MATEMATIKA ASTRONOMI: BAGAIMANA MATEMATIKA MEMPELAJARI ALAM

dokumen-dokumen yang mirip
Matematika Astronomi: Bagaimana Matematika Mempelajari Alam 1

MENGENAL GERAK LANGIT DAN TATA KOORDINAT BENDA LANGIT BY AMBOINA ASTRONOMY CLUB

TATA KOORDINAT BENDA LANGIT. Kelompok 6 : 1. Siti Nur Khotimah ( ) 2. Winda Yulia Sari ( ) 3. Yoga Pratama ( )

AS Astronomi Bola. Suhardja D. Wiramihardja Endang Soegiartini Yayan Sugianto Program Studi Astronomi FMIPA Institut Teknologi Bandung

SAINS BUMI DAN ANTARIKSA

5. BOLA LANGIT 5.1. KONSEP DASAR SEGITIGA BOLA

RUMUS-RUMUS SEGITIGA BOLA

SEGITIGA BOLA. Kelompok 7. Saraswati Basuki Putri Nila Muna Intana Hesti Nikmah Safitri Alik Sus Adi

BAB I PENDAHULUAN. beraktifitas pada malam hari. Terdapat perbedaan yang menonjol antara siang

BAB I SISTEM KOORDINAT

Sabar Nurohman Prodi Pendidikan IPA FMIPA UNY

Meridian Greenwich. Bujur

MAKALAH SEGITIGA BOLA. disusun guna memenuhi tugas mata kuliah Astronomi. Program Studi Pendidikan Fisika. oleh. 1. Dyah Larasati ( )

TRANSFORMASI KOORDINAT BOLA LANGIT KE DALAM SEGITIGA BOLA (EQUATORIAL DAN EKLIPTIKA) DALAM PENENTUAN AWAL WAKTU SALAT

Astronomi Sabar Nurohman, M.Pd

Cladius Ptolemaus (abad 2) Geosentris

(Fenomena Matahari di Atas Ka bah) Pandapotan Harahap NIM: Abstrak

MODEL MATERI PENGETAHUAN SUDUT DALAM PERKULIAHAN IPBA BAGI MAHASISWA FISIKA DAN APLIKASINYA DALAM MEMAHAMI JARAK ANTARBENDA-LANGIT (CELESTIAL BODIES)

Buku Pendalaman Konsep. Trigonometri. Tingkat SMA Doddy Feryanto

: Jarak titik pusat benda langit, sampai dengan Equator langit, di ukur sepanjang lingkaran waktu, dinamakan Deklinasi. Jika benda langit itu

LINGKARAN. Lingkaran. pusat lingkaran diskriminan posisi titik posisi garis garis kutub gradien. sejajar tegak lurus persamaan lingkaran

Untuk lebih jelasnya, perhatikan uraian berikut.

SEGITIGA BOLA DAN ARAH KIBLAT

BOLA LANGIT DAN TATA KOORDINAT

A. Analisis Fungsi dan Kedudukan Deklinasi Bulan dan Lintang Tempat dalam menghitung Ketinggian Hilal menurut Kitab Sullam an-nayyirain

SMA/MA IPS kelas 10 - GEOGRAFI IPS BAB 3. Mengenal Planet Bumilatihan soal 3.2

KUMPULAN SOAL & PEMBAHASAN OSK OSP OSN DLL KOORDINAT BENDA LANGIT (By. Mariano N.)

Simulasi Penentuan Sudut Arah Kiblat dengan Metode Segitiga Bola Menggunakan Bahasa Pemrograman GUI MatLab R2009

BAB IV ANALISIS FORMULA PENENTUAN ARAH KIBLAT DENGAN THEODOLIT DALAM BUKU EPHEMERIS HISAB RUKYAT 2013

Beberapa Benda Ruang Yang Beraturan

Menjelaskan posisi benda langit pada bola langit. Memilih sistem koordinat yang tepat untuk menjelaskan sebuah situasi. Koordinat itu berada pada

DAFTAR ISI DAFTAR GAMBAR DAFTAR TABEL DAFTAR LAMPIRAN DAFTAR LAMBANG DAN SINGKATAN

SOAL DAN SOLUSI PEREMPATFINAL KOMPETISI MATEMATIKA UNIVERSITAS TARUMANAGARA 2011

Wilfried Suhr Gambar 1. Waktu-waktu kontak dalam peristiwa transit Venus.

MENGGAMBAR BIDANG A. MEMBAGI GARIS DAN SUDUT

Geometri Ruang (Dimensi 3)

BAB IV ANALISIS PERHITUNGAN ARAH KIBLAT DENGAN MENGGUNAKAN AZIMUT PLANET. A. Algoritma Penentuan Arah Kiblat dengan Metode Azimut Planet

BAB 3 TRIGONOMETRI. Gambar 3.1

Prestasi itu diraih bukan didapat!!! SOLUSI SOAL

MODUL PRAKTIKUM Perkuliahan Astrofisika (FI567)

GERAK EDAR BUMI & BULAN

SOAL DAN JAWAB ILMU PELAYARAN ASTRONOMI AHLI NAUTIKA TINGGKAT III

BAB IV ANALISIS PERBANDINGAN HISAB IRTIFA HILAL MENURUT ALMANAK NAUTIKA DAN NEWCOMB

Pembahasan Seleksi Nasional Masuk Perguruan Tinggi Negeri (SNMPTN)

GEOMETRI EUKLID VERSUS GEOMETRI SFERIK. Sangadji *

OLIMPIADE SAINS TERAPAN NASIONAL SEKOLAH MENENGAH KEJURUAN TINGKAT PROPINSI JAWA TENGAH 2010 BIDANG MATEMATIKA TEKNOLOGI

Kumpulan Soal dan Pembahasan Himpunan. Oleh: Angga Yudhistira

Siswa dapat menyebutkan dan mengidentifikasi bagian-bagian lingkaran

MENGGAMBAR BIDANG A. MEMBAGI GARIS DAN SUDUT

TUGAS KELOMPOK 5 GEOMETRI TALI BUSUR, GARIS SINGGUNG, DAN RUAS SECANT. Oleh: AL HUSAINI

Prestasi itu diraih bukan didapat!!! SOLUSI SOAL

II. TINJUAN PUSTAKA. lim f(x) = L berarti bahwa bilamana x dekat tetapi sebelah kiri c 0 maka f(x)

Gerakan Bumi Dan Implikasi Terhadap Kehidupan

1. Fenomena Alam Akibat Perubahan Kedudukan Bumi, Bulan, terhadap Matahari. Gerhana Matahari

GERAK BUMI DAN BULAN

ISTIYANTO.COM. memenuhi persamaan itu adalah B. 4 4 C. 4 1 PERBANDINGAN KISI-KISI UN 2009 DAN 2010 SMA IPA

Ikhlasul-pgsd-fip-uny/iad. Bumi, Berlian biru alam semesta

GEOMETRI ANALITIK BIDANG DAN RUANG. sofyan mahfudy-iain Mataram

Dr. Ramadoni Syahputra Jurusan Teknik Elektro FT UMY

Soal UN 2009 Materi KISI UN 2010 Prediksi UN 2010

IPA TERPADU KLAS VIII BAB 14 BUMI, BULAN, DAN MATAHARI

Oleh : Kunjaya TPOA, Kunjaya 2014

MODUL 4 LINGKARAN DAN BOLA

Feni Melinda Safitri. Sudah diperiksa. Pengertian Teorema Phytagoras. Rumus Phytagoras

Jika persegi panjang ABCD di atas diketahui OA = 26 cm, maka panjang BO adalah... A. 78 cm. C. 26 cm B. 52 cm. D. 13 cm Kunci : C Penyelesaian :

Makalah Rotasi dan Revolusi bumi

KEMENTRIAN PENDIDIKAN DAN KEBUDAYAAN DITJEN MANAJEMEN PENDIDIKAN MENENGAH DIREKTORAT PEMBINAAN SMA

D. 90 meter E. 95 meter

GRAVITASI B A B B A B

HIDROMETEOROLOGI TATAP MUKA KEEMPAT (RADIASI SURYA)

ZAARI BIN MOHAMAD HBSC4203_V2 - EARTH AND SPACE / BUMI DAN ANGKASA BUMI DAN ANGKASA A. PENDAHULUAN

7. Himpunan penyelesaian. 8. Jika log 2 = 0,301 dan log 3 = 10. Himpunan penyelesaian

Bumi berotasi. Getak Harian - dari timur ke barat. - periodanya 24 jam. - sejajar ekuator langit.

a. jenis-jenis segitiga di tinjau dari panjang sisinya. (i) segitiga sebarang. Adalah segitiga yang disisi-sisinya tindak samapanjang AB BC AC

Menemukan Dalil Pythagoras

APLIKASI SISTEM KOORDINAT DALAM PENENTUAN ARAH SALAT UMAT ISLAM

PENDAHULUAN Surveying : suatu ilmu untuk menentukan posisi suatu titik di permukaan bumi

BAB IV ANALISIS TENTANG METODE PENENTUAN AWAL WAKTU SALAT DENGAN JAM BENCET KARYA KIAI MISHBACHUL MUNIR MAGELANG

MATEMATIKA DASAR TAHUN 1987

LINGKARAN SMP KELAS VIII

MAKALAH MATEMATIKA TRIGONOMETRI

LINGKARAN SMP KELAS VIII

Matematika EBTANAS Tahun 1999

D. (1 + 2 ) 27 E. (1 + 2 ) 27

Peraga Bintang, Matahari dan Bulan

SUSUNAN KOORDINAT BAGIAN-1. Oleh: Fitria Khasanah, M. Pd

GEOMETRI ANALITIK BIDANG & RUANG

MIMIN RIHOTIMAWATI TRIGONOMETRI

3. ORBIT KEPLERIAN. AS 2201 Mekanika Benda Langit. Monday, February 17,

Matematika Proyek Perintis I Tahun 1979

B. 26 September 1996 D. 28 September 1996

RENCANA PELAKSANAAN PEMBELAJARAN

ROTASI BENDA LANGIT. Chatief Kunjaya. KK Atronomi, ITB. Oleh : TPOA, Kunjaya 2014

f(-1) = = -7 f (4) = = 3 Dari ketiga fungsi yang didapat ternyata yang terkecil -7 dan terbesar 11. Rf = {y -7 y 11, y R}

04-05 P23-P UJIAN NASIONAL SMA/MA Tahun Pelajaran 2004/2005 MATEMATIKA (D10) PROGRAM STUDI IPA ( U T A M A )

A-8 LUAS DAERAH DI R2 DENGAN MEMANFAATKAN GARIS SINGGUNG KURVA


Matematika Ujian Akhir Nasional Tahun 2004

KONSTRUKSI PERSAMAAN GARIS LURUS MELALUI ANALISIS VEKTORIS DALAM RUANG BERDIMENSI DUA

BAB IV ANALISIS PENENTUAN ARAH KIBLAT DALAM KITAB. A. Analisis Penentuan Arah Kiblat dengan Bayang- bayang Matahari dalam

Transkripsi:

Prosiding Seminar Nasional Penelitian, Pendidikan dan Penerapan MIPA Fakultas MIPA, Universitas Negeri Yogyakarta, 16 Mei 009 MATEMATIKA ASTRONOMI: BAGAIMANA MATEMATIKA MEMPELAJARI ALAM Ariyadi Wijaya Jurusan Pendidikan Matematika FMIPA UNY (ariyadiwijaya@hotmail.com) Abstrak Manfaat fenomena astronomi untuk kehidupan manusia menyebabkan pengkajian astronomi telah menjadi perhatian sejak awal peradaban manusia. Salah satu fenomena astronomi yang banyak dikaji sejak awal peradaban adalah matahari. Sepanjang tahun, terjadi perubahan durasi siang hari yang bersinar di suatu tempat tertentu di permukaan bumi. Secara matematis, perubahan durasi siang hari tersebut dapat dihitung dengan menggunakan spherical trigonometry. Variable yang digunakan dalam spherical trigonometry adalah koordinat posisi pada permukaan bumi dan posisi relatif matahari terhadap bumi. Kata kunci: spherical trigonometry PENDAHULUAN Manfaat fenomena astronomi untuk kehidupan manusia menyebabkan pengkajian astronomi telah menjadi perhatian sejak awal peradaban manusia. Bangsa Yunani, Babilon, Cina, India dan Inka Maya merupakan bangsa-bangsa yang memberikan perhatian besar terhadap fenomena astronomi. Bangsa-bangsa tersebut mempelajari astronomi untuk mendukung kehidupan mereka, seperti penentuan arah mata angin dan sistem perhitungan waktu dan kalender. Penentuan arah mata angin berkaitan dengan letak benda langit di angkasa, sedangkan sistem perhitungan waktu dan kalender disusun berdasarkan pergerakan atau perubahan posisi berbagai benda langit terhadap bumi. Perhitungan waktu dalam satu hari dipengaruhi oleh rotasi bumi sedangkan sistem kalender dipengaruhi oleh peredaran bulan ataupun revolusi bumi mengelilingi matahari. Berbagai macam perhitungan waktu tersebut mengindikasikan bahwa bangsa kuno tidak hanya mengamati benda langit tetapi juga mengembangkan berbagai cara perhitungan matematis. Salah satu fenomena astronomi yang menarik dan sering kita amati adalah matahari. Setiap hari matahari terbit dan tenggelam hampir di seluruh bagian bumi, kecuali di daerah kutub utara dan kutub selatan pada sekitar tanggal 1 Desember dan 1 Juni. Pada periode waktu tersebut, matahari akan bersinar ataupun tidak bersinar selama enam bulan berturut-turut di daerah kutub utara dan kutub selatan. Fenomena matahari terbit dan matahari tenggelam tersebut memiliki pengaruh yang besar terhadap dua teori tentang pusat tata surya kita. Teori pertama adalah Geocentric yang beranggapan bahwa bumi merupakan pusat tata surya kita. Teori kedua adalah Heliocentric yang meyakini bahwa matahari merupakan pusat tata surya kita. Caludius Ptolemy merupakan salah satu ilmuwan yang melakukan berbagai perhitungan matematika astronomi berdasarkan teori Geocentric, sedangkan Galileo Galilei dan Nicolas Copernicus adalah ilmuwan yang melakukan penelitian dan perhitungan terkait dengan teori Heliocentric. Salah satu fakta menarik tentang matahari adalah bahwa durasi siang hari berubah-ubah sepanjang waktu dan terjadi hampir di seluruh tempat di permukaan bumi. Di daerah sekitar garis khatulistiwa fenomena tersebut akan sulit diamati fenomena, tetapi untuk daerah-daerah yang jauh dari garis khatulistiwa (terutama daerah-daerah yang memiliki empat musim) akan mudah dilakukan pengamatan terhadap perubahan durasi siang. Durasi siang hari di daerah sekitar khatulistiwa adalah sekitar 1 jam dan durasi siang hari terpanjang untuk daerah empat musim akan terjadi pada saat musim panas (sekitar bulan Maret ataupun September, tergantung tempat). Oleh M-189

Ariyadi Wijaya/Matematika Astronomi: Bagaimana karena itu, akan sangat menarik untuk mengkaji faktor-faktor apa yang mempengaruhi perubahan durasi siang hari serta konsep matematika apa yang digunakan untuk perhitungan tersebut. DISKUSI Pada sesi ini akan dibahas dua hal utama yang berkaitan dengan perhitungan durasi siang hari, yaitu pemodelan alam semesta dan spherical trigonometry. 1. Celestial Shere: Suatu Bentuk Pemodelan Alam Semesta Walaupun Ptolemy dan Copernicus bekerja dalam teori pusat tata surya yang berbeda, kedua orang tersebut memodelkan alam semesta dalam bentuk bola yang disebut celestial sphere. Celestial sphere adalah suatu bola dengan posisi pengamat atau titik referensi sebagai pusat bola dan benda-benda langit sebagai obyek pengamatan terletak pada permukaan bola tersebut. Ada tiga macam celestial spherical, yaitu: a. Topocentric celestial sphere Topocentric celestial sphere adalah celestial sphere yang menggunakan gerak rotasi bumi sebagai pertimbangan utama dan posisi aktual pengamat sebagai titik pusat bola. Posisi actual pengamat dinyatakan dalam koordinat posisi, yaitu dalam garis bujur dan garis lintang. b. Geocentric celestial sphere Geocentric celestial sphere merupakan celestial sphere yang menggunakan gerak revolusi bumi sebagai pertimbangan utama dan bumi secara keseluruhan digunakan sebagai pusat bola. c. Heliocentric celestial sphere Heliocentric celestial sphere adalah celestial sphere yang menggunakan matahari sebagai pusat bola. Kombinasi topocentric celestial sphere dan geocentric celestial sphere digunakan untuk mempelajari perhitungan durasi matahari bersinar. Topocentric celestial sphere digunakan untuk menghitung durasi siang hari pada suatu tempat tertentu sedangkan geocentric celestial sphere terkait dengan variable yang dibutuhkan untuk menghitung durasi siang hari pada suatu waktu tertentu. ϕ Z : Zenit NP : Kutub utara N : Arah utara S : Arah selatan E : Arah timur W : Arah barat O : Pengamat Na : Nadir SP : Kutub selatan Φ : lintang Celestial equator Horizon Gambar 1. Topocentric Celestial Sphere Celestial equator merupakan perluasan dari khatulistiwa bumi Horizon adalah perluasan dari bidang tempat pengamat berdiri Zenit adalah titik khayal di langit yang berada tepat di atas pengamat. Spherical Geometry Spherical geometry (geometri bola) digunakan karena alam semesta dimodelkan sebagai suatu bola. Oleh karena itu, spherical geometry banyak digunakan untuk perhitungan astronomi dan keperluan navigasi. Ada beberapa perbedaan antara plane geometry (geometri bidang) dengan spherical geometry (geometri bola). Tidak terdapat perbedaan konsep titik dalam plane geometry dan spherical geometry, tetapi terdapat perbedaan dalam konsep garis. M-190

Prosiding Seminar Nasional Penelitian, Pendidikan dan Penerapan MIPA Fakultas MIPA, Universitas Negeri Yogyakarta, 16 Mei 009 Konsep garis dalam spherical geometry tidak sama dengan konsep garis lurus yang menghubungkan dua titik dalam plane geometry. Garis dalam spherical geometry disebut geodesic, yaitu lintasan terpendek yang menghubungkan dua titik pada permukaan bola. Geodesic merupakan bagian dari great circle dari suatu bola. Secara singkar, garis pada plane geometry akan digantikan dengan great circle dalam spherical geometry. Great circle adalah lingkaran-lingkaran pada bola dimana pusat lingkaran tersebut berimpit dengan pusat bola. Contoh great circle pada bola bumi adalah garis khatulistiwa dan semua garis bujur. Garis lintang bukan merupakan great circle, melainkan small circle karena pusat lingkaran dari garis lintang tidak berimpit dengan pusat bumi. Perbedaan konsep garis dalam plane geometry dan spherical geometry menyebabkan adanya perbedaan konsep sudut. Besar sudut dalam plane geometry ditentukan oleh perpotongan dua garis lurus sedangkan besar sudut dalam spherical geometry ditentukan oleh perpotongan dua great circle. Konsekuensi dari definisi sudut tersebut adalah jumlah sudut dalam spherical triangle 1 melebihi 180 o. C B A Gambar. Spherical Triangle Sudut A : sudut yang terbentuk antara great circle yang memuat titik A dan B dengan great circle yang memuat titik A dan C Sudut B : sudut yang terbentuk antara great circle yang memuat titik B dan A dengan great circle yang memuat titik B dan C Sudut C : sudut yang terbentuk antara great circle yang memuat titik C dan B dengan great circle yang memuat titik C dan A Seperti halnya dalam plane triangle, dalam spherical triangle juga terdapat aturan cosinus. c a b A : titik singgung bola O dengan bidang yang memuat ADE. AOD : perpanjangan great circle yang memuat AOB AOE : perpanjangan great circle yang memuat AOC Ukuran sisi a sama dengan besar sudut BOC. Ukuran b sama dengan sudut AOC. Ukuran c sama dengan sudut AOB. Gambar 3. Aturan cosinus Segitiga ABC adalah suatu spherical triangle yang berpusat di O. Sisi a adalah bagian dari great circle yang berpusat di O dan melalui titik B dan C. Oleh karena itu, panjang ukuran sisi a dinyatakan dengan besar sudut BOC. Begitu juga dengan sisi b dan c yang dinyatakan dengan ukuran sudut AOC and AOB. AD adalah garis singgung dari great circle AC di titik A dan AE adalah garis singgung great circle AC di titik A. Oleh karena itu jari-jari OA tegak lurus dengan AD dan AE. Jika great circle AB diperluas maka AD akan terletak pada perluasan great circle AB dan perpanjangan jari-jari OB akan berpotongan dengan AD di titik D. Secara analog akan diperoleh bahwa jari-jari OC berpotongan dengan AE di titik E. Dalam spherical geometry, 1 Spherical triangle adalah segitiga yang semua sisinya merupakan bagian dari great circle M-191

Ariyadi Wijaya/Matematika Astronomi: Bagaimana sudut BAC adalah sudut yang terbentuk antara great circle AB and AC di titik A, sehingga BAC = DAE. Perhatikan segitiga OAD: Karena OAD= 90 o dan AOD identik dengan AOB maka: AD=OA tan c dan OD=OA sec c (1) Dari plane triangle OAE akan kita peroleh: AE=OA tan b dan OE=OA sec b () Dari plane triangle ADE kita memiliki DE = AD + AE. AD. AE. cos DAE (3) Substitusikan (1) dan () ke (3) maka: DE ( tan c + tan b.tan b.tan c. cos DAE) = OA (4) Dari plane triangle DOE, kita memiliki: DE = OD + OE Karena DOE=BOC=a, maka: DE. OD. OE. cos DOE ( sec c + sec b.sec b.sec c. cos a) = OA (5) Dari (4) dan (5): sec c + sec b.sec b.sec c.cos a = tan sec c = 1+ tan c; sec b = 1+ tan cos a = cos b.cos c + sin b.sin c. cos DAE b c + tan b.tan b.tan c. cos DAE Nyatakan sudut DAE dengan sudut A, maka kita akan memperoleh aturan cosinus dalam spherical triangle sebagai berikut: cos aa = cos bb cos cc + sin bb sin cc cos AA (6) Secara analog akan kita dapatkan: cos bb = cos aa. cos cc + sin aa. sin cc. cos BB (7) cos cc = cos aa. cos bb + sin aa. sin bb. cos CC (8) 3. Matematika Astronomi: Menghitung Durasi Siang Hari Faktor yang mempengaruhi perbedaan durasi siang hari adalah letak pengamat dan waktu (dalam hal ini adalah hari atau tanggal) dilakukan pengamatan. Letak pengamat yang berpengaruh terhadap durasi siang hari adalah garis lintang dari lokasi pengamat. Garis lintang dari suatu tempat berpengaruh menentukan besar sudut antara arah utara pada horison dengan arah kutub utara dari celestial sphere. Sebagai contoh adalah kota Utrecht yang memiliki posisi lintang 5,08 o (lintang positif menunjukkan tempat ada di belahan bumi utara) akan memiliki sudut antara arah utara kota Utrecht dengan kutub utara sebesar 5,08 o. M-19 Gambar 4. Pengaruh letak tempat terhadap sudut

Prosiding Seminar Nasional Penelitian, Pendidikan dan Penerapan MIPA Fakultas MIPA, Universitas Negeri Yogyakarta, 16 Mei 009 Faktor kedua yang mempengaruhi perbedaan durasi siang hari adalah faktor waktu (dalam hal ini adalah hari atau tanggal). Besarnya sudut deklinasi matahari dipengaruhi oleh faktor waktu. Sebagai contoh variasi siang hari karena faktor waktu adalah belahan bumi utara yang memiliki durasi siang hari pendek pada sekitar bulan Desember dan durasi siang hari panjang pada sekitar bulan Juni. O Ecliptic (Tampak atas) λ S A E k The sun 1 Ecliptic adalah lintasan semu matahari (yaitu posisi matahari relative terhadap bumi) selama satu tahun. O A E B S Gambar 5. Penentuan besar deklinasi matahari Celestial sphere Sudut deklinasi matahari: Dari gambar ecliptic tampak atas, kita tahu bahwa merupakan suatu bola satuan), sehingga: AAAA = sin λλ Catatan: BBBB = AAAA sin 3,45 oo BBBB = sin λλ sin 3,45 oo BBBB = sin δδ sin δδ = sin λλ sin 3,45 oo δδ = arcsin(sin λλ sin 3,45 oo ) AS = sin λ (karena celestial sphere λλ adalah longitude matahari, yaitu jarak (dalam sudut) antara matahari dengan vernal equinox (yaitu posisi dimana ecliptic dengan celestial equator yang terjadi sekitar tanggal 1 Maret dan M-193

Ariyadi Wijaya/Matematika Astronomi: Bagaimana 1 September). Besar λλ bukan merupakan fungsi linear sebagai akibat bentuk orbit bumi yang berbentuk ellips. Siang hari adalah suatu periode ketika matahari berada di atas horizon suatu tempat. Lintasan (khayal) matahari selama satu hari penuh merupakan suatu lingkaran yang disebut diurnal circle. Oleh karena itu, untuk menentukan durasi siang hari kita perlu menghitung panjang busur diurnal circle matahari di atas horizon. Pada gambar 5, diurnal circle adalah lingkaran yang memuat XMY sedangkan busur XMY adalah lintasan matahari di atas horizon. Oleh karena itu untuk mengukur durasi siang hari kita cukup menghitung panjang busur XMY. N Diurnal circle X P Equator O Y W Z M Gambar 5 Durasi siang L Horizon Z : zenit P : Kutub Utara O : Pengamat X : Titik terbit matahari Y : Titik terbenam matahari M : Posisi matahari pada tengah hari N : Arah utara pengamat Φ : (garis) lintang tempat pengamat pada titik O δ : Deklinasi matahari (jarak sudut antara matahari dan equator) M-194 Besar sudut deklinasi matahari bervariasi dari - 3,45 o sampai 3,45 o selama satu tahun, tergantung tanggal. Diurnal circle adalah lintasan khayal yang ditempuh matahari selama 4 jam. Diurnal circle paralel dengan equator. Perhatikan gambar 5. Pengamat terletak pada garis lintang φ sehingga sudut NOP juga φ (perhatikan gambar 4). WY adalah deklinasi matahari, yaitu δ. Lingkaran yang memuat Lingkaran yang memuat Y dan M adalah diurnal circle dengan Y adalah titik matahari terbenam, X adalah titik matahari terbit dan M adalah posisi matahari pada tengah hari. Durasi siang hari dapat dihitung dengan menghitung panjang busur XMY. Untuk menghitung panjang busur XMY kita cukup dengan menghitung setengah busur XMY, yaitu busur MY. Perhatikan bahwa WWWW = MMMM = WWWWWW = YYYYYY = YYYYYY, sehingga untuk menghitung durasi siang kita terlebih dulu perlu menghitung besar sudut YPZ. Sudut YPZ adalah jarak (dalam sudut) antara titik terbenam matahari dengan titik tengah hari, sehingga sudut YPZ merupakan representasi durasi setengah siang. Titik Y terletak pada horizon sehingga ZY=90 o dan PY=90 o - δ. Posisi lintang pengamat sebesar φ menyebabkan sudut antara arah utara pengamat dengan kutub utara (yaitu sudut NOP atau panjang busur NP) adalah φ sehingga PPPP = 90 oo φ. Perhatikan spherical triangle PZX pada gambar 5. Sesuai dengan aturan cosinus untuk spherical triangle maka kita dapatkan: cos ZZZZ = cos PPPP. cos PPPP + sin PPPP. sin PPPP. cos ZZZZZZ cos 90 oo = cos (90 oo φφ). cos (90 oo δδ) + sin(90 oo φφ). sin(90 oo δδ). cos ZZZZZZ 0 = sin φφ. sin δδ + cos φφ. cos δδ. cos ZZZZZZ

Prosiding Seminar Nasional Penelitian, Pendidikan dan Penerapan MIPA Fakultas MIPA, Universitas Negeri Yogyakarta, 16 Mei 009 cos ZZZZZZ = tan φφ. tan δδ Karena sudut pada celestial sphere yang berpengaruh terhadap durasi siang disebut hour angle maka sudut ZPY merupakan hour angle (H), sehingga bisa kita tuliskan sebagai: cos HH = tan φφ. tan δδ HH = arccos( tan φφ. tan δδ) Durasi siang diukur dalam waktu, bukan dalam sudut sehingga kita perlu mengubah hour angle menjadi ukuran waktu (time measurement). Hour angle H merupakan representasi setengah siang hari (karena besar sudut H adalah setengah panjang busur XMY) serta lingkaran yang memuat X, Y dan M merupakan diurnal circle yang merupakan representasi satu hari penuh (4 jam), maka durasi siang hari dapat dihitung dengan: Durasi siang = HH 180 oo.4 jjjjjj Sebagai contoh kita akan menghitung durasi siang hari di Yogyakarta pada tanggal 16 Juli 009. Penyelesaian: Kota Yogyakarta terletak pada garis lintang -7,8 o (berarti terletak pada lintang selatan) serta deklinasi matahari pada tanggal 16 Juli 009 adalah 1,44 o. Jadi durasi siang hari di Yogyakarta pada tanggal 16 Juli 009 adalah: cos HH = tan Φ. tan δδ cos HH = tan 7,8 oo. tan 1,44 oo HH = 86,9 oo Durasi siang hari = 86,9oo 180oo 4 jam Durasi siang hari = 11,59 jam. KESIMPULAN Alam semesta dimodelkan sebagai suatu bola sehingga geometri yang dipakai dalam perhitungan astronomi adalah spherical geometry atau geometri bola. Kemiringan sumbu bumi sebesar 3,45 o menyebabkan besar sudut deklinasi matahari bervariasi dari -3,45 o sampai 3,45 o sepanjang tahun. Rumus perhitungan durasi siang hari adalah: cos HH = tan φφ. tan δδ (i) Durasi siang = HH 180 oo.4 jam (ii) Berdasarkan rumus perhitungan tersebut ada beberapa fakta menarik tentang durasi siang hari jika ditinjau secara matematis, yaitu: 1. Durasi siang hari untuk daerah di garis khatulistiwa Daerah di garis khatulistiwa memiliki posisi lintang 0 o atau ϕ = 0 o sehingga: M-195

Ariyadi Wijaya/Matematika Astronomi: Bagaimana Nilai cos HH tidak terpengaruh besar sudut deklinasi matahari (karena tan φφ = tan 0 oo = 0). Hal tersebut berarti bahwa tidak ada perubahan durasi siang hari sepanjang tahun (karena sudut deklinasi berkaitan dengan faktor waktu) Besar sudut H selalu 90 o (karena cos HH = 0), sehingga durasi siang hari daerah di garis khatulistiwa (secara matematis) adalah 1 jam.. Durasi siang hari di belahan bumi utara Daerah di belahan bumi utara terletak pada garis lintang positif (0 oo < φφ < 90 oo ) sehingga nilai tan φφ selalu bernilai positif. Besar sudut deklinasi (δ ) akan bernilai positif antara tanggal 1 Maret sampai 1 Desember, sehingga tan δδ akan bernilai positif. Karena tan φφ dan tan δδ bernilai positif, maka cos HH akan bernilai negatif. Jika cosinus bernilai negatif maka sudut H merupakan sudut pada kuadran II sehingga durasi siang hari akan lebih dari 1 jam. Besar sudut deklinasi (δ ) akan bernilai negatif antara tanggal 1 Desember sampai 1 Maret, sehingga tan δδ akan bernilai negatif. Karena tan φφ bernilai positif dan tan δδ bernilai negatif, maka cos HH akan bernilai positif. Jika cosinus bernilai positif maka sudut H merupakan sudut pada kuadran I sehingga durasi siang hari akan kurang dari 1 jam. 3. Durasi siang hari di belahan bumi selatan Daerah di belahan bumi utara terletak pada garis lintang negatif ( 90 oo < φφ < 0 oo ) sehingga nilai tan φφ selalu bernilai negatif. Besar sudut deklinasi (δ ) akan bernilai positif antara tanggal 1 Maret sampai 1 Desember, sehingga tan δδ akan bernilai positif. Karena tan φφ bernilai negatif dan tan δδ bernilai positif, maka cos HH akan bernilai positif. Jika cosinus bernilai positif maka sudut H merupakan sudut pada kuadran I sehingga durasi siang hari akan kurang dari 1 jam. Besar sudut deklinasi (δ ) akan bernilai negatif antara tanggal 1 Desember sampai 1 Maret, sehingga tan δδ akan bernilai negatif. Karena tan φφ dan tan δδ bernilai negatif, maka cos HH akan bernilai negatif. Jika cosinus bernilai negatif maka sudut H merupakan sudut pada kuadran II sehingga durasi siang hari akan lebih dari 1 jam. 4. Durasi siang hari di daerah kutub (utara maupun selatan) Kutub utara terletak pada lintang 90 o (ϕ = 90 o ) dan kutub selatan terletak pada lintang -90 o (ϕ = -90 o ) sehingga tan φφ tidak akan terdefinisi. Oleh karena itu, secara matematis besar sudut H tidak dapat dihitung. DAFTAR PUSTAKA Copernicus, Nicolaus. 1976. Copernicus: On the Revolutions of the Heavenly Spheres (translated by Duncan, A.M.). London: David & Charles (Publishers) Limited Dórrie, Heinrich. 1958. 100 Great Problems of Elementary Mathematics. Their History and Solution. New York: Dover Publication, inc Goddijn, Aad. 006. De Zon is Een Dansende Klok.Utrecht: Freudenthal Instituut, Universiteit Utrecht Green, Robin. M. 1985. Spherical Astronomy. Cambridge: Cambrige University Press Ptolemaeus, Claudius. 1984. Ptolemy s Almagest (translated and annotated by Toomer, G.J.). London: Duckworth Smart, W. M. 1977. Textbook on Spherical Astronomy. Cambridge: Cambrige University Press M-196