BAB I PENDAHULUAN. keadaan energi (energy state) dari sebuah sistem potensial sumur berhingga. Diantara

dokumen-dokumen yang mirip
PROJEK 2 PENCARIAN ENERGI TERIKAT SISTEM DI BAWAH PENGARUH POTENSIAL SUMUR BERHINGGA

LAPORAN PENELITIAN KAJIAN KOMPUTASI KUANTISASI SEMIKLASIK VIBRASI MOLEKULER SISTEM DIBAWAH PENGARUH POTENSIAL LENNARD-JONES (POTENSIAL 12-6)

BAB IV HASIL DAN PEMBAHASAN. Pengkajian dengan pendekatan numerik terhadap karakteristik

BAB I ARTI PENTING ANALISIS NUMERIK

BAB I PENDAHULUAN (1-1)

Wacana, Salatiga, Jawa Tengah. Salatiga, Jawa Tengah Abstrak

Ilustrasi Persoalan Matematika

ANALISIS SIMULASI GEJALA CHAOS PADA GERAK PENDULUM NONLINIER. Oleh: Supardi. Jurusan Pendidikan Fisika Universitas Negeri Yogyakarta

METODE NUMERIK AKAR-AKAR PERSAMAAN. Eka Maulana Dept. of Electrcal Engineering University of Brawijaya

BAB IV OSILATOR HARMONIS

PENDAHULUAN. Di dalam modul ini Anda akan mempelajari Gas elektron bebas yang mencakup: Elektron

Oleh Dr. Fahrudin Nugroho Dr. Iman Santosa

PROBABILITAS PARTIKEL DALAM KOTAK TIGA DIMENSI PADA BILANGAN KUANTUM n 5. Indah Kharismawati, Bambang Supriadi, Rif ati Dina Handayani

MOTIVASI. Secara umum permasalahan dalam sains dan teknologi digambarkan dalam persamaan matematika Solusi persamaan : 1. analitis 2.

PAM 252 Metode Numerik Bab 2 Persamaan Nonlinier

BAB IV. Pencarian Akar Persamaan Tak Linier. FTI-Universitas Yarsi

koefisien a n dan b n pada persamaan (36) dan (37), yaitu

Persamaan yang kompleks, solusinya susah dicari. Contoh :

BAB I PENDAHULUAN Latar Belakang Masalah

Bab 2. Penyelesaian Persamaan Non Linier

POK O O K K O - K P - OK O O K K O K MAT A ERI R FISIKA KUANTUM

Jurnal MIPA 39 (1)(2016): Jurnal MIPA.

Modul 5. METODE BIDANG-PARUH (BISECTION) untuk Solusi Akar PERSAMAAN ALJABAR NON-LINIER TUNGGAL

METODE NUMERIK TKM4104. Kuliah ke-3 SOLUSI PERSAMAAN NONLINIER 1

METODE NUMERIK TKM4104. KULIAH KE-3 SOLUSI PERSAMAAN NONLINIER 1

SEKOLAH TINGGI MANAJEMEN INFORMATIKA DAN KOMPUTER GLOBAL INFORMATIKA MDP

BAB II TINJAUAN PUSTAKA

Persamaan Non Linier

PARTIKEL DALAM BOX. Bentuk umum persamaan orde dua adalah: ay" + b Y' + cy = 0

PERHITUNGAN TINGKAT ENERGI SUMUR POTENSIAL KEADAAN TERIKAT MELALUI PERSAMAAN SCHRODINGER MENGGUNAKAN METODE BEDA HINGGA

MATERI PERKULIAHAN. Gambar 1. Potensial tangga

KB 2. Nilai Energi Celah. Model ini menjelaskan tingkah laku elektron dalam sebuah energi potensial yang

Yogyakarta, Maret 2011 Penulis. Supardi, M.Si

TUGAS KOMPUTASI SISTEM FISIS 2015/2016. Pendahuluan. Identitas Tugas. Disusun oleh : Latar Belakang. Tujuan

FUNGSI GELOMBANG DAN RAPAT PROBABILITAS PARTIKEL BEBAS 1D DENGAN MENGGUNAKAN METODE CRANK-NICOLSON

BAB 3 PENYELESAIAN PERSAMAAN NON LINIER

APLIKASI ANALISIS TINGKAT AKURASI PENYELESAIAN PERSAMAAN NON LINIER DENGAN METODE BISEKSIDAN METODE NEWTON RAPHSON

BAB II TINJAUAN PUSTAKA

tak-hingga. Lebar sumur adalah 4 angstrom. Berapakah simpangan gelombang elektron

= (2) Persamaan (2) adalah persamaan diferensial orde dua dengan akar-akar bilangan kompleks yang berlainan, solusinya adalah () =sin+cos (3)

KATA PENGANTAR. FisikaKomputasi i -FST Undana

Teori Atom Mekanika Klasik

Mesin Carnot Kuantum Berbasis Partikel Dua Tingkat di dalam Kotak Potensial Satu Dimensi

POKOK BAHASAN. Matematika Lanjut 2 Sistem Informasi

PAM 252 Metode Numerik Bab 2 Persamaan Nonlinier

APLIKASI TEORI THOMAS-FERMI UNTUK MENENTUKAN PROFIL KERAPATAN DAN ENERGI ATOM HIDROGEN, ATOM LITIUM, DAN MOLEKUL!!

Mekanika Kuantum dalam Koordinat Bola dan Atom Hidrogen

BAB II PENGANTAR SOLUSI PERSOALAN FISIKA MENURUT PENDEKATAN ANALITIK DAN NUMERIK

Akar-Akar Persamaan. Definisi akar :

SIFAT GELOMBANG PARTIKEL DAN PRINSIP KETIDAKPASTIAN. 39. Elektron, proton, dan elektron mempunyai sifat gelombang yang bisa

MEKANIKA KUANTUM DALAM TIGA DIMENSI

Triyana Muliawati, S.Si., M.Si.

FISIKA I. OSILASI Bagian-2 MODUL PERKULIAHAN. Modul ini menjelaskan osilasi pada partikel yang bergerak secara harmonik sederhana

PENENTUAN ENERGI EIGEN PERSAMAAN SCHRODINGER DENGAN SUMUR POTENSIAL SEMBARANG MENGGUNAKAN METODE MATRIKS TRANSFER NUMERIK

BUKU RANCANGAN PENGAJARAN MATA AJAR METODE NUMERIK. oleh. Tim Dosen Mata Kuliah Metode Numerik

Pembimbing : Agus Purwanto, D.Sc.

BAB V PERAMBATAN GELOMBANG OPTIK PADA MEDIUM NONLINIER KERR

BAB II TINJAUAN PUSTAKA. pembeli opsi untuk menjual atau membeli suatu sekuritas tertentu pada waktu dan

TINJAUAN KASUS PERSAMAAN GELOMBANG DIMENSI SATU DENGAN BERBAGAI NILAI AWAL DAN SYARAT BATAS

Bab 4 DINDING SINUSOIDAL SEBAGAI REFLEKTOR GELOMBANG

SEMINAR NASIONAL BASIC SCIENCE II

Pertemuan I Mencari Akar dari Fungsi Transendental

METODE NUMERIK 3SKS-TEKNIK INFORMATIKA-S1. Mohamad Sidiq PERTEMUAN : 3 & 4

Perhitungan Nilai Golden Ratio dengan Beberapa Algoritma Solusi Persamaan Nirlanjar

PENGANTAR MONTE CARLO

KB.2 Fisika Molekul. Hal ini berarti bahwa rapat peluang untuk menemukan kedua konfigurasi tersebut di atas adalah sama, yaitu:

RENCANA PROGRAM KEGIATAN PEMBELAJARAN SEMESTER (RPKPS)

Metode Numerik. Persamaan Non Linier

2 Akar Persamaan NonLinear

a. Lattice Constant = a 4r = 2a 2 a = 4 R = 2 2 R = 2,8284 x 0,143 nm = 0,4045 nm 2

RENCANA PEMBELAJARAN SEMESTER (RPS) METODE NUMERIK

DERET FOURIER DAN APLIKASINYA DALAM FISIKA

Metode Numerik & Lab. Muhtadin, ST. MT. Metode Numerik & Komputasi. By : Muhtadin

BAB I PENDAHULUAN. akibat dari interaksi di antara penyusun inti tersebut. Penyusun inti meliputi

PENDAHULUAN FISIKA KUANTUM. Asep Sutiadi (1974)/( )

METODE ITERASI BARU BERTIPE SECANT DENGAN KEKONVERGENAN SUPER-LINEAR. Rino Martino 1 ABSTRACT

Pendahuluan Metode Numerik Secara Umum

Listrik Statik. Agus Suroso

PENCARIAN AKAR-AKAR PERSAMAAN NONLINIER SATU VARIABEL DENGAN METODE ITERASI BARU HASIL DARI EKSPANSI TAYLOR

HAND OUT FISIKA KUANTUM MEKANISME TRANSISI DAN KAIDAH SELEKSI

Solusi Penyelesaian Persamaan Laplace dengan Menggunakan Metode Random Walk Gapar 1), Yudha Arman 1), Apriansyah 2)

KEMENTERIAN RISET, TEKNOLOGI DAN PENDIDIKAN TINGGI UNIVERSITAS NEGERI YOGYAKARTA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM

model atom mekanika kuantum

MATERI 4 MATEMATIKA TEKNIK 1 DERET FOURIER

PENDAHULUAN. Di dalam modul ini Anda akan mempelajari Gas elektron bebas yang mencakup: Elektron

BAB 2 TINJAUAN PUSTAKA

Atom menyusun elemen dengan bilangan sederhana. Setiap atom dari elemen yang berbeda memiliki massa yang berbeda.

Pertemuan ke 8. GRAFIK FUNGSI Diketahui fungsi f. Himpunan {(x,y): y = f(x), x D f } disebut grafik fungsi f.

METODE BERTIPE NEWTON UNTUK AKAR GANDA DENGAN KONVERGENSI KUBIK ABSTRACT

BAB IV DERET FOURIER

Pengantar Metode Numerik

PENYELESAIAN PERSAMAAN NONLINIER DENGAN METODE MODIFIKASI BAGI DUA

Matematika Proyek Perintis I Tahun 1979

APLIKASI METODE BEDA HINGGA PADA PERSAMAAN SCHRöDINGER MENGGUNAKAN MATLAB ABSTRAK

PENERAPAN METODA MATRIK TRANSFER UNTUK MENENTUKAN ENERGI PRIBADI DARI PERSAMAAN GELOMBANG SCHRODINGER POTENSIAL SUMUR SEMBARANG

Catatan Kuliah FI1101 Fisika Dasar IA Pekan #8: Osilasi

ANALISIS DAN VISUALISASI PERSAMAAN KLEIN-GORDON PADA ELEKTRON DALAM SUMUR POTENSIAL DENGAN MENGGUNAKAN PROGRAM MATHEMATIC 10

Penerapan Integrasi Numerik pada Medan Magnet karena Arus Listrik

BAB III OPERATOR 3.1 Pengertian Operator Dan Sifat-sifatnya

BAB I PENDAHULUAN. kehidupan sehari-hari dan juga merupakan disiplin ilmu yang berdiri sendiri serta

Transkripsi:

BAB I PENDAHULUAN Latar Belakang Masalah Ada beberapa metode numerik yang dapat diimplementasikan untuk mengkaji keadaan energi (energy state) dari sebuah sistem potensial sumur berhingga. Diantara metode-metode yang dikenal adalah metode bagi dua (bisection), metode Secant, Newton-Raphson, metode posisi palsu dan yang lainnya. Metode-metode ini tentunya memiliki kelebihan dan kekurangannya masing-masing. Tetapi, secara umum metode Newton-Raphson merupakan metode yang biasa digunakan diantara yang lainnya mengingat kecepatan konvergensi serta kesederhanaan algoritmanya. Penelitian ini dilakukan untuk mengkaji beberapa metode numerik tersebut untuk penyelesaian masalah swanilai atau keadaan energi pada sistem yang berada dibawah pengaruh medan potensual sumur berhingga. Dalam bahasa matematika, masalah pencarian keadaan energi terikat ini terkait dengan pencarian akar persamaan nolinier. Oleh sebab itu, metode numerik yang diimplementasikan adalah metode pencarian akar persamaan non linier. Dalam kaitannya dengan permasalahan yang dikaji, fungsi gelombang merupakan besaran yang memegang peran penting dalam mekanika kuantum. Sebab di dalam besaran tersebut memuat semua informasi yang berkaitan dengan sistem. Sebegitu pentingnya hingga seluruh karakteristik sistem ditentukan oleh besaran ini. Dalam kajian ini akan dijabarkan bagaimana keterkaitan fungsi gelombang yang telah diketahui secara kasar (karena koefisien-koefisien yang menempel pada fungsi 1

tersebut belum diketahui) dapat digunakan untuk menentukan harga energi pada keadaan yang bersesuaian. Sistem yang ditinjau pada penelitian ini adalah sistem yang dipengaruhi oleh medan potensial berbentuk sumur berhingga. Sebagaimana keadaan zarah yang terjebak di dalam suatu medan potensial tertentu, maka muncul keadaan-keadaan terkuantisasi dengan keadaan energi spesifik (tidak sembarangan). Partikel dalam keadaan terjebak ini akan melakukan gerak osilasi dengan frekuensi dan periode tertentu. Hal ini bisa ditunjukkan dengan bentuk fungsi gelombang yang mewakilinya. Jika partikel berada pada keadaan energi dasar, maka gerakan yang dilakukan oleh zarah menjadi lebih lambat dibandingkan dengan zarah yang berada pada keadaan terteksitasi pertama. Demikian pula, zarah yang berada pada keadaan terteksitasi kedua mengalami gerakan yang lebih cepat dibandingkan dengan partikel pada keadaan terksitasi pertama. Begitu seterusnya, zarah yang berada di keadaan energi yang lebih tinggi mengalami gerakan lebih cepat dibandingkan zarah yang berada pada keadaan energi lebih rendah ( Supardi, 00). Tujuan Penelitian Penelitian yang sudah dilakukan bertujuan mengkaji kehandalan metode numerik Newton-Raphson untuk memperoleh harga-harga energi pada setiap keadaan pada sebuah sistem yang berada dibawah pengaruh medan potensial sumur berhingga. Dari penggunaan metode Newton-Raphson tersebut kemudian akan dibandingkan dengan metode pendekatan numerik lain. Manfaat Penelitian

Hasil dari kajian komputasi numerik ini dapat digunakan sebagai pembanding hasil analitis matematis pada penyelesaian persamaan Schroedinger sistem tersebut. Juga, penelitian ini memberikan sumbangan melalui pemodelan sistem yang dipengaruhi oleh potensial kotak. 3

BAB II TINJAUAN PUSTAKA Di dalam Mekanika Kuantum, pemodelan terhadap suatu bentuk medan potensial merupakan hal yang sangat penting. Pemodelan dengan bentuk medan potensial tertentu akan memberikan sumbangan pada penggambaran mengenai karakteristik zarah yang dipengaruhinya (Supardi, 00). Karakteristik zarah ini ditunjukkan oleh keberadaan energi-energi terikatnya serta perilaku fungsi gelombang yang bersesuaian dengan keadaan tersebut. Untuk peninjauan pada karakteristik zarah yang dipengaruhi oleh medan potensial sumur berhingga, besaran yang sangat penting adalah energi dan tinggi potensial sumur. Apabila dalam sistem ini besarnya energi yang dimiliki zarah lebih besar dari tinggi potensial yang ada (atau E > V ) maka yang terjadi adalah pelepasan zarah tersebut dari sistem atau dalam hal ini tidak ada lagi keadaan terikat (Koonin at al., 1990). Tetapi jika zarah yang terjebak dalam medan potensial ini memiliki energi E < V, maka yang terjadi adalah terciptanya keadaan-keadaan energi terikat (energy state). Keadaan-keadaan terikat yang tercipta oleh sistem ini jumlahnya tertentu bergantung kepada tinggi rendahnya potensial, lain halnya dengan potensial Coulomb yang bekerja pada atom hidrogen seperti yang dinyatakan oleh model Bohr. E V 0 a Gambar 1. Potensial sumur berhingga 4

Dalam mekanika kuantum persamaan Schroedinger memainkan peranan penting sebagaimana persamaan gerak Newton dalam mekanika klasik. Pemecahan terhadap persamaan tersebut akan memberikan informasi tentang banyak hal yang ingin diketahui mengenai karakteristik zarah (De Vries et al., 1994). Persamaan Schrodinger dalam ruang satu dimensi dinyatakan oleh -h d ψ m dx ( x ) ( ) ψ ( ) ψ ( ) + V x x = E x (1) Penyelesaian fungsi gelombang ψ untuk setiap daerah dapat dinyatakan sebagai berikut Untuk x < a ψ ( x ) = C ( κ x ) dengan ( ) 1 exp κ = h () m E V 0 Untuk a < x < + a ( x ) Acos ( kx) Bsin ( kx ) ψ = + dengan k = me h (3) x > + a ψ ( x ) = C ( κ x ) dengan ( ) exp κ = h (4) m E V 0 Persamaan (), (3) dan (4) ini merupakan penyelesaian penting yang akan menjadi titik tolak pencarian keadaan-keadaan terikat. Sayangnya, penyelesaian persamaan Schroedinger tersebut masih belum diketahui secara eksplisit koefisien-koefisiennya. Untuk menentukan koefisien-koefisien yang dicari dan spektrum keadaan terikatnya, maka akan digunakan syarat kontinuitas yaitu harga ψ dan turunannya pada perbatasan dinding di x a =, C exp ( κ a ) Acos ( ka ) Bsin ( ka ) 1 = (5) 5

turunan di x a di x a =, κ C exp ( κ a ) kasin ( ka ) kb cos ( ka ) 1 = + (6) =, C exp ( κ a ) Acos ( ka ) Bsin ( ka ) turunan di x a = + (7) = +, κ C exp ( κ a ) kasin ( ka ) kb cos ( ka ) = + (8) Persamaan (5), (6), (7) dan (8) memberikan inspirasi bahwa masalah ini selanjutnya dapat dibawa ke dalam masalah pencarian harga-harga akar persamaan E sedemikian hingga persamaan non-liner, f ( E ) = 0 dapat dipenuhi. Dalam kenyataannya, akar-akar dari persamaan non linier tersebut tidak mudah untuk ditemukan secara analitik, kecuali pada kasus-kasus sederhana. Oleh sebab itu, alasan utama penyelesaian masalah-masalah persamaan tersebut menggunakan pendekatan numerik adalah bahwa penyelesaian menggunakan cara analitik biasanya akan menemui kesulitan, meskipun persamaan yang dikerjakan kelihatannya sederhana. Hal inilah yang menjadi asal-muasal metode numerik diperlukan untuk mendekati penyelesaian masalah ini (Press et al., 1987). Metode Pencarian Akar Persamaan Ada beberapa cara pendekatan numerik yang dapat digunakan untuk memecahkan masalah menemukan harga-harga akar persamaan non linier. Pada penelitian ini metode numerik yang akan dikaji adalah metode grafik, metode bagi dua dan metode Newton- Raphson. Metode Grafik Pencarian akar-akar persamaan dengan menggunakan metode grafik merupakan cara paling sederhana dibandingkan dengan yang lain. Untuk mendapatkan akar-akar persamaan ini cukup dilakukan pengeplotan terhadap fungsi yang dimaksud. Sebagai 6

ilustrasi dapat dilihat pada gambar. Dengan menarik garis dari perpotongan antara grafik f ( E ) dengan sumbu-e, maka dapat diperkirakan akar-akar persamaan yang dimilikinya. Kelemahan dari metode ini adalah bahwa harga akar yang ditemukan memiliki akurasi yang sangat kasar. Gambar. Pencarian akar persamaan dengan metode grafik.. Metode Bagi Dua (Bisection) Metode bagi dua merupakan metode numerik paling sederhana diantara metodemetode analisis lain dalam pencarian akar persamaan nonlinier. Metode ini termasuk metode yang robust, atau tahan uji (Press, at al., 1987). Salah satu kekurangan metode ini adalah bahwa harus diberikan dua terkaan awal, yaitu x a dan x b yang mengurung sebuah akar persamaan, sehingga apabila f = f ( x ) dan f f ( x ) a a b =, maka akan dipenuhi b f f a b 0. Contoh dari masalah ini digambarkan pada gambar 3. Apabila dipenuhi fa f b = 0 maka salah satu dari x a dan x b yang berada pada x 1 atau keduanya merupakan akar persamaan yang dicari. 7

Gambar 3. Pencarian akar persamaan dengan metode bagi dua..3 Metode Newton-Raphson Metode Newton-Raphson merupakan metode yang paling sering digunakan diantara metode-metode pencarian akrar persamaan yang dikenal. Ide dari metode ini ( i i ) adalah, jika diberikan satu terkaan awal pada titik, ( ) x f x maka dapat ditarik garis singgung hingga memotong sumbu x. Titik potong dengan sumbu x ini biasanya merupakan terkaan akar yang lebih baik dibandingkan terkaan sebelumya. Pendekatan geometris tersebut dapat dilihat pada gambar 4. Gambar 4 Metode Newton-Raphson 8

Disamping menggunakan pendekatan geometris, metode ini juga dapat diturunkan dari ekspansi deret Taylor disekitar titik x = x0, yaitu 1 ( ) ( 0 ) ( 0 ) '( 0 ) ( 0 ) '' ( 0 ) ( 0 ) f x = f x + x x f x + x x f x + O x x (-7) Dengan mengabaikan suku kuadratik dan suku-suku yang lebih tinggi dan dengan mengambil f ( x ) = 0, maka diperoleh harga x sebagai ( x0 ) '( x ) f x = 1 x 0 f (-8) 0 Atau dalam bentuk hubungan rekursi (-8) dapat dinyatakan kembali dalam bentuk x x f ( xn ) '( x ) = n + 1 n f (-9) n Secara geometris, x n + 1 dapat ditafsirkan sebagai harga pada sumbu x yang mana sebuah ( n n ) garis melalui titik, ( ) x f x memotong sumbu x tersebut. 9

BAB III METODE PENELITIAN Penelitian tentang masalah ini telah dilakukan di Laboratorium Fisika Komputasi Jurusan Pendidikan Fisika Universitas Negeri Yogyakarta. Metode penyelesaian yang digunakan adalah beberapa algoritma numerik antara lain, metode grafik, metode bagi dua dan metode Newton-Raphson. Sebelum dilakukan komputasi numerik terhadap harga energi pada setiap keadaan, lebih dahulu dicari bentuk persamaan non linier yang dinyatakan dalam variabel bebas energi. Untuk tujuan ini, perlu dilakukan penyederhanaan terhadap ungkapan (5), (6), (7) dan (8). Setelah dilakukan langkah penyederhaan, maka diperoleh harga besaran κ dalam A dan B yaitu κ = ( ) + cos ( ) ( ) sin ( ) k Asin ka B ka A cos ka B ka di x = a (9) dan κ = ( ) cos ( ) ( ) + sin ( ) k Asin ka B ka A cos ka B ka di x = + a (10) Satu-satunya cara yang dapat dilakuakan agar dua persamaan untuk κ konsisten adalah menghilangkan salah satu konstanta tersebut untuk kondisi-kondisi yang dipeneuhi, A fungsi cosinus paritas +1 k tan ( ka ) Saat 0 Saat 0 κ = (11) B fungsi sinus paritas -1 k cot ( ka ) κ = (1) 10

Jika ungkapan (9) dan (10) dinyatakan secara eksplisit terhadap variabel E, maka diperoleh ungkapan Untuk paritas +1 ( ) ( ) ( ) ( ) m E V0 cos a m E me sin a me = 0 Untuk paritas -1 h h h h (13) ( ) ( ) ( ) ( ) m E V0 sin a m E + me cos a me = 0 h h h h (14) Untuk kepentingan komputasi numerik, maka ungkapan (13) dan (14) baik diungkapkan dalam besaran-besaran universal atau besaran tak berdimensi. Oleh sebab itu, diambil asumsi = ma E h dan ma V0 0 ϕ = h (15) Selanjutnya, ungkapan (13) dan (14) dapat dinyatakan kembali sebagai 0 ( ) ( ) ϕ cos sin = 0 (16) 0 ( ) ( ) ϕ sin + cos = 0 (17) Dari ungkapan (16) dan (17) sudah siap untuk dilakukan perhitungan numerik untuk memperoleh swanilai untuk tiap keadaan. 11

BAB IV HASIL DAN PEMBAHASAN Pada penelitian ini telah diambil harga tinggi potensial ϕ 0 = 100. Dengan ketinggian potensial demikian diharapkan muncul beberapa keadaan energi terikat tertentu. Untuk memperoleh gambaran mengenai bengkitnya beberapa keadaan energi tersebut digunakan beberapa pendekatan numerik dan grafis. Pemecahan masalah yang pertama telah dilakukan dengan menggunakan metode grafis. Pendekatan penyelesaian melalui metode ini dapat dilihat pada gambar (5) dan (6). Hasil numerik yang ditampilkan oleh metode ini dapat diketahui dengan memperhatikan titik perpotongan fungsional energi dengan sumbu absis. Gambar (5) ditampilkan profil fungsional energi untuk paritas +1 dengan titik-titik perpotongan fungsional kira-kira di titik-titik.0, 18.0, 49.0, 93.0. Sedangkan gambar (5) ditampilkan titik-titik perpotongan di 9.0, 37.0, 70.0 untuk paritas -1. Titik-titik perpotongan antara fungsional energi dengan sumbu absis tersebut menyatakan aras-aras keadaan energi terikat pada sistem potensial sumur berhingga. Jika diperhatikan, harga-harga pendekatan numerik yang diberikan metode ini sangat kasar. Hal ini terlihat pada hasil yang tidak tampak angka signifikan di belakang koma. Kecepatan konvergensi ke arah keadaan energi terikat menggunakan metode bagi dua dan Newton-Raphson ditampilkan pada gambar (6) da(7). Grafik tersebut 1

memperlihatkan watak metode pendekatan itu saat digunakan untuk mencari keadaankeadaan energi terikat. Gambar 5. Pencarian keadaan energi menggunakan metode grafik untuk paritas genap Gambar 6. Pencarian keadaan energi menggunakan metode grafik untuk paritas genap 13

Bila diperhatikan secara seksama grafik konvergensi pencarian keadaan energi pada gambar (7) dan (8), metode Newton-Raphson memiliki kecepatan konvergensi lebih tinggi dibandingkan dengan metode bagi dua, setidaknya pada saat pencarian keadaan energi dasar hingga keadaan terksitasi ke-4. Sedangkan, untuk keadaan energi pada aras ke-5 dan ke-6, kedua metode hampir bersamaan mencapai konvergensi. Melalui perhitungan secara numerik diperoleh tujuh keadaan energi terikat untuk sistem yang dipengaruhi oleh medan potensial sumur berhingga. Ketujuh keadaan energi tersebut dapat dilihat pada tabel 1. Tabel 1. hasil pendekatan numerik keadaan energi pada sistem yang berada di bawah pengaruh medan potensial sumur berhingga Aras energi ke Energi Keterangan 0.03790 Keadaan dasar 1 8.13585 Keadaan tereksitasi ke-1 18.46 Keadaan tereksitasi ke- 3 3.5340 Keadaan tereksitasi ke-3 4 49.969 Keadaan tereksitasi ke-4 5 70.95036 Keadaan tereksitasi ke-5 6 93.68080 Keadaan tereksitasi ke-6 Pada keadaan fisis yang sesungguhnya, model potensial sumur berhingga ini banyak ditemukan pada kasus-kasus atomik maupun subatomik. Salah satu keadaan yang jelas nyata adalah inti atom, dimana potensial di dalamnya adalah kempes (flat), seperti bentuk dalam dari tetesan cairan berbentuk bola. 14

Gambar 6. Pencarian keadaan energi untuk keadaan dasar, tereksitasi ke-1, tereksitasi ke- dan tereksitasi ke-3 dengan metode Newton-Rapson dan metode bagi dua. Tanda : metode bagi dua dan -: metode Newton-Raphson. Perhatikan, kecepatan konvergensi metode Newton-Raphson lebih cepat dibandingkan dengan metode bagi dua. 15

Gambar 7. Pencarian keadaan energi untuk keadaan tereksitasi ke-4, tereksitasi ke- 5 dan tereksitasi ke-6 dengan metode Newton-Rapson dan metode bagi dua. Tanda : metode bagi dua dan -: metode Newton-Raphson. 16

BAB V KESIMPULAN Kesimpulan yang dapat diambil dari penelitian yang telah dilakukan oleh peneliti antara lain Metode Newton-Raphson memiliki kecepatan konvergensi lebih tinggi dibandingkan dengan metode bagi dua. Hasil pendekatan numerik yang diberikan oleh metode Newton-Raphson memiliki ketelitian lebih baik dibandingkan dengan metode grafik. Jumlah keadaan energi pada sistem yang berada di bawah pengaruh medan potensial sumur berhingga pada ketinggian sumur 100 berjumlah tujuh keadaan. 17

DAFTAR PUSTAKA De Vries, Paul L. 1994. A First Course In Commputational Physics, New York : John Wiley & Sons, Inc. Koonin, Steven E., Meredith, dawn C. 1990. Computational Physics, USA : Addison- Wesley Publishing Company, Inc. Press H., Flannery P., Teulosky A., Vetterling T. 1987. Numerical recipes, Cambridge : Press Syndicate of the Cambridge University. Supardi. 00. Perilaku Fungsi Gelombang Sistem Potensial Sumur Berhingga, Jurnal Pendidikan Matematika dan Sains, VII, 18