analisis Riil I (PAM 351) II. SISTEM BILANGAN RIIL Handout Analisis Riil I (PAM 351) Sifat Aljabar (Aksioma Lapangan) dari Bilangan Riil Bagian ini akan membicarakan struktur aljabar bilangan riil dengan terlebih dahulu memberikan

Lebih terperinci

SUATU KAJIAN TENTANG PENYARINGAN TERURUT DARI SEMIGRUP IMPLIKATIF

SUATU KAJIAN TENTANG PENYARINGAN TERURUT DARI SEMIGRUP IMPLIKATIF Jurnal Matematika UNAND Vol. 3 No. 1 Hal. 1 8 ISSN : 2303 2910 c Jurusan Matematika FMIPA UNAND SUATU KAJIAN TENTANG PENYARINGAN TERURUT DARI SEMIGRUP IMPLIKATIF SEPTI MARLENA Program Studi Magister Matematika,

Lebih terperinci

MENENTUKAN DEVIASI DARI HIMPUNAN TERURUT PARSIAL

MENENTUKAN DEVIASI DARI HIMPUNAN TERURUT PARSIAL MENENTUKAN DEVIASI DARI HIMPUNAN TERURUT PARSIAL Amir Kamal Amir Kelompok Keahlian Aljabar Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Hasanuddin (UNHAS) Jl. Perintis Kemerdekaan KM.0 Makassar

Lebih terperinci

Bundel Soal. Elektroteknik. Semester 3 Tahun 2013/2014. tambahan Matematika Diskrit (ET 2012)

Bundel Soal. Elektroteknik. Semester 3 Tahun 2013/2014. tambahan Matematika Diskrit (ET 2012) Tim Penyusun Bundel Soal Elektroteknik Semester 3 Kementerian Kesejahteraan Anggota Kementerian Kewirausahaan Bundel Soal Elektroteknik Semester 3 Tahun 2013/2014 tambahan Matematika Diskrit (ET 2012)

Lebih terperinci

ANALISIS REAL. (Semester I Tahun ) Hendra Gunawan. August 18, Dosen FMIPA - ITB

ANALISIS REAL. (Semester I Tahun ) Hendra Gunawan. August 18, Dosen FMIPA - ITB (Semester I Tahun 2011-2012) Dosen FMIPA - ITB E-mail: hgunawan@math.itb.ac.id. August 18, 2011 Kita telah mencatat sebelumnya bahwa supremum dan infimum suatu himpunan tidak harus merupakan anggota himpunan

Lebih terperinci

II. TINJAUAN PUSTAKA. Pada bab ini akan diuraikan teori grup dan teori ring yang akan digunakan dalam

II. TINJAUAN PUSTAKA. Pada bab ini akan diuraikan teori grup dan teori ring yang akan digunakan dalam II. TINJAUAN PUSTAKA Pada bab ini akan diuraikan teori grup dan teori ring yang akan digunakan dalam penelitian. Pada bagian pertama akan dibahas mengenai teori grup. 2.1 Grup Dalam struktur aljabar, himpunan

Lebih terperinci

Matematika Diskret (Relasi dan Fungsi) Instruktur : Ferry Wahyu Wibowo, S.Si., M.Cs.

Matematika Diskret (Relasi dan Fungsi) Instruktur : Ferry Wahyu Wibowo, S.Si., M.Cs. Matematika Diskret (Relasi dan Fungsi) Instruktur : Ferry Wahyu Wibowo, S.Si., M.Cs. Relasi Relasi biner R antara himpunan A dan B adalah himpunan bagian dari A B. Notasi: R (A B). a R b adalah notasi

Lebih terperinci

KARAKTERISASI SUATU IDEAL DARI SEMIGRUP IMPLIKATIF

KARAKTERISASI SUATU IDEAL DARI SEMIGRUP IMPLIKATIF Jurnal Matematika UNAND Vol. 2 No. 4 Hal. 10 17 ISSN : 2303 2910 c Jurusan Matematika FMIPA UNAND KARAKTERISASI SUATU IDEAL DARI SEMIGRUP IMPLIKATIF ELVA SUSANTI Program Studi Magister Matematika, Fakultas

Lebih terperinci

II. TINJAUAN PUSTAKA. Pada bagian ini diterangkan materi yang berkaitan dengan penelitian, diantaranya konsep

II. TINJAUAN PUSTAKA. Pada bagian ini diterangkan materi yang berkaitan dengan penelitian, diantaranya konsep II. TINJAUAN PUSTAKA Pada bagian ini diterangkan materi yang berkaitan dengan penelitian, diantaranya konsep bilangan bulat, bilangan prima,modular, dan kekongruenan. 2.1 Bilangan Bulat Sifat Pembagian

Lebih terperinci

Mata Kuliah : Matematika Diskrit Program Studi : Teknik Informatika Minggu ke : 2

Mata Kuliah : Matematika Diskrit Program Studi : Teknik Informatika Minggu ke : 2 Relasi Relasi antara himpunan A dan himpunan B didefinisikan sebagai cara pengawanan anggota himpunan A dengan anggota himpunan B. ilustrasi grafis dapat dilihat sebagai berikut: - Relasi Biner Relasi

Lebih terperinci

9.1 RELATIONS AND THEIR PROPERTIES

9.1 RELATIONS AND THEIR PROPERTIES CHAPTER 9 RELATION 9. RELATIONS AND THEIR PROPERTIES 2 Relasi Hubungan antar anggota himpunan direpresentasikan dengan menggunakan struktur yang disebut relasi. Untuk mendeskripsikan relasi antar anggota

Lebih terperinci

Lembar Kerja Mahasiswa 1: Teori Bilangan

Lembar Kerja Mahasiswa 1: Teori Bilangan Lembar Kerja Mahasiswa 1: Teori Bilangan N a m a : NIM/Kelas : Waktu Kuliah : Kompetensi Dasar dan Indikator: 1. Memahami pengertian faktor dan kelipatan bilangan bulat. a) Menuliskan denisi faktor suatu

Lebih terperinci

MATEMATIKA DISKRIT BAB 2 RELASI

MATEMATIKA DISKRIT BAB 2 RELASI BAB 2 RELASI Kalau kita mempunyai himpunan A ={Edi, Tini, Ali, Diah} dan himpunan B = {Jakarta, Bandung, Surabaya}, kemudian misalnya Edi bertempat tinggal di Bandung, Tini di Surabaya, Ali di Jakarta,

Lebih terperinci

SISTEM BILANGAN REAL

SISTEM BILANGAN REAL DAFTAR ISI 1 SISTEM BILANGAN REAL 1 1.1 Sifat Aljabar Bilangan Real..................... 1 1.2 Sifat Urutan Bilangan Real..................... 6 1.3 Nilai Mutlak dan Jarak Pada Bilangan Real............

Lebih terperinci

BAHAN AJAR TEORI BILANGAN. DOSEN PENGAMPU RINA AGUSTINA, S. Pd., M. Pd. NIDN

BAHAN AJAR TEORI BILANGAN. DOSEN PENGAMPU RINA AGUSTINA, S. Pd., M. Pd. NIDN BAHAN AJAR TEORI BILANGAN DOSEN PENGAMPU RINA AGUSTINA, S. Pd., M. Pd. NIDN. 0212088701 PENDIDIKAN MATEMATIKA FAKULTAS KEGURUAN DAN ILMU PENDIDIKAN UNIVERSITAS MUHAMMADIYAH METRO 2015 KATA PENGANTAR ب

Lebih terperinci

PEWARNAAN GRAF: POLINOMIAL KROMATIK DAN TEOREMA INVERSI MOBIUS

PEWARNAAN GRAF: POLINOMIAL KROMATIK DAN TEOREMA INVERSI MOBIUS PEWARNAAN GRAF: POLINOMIAL KROMATIK DAN TEOREMA INVERSI MOBIUS Nurul Miftahul Jannah, Dr. Agung Lukito, M.S. Jurusan Matematika, Fakultas Matematika dan Ilmu Pengetahuan Alam, Universitas Negeri Surabaya

Lebih terperinci

STRUKTUR ALJABAR 1. Kristiana Wijaya

STRUKTUR ALJABAR 1. Kristiana Wijaya STRUKTUR ALJABAR 1 Kristiana Wijaya i ii Daftar Isi Judul Daftar Isi i iii 1 Himpunan 1 2 Partisi dan Relasi Ekuivalen 3 3 Grup 6 4 Koset Dan Teorema Lagrange, Homomorphisma Grup Dan Grup Faktor 11 Indeks

Lebih terperinci

KONSTRUKSI SISTEM BILANGAN

KONSTRUKSI SISTEM BILANGAN KONSTRUKSI SISTEM BILANGAN KEVIN MANDIRA LIMANTA 1. Konstruksi Aljabar 1.1. Bilangan Natural. Himpunan bilangan paling primitif adalah bilangan natural N, yang dicacah dengan aturan sebagai berikut: (1)

Lebih terperinci

Relasi & Fungsi. Kuliah Matematika Diskrit 20 April Pusat Pengembangan Pendidikan - Universitas Gadjah Mada

Relasi & Fungsi. Kuliah Matematika Diskrit 20 April Pusat Pengembangan Pendidikan - Universitas Gadjah Mada Relasi & Fungsi Kuliah Matematika Diskrit 20 April 2006 Hasil Kali Kartesian Misalkan A dan B adalah himpunan-himpunan. Hasil kali Kartesian A dengan B (simbol: A x B) adalah himpunan semua pasangan berurutan

Lebih terperinci

RELASI DAN FUNGSI. Nur Hasanah, M.Cs

RELASI DAN FUNGSI. Nur Hasanah, M.Cs RELASI DAN FUNGSI Nur Hasanah, M.Cs Relasi Relasi biner R antara himpunan A dan B adalah himpunan bagian dari A B. Notasi: R (A B). a R b adalah notasi untuk (a, b) R, yang artinya a dihubungankan dengan

Lebih terperinci

Materi Ke_2 (dua) Himpunan

Materi Ke_2 (dua) Himpunan Materi Ke_2 (dua) Himpunan 12-10-2013 OPERASI HIMPUNAN Gabungan (union), notasi U : Gabungan dari himpunan A dan himpunan B merupakan suatu himpunan yang anggota-anggotanya adalah anggota himpunan A atau

Lebih terperinci

Himpunan dan Fungsi. Modul 1 PENDAHULUAN

Himpunan dan Fungsi. Modul 1 PENDAHULUAN Modul 1 Himpunan dan Fungsi Dr Rizky Rosjanuardi P PENDAHULUAN ada modul ini dibahas konsep himpunan dan fungsi Pada Kegiatan Belajar 1 dibahas konsep-konsep dasar dan sifat dari himpunan, sedangkan pada

Lebih terperinci

URUTAN PARSIAL PADA SEMIGRUP DAN PADA KELAS- KELAS DARI SUATU SEMIGRUP

URUTAN PARSIAL PADA SEMIGRUP DAN PADA KELAS- KELAS DARI SUATU SEMIGRUP URUTAN PARSIAL PADA SEMIGRUP DAN PADA KELAS- KELAS DARI SUATU SEMIGRUP Irtrianta Pasangka 1, Drs. Y.D Sumanto, M.Si 2, Drs. Harjito, M.Kom 3 Jurusan Matematika FSM Universitas Diponegoro Jl. Prof. H. Soedarto,

Lebih terperinci

Definisi 1. Relasi biner R antara A dan B adalah himpunan bagian dari A x B. A x B = {(a, b) a A dan b B}.

Definisi 1. Relasi biner R antara A dan B adalah himpunan bagian dari A x B. A x B = {(a, b) a A dan b B}. RELASI A. Pendahuluan Definisi 1. Relasi biner R antara A dan B adalah himpunan bagian dari A x B. A x B = {(a, b) a A dan b B}. Apabila (a, b) R, maka a dihubungkan dengan b oleh relasi R, ditulis a R

Lebih terperinci

KATA PENGANTAR. Rantauprapat,11 April Penyusun

KATA PENGANTAR. Rantauprapat,11 April Penyusun KATA PENGANTAR Puji syukur kami panjatkan atas kehadirat Tuhan Yang Maha Esa, karena atas berkat rahmat-nya lah dan hidayah-nya jualah penulisan makalah ini dapat selesai dengan tepat waktu. Makalah ini

Lebih terperinci

BEBERAPA SIFAT DIMENSI KRULL DARI MODUL. Amir Kamal Amir 1)

BEBERAPA SIFAT DIMENSI KRULL DARI MODUL. Amir Kamal Amir 1) Paradigma, Vol. 14 No. 2 Agustus 2010 hlm. 105 112 BEBERAPA SIFAT DIMENSI KRULL DARI MODUL Amir Kamal Amir 1) 1) Jurusan Matematika FMIPA Universitas Hasanuddin, Makassar 90245 E-mail: amirkamalamir@yahoo.com

Lebih terperinci

Aljabar Linier. Kuliah 2 30/8/2014 2

Aljabar Linier. Kuliah 2 30/8/2014 2 30/8/2014 1 Aljabar Linier Kuliah 2 30/8/2014 2 Bab 1 Subpokok Bahasan Ruang Vektor Subruang Subruang Lattice Jumlah Langsung Himpunan Pembangun dan Bebas Linier Dimensi Ruang Vektor Basis Terurut dan

Lebih terperinci

G a a = e = a a. b. Berdasarkan Contoh 1.2 bagian b diperoleh himpunan semua bilangan bulat Z. merupakan grup terhadap penjumlahan bilangan.

G a a = e = a a. b. Berdasarkan Contoh 1.2 bagian b diperoleh himpunan semua bilangan bulat Z. merupakan grup terhadap penjumlahan bilangan. 2. Grup Definisi 1.3 Suatu grup < G, > adalah himpunan tak-kosong G bersama-sama dengan operasi biner pada G sehingga memenuhi aksioma- aksioma berikut: a. operasi biner bersifat asosiatif, yaitu a, b,

Lebih terperinci

DIMENSI METRIK PADA BEBERAPA KELAS GRAF

DIMENSI METRIK PADA BEBERAPA KELAS GRAF DIMENSI METRIK PADA BEBERAPA KELAS GRAF oleh DWI RIA KARTIKA M0112025 SKRIPSI ditulis dan diajukan untuk memenuhi sebagian persyaratan memperoleh gelar Sarjana Sains Matematika FAKULTAS MATEMATIKA DAN

Lebih terperinci

Struktur Aljabar I. Pada bab ini disajikan tentang pengertian. grup, sifat-sifat dasar grup, ordo grup dan elemennya, dan konsep

Struktur Aljabar I. Pada bab ini disajikan tentang pengertian. grup, sifat-sifat dasar grup, ordo grup dan elemennya, dan konsep GRUP Bab ini merupakan awal dari bagian pertama materi utama perkuliahan Struktur Aljabar I. Pada bab ini disajikan tentang pengertian grup, sifat-sifat dasar grup, ordo grup dan elemennya, dan konsep

Lebih terperinci

INF-104 Matematika Diskrit

INF-104 Matematika Diskrit Jurusan Informatika FMIPA Unsyiah February 13, 2012 Apakah Matematika Diskrit Itu? Matematika diskrit: cabang matematika yang mengkaji objek-objek diskrit. Apa yang dimaksud dengan kata diskrit (discrete)?

Lebih terperinci

TUGAS ANALISIS REAL OLEH KELOMPOK V KELAS VI A MATEMATIKA FAKULTAS PENDIDIKAN MATEMATIKA DAN ILMU PENGETAHUAN ALAM IKIP MATARAM

TUGAS ANALISIS REAL OLEH KELOMPOK V KELAS VI A MATEMATIKA FAKULTAS PENDIDIKAN MATEMATIKA DAN ILMU PENGETAHUAN ALAM IKIP MATARAM Supremum dan Infimum TUGAS ANALISIS REAL OLEH KELOMPOK V KELAS VI A MATEMATIKA ANGGOTA : 1. ADESUHANDI (06 221 008) 2. ABDUSSALIM (06 221 006) 3. WAN SYAFRADINATA (07 221 299) 4. WIWIN WIDIARTI (07 221

Lebih terperinci

2.4 Relasi dan Fungsi

2.4 Relasi dan Fungsi 2.4 Relasi dan Fungsi Relasi dan fungsi adalah pokok dari matematika. Relasi menggambarkan hubungan sederhana antara dua himpunan. Sedangkan fungsi akan diterangkan pada bahasan berikutnya, sebagai suatu

Lebih terperinci

UNIVERSITAS GADJAH MADA. Bahan Ajar:

UNIVERSITAS GADJAH MADA. Bahan Ajar: UNIVERSITAS GADJAH MADA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM JURUSAN MATEMATIKA PROGRAM STUDI S1 MATEMATIKA Sekip Utara, Gedung Jurusan Matematika, Yogyakarta - 55281 Bahan Ajar: BAB POKOK BAHASAN

Lebih terperinci

PATH KUAT TERKUAT DAN JARAK KUAT TERKUAT DALAM GRAF FUZZY. Lusia Dini Ekawati 1, Lucia Ratnasari 2. Jl. Prof. H. Soedarto, S. H, Tembalang, Semarang

PATH KUAT TERKUAT DAN JARAK KUAT TERKUAT DALAM GRAF FUZZY. Lusia Dini Ekawati 1, Lucia Ratnasari 2. Jl. Prof. H. Soedarto, S. H, Tembalang, Semarang PATH KUAT TERKUAT DAN JARAK KUAT TERKUAT DALAM GRAF FUZZY Lusia Dini Ekawati, Lucia Ratnasari, Jurusan Matematika FMIPA UNDIP Jl Prof H Soedarto, S H, Tembalang, Semarang Abstract Fuzzy graph is a graph

Lebih terperinci

Relasi Adalah hubungan antara elemen himpunan dengan elemen himpunan yang lain. Cara paling mudah untuk menyatakan hubungan antara elemen 2 himpunan

Relasi Adalah hubungan antara elemen himpunan dengan elemen himpunan yang lain. Cara paling mudah untuk menyatakan hubungan antara elemen 2 himpunan Relasi dan Fungsi Relasi Adalah hubungan antara elemen himpunan dengan elemen himpunan yang lain. Cara paling mudah untuk menyatakan hubungan antara elemen 2 himpunan adalah dengan himpunan pasangan terurut.

Lebih terperinci

Fahmi Ulfa Nur Hidayati dan Suryoto Program Studi Matematika Jurusan Matematika FSM UNDIP

Fahmi Ulfa Nur Hidayati dan Suryoto Program Studi Matematika Jurusan Matematika FSM UNDIP DERIVASI BCC-ALJABAR Fahmi Ulfa Nur Hidayati dan Suryoto Program Studi Matematika Jurusan Matematika FSM UNDIP Abstrak Derivasi BCC-aljabar merupakan pemetaan dari BCC-aljabar ke dirinya sendiri dengan

Lebih terperinci

ANALISIS REAL 1 SUMANANG MUHTAR GOZALI KBK ANALISIS

ANALISIS REAL 1 SUMANANG MUHTAR GOZALI KBK ANALISIS ANALISIS REAL 1 SUMANANG MUHTAR GOZALI KBK ANALISIS UNIVERSITAS PENDIDIKAN INDONESIA BANDUNG 2010 2 KATA PENGANTAR Bismillahirrahmanirrahim Segala puji bagi Allah Rabb semesta alam. Shalawat serta salam

Lebih terperinci

Bagian 1 Sistem Bilangan

Bagian 1 Sistem Bilangan Bagian 1 Sistem Bilangan Dalam bagian 1 Sistem Bilangan kita akan mempelajari berbagai jenis bilangan, pemakaian tanda persamaan dan pertidaksamaan, menggambarkan himpunan penyelesaian pada selang bilangan,

Lebih terperinci

Tujuan Instruksional Umum Mahasiswa memahami pengertian relasi, relasi ekuivalen, hasil ganda suatu

Tujuan Instruksional Umum Mahasiswa memahami pengertian relasi, relasi ekuivalen, hasil ganda suatu BAB IV RELASI DAN FUNGSI Tujuan Instruksional Umum Mahasiswa memahami pengertian relasi, relasi ekuivalen, hasil ganda suatu relasi, relasi invers, relasi identitas, pengertian fungsi, bayangan invers

Lebih terperinci

Himpunan dari Bilangan-Bilangan

Himpunan dari Bilangan-Bilangan Program Studi Pendidikan Matematika STKIP YPM Bangko October 22, 2014 1 Khususnya dalam analisis, maka yang teristimewa penting adalah himpunan dari bilangan-bilangan riil, yang dinyatakan dengan R. Himpunan

Lebih terperinci

Definisi 1. Relasi biner R antara A dan B adalah himpunan bagian dari A x B. A x B = {(a, b) a A dan b B}.

Definisi 1. Relasi biner R antara A dan B adalah himpunan bagian dari A x B. A x B = {(a, b) a A dan b B}. Modul 2 RELASI A. Pendahuluan Definisi 1. Relasi biner R antara A dan B adalah himpunan bagian dari A x B. A x B = {(a, b) a A dan b B}. Apabila (a, b) R, maka a dihubungkan dengan b oleh relasi R, ditulis

Lebih terperinci

oleh SURYA AJI NUGROHO M SKRIPSI ditulis dan diajukan untuk memenuhi sebagian persyaratan memperoleh gelar Sarjana Sains Matematika

oleh SURYA AJI NUGROHO M SKRIPSI ditulis dan diajukan untuk memenuhi sebagian persyaratan memperoleh gelar Sarjana Sains Matematika PELABELAN SELIMUT CYCLE-ANTI AJAIB PADA GRAF DOUBLE CONES, GRAF FRIENDSHIP DAN GRAF GRID P n P 3 oleh SURYA AJI NUGROHO M0109063 SKRIPSI ditulis dan diajukan untuk memenuhi sebagian persyaratan memperoleh

Lebih terperinci

LANDASAN TEORI. bilangan coprima, bilangan kuadrat sempurna (perfect square), kuadrat bebas

LANDASAN TEORI. bilangan coprima, bilangan kuadrat sempurna (perfect square), kuadrat bebas II. LANDASAN TEORI Pada bab ini akan diberikan konsep dasar (pengertian) tentang bilangan prima, bilangan coprima, bilangan kuadrat sempurna (perfect square), kuadrat bebas (square free), keterbagian,

Lebih terperinci

PERTEMUAN Relasi dan Fungsi

PERTEMUAN Relasi dan Fungsi 4-1 PERTEMUAN 4 Nama Mata Kuliah : Matematika Diskrit (3 SKS) Nama Dosen Pengampu : Dr. Suparman E-mail : matdis@netcourrier.com HP : 081328201198 Judul Pokok Bahasan Tujuan Pembelajaran : 4. Relasi dan

Lebih terperinci

BAB II DASAR TEORI. Di dalam BAB II ini akan dibahas materi yang menjadi dasar teori pada

BAB II DASAR TEORI. Di dalam BAB II ini akan dibahas materi yang menjadi dasar teori pada BAB II DASAR TEORI Di dalam BAB II ini akan dibahas materi yang menjadi dasar teori pada pembahasan BAB III, mulai dari definisi sampai sifat-sifat yang merupakan konsep dasar untuk mempelajari Fungsi

Lebih terperinci

Pengantar Teori Bilangan

Pengantar Teori Bilangan Pengantar Teori Bilangan Kuliah 2 2/2/2014 Yanita, FMIPA Matematika Unand 1 Materi Kuliah 2 Teori Pembagian dalam Bilangan Bulat Algoritma Pembagian Pembagi Persekutuan Terbesar 2/2/2014 2 Algoritma Pembagian

Lebih terperinci

Adri Priadana ilkomadri.com. Relasi

Adri Priadana ilkomadri.com. Relasi Adri Priadana ilkomadri.com Relasi Relasi Hubungan antara elemen himpunan dengan elemen himpunan lain dinyatakan dengan struktur yang disebut relasi. Relasi antara himpunan A dan B disebut relasi biner,

Lebih terperinci

1. Ubahlah pernyataan ke dalam berikut ke dalam bentuk Jika p maka q.

1. Ubahlah pernyataan ke dalam berikut ke dalam bentuk Jika p maka q. Diskusi Kelompok (I) Waktu: 100 menit Selasa, 23 September 2008 Pengajar: Hilda Assiyatun, Djoko Suprijanto 1. Ubahlah pernyataan ke dalam berikut ke dalam bentuk Jika p maka q. (a) Mahasiswa perlu membawakan

Lebih terperinci

II. LANDASAN TEORI ( ) =

II. LANDASAN TEORI ( ) = II. LANDASAN TEORI 2.1 Fungsi Definisi 2.1.1 Fungsi Bernilai Real Fungsi bernilai real adalah fungsi yang domain dan rangenya adalah himpunan bagian dari real. Definisi 2.1.2 Limit Fungsi Jika adalah suatu

Lebih terperinci

II. TINJAUAN PUSTAKA. Pada bab ini akan dibahas konsep-konsep yang mendasari konsep representasi

II. TINJAUAN PUSTAKA. Pada bab ini akan dibahas konsep-konsep yang mendasari konsep representasi 5 II. TINJAUAN PUSTAKA Pada bab ini akan dibahas konsep-konsep yang mendasari konsep representasi penjumlahan dua bilangan kuadrat sempurna. Seperti, teori keterbagian bilangan bulat, bilangan prima, kongruensi

Lebih terperinci

KETERKAITAN ANTARA LATIS BOOLEAN, RING BOOLEAN DAN ALJABAR BOOLEAN

KETERKAITAN ANTARA LATIS BOOLEAN, RING BOOLEAN DAN ALJABAR BOOLEAN KETERKAITAN ANTARA LATIS BOOLEAN, RING BOOLEAN DAN ALJABAR BOOLEAN SKRIPSI Oleh : Andina Ivana Triandani J2A005003 JURUSAN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS DIPONEGORO

Lebih terperinci

II. TINJAUAN PUSTAKA. bilangan yang mendukung proses penelitian. Dalam penyelesaian bilangan

II. TINJAUAN PUSTAKA. bilangan yang mendukung proses penelitian. Dalam penyelesaian bilangan II. TINJAUAN PUSTAKA Pada bab ini diberikan beberapa definisi mengenai teori dalam aljabar dan teori bilangan yang mendukung proses penelitian. Dalam penyelesaian bilangan carmichael akan dibutuhkan definisi

Lebih terperinci

Sistem Bilangan Real

Sistem Bilangan Real TUGAS I ANALISIS REAL I Sistem Bilangan Real Tugas 1 Analisis Real I Disusun oleh : Nariswari Setya D. Kartini Marvina Puspito M0108022 M0108050 M0108056 JURUSAN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU

Lebih terperinci

Matematika Diskrit 1

Matematika Diskrit 1 Dr. Ahmad Sabri Universitas Gunadarma Pendahuluan Apakah Matematika Diskrit itu? Matematika diskrit adalah kajian terhadap objek/struktur matematis, di mana objek-objek tersebut diasosiasikan sebagai nilai-nilai

Lebih terperinci

DEKOMPOSISI PRA A*-ALJABAR

DEKOMPOSISI PRA A*-ALJABAR Jurnal Matematika UNAND Vol. 1 No. 2 Hal. 13 20 ISSN : 2303 2910 c Jurusan Matematika FMIPA UNAND DEKOMPOSISI PRA A*-ALJABAR RAHMIATI ABAS Program Studi Matematika, Fakultas Matematika dan Ilmu Pengetahuan

Lebih terperinci

Relasi dan Fungsi. Ira Prasetyaningrum

Relasi dan Fungsi. Ira Prasetyaningrum Relasi dan Fungsi Ira Prasetyaningrum Relasi Terdapat dua himpunan X dan Y, Cartesian product XxY adalah himpunan dari semua pasangan terurut (x,y) dimana x X dan y Y XxY = {(x, y) x X dan y Y} Contoh

Lebih terperinci

Relasi. Learning is not child's play, we cannot learn without pain. - Aristotle. Matema(ka Komputasi - Relasi dan Fungsi. Agi Putra Kharisma, ST., MT.

Relasi. Learning is not child's play, we cannot learn without pain. - Aristotle. Matema(ka Komputasi - Relasi dan Fungsi. Agi Putra Kharisma, ST., MT. Relasi Learning is not child's play, we cannot learn without pain. - Aristotle 1 Misal: M = {Susan, Sinta, Ami, Mila} G = {Dangdut, Blues, Jazz, Pop} S adalah relasi yang mendeskripsikan mahasiswa yang

Lebih terperinci

PENGANTAR GRUP. Yus Mochamad Cholily Jurusan Pendidikan Matematika Universitas Muhammadiyah Malang

PENGANTAR GRUP. Yus Mochamad Cholily Jurusan Pendidikan Matematika Universitas Muhammadiyah Malang PENGANTAR GRUP Yus Mochamad Cholily Jurusan Pendidikan Matematika Universitas Muhammadiyah Malang email:ymcholily@gmail.com March 18, 2013 1 Daftar Isi 1 Tujuan 3 2 Pengantar Grup 3 3 Sifat-sifat Grup

Lebih terperinci