BAB II TINJAUAN PUSTAKA

Ukuran: px
Mulai penontonan dengan halaman:

Download "BAB II TINJAUAN PUSTAKA"

Transkripsi

1 BAB II TINJAUAN PUSTAKA.1 Persamaan Schrödinger Persamaan Schrödinger merupakan fungsi gelombang yang digunakan untuk memberikan informasi tentang perilaku gelombang dari partikel. Suatu persamaan differensial akan menghasilkan pemecahan yang sesuai dengan fisika kuantum.. Persamaan Schrödinger Bebas-waktu Aplikasi persamaan Schrödinger dalam banyak hal akan berkaitan dengan energy potensial, yaitu besaran yang merupakan fungsi posisi dan tidak merupakan fungsi waktu. Perhatian kita tidak tertuju pada keberadaan elektron dari waktu ke waktu, melainkan tertuju pada kemungkinan dia berada dalam selang waktu yang cukup panjang. Jadi jika faktor waktu dapat dipisahkan dari fungsi gelombang, maka hal itu akan menyederhanakan persoalan. Kita tinjau persamaan Schrodinger kasus satu dimensi dan menuliskan persamaan gelombang sebagai berikut + P (x) (.1) Atau + P (x) (.) Inilah persamaan Schrödinger satu dimensi yang bebas-waktu. Untuk tiga dimensi persamaan itu menjadi :,, 0 (.3) Perlu kita sadari bahwa adanyan persamaan Schrödinger bebas-waktu bukanlah berarti bahwa elektron atau partikel yang ingun kita pelajari dengan mengaplikasikan persamaan ini adalah partikel bebas-waktu. Partikel tersebut memiliki kecepatan gerak, dan kecepatan adalah turunan terhadap waktu dan posisi. Oleh karena itu dalam memeberi arti pada penurunan matematis dan persamaan Schrödinger bebas-waktu, dalam hal-hal tertentu kita perlu mempertimbangkan masalah waktu, sesuai dengan logika.

2 Dengan persamaan Schrödinger bebas-waktu (.1) atau (.) fungsi gelombang yang dilibatkan dalam persamaan ini juga fungsi gelombang bebas-waktu, ψ(x) Dari bentuk gelombang komposit untuk elektron S(x,t) dengan S(x,t) = (.4) kita mengambil bentuk ψ(x) sebagai ψ(x) A(x)e jkx, dengan A(x) adalah selubung paket gelombang, untuk mencari solusi persamaan Schrödinger. Persamaan Schrödinger adalah persamaan gelombang dan yang kita maksudkan adalah gelombang sebagai representasi elektron atau partikel. Mencari solusi persamaan Schrödinger adalah untuk memperoleh fungsi gelombang yang selanjutnya digunakan untuk melihat bagaimana perilaku atau keadaan elektron. Hubungan antara momentum p dan energi E dengan besaran-besaran gelombang (k,ω,f,λ) adalah p = λ λ (.5).3 Fungsi Gelombang Persamaan Schrödinger adalah persamaan diferensial parsial dengan adalah fungsi gelombang, dengan pengertian bahwa Adalah probabilitas keberadaan elektron pada waktu tertentu dengan volume dx, dy, dz di sekitar titik (x,y,z), * adalah konjugat dari. Jadi persamaan Schrödinger tidak menentukan posisi elektron melainkan memberikan probabilitas bahwa ia akan ditemukan di sekitar posisi tertentu. Kita juga tidak mengatakan secara pasti bagaimana elektron bergerak sebagai fungsi waktu karena posisi dan momentum elektron dibatasi oleh prinsip ketidakpastian Heisenberg.

3 Dalam kasus satu dimensi dengan bentuk gelombang. / (.6) Dan / (.7) Maka / (.8) Apa yang berada dalam tanda kurung pada (.9) adalah selubung paket gelombang yang merupakan fungsi x sedangkan A 0 memiliki nilai konstan. Jadi selubung paket gelombang itulah yang menentukan probabilitas keberadaan partikel. Persyaratan Fungsi Gelombang, Fungsi gelombang (x) hasil solusi persamaan Schrödinger mempunyai arti fisis. Syarat-syarat tersebut adalah sebagai berikut. Elektron sebagai suatu yang nyata harus ada di suatu tempat. Oleh karena itu fungsi gelombang (untuk satu dimensi) harus memenuhi 1 Fungsi gelombang (x), harus kontinyu sebab jika terjadi ketidak-kontinyuan hal itu dapat ditafsirkan sebagai rusaknya elektron, suatu hal yang tidak dapat diterima. Turunan fungsi gelombang terhadap posisi, d / dx, juga harus kontinyu. Kita telah melihat bahwa turunan fungsi gelombang terhadap posisi terkait dengan momentum elektron sebagai gelombang. Oleh karena itu persyaratan ini dapat diartikan sebagai persyaratan kekontinyuan momentum. Fungsi gelombang harus bernilai tunggal dan terbatas sebab jika tidak akan berarti ada lebih dari satu kemungkinan keberadaan elektron. Fungsi gelombang tidak boleh sama dengan nol disemua posisi sebab kemungkinan elektron haruslah nyata, betapapun kecilnya.(kamal Singh,006)

4 .4 Probabilitas dan Normalisasi Fungsi gelombang ψ(x) menyatakan suatu gelombang yang memiliki panjang gelombang dan bergerak dengan kecepatan fase yang jelas. Masalah yang muncul ketika hendak menafsirkan amplitudonya. Apakah yang dinyatakan oleh amplitudo ψ(x) dan variabel fisika apakah yang bergetar? Ini merupakan suatu jenis gelombang yang berbeda, yang nilai mutlaknya memberikan probabilitas untuk menemukan partikelnya pada suatu titik tertentu. Dimana ψ(x) dx memberikan probabilitas untuk menemukan partikel dalam selang dx di x. Rapat probabilitas P(x) terhadap ψ(x) menurut persamaan Schrödinger sebagai berikut: P(x)dx= ψ(x) dx (.9) Tafsiran ψ(x) ini membantu memahami persyaratan kontinu ψ(x), walaupun amplitudonya berubah secara tidak jelas dan kontinu. Probabilitas untuk menemukan partikel antara x 1 dan x adalah jumlah semua probabilitas P(x)dx dalam selang antara x 1 dan x adalah sebagai berikut: x x P( x) dx = ψ ( x) x1 x1 dx (.10) Dari aturan ini, maka probabilitas untuk menemukan partikel disuatu titik sepanjang sumbu x, adalah 100 persen, sehingga berlaku: + ψ ( x) dx = 1 (.11) Persamaan (.1) dikenal dengan syarat Normalisasi, yang menunjukkkan bagaimana mendapatkan tetapan A. Dimana tetapan A tidak dapat ditentukan dari persamaan Differensialnya. Sebuah fungsi gelombang yang tetapan pengalinya ditentukan dari persamaan (.1) disebut ternormalisasikan. Hanyalah fungsi gelombang yang ternomalisasi secara tepat, yang dapat digunakan untuk melakukan semua perhitungan yang mempunyai makna fisika. Jika normalisasinya telah dilakukan secara tepat, maka persamaan (.1) akan selalu menghasilkan suatu probabilitas yang terletak antara 0 dan 1. Setiap pemecahan persamaan Schrödinger yang menghasilkan ψ(x) bernilai tak hingga, harus dikesampingkan. Karena tidak pernah terdapat probabilitas tak hingga untuk menemukan partikel pada titik manapun. Maka harus

5 mengesampingkan suatuu pemecahan dengan mengembalikan faktor pengalinya sama dengann nol. Sebagai contoh, jika pemecahan matematika bagi persamaan differensial menghasilkan ψ(x) = A + B bagi seluruh daerah x > 0, maka syaratnya A = 0 agar pemecahannnya mempunyai makna fisika. Jika tidak ψ(x) ) akan menjadi tak hingga untuk x menuju tak hingga ( Tetapi jika pemecahannya dibatasi dalam selang 0 < x < L, maka A tidak boleh samaa dengan nol). Tetapi jika pemecahannya berlaku pada seluruh daerah negatif sumbu x < 0, makaa B = 0. Kedudukan suatuu partikel tidak dapat dipastikan,dalam hal ini tidak dapat menjamin kepastian hasil suatu kali pengukuran suatu besaran fisika yang bergantung pada kedudukannnya. Namun jika menghitung probabilitas yang berkaitan dengan setiap kooordinat, maka ditemukan hasil yang mungkin dari pengukuran satu kali atau rata-rata hasil dari sejumlah besar pengukuran berkali-kali (Eisberg,1970)..5 Penerapan Persamaan Schrödinger Persamaan Schrödinger dapat diterapkan dalam berbagai persoalan fisika. Dimana pemecahan persamaan Schrödinger, yang disebut fungsi gelombang, memberikan informasi tentang perilaku gelombang dari partikel Pada partikel Bebas Yang dimaksudd dengan Partikel Bebas adalah sebuah partikel yang bergerak tanpa dipengaruhi gaya apapun dalam suatu bagian ruang, yaitu, F = - dv(x) / dx = 0 sehingga menempuh lintasan lurus dengan kelajuan konstan. Sehingga energi potensilnya nol. Partikel bebas dalam mekanika klasik bergerak dengan momentum konstan P, yang mengakibatkan energi totalnya jadi konstan. Tetapi partikel bebas dalam mekanika kuantum dapat dipecahkan dengan persamaan Schrödinger tidak bergantung waktu. Persamaan Schrodinger padaa partikel bebas dapat diperoleh dari persamaan (.13) berikut: h ψ ( x) + Vψ ( x) = Eψ (x) m (.1)

6 Untuk partikel bebas V = 0, maka persamaannya menjadi ψ ( x) h = Eψ ( x) (.13) m atau ψ ( x) m = h Eψ (x) (.14) Atau: ψ ( x) me + ψ ( x) = 0 h (.15) Karena: me k = atau h h k E = (.16) m Dengan demikian diperoleh: ψ ( x) = k ψ ( x) ψ ( x) + k ψ ( x) = 0 (.17) (.18) Persamaan (.19) adalah bentuk umum dari persamaan differensial biasa berorde dua, dengan k adalah positif, dimana ψ(x) merupakan kuantitas kompleks yang memiliki bagian real (nyata) dan bagian imajiner,maka : ψ ( x) + k ψ ( x) = 0 (.19) Maka didapatkan ψ(x)=asinkx+ B cos kx (.0) Pemecahan ini tidak memberikan batasan pada k, maka partikel yang diperkenankan memiliki semua nilai (dalam istilah kuantum, bahwa energinya tidak terkuantisasi). Sedangkan penentuan nilai A dan B mengalami beberapa kesulitan,

7 karena integral normalisasi tidak dapat dihitung dari - hingga +, bagi fungsi gelombang itu. (Krane, 199)..5.. Partikel dalam sumur potensial Sumur Potensial adalah daerah yang tidak mendapat pengaruh potensial. Hal ini berarti bahwa partikel selama berada dalam sumur potensial, merupakan electron bebas. Kita katakan bahwa electron terjebak di sumur potensial, dan kita anggap bahwa dinding potensial sangat tinggi menuju, atau kita katakan sumur potensial sangat dalam. Dalam gambar (.1) berikut kita akan menggambarkan sumur potensial. Daerah I dan daerah III adalah daerah-daerah dengan V=, Sedangkan di daerah II, yaitu antara 0 dan L, V=. Kita katakan bahwa lebar sumur potensial ini adalah L. V(x) = 0, 0 x L V(x) =, x < 0, x > L, I II III E p = E p = 0 E p = Ψ 1 Ψ Ψ 3 Gambar.1 Partikel dalam sumur potensial daerah II Pada sumur potensial yang dalam, daerah I dan III adalah daerah dimana kemungkinan berada elektron bisa dianggap nol, Ψ 1 (x) = 0 dan Ψ (x) = 0. Sedangkan pada daerah dua Kita dapat memberi spesifikasi pada gerak partikel dengan mengatakan bahwa gerak itu terbatas pada gerak sepanjang sumbu-x antara x = 0 dan x = L disebabkan oleh dinding keras tak berhingga. Sebuah partikel tidak akan kehilangan Energinya jika bertumbukan dengan dinding, energi totalnya tetap konstan. Dari per nyataan tersebut maka energi potensial V dari partikel itu menjadi tak hingga di kedua sisi sumur, sedangkan V konstan di dalam sumur, dapat dikatakan V = 0 seperti yang terlihat pada gambar (.1) di atas. Karena partikel tidak bisa memiliki Energi tak hingga, maka partikel tidak mungkin ditemukan di luar sumur, sehingga fungsi gelombang ψ = 0 untuk 0 x L. Maka yang perlu dicari adalah

8 nilai ψ di dalam sumur, yaitu antara x = 0 dan x = L. Persamaan Schrodinger bebas waktu adalah : (.1) Dengan Dimana (.) (.3) Sesuai dengan persamaan gelombang maka : ψ(x)=asinkx+b coskx (.4) Pemecahan ini belum lengkap, karena belum ditentukan nilai A dan B, juga belum menghitung nilai energi E yang diperkenankan. Untuk menghitungnya, akan diterapkan persyaratan bahwa ψ(x) harus kontinu pada setiap batas dua bagian ruang. Dalam hal ini, akan dibuat syarat bahwa pemecahan untuk x < 0 dan x > 0 bernilai sama di x = 0. Begitu pula pemecahan untuk x > L dan x < L haruslah bernilai sama di x = L. Jika x = 0, Untuk x < 0 Jadi harus mengambil ψ(x) = 0 pada x = 0. ψ(0) =Asin 0 + B cos 0 ψ(0) = 0 + B.1 = 0 (.5) Jadi,didapat B = 0. Karena ψ =0 untuk x > L, maka haruslah berlaku ψ(l) = 0, Ψ(L) = AsinkL + Bcos kl = 0 (.6) Karena telah didapatkan bahwa B = 0,maka haruslah berlaku: AsinkL = 0 (.7)

9 Disini ada dua pemecahan yaitu A = 0, yang memberikan ψ(x) = 0 dan ψ (x) = 0, yang berarti bahwa dalam sumur tidak terdapat partikel (Pemecahan tidak masuk akal) atau sin kl = 0, maka yang benar jika: kl = π,π,3π, n=1,,3. (.8) Dengan: (.9) Dari persamaan (.8) dan persamaaan (.9) diperoleh bahwa energi partikel mempunyai harga tertentu yaitu harga eigen. Harga eigen ini membentuk tingkat energisitas yaitu: E n n π h = ml Dimana energy yang kita tinjau disini berbeda dengan energy Born dimana pada energy Born menyatakan energy tingkat atomic sedangkan tingkat energy pada persamaan Schrodinger menyatakan tingkat energy untuk electron. Fungsi gelombang sebuah partikel didalam sumur yang berenergi E n ialah: ψ n = Asin me h n x (.31) Untuk memudahkan E 1 =ħ π /ml, yang mana tampak bahwa unit energi ini ditentukan oleh massa partikel dan lebar sumur. Maka E = n E 1 dan demikian partikelnya hanya dapat ditemukan dengan energi E 1, 4 E 1, 9 E 1, 16 E 1 dan seterusnya. Karena dalam kasus ini energi yang diperoleh hanya pada laju tertentu yang diperkenankan dimiliki partikel. Ini sangat berbeda dengan kasus klasik, misalnya manik-manik (yang meluncur tanpa gesekan sepanjang kawat dan menumbuk kedua dinding secara secara elastik) dapat diberi sembarang kecepatan awal dan akan bergerak selamanya, bolak-balik, dengan laju tersebut.

10 ... Dalam kasus kuantum, hal ini tidaklah mungkin, karena hanya laju awal tertentu yang dapat memberikan keadaan gerak tetap, keadaan gerak khusus ini disebut keadaan stasioner (Disebut keadaan stasioner karena ketergantungan pada waktu yang dilibatkan untuk membuat ψ ( x, t), ψ ( x, t) tidak bergantung waktu). Hasil pengukuran energi sebuah partikel dalam sebuah sumur potensial harus berada pada salah satu keadaan stasioner, hasil yang lain tidaklah mungkin. Pemecahan bagi ψ (x) belum lengkap, karena belum ditentukan tetapan A. Untuk menentukannya, ditinjau kembali persyaratan normalisasi, yaitu ψ ( x) dx = 1. Karena ψ(x)=0, kecuali untuk 0 x Lsehingga berlaku: +. 1 (.3) Maka diperoleh A = gelombang untuk 0 x L adalah: / L. Dengan demikian, Pemecahan lengkap bagi fungsi ψ n nπx = sin n=1,,3, (.33) L L Dalam gambar. dan.3 akan dilukiskan berbagai tingkat energi, fungsi gelombang dan rapat probabilitas ψ yang mugkin untuk beberapa keadaan terendah. Keadaan energi terendah, yaitu pada n =1, dikenal sebagai keadaan dasar dan keadaan dengan energi yang lebih tinggi (n > 1) dikenal sebagai keadaan eksitasi.

11 Gambar. Tingkat energi dalam sumur secara konstan ( Kamal Sing,005) Gambar.3 Probabilitas keberadaan electron dalam sumur potensial Kita lihat di sini bahwa energi elektron mempunyai nilai-nilai tertentu yang diskrit, yang ditentukan oleh bilangan bulat n. Nilai diskrit ini terjadi karena pembatasan yang harus dialami oleh ψ, yaitu bahwa ia harus berada dalam sumur potensial. Ia harus bernilai nol di batas-batas dinding potensial dan hal itu akan terjadi bila lebar sumur potensial L sama dengan bilangan bulat kali setengah panjang gelombang. Jika tingkat energi untuk n = 1 kita sebut tingkat energi yang pertama, maka tingkat energi yang kedua pada n =, tingkat energi yang ketiga pada n = 3 dan seterusnya.jika kita kaitkan dengan bentuk gelombangnya, dapat kita katakan bahwa tingkat-tingkat energi tersebut sesuai dengan jumlah titik simpul gelombang. Dengan

12 demikian maka diskritisasi energi elektron terjadi secara wajar melalui Pemecahan persamaan Schödinger. Persamaan (.30) memperlihatkan bahwa selisih energy antara satu tingkat dengan tingkat berikutnya, misalnya antara n=1 dan n =, berbanding terbalik dengan kuadrat lebar sumur potensial. Makin lebar sumur ini, makin kecil selisih energy tersebut, artinya tingkat-tingkat energy semakin rapat. Untuk L sama dengan satu satuan misalnya, selisih energy untuk n= dan n=1 adalah E - E 1 = 3ћ / 8m dan jika L 10 kali lebih lebar maka selisih ini menjadi E E 1 = 0.03ћ /8m. (a) (b) Gambar.4. Pengaruh lebar sumur terhadap energy Jadi makin besar L maka perbedaan nilai tingkat-tingkat energy akan semakin kecil dan untuk L semakin lebar maka tingkat-tingkat energy tersebut akan semakin rapat sehingga mendekati kontinyu.( Neuredine Zettili, 009)

13 .6 Pemrograman dengan Mathematica 7 Mathematica merupakan perangkat lunak yang diproduksi dan dikembangkan oleh Wolfram Research, Inc. Pendiri dan presiden perusahaan tersebut adalah Stephen Wolfram, P.hD. Beliau adalah fisikawan di bidang fisika teoritis dan berkebangsaan Inggris. Mathematica dapat digunakan untuk aplikasi matematika, ilmu pengetahuan, teknologi, bisnis dan aplikasi lainnya. Pada Penelitian ini, program lebih banyak dibuat dengan menggunakan perintah-perintah berikut ini 1. Graphics: perintah untuk menampilkan grafik dua dimensi berdasarkan data yang diberikan. Sintaks umumnya: Graphics[primitives,options].. Manipulate: perintah untuk memanipulasi secara interaktif ekspresi-ekspresi program, grafik dan objek lainnya. Sintaks umumnya: Manipulate[expr,{u,u min,u max }]. 3. Module: perintah untuk membuat variabel lokal dengan nama tertentu yang dapat dipanggil. Sintaks umumnya: Module[{x,y, },expr]. 4. If: perintah untuk memberikan suatu ekspresi tertentu jika kondisi benar dan ekspresi lainnya jika kondisi salah. Sintaks umumnya: If[condition,t,f]. 5. ListLinePlot: perintah untuk memplot grafik linier dua dimensi berdasarkan pasangan data yang telah ditentukan. Sintaks umumnya: ListLinePlot[{{x 1,y 1 },{x,y }, }]. Untuk informasi yang lebih mendetail tentang Mathematica dapat melihatnya di situs resmi Wolfram (

MATERI PERKULIAHAN. Gambar 1. Potensial tangga

MATERI PERKULIAHAN. Gambar 1. Potensial tangga MATERI PERKULIAHAN 3. Potensial Tangga Tinjau suatu partikel bermassa m, bergerak dari kiri ke kanan pada suatu daerah dengan potensial berbentuk tangga, seperti pada Gambar 1. Pada daerah < potensialnya

Lebih terperinci

FUNGSI GELOMBANG. Persamaan Schrödinger

FUNGSI GELOMBANG. Persamaan Schrödinger Persamaan Schrödinger FUNGSI GELOMBANG Kuantitas yang diperlukan dalam mekanika kuantum adalah fungsi gelombang partikel Ψ. Jika Ψ diketahui maka informasi mengenai kedudukan, momentum, momentum sudut,

Lebih terperinci

PARTIKEL DALAM SUATU KOTAK SATU DIMENSI

PARTIKEL DALAM SUATU KOTAK SATU DIMENSI PARTIKEL DALAM SUATU KOTAK SATU DIMENSI Atom terdiri dari inti atom yang dikelilingi oleh elektron-elektron, di mana elektron valensinya bebas bergerak di antara pusat-pusat ion. Elektron valensi geraknya

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Metode Beda Hingga Metode perbedaan beda hingga adalah metode yang sangat popular. Pada intinya metode ini mengubah masalah Persamaan Differensial Biasa (PDB) nilai batas dari

Lebih terperinci

PARTIKEL DALAM BOX. Bentuk umum persamaan orde dua adalah: ay" + b Y' + cy = 0

PARTIKEL DALAM BOX. Bentuk umum persamaan orde dua adalah: ay + b Y' + cy = 0 1 PARTIKEL DALAM BOX Elektron dalam atom dan molekul dapat dibayangkan mirip partikel dalam box. daerah di dalam box tempat partikel tersebut bergerak berpotensial nol, sedang daerah diluar box berpotensial

Lebih terperinci

FUNGSI GELOMBANG DAN RAPAT PROBABILITAS PARTIKEL BEBAS 1D DENGAN MENGGUNAKAN METODE CRANK-NICOLSON

FUNGSI GELOMBANG DAN RAPAT PROBABILITAS PARTIKEL BEBAS 1D DENGAN MENGGUNAKAN METODE CRANK-NICOLSON FUNGSI GELOMBANG DAN RAPAT PROBABILITAS PARTIKEL BEBAS 1D DENGAN MENGGUNAKAN METODE CRANK-NICOLSON Rif ati Dina Handayani 1 ) Abstract: Suatu partikel yang bergerak dengan momentum p, menurut hipotesa

Lebih terperinci

BAB III OPERATOR 3.1 Pengertian Operator Dan Sifat-sifatnya

BAB III OPERATOR 3.1 Pengertian Operator Dan Sifat-sifatnya 1 BAB III OPERATOR 3.1 Pengertian Operator Dan Sifat-sifatnya Perhatikan persamaan Schrodinger satu dimensi bebas waktu yaitu: d + V (x) ( x) E( x) m dx d ( x) m + (E V(x) ) ( x) 0 dx (3-1) (-4) Suku-suku

Lebih terperinci

ANALISIS DAN VISUALISASI PERSAMAAN KLEIN-GORDON PADA ELEKTRON DALAM SUMUR POTENSIAL DENGAN MENGGUNAKAN PROGRAM MATHEMATIC 10

ANALISIS DAN VISUALISASI PERSAMAAN KLEIN-GORDON PADA ELEKTRON DALAM SUMUR POTENSIAL DENGAN MENGGUNAKAN PROGRAM MATHEMATIC 10 ANALISIS DAN VISUALISASI PERSAMAAN KLEIN-GORDON PADA ELEKTRON DALAM SUMUR POTENSIAL DENGAN MENGGUNAKAN PROGRAM MATHEMATIC 1 Syahrul Humaidi 1,a), Tua Raja Simbolon 1,b), Russell Ong 1,c), Widya Nazri Afrida

Lebih terperinci

PENDAHULUAN. Di dalam modul ini Anda akan mempelajari Gas elektron bebas yang mencakup: Elektron

PENDAHULUAN. Di dalam modul ini Anda akan mempelajari Gas elektron bebas yang mencakup: Elektron PENDAHUUAN Di dalam modul ini Anda akan mempelajari Gas elektron bebas yang mencakup: Elektron bebas dalam satu dimensi dan elektron bebas dalam tiga dimensi. Oleh karena itu, sebelum mempelajari modul

Lebih terperinci

PERHITUNGAN TINGKAT ENERGI SUMUR POTENSIAL KEADAAN TERIKAT MELALUI PERSAMAAN SCHRODINGER MENGGUNAKAN METODE BEDA HINGGA

PERHITUNGAN TINGKAT ENERGI SUMUR POTENSIAL KEADAAN TERIKAT MELALUI PERSAMAAN SCHRODINGER MENGGUNAKAN METODE BEDA HINGGA PILLAR OF PHYSICS, Vol. 1. April 2014, 17-24 PERHITUNGAN TINGKAT ENERGI SUMUR POTENSIAL KEADAAN TERIKAT MELALUI PERSAMAAN SCHRODINGER MENGGUNAKAN METODE BEDA HINGGA Hanifah Rahmayani *), Hidayati **) dan

Lebih terperinci

PERSAMAAN SCHRÖDINGER TAK BERGANTUNG WAKTU DAN APLIKASINYA PADA SISTEM POTENSIAL 1 D

PERSAMAAN SCHRÖDINGER TAK BERGANTUNG WAKTU DAN APLIKASINYA PADA SISTEM POTENSIAL 1 D PERSAMAAN SCHRÖDINGER TAK BERGANTUNG WAKTU DAN APLIKASINYA PADA SISTEM POTENSIAL 1 D Keadaan Stasioner Pada pembahasan sebelumnya mengenai fungsi gelombang, telah dijelaskan bahwa potensial dalam persamaan

Lebih terperinci

a. Lattice Constant = a 4r = 2a 2 a = 4 R = 2 2 R = 2,8284 x 0,143 nm = 0,4045 nm 2

a. Lattice Constant = a 4r = 2a 2 a = 4 R = 2 2 R = 2,8284 x 0,143 nm = 0,4045 nm 2 SOUSI UJIAN TENGAH SEMESTER E-32 MATERIA TEKNIK EEKTRO Semester I 23/24, Selasa 2 Nopember 22 Waktu : 7: 9: (2menit)- Closed Book SEKOAH TEKNIK EEKTRO DAN INFORMATIKA - INSTITUT TEKNOOGI BANDUNG Dosen

Lebih terperinci

BAB V MOMENTUM ANGULAR Pengukuran Simultan Beberapa Properti Dalam keadaan stasioner, momentum angular untuk elektron hidrogen adalah konstan.

BAB V MOMENTUM ANGULAR Pengukuran Simultan Beberapa Properti Dalam keadaan stasioner, momentum angular untuk elektron hidrogen adalah konstan. BAB V MOMENTUM ANGULAR Pengukuran Simultan Beberapa Properti Dalam keadaan stasioner, momentum angular untuk elektron hidrogen adalah konstan. Kriteria apa saa yang dapat digunakan untuk menentukan properti

Lebih terperinci

= (2) Persamaan (2) adalah persamaan diferensial orde dua dengan akar-akar bilangan kompleks yang berlainan, solusinya adalah () =sin+cos (3)

= (2) Persamaan (2) adalah persamaan diferensial orde dua dengan akar-akar bilangan kompleks yang berlainan, solusinya adalah () =sin+cos (3) 2. Osilator Harmonik Pada mekanika klasik, salah satu bentuk osilator harmonik adalah sistem pegas massa, yaitu suatu beban bermassa m yang terikat pada salah satu ujung pegas dengan konstanta pegas k.

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA.1 Atom Pion Atom pion sama seperti atom hidrogen hanya elektron nya diganti menjadi sebuah pion negatif. Partikel ini telah diteliti sekitar empat puluh tahun yang lalu, tetapi

Lebih terperinci

PROBABILITAS PARTIKEL DALAM KOTAK TIGA DIMENSI PADA BILANGAN KUANTUM n 5. Indah Kharismawati, Bambang Supriadi, Rif ati Dina Handayani

PROBABILITAS PARTIKEL DALAM KOTAK TIGA DIMENSI PADA BILANGAN KUANTUM n 5. Indah Kharismawati, Bambang Supriadi, Rif ati Dina Handayani PROBABILITAS PARTIKEL DALAM KOTAK TIGA DIMENSI PADA BILANGAN KUANTUM n 5 Indah Kharismawati, Bambang Supriadi, Rif ati Dina Handayani Program Studi Pendidikan Fisika FKIP Universitas Jember email: schrodinger_risma@yahoo.com

Lebih terperinci

2. Deskripsi Statistik Sistem Partikel

2. Deskripsi Statistik Sistem Partikel . Deskripsi Statistik Sistem Partikel Formulasi statistik Interaksi antara sistem makroskopis.1. Formulasi Statistik Dalam menganalisis suatu sistem, kombinasikan: ide tentang statistik pengetahuan hukum-hukum

Lebih terperinci

HAND OUT FISIKA KUANTUM MEKANISME TRANSISI DAN KAIDAH SELEKSI

HAND OUT FISIKA KUANTUM MEKANISME TRANSISI DAN KAIDAH SELEKSI HAND OUT FISIKA KUANTUM MEKANISME TRANSISI DAN KAIDAH SELEKSI Disusun untuk memenuhi tugas mata kuliah Fisika Kuantum Dosen Pengampu: Drs. Ngurah Made Darma Putra, M.Si., PhD Disusun oleh kelompok 8:.

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang Masalah

BAB I PENDAHULUAN Latar Belakang Masalah BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Persamaan Diferensial Parsial (PDP) digunakan oleh Newton dan para ilmuwan pada abad ketujuhbelas untuk mendeskripsikan tentang hukum-hukum dasar pada fisika.

Lebih terperinci

BAB IV OSILATOR HARMONIS

BAB IV OSILATOR HARMONIS Tinjauan Secara Mekanika Klasik BAB IV OSILATOR HARMONIS Osilator harmonis terjadi manakala sebuah partikel ditarik oleh gaya yang besarnya sebanding dengan perpindahan posisi partikel tersebut. F () =

Lebih terperinci

BAB II PENGANTAR SOLUSI PERSOALAN FISIKA MENURUT PENDEKATAN ANALITIK DAN NUMERIK

BAB II PENGANTAR SOLUSI PERSOALAN FISIKA MENURUT PENDEKATAN ANALITIK DAN NUMERIK BAB II PENGANTAR SOLUSI PERSOALAN FISIKA MENURUT PENDEKATAN ANALITIK DAN NUMERIK Tujuan Instruksional Setelah mempelajari bab ini pembaca diharapkan dapat: 1. Menjelaskan cara penyelesaian soal dengan

Lebih terperinci

model atom mekanika kuantum

model atom mekanika kuantum 06/05/014 FISIKA MODERN Pertemuan ke-11 NURUN NAYIROH, M.Si Werner heinsberg (1901-1976), Louis de Broglie (189-1987), dan Erwin Schrödinger (1887-1961) merupakan para ilmuwan yang menyumbang berkembangnya

Lebih terperinci

BAB V PERAMBATAN GELOMBANG OPTIK PADA MEDIUM NONLINIER KERR

BAB V PERAMBATAN GELOMBANG OPTIK PADA MEDIUM NONLINIER KERR A V PERAMATAN GELOMANG OPTIK PADA MEDIUM NONLINIER KERR 5.. Pendahuluan erkas (beam) optik yang merambat pada medium linier mempunyai kecenderungan untuk menyebar karena adanya efek difraksi; lihat Gambar

Lebih terperinci

BAB FISIKA ATOM. Model ini gagal karena tidak sesuai dengan hasil percobaan hamburan patikel oleh Rutherford.

BAB FISIKA ATOM. Model ini gagal karena tidak sesuai dengan hasil percobaan hamburan patikel oleh Rutherford. 1 BAB FISIKA ATOM Perkembangan teori atom Model Atom Dalton 1. Atom adalah bagian terkecil dari suatu unsur yang tidak dapat dibagi-bagi 2. Atom-atom suatu unsur semuanya serupa dan tidak dapat berubah

Lebih terperinci

LAPORAN PENELITIAN KAJIAN KOMPUTASI KUANTISASI SEMIKLASIK VIBRASI MOLEKULER SISTEM DIBAWAH PENGARUH POTENSIAL LENNARD-JONES (POTENSIAL 12-6)

LAPORAN PENELITIAN KAJIAN KOMPUTASI KUANTISASI SEMIKLASIK VIBRASI MOLEKULER SISTEM DIBAWAH PENGARUH POTENSIAL LENNARD-JONES (POTENSIAL 12-6) LAPORAN PENELITIAN KAJIAN KOMPUTASI KUANTISASI SEMIKLASIK VIBRASI MOLEKULER SISTEM DIBAWAH PENGARUH POTENSIAL LENNARD-JONES (POTENSIAL 1-6) Oleh : Warsono, M.Si Supahar, M.Si Supardi, M.Si FAKULTAS MATEMATIKA

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA BAB 2 TINJAUAN PUSTAKA 2.1 Potensial Coulomb untuk Partikel yang Bergerak Dalam bab ini, akan dikemukakan teori-teori yang mendukung penyelesaian pembahasan pengaruh koreksi relativistik potensial Coulomb

Lebih terperinci

Pembimbing : Agus Purwanto, D.Sc.

Pembimbing : Agus Purwanto, D.Sc. Oleh : YOHANES DWI SAPUTRA 1105 100 051 Pembimbing : Agus Purwanto, D.Sc. JURUSAN FISIKA Fakultas Matematika dan Ilmu Pengetahuan Alam Institut Teknologi Sepuluh Nopember Surabaya 010 PENDAHULUAN Latar

Lebih terperinci

PROJEK 2 PENCARIAN ENERGI TERIKAT SISTEM DI BAWAH PENGARUH POTENSIAL SUMUR BERHINGGA

PROJEK 2 PENCARIAN ENERGI TERIKAT SISTEM DI BAWAH PENGARUH POTENSIAL SUMUR BERHINGGA PROJEK PENCARIAN ENERGI TERIKAT SISTEM DI BAWAH PENGARUH POTENSIAL SUMUR BERHINGGA A. PENDAHULUAN Ada beberapa metode numerik yang dapat diimplementasikan untuk mengkaji keadaan energi terikat (bonding

Lebih terperinci

FOURIER Oktober 2013, Vol. 2, No. 2, PENYELESAIAN MASALAH NILAI BATAS PERSAMAAN DIFERENSIAL MATHIEU HILL

FOURIER Oktober 2013, Vol. 2, No. 2, PENYELESAIAN MASALAH NILAI BATAS PERSAMAAN DIFERENSIAL MATHIEU HILL FOURIER Oktober 3, Vol., No., 8 PENYELESAIAN MASALAH NILAI BAAS PERSAMAAN DIFERENSIAL MAHIEU HILL Santosa, M. Wakhid Musthofa, & Malahayati 3,, 3 Program Studi Matematika, UIN Sunan Kalijaga Yogyakarta

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA BAB TINJAUAN PUSTAKA. Definisi Gelombang dan klasifikasinya. Gelombang adalah suatu gangguan menjalar dalam suatu medium ataupun tanpa medium. Dalam klasifikasinya gelombang terbagi menjadi yaitu :. Gelombang

Lebih terperinci

Getaran Dalam Zat Padat BAB I PENDAHULUAN

Getaran Dalam Zat Padat BAB I PENDAHULUAN BAB I PENDAHULUAN 1.1 Pendahuluan Getaran atom dalam zat padat dapat disebabkan oleh gelombang yang merambat pada Kristal. Ditinjau dari panjang gelombang yang digelombang yang digunakan dan dibandingkan

Lebih terperinci

BAB I PENDAHULUAN. keadaan energi (energy state) dari sebuah sistem potensial sumur berhingga. Diantara

BAB I PENDAHULUAN. keadaan energi (energy state) dari sebuah sistem potensial sumur berhingga. Diantara BAB I PENDAHULUAN Latar Belakang Masalah Ada beberapa metode numerik yang dapat diimplementasikan untuk mengkaji keadaan energi (energy state) dari sebuah sistem potensial sumur berhingga. Diantara metode-metode

Lebih terperinci

Mesin Carnot Kuantum Berbasis Partikel Dua Tingkat di dalam Kotak Potensial Satu Dimensi

Mesin Carnot Kuantum Berbasis Partikel Dua Tingkat di dalam Kotak Potensial Satu Dimensi JURNAL FISIKA DAN APLIKASINYA VOLUME 6, NOMOR 1 JANUARI,010 Mesin Carnot Kuantum Berbasis Partikel Dua Tingkat di dalam Kotak Potensial Satu Dimensi Yohanes Dwi Saputra dan Agus Purwanto Laboratorium Fisika

Lebih terperinci

SIFAT GELOMBANG PARTIKEL DAN PRINSIP KETIDAKPASTIAN. 39. Elektron, proton, dan elektron mempunyai sifat gelombang yang bisa

SIFAT GELOMBANG PARTIKEL DAN PRINSIP KETIDAKPASTIAN. 39. Elektron, proton, dan elektron mempunyai sifat gelombang yang bisa SIFAT GELOMBANG PARTIKEL DAN PRINSIP KETIDAKPASTIAN 39. Elektron, proton, dan elektron mempunyai sifat gelombang yang bisa diobservasi analog dengan foton. Panjang gelombang khas dari kebanyakan partikel

Lebih terperinci

PENDAHULUAN Anda harus dapat

PENDAHULUAN Anda harus dapat PENDAHULUAN Di dalam modul ini Anda akan mempelajari Teori Pita Energi yang mencakup : asal mula celah energi, model elektron hampir bebas, model Kronig-Penney, dan persamaan sentral. Oleh karena itu,

Lebih terperinci

PENENTUAN PROBABILITAS DAN ENERGI PARTIKEL DALAM KOTAK 3 DIMENSI DENGAN TEORI PERTURBASI PADA BILANGAN KUANTUM n 5

PENENTUAN PROBABILITAS DAN ENERGI PARTIKEL DALAM KOTAK 3 DIMENSI DENGAN TEORI PERTURBASI PADA BILANGAN KUANTUM n 5 PENENTUAN PROBABILITAS DAN ENERGI PARTIKEL DALAM KOTAK 3 DIMENSI DENGAN TEORI PERTURBASI PADA BILANGAN KUANTUM n 5 SKRIPSI Oleh Indah Kharismawati Nim. 070210102106 PROGAM STUDI PENDIDIKAN FISIKA JURUSAN

Lebih terperinci

(2) dengan adalah komponen normal dari suatu kecepatan partikel yang berhubungan langsung dengan tekanan yang diakibatkan oleh suara dengan persamaan

(2) dengan adalah komponen normal dari suatu kecepatan partikel yang berhubungan langsung dengan tekanan yang diakibatkan oleh suara dengan persamaan Getaran Teredam Dalam Rongga Tertutup pada Sembarang Bentuk Dari hasil beberapa uji peredaman getaran pada pipa tertutup membuktikan bahwa getaran teredam di dalam rongga tertutup dapat dianalisa tidak

Lebih terperinci

SP FISDAS I. acuan ) , skalar, arah ( ) searah dengan

SP FISDAS I. acuan ) , skalar, arah ( ) searah dengan SP FISDAS I Perihal : Matriks, pengulturan, dimensi, dan sebagainya. Bisa baca sendiri di tippler..!! KINEMATIKA : Gerak benda tanpa diketahui penyebabnya ( cabang dari ilmu mekanika ) DINAMIKA : Pengaruh

Lebih terperinci

II LANDASAN TEORI. Besaran merupakan frekuensi sudut, merupakan amplitudo, merupakan konstanta fase, dan, merupakan konstanta sembarang.

II LANDASAN TEORI. Besaran merupakan frekuensi sudut, merupakan amplitudo, merupakan konstanta fase, dan, merupakan konstanta sembarang. 2 II LANDASAN TEORI Pada bagian ini akan dibahas teori-teori yang digunakan dalam penyusunan karya ilmiah ini. Teori-teori tersebut meliputi osilasi harmonik sederhana yang disarikan dari [Halliday,1987],

Lebih terperinci

FISIKA MODERN. Pertemuan Ke-7. Nurun Nayiroh, M.Si.

FISIKA MODERN. Pertemuan Ke-7. Nurun Nayiroh, M.Si. FISIKA MODERN Pertemuan Ke-7 Nurun Nayiroh, M.Si. Efek Zeeman Gerakan orbital elektron Percobaan Stern-Gerlach Spin elektron Pieter Zeeman (1896) melakukan suatu percobaan untuk mengukur interaksi antara

Lebih terperinci

Fisika Dasar I (FI-321)

Fisika Dasar I (FI-321) Fisika Dasar I (FI-31) Topik hari ini Getaran dan Gelombang Getaran 1. Getaran dan Besaran-besarannya. Gerak harmonik sederhana 3. Tipe-tipe getaran (1) Getaran dan besaran-besarannya besarannya Getaran

Lebih terperinci

MEKANIKA KUANTUM DALAM TIGA DIMENSI

MEKANIKA KUANTUM DALAM TIGA DIMENSI MEKANIKA KUANTUM DALAM TIGA DIMENSI Sebelumnya telah dibahas mengenai penerapan Persamaan Schrödinger dalam meninjau sistem kuantum satu dimensi untuk memperoleh fungsi gelombang serta energi dari sistem.

Lebih terperinci

KB 2. Nilai Energi Celah. Model ini menjelaskan tingkah laku elektron dalam sebuah energi potensial yang

KB 2. Nilai Energi Celah. Model ini menjelaskan tingkah laku elektron dalam sebuah energi potensial yang KB. Nilai Energi Celah 1. Model Kronig-Penney Model ini menjelaskan tingkah laku elektron dalam sebuah energi potensial yang periodik, dengan menganggap energi potensial periodik itu merupakan deretan

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA 1.4. Hipotesis 1. Model penampang hamburan Galster dan Miller memiliki perbedaan mulai kisaran energi 0.3 sampai 1.0. 2. Model penampang hamburan Galster dan Miller memiliki kesamaan pada kisaran energi

Lebih terperinci

Uji Kompetensi Semester 1

Uji Kompetensi Semester 1 A. Pilihlah jawaban yang paling tepat! Uji Kompetensi Semester 1 1. Sebuah benda bergerak lurus sepanjang sumbu x dengan persamaan posisi r = (2t 2 + 6t + 8)i m. Kecepatan benda tersebut adalah. a. (-4t

Lebih terperinci

D. 30 newton E. 70 newton. D. momentum E. percepatan

D. 30 newton E. 70 newton. D. momentum E. percepatan 1. Sebuah benda dengan massa 5 kg yang diikat dengan tali, berputar dalam suatu bidang vertikal. Lintasan dalam bidang itu adalah suatu lingkaran dengan jari-jari 1,5 m Jika kecepatan sudut tetap 2 rad/s,

Lebih terperinci

GETARAN DAN GELOMBANG

GETARAN DAN GELOMBANG GEARAN DAN GELOMBANG Getaran dapat diartikan sebagai gerak bolak balik sebuah benda terhadap titik kesetimbangan dalam selang waktu yang periodik. Dua besaran yang penting dalam getaran yaitu periode getaran

Lebih terperinci

Ringkasan Kalkulus 2, Untuk dipakai di ITB 1. Integral Lipat Dua Atas Daerah Persegipanjang

Ringkasan Kalkulus 2, Untuk dipakai di ITB 1. Integral Lipat Dua Atas Daerah Persegipanjang ingkasan Kalkulus 2, Untuk dipakai di ITB 1 Integral Lipat Dua Atas Daerah Persegipanjang Perhatikan fungsi z = f(x, y) pada = {(x, y) : a x b, c y d} Bentuk partisi P atas daerah berupa n buah persegipanjang

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA BAB 2 TINJAUAN PUSTAKA 2.1. Struktur atom Struktur atom merupakan satuan dasar materi yang terdiri dari inti atom beserta awan elektron bermuatan negatif yang mengelilinginya. Inti atom mengandung campuran

Lebih terperinci

Adapun manfaat dari penelitian ini adalah: 1. Dapat menambah informasi dan referensi mengenai interaksi nukleon-nukleon

Adapun manfaat dari penelitian ini adalah: 1. Dapat menambah informasi dan referensi mengenai interaksi nukleon-nukleon F. Manfaat Penelitian Adapun manfaat dari penelitian ini adalah: 1. Dapat menambah informasi dan referensi mengenai interaksi nukleon-nukleon di dalam inti atom yang menggunakan potensial Yukawa. 2. Dapat

Lebih terperinci

FONON I : GETARAN KRISTAL

FONON I : GETARAN KRISTAL MAKALAH FONON I : GETARAN KRISTAL Diajukan untuk Memenuhi Tugas Mata Kuliah Pendahuluan Fisika Zat Padat Disusun Oleh: Nisa Isma Khaerani ( 3215096525 ) Dio Sudiarto ( 3215096529 ) Arif Setiyanto ( 3215096537

Lebih terperinci

GERAK HARMONIK SEDERHANA

GERAK HARMONIK SEDERHANA GERAK HARMONIK SEDERHANA Gerak harmonik sederhana adalah gerak bolak-balik benda melalui suatu titik kesetimbangan tertentu dengan banyaknya getaran benda dalam setiap sekon selalu konstan. Gerak harmonik

Lebih terperinci

Schrodinger s Wave Function

Schrodinger s Wave Function SPEKTRA RADIASI ELEKTROMAGNET SPEKTRUM KONTINYU TEORI MAX PLANK TEORI ATOM BOHR SIFAT GELOMBANG Schrodinger s Wave Function MODEL ATOM MEKANIKA KUANTUM Persamaan gelombang Schrodinger TEORI MEKANIKA KUANTUM

Lebih terperinci

Jawaban Soal OSK FISIKA 2014

Jawaban Soal OSK FISIKA 2014 Jawaban Soal OSK FISIKA 4. Sebuah benda bergerak sepanjang sumbu x dimana posisinya sebagai fungsi dari waktu dapat dinyatakan dengan kurva seperti terlihat pada gambar samping (x dalam meter dan t dalam

Lebih terperinci

BAB II DASAR TEORI. 2.1 Teori Relativitas Umum Einstein

BAB II DASAR TEORI. 2.1 Teori Relativitas Umum Einstein BAB II DASAR TEORI Sebagaimana telah diketahui dalam kinematika relativistik, persamaanpersamaannya diturunkan dari dua postulat relativitas. Dua kerangka inersia yang bergerak relatif satu dengan yang

Lebih terperinci

D. 30 newton E. 70 newton. D. momentum E. percepatan

D. 30 newton E. 70 newton. D. momentum E. percepatan 1. Sebuah benda dengan massa 5 kg yang diikat dengan tali, berputar dalam suatu bidang vertikal. Lintasan dalam bidang itu adalah suatu lingkaran dengan jari-jari 1,5 m Jika kecepatan sudut tetap 2 rad/s,

Lebih terperinci

BAB I PENDAHULUAN (1-1)

BAB I PENDAHULUAN (1-1) BAB I PENDAHULUAN Penelitian tentang analisis system fisis vibrasi molekuler yang berada dalam pengaruh medan potensial Lenard-Jones atau dikenal pula dengan potensial 6-2 sudah dilakukan. Kajian tentang

Lebih terperinci

KINEMATIKA. Fisika. Tim Dosen Fisika 1, ganjil 2016/2017 Program Studi S1 - Teknik Telekomunikasi Fakultas Teknik Elektro - Universitas Telkom

KINEMATIKA. Fisika. Tim Dosen Fisika 1, ganjil 2016/2017 Program Studi S1 - Teknik Telekomunikasi Fakultas Teknik Elektro - Universitas Telkom KINEMATIKA Fisika Tim Dosen Fisika 1, ganjil 2016/2017 Program Studi S1 - Teknik Telekomunikasi Fakultas Teknik Elektro - Universitas Telkom Sasaran Pembelajaran Indikator: Mahasiswa mampu mencari besaran

Lebih terperinci

11/25/2013. Teori Kinetika Gas. Teori Kinetika Gas. Teori Kinetika Gas. Tekanan. Tekanan. KINETIKA KIMIA Teori Kinetika Gas

11/25/2013. Teori Kinetika Gas. Teori Kinetika Gas. Teori Kinetika Gas. Tekanan. Tekanan. KINETIKA KIMIA Teori Kinetika Gas Jurusan Kimia - FMIPA Universitas Gadjah Mada (UGM) KINETIKA KIMIA Drs. Iqmal Tahir, M.Si. Laboratorium Kimia Fisika,, Jurusan Kimia Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Gadjah Mada,

Lebih terperinci

Integral yang berhubungan dengan kepentingan fisika

Integral yang berhubungan dengan kepentingan fisika Integral yang berhubungan dengan kepentingan fisika 14.1 APLIKASI INTEGRAL A. Usaha Dan Energi Hampir semua ilmu mekanika ditemukan oleh Issac newton kecuali konsep energi. Energi dapat muncul dalam berbagai

Lebih terperinci

PERKEMBANGAN TEORI ATOM

PERKEMBANGAN TEORI ATOM DEMOKRITUS PERKEMBANGAN TEORI ATOM DALTON THOMSON RUTHERFORD BOHR MEKANIKA KUANTUM + + GAMBAR GAMBAR GAMBAR GAMBAR GAMBAR CATATAN : CATATAN : CATATAN : CATATAN : CATATAN : 1 PENEMUAN DERET BALMER Peralatan

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Latar Belakang Historis Fondasi dari integral pertama kali dideklarasikan oleh Cavalieri, seorang ahli matematika berkebangsaan Italia pada tahun 1635. Cavalieri menemukan bahwa

Lebih terperinci

Apa itu Atom? Miftachul Hadi. Applied Mathematics for Biophysics Group. Physics Research Centre, Indonesian Institute of Sciences (LIPI)

Apa itu Atom? Miftachul Hadi. Applied Mathematics for Biophysics Group. Physics Research Centre, Indonesian Institute of Sciences (LIPI) Apa itu Atom? Miftachul Hadi Applied Mathematics for Biophysics Group Physics Research Centre, Indonesian Institute of Sciences (LIPI) Kompleks Puspiptek, Serpong, Tangerang 15314, Banten, Indonesia E-mail:

Lebih terperinci

Bab 2 TEORI DASAR. 2.1 Model Aliran Panas

Bab 2 TEORI DASAR. 2.1 Model Aliran Panas Bab 2 TEORI DASAR 2.1 Model Aliran Panas Perpindahan panas adalah energi yang dipindahkan karena adanya perbedaan temperatur. Terdapat tiga cara atau metode bagiamana panas dipindahkan: Konduksi Konduksi

Lebih terperinci

Keep running VEKTOR. 3/8/2007 Fisika I 1

Keep running VEKTOR. 3/8/2007 Fisika I 1 VEKTOR 3/8/007 Fisika I 1 BAB I : VEKTOR Besaran vektor adalah besaran yang terdiri dari dua variabel, yaitu besar dan arah. Sebagai contoh dari besaran vektor adalah perpindahan. Sebuah besaran vektor

Lebih terperinci

Fisika UMPTN Tahun 1986

Fisika UMPTN Tahun 1986 Fisika UMPTN Tahun 986 UMPTN-86-0 Sebuah benda dengan massa kg yang diikat dengan tali, berputar dalam suatu bidang vertikal. Lintasan dalam bidang itu adalah suatu lingkaran dengan jari-jari, m. Jika

Lebih terperinci

BAB I BESARAN DAN SATUAN

BAB I BESARAN DAN SATUAN BAB I BESARAN DAN SATUAN A. STANDAR KOMPETENSI :. Menerapkan konsep besaran fisika, menuliskan dan menyatakannya dalam satuan dengan baik dan benar (meliputi lambang, nilai dan satuan). B. Kompetensi Dasar

Lebih terperinci

LAMPIRAN. Hubungan antara koordinat kartesian dengan koordinat silinder:

LAMPIRAN. Hubungan antara koordinat kartesian dengan koordinat silinder: LAMPIRAN A.TRANSFORMASI KOORDINAT 1. Koordinat silinder Hubungan antara koordinat kartesian dengan koordinat silinder: Vector kedudukan adalah Jadi, kuadrat elemen panjang busur adalah: Maka: Misalkan

Lebih terperinci

BAB II PROSES-PROSES PELURUHAN RADIOAKTIF

BAB II PROSES-PROSES PELURUHAN RADIOAKTIF BAB II PROSES-PROSES PELURUHAN RADIOAKTIF 1. PROSES PROSES PELURUHAN RADIASI ALPHA Nuklida yang tidak stabil (kelebihan proton atau neutron) dapat memancarkan nukleon untuk mengurangi energinya dengan

Lebih terperinci

SOAL TRY OUT FISIKA 2

SOAL TRY OUT FISIKA 2 SOAL TRY OUT FISIKA 2 1. Dua benda bermassa m 1 dan m 2 berjarak r satu sama lain. Bila jarak r diubah-ubah maka grafik yang menyatakan hubungan gaya interaksi kedua benda adalah A. B. C. D. E. 2. Sebuah

Lebih terperinci

PERSAMAAN DIFFERENSIAL LINIER

PERSAMAAN DIFFERENSIAL LINIER PERSAMAAN DIFFERENSIAL LINIER Persamaan Differensial Linier Pengertian : Suatu persamaan differensial orde satu dikatakan linier jika persamaan tersebut dapat dituliskan sbb: y + p x y = r(x) (1) linier

Lebih terperinci

STRUKTUR ATOM. Perkembangan Teori Atom

STRUKTUR ATOM. Perkembangan Teori Atom STRUKTUR ATOM Perkembangan Teori Atom 400 SM filsuf Yunani Demokritus materi terdiri dari beragam jenis partikel kecil 400 SM dan memiliki sifat dari materi yang ditentukan sifat partikel tersebut Dalton

Lebih terperinci

POK O O K K O - K P - OK O O K K O K MAT A ERI R FISIKA KUANTUM

POK O O K K O - K P - OK O O K K O K MAT A ERI R FISIKA KUANTUM POKOK-POKOK MATERI FISIKA KUANTUM PENDAHULUAN Dalam Kurikulum Program S-1 Pendidikan Fisika dan S-1 Fisika, hampir sebagian besar digunakan untuk menelaah alam mikro (= alam lelembutan micro-world): Fisika

Lebih terperinci

TEST KEMAMPUAN DASAR FISIKA

TEST KEMAMPUAN DASAR FISIKA TEST KEMAMPUAN DASAR FISIKA Jawablah pertanyaan-pertanyaan di bawah ini dengan pernyataan BENAR atau SALAH. Jika jawaban anda BENAR, pilihlah alasannya yang cocok dengan jawaban anda. Begitu pula jika

Lebih terperinci

Gelombang FIS 3 A. PENDAHULUAN C. GELOMBANG BERJALAN B. ISTILAH GELOMBANG. θ = 2π ( t T + x λ ) Δφ = x GELOMBANG. materi78.co.nr

Gelombang FIS 3 A. PENDAHULUAN C. GELOMBANG BERJALAN B. ISTILAH GELOMBANG. θ = 2π ( t T + x λ ) Δφ = x GELOMBANG. materi78.co.nr Gelombang A. PENDAHULUAN Gelombang adalah getaran yang merambat. Gelombang merambat getaran tanpa memindahkan partikel. Partikel hanya bergerak di sekitar titik kesetimbangan. Gelombang berdasarkan medium

Lebih terperinci

BIDANG STUDI : FISIKA

BIDANG STUDI : FISIKA BERKAS SOAL BIDANG STUDI : MADRASAH ALIYAH SELEKSI TINGKAT PROVINSI KOMPETISI SAINS MADRASAH NASIONAL 013 Petunjuk Umum 1. Silakan berdoa sebelum mengerjakan soal, semua alat komunikasi dimatikan.. Tuliskan

Lebih terperinci

FUNGSI DELTA DIRAC. Marwan Wirianto 1) dan Wono Setya Budhi 2)

FUNGSI DELTA DIRAC. Marwan Wirianto 1) dan Wono Setya Budhi 2) INTEGRAL, Vol. 1 No. 1, Maret 5 FUNGSI DELTA DIRAC Marwan Wirianto 1) dan Wono Setya Budhi ) 1) Jurusan Matematika, Fakultas Matematika dan Ilmu Pengetahuan Alam, Universitas Katolik Parahyangan, Bandung

Lebih terperinci

ORBITAL DAN IKATAN KIMIA ORGANIK

ORBITAL DAN IKATAN KIMIA ORGANIK ORBITAL DAN IKATAN KIMIA ORGANIK Objektif: Pada Bab ini, mahasiswa diharapkan untuk dapat memahami, Teori dasar orbital atom dan ikatan kimia organik, Orbital molekul orbital atom dan Hibridisasi orbital

Lebih terperinci

PENYELESAIAN PERSAMAAN SCHRODINGER TIGA DIMENSI UNTUK POTENSIAL NON-SENTRAL ECKART DAN MANNING- ROSEN MENGGUNAKAN METODE ITERASI ASIMTOTIK

PENYELESAIAN PERSAMAAN SCHRODINGER TIGA DIMENSI UNTUK POTENSIAL NON-SENTRAL ECKART DAN MANNING- ROSEN MENGGUNAKAN METODE ITERASI ASIMTOTIK PENYELESAIAN PERSAMAAN SCHRODINGER TIGA DIMENSI UNTUK POTENSIAL NON-SENTRAL ECKART DAN MANNING- ROSEN MENGGUNAKAN METODE ITERASI ASIMTOTIK Disusun oleh : Muhammad Nur Farizky M0212053 SKRIPSI PROGRAM STUDI

Lebih terperinci

GERAK HARMONIK. Pembahasan Persamaan Gerak. untuk Osilator Harmonik Sederhana

GERAK HARMONIK. Pembahasan Persamaan Gerak. untuk Osilator Harmonik Sederhana GERAK HARMONIK Pembahasan Persamaan Gerak untuk Osilator Harmonik Sederhana Ilustrasi Pegas posisi setimbang, F = 0 Pegas teregang, F = - k.x Pegas tertekan, F = k.x Persamaan tsb mengandung turunan terhadap

Lebih terperinci

KONSEP USAHA DAN ENERGI

KONSEP USAHA DAN ENERGI KONSEP USAHA DAN ENERGI 1/18 FISIKA DASAR (TEKNIK SISPIL) USAHA DAN ENERGI Mirza Satriawan Physics Dept. Gadjah Mada University Bulaksumur, Yogyakarta email: mirza@ugm.ac.id Konsep Usaha dan Energi Disamping

Lebih terperinci

Konsep Usaha dan Energi

Konsep Usaha dan Energi 1/18 FISIKA DASAR (TEKNIK SISPIL) USAHA DAN ENERGI Mirza Satriawan Physics Dept. Gadjah Mada University Bulaksumur, Yogyakarta email: mirza@ugm.ac.id Konsep Usaha dan Energi Disamping perumusan hukum newton,

Lebih terperinci

ANALISIS DINAMIKA KUANTUM PARTIKEL MENGGUNAKAN MATRIKS TRANSFER

ANALISIS DINAMIKA KUANTUM PARTIKEL MENGGUNAKAN MATRIKS TRANSFER ANALISIS DINAMIKA KUANTUM PARTIKEL MENGGUNAKAN MATRIKS TRANSFER Irene Devi Damayanti 1, Tasrief Surungan 1, Eko Juarlin 1 1 Jurusan Fisika FMIPA Universitas Hasanuddin, Makassar 95, Indonesia Abstrak Dinamika

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA BAB 2 TINJAUAN PUSTAKA 2.1 Teori Atom Bohr Pada tahun 1913, Niels Bohr, fisikawan berkebangsaan Swedia, mengikuti jejak Einstein menerapkan teori kuantum untuk menerangkan hasil studinya mengenai spektrum

Lebih terperinci

BAB 4 MODEL DINAMIKA NEURON FITZHUGH-NAGUMO

BAB 4 MODEL DINAMIKA NEURON FITZHUGH-NAGUMO BAB 4 MODEL DINAMIKA NEURON FITZHUGH-NAGUMO 4.1 Model Dinamika Neuron Fitzhugh-Nagumo Dalam papernya pada tahun 1961, Fitzhugh mengusulkan untuk menerangkan model Hodgkin-Huxley menjadi lebih umum, yang

Lebih terperinci

Mekanika Kuantum dalam Koordinat Bola dan Atom Hidrogen

Mekanika Kuantum dalam Koordinat Bola dan Atom Hidrogen Mekanika Kuantum dalam Koordinat Bola dan Atom Hidrogen David J. Griffiths diterjemahkan dari Introduction to Quantum Mechanics Edisi 2) physics.translation@gmail.com Persamaan Schrödinger dalam Koordinat

Lebih terperinci

Kalkulus II. Diferensial dalam ruang berdimensi n

Kalkulus II. Diferensial dalam ruang berdimensi n Kalkulus II Diferensial dalam ruang berdimensi n Minggu ke-9 DIFERENSIAL DALAM RUANG BERDIMENSI-n 1. Fungsi Dua Peubah atau Lebih 2. Diferensial Parsial 3. Limit dan Kekontinuan 1. Fungsi Dua Peubah atau

Lebih terperinci

DERET FOURIER. n = bilangan asli (1,2,3,4,5,.) L = pertemuan titik. Bilangan-bilangan untuk,,,, disebut koefisien fourier dari f(x) dalam (-L,L)

DERET FOURIER. n = bilangan asli (1,2,3,4,5,.) L = pertemuan titik. Bilangan-bilangan untuk,,,, disebut koefisien fourier dari f(x) dalam (-L,L) DERET FOURIER Bila f adalah fungsi periodic yang berperioda p, maka f adalah fungsi periodic. Berperiode n, dimana n adalah bilangan asli positif (+). Untuk setiap bilangan asli positif fungsi yang didefinisikan

Lebih terperinci

III. SATUAN ACARA PERKULIAHAN Mata kuliah : FISIKA KUANTUM Kode : FI 363 SKS : 3 Nama Dosen : Yuyu R.T, Parlindungan S. dan Asep S

III. SATUAN ACARA PERKULIAHAN Mata kuliah : FISIKA KUANTUM Kode : FI 363 SKS : 3 Nama Dosen : Yuyu R.T, Parlindungan S. dan Asep S III. SATUAN ACARA PERKULIAHAN Mata kuliah : FISIKA KUANTUM Kode : FI 363 SKS : 3 Nama Dosen : Yuyu R.T, Parlindungan S. dan Asep S Standar : Setelah mengikuti perkuliahan ini mahasiswa diharapkan memiliki

Lebih terperinci

Gejala Gelombang. gejala gelombang. Sumber:

Gejala Gelombang. gejala gelombang. Sumber: Gejala Gelombang B a b B a b 1 gejala gelombang Sumber: www.alam-leoniko.or.id Jika kalian pergi ke pantai maka akan melihat ombak air laut. Ombak itu berupa puncak dan lembah dari getaran air laut yang

Lebih terperinci

Bunyi Teori Atom Dalton:

Bunyi Teori Atom Dalton: Bunyi Teori Atom Dalton: Pada 1808, ilmuwan berkebangsaan Inggris, John Dalton, mengemuka- kan teorinya tentang materi atom yang dipublikasikan dalam A New System of Chemical Philosophy. Berdasarkan penelitian

Lebih terperinci

Teori Atom Mekanika Klasik

Teori Atom Mekanika Klasik Teori Atom Mekanika Klasik -Thomson -Rutherford -Bohr -Bohr-Rutherford -Bohr-Sommerfeld Kelemahan Teori Atom Bohr: -Bohr hanya dapat menjelaskan spektrum gas hidrogen, tidak dapat menjelaskan spektrum

Lebih terperinci

ENERGI POTENSIAL. dapat dimunculkan dan diubah sepenuhnya menjadi tenaga kinetik. Tenaga

ENERGI POTENSIAL. dapat dimunculkan dan diubah sepenuhnya menjadi tenaga kinetik. Tenaga ENERGI POTENSIAL 1. Pendahuluan Energi potensial merupakan suatu bentuk energi yang tersimpan, yang dapat dimunculkan dan diubah sepenuhnya menjadi tenaga kinetik. Tenaga potensial tidak dapat dikaitkan

Lebih terperinci

BAB II LANDASAN TEORI. dalam penulisan skripsi ini. Teori-teori yang digunakan berupa definisi-definisi serta

BAB II LANDASAN TEORI. dalam penulisan skripsi ini. Teori-teori yang digunakan berupa definisi-definisi serta BAB II LANDASAN TEORI Pada bab ini akan diuraikan beberapa teori-teori yang digunakan sebagai acuan dalam penulisan skripsi ini. Teori-teori yang digunakan berupa definisi-definisi serta teorema-teorema

Lebih terperinci

PETUNJUK UMUM Pengerjaan Soal Tahap 1 Diponegoro Physics Competititon Tingkat SMA

PETUNJUK UMUM Pengerjaan Soal Tahap 1 Diponegoro Physics Competititon Tingkat SMA PETUNJUK UMUM Pengerjaan Soal Tahap 1 Diponegoro Physics Competititon Tingkat SMA 1. Soal Olimpiade Sains bidang studi Fisika terdiri dari dua (2) bagian yaitu : soal isian singkat (24 soal) dan soal pilihan

Lebih terperinci

tak-hingga. Lebar sumur adalah 4 angstrom. Berapakah simpangan gelombang elektron

tak-hingga. Lebar sumur adalah 4 angstrom. Berapakah simpangan gelombang elektron Tes Formatif 1 Petunjuk: Jawablah semua soal di bawah ini pada lembar jawaban yang disediakan! =============================================================== 1. Sebuah elektron ditempatkan dalam sebuah

Lebih terperinci

MEKANIKA NEWTONIAN. Persamaan gerak Newton. Hukum 1 Newton. System acuan inersia (diam)

MEKANIKA NEWTONIAN. Persamaan gerak Newton. Hukum 1 Newton. System acuan inersia (diam) MEKANIKA NEWTONIAN Persamaan gerak Newton Seperti diketahui bahwa dinamika adalah cabang dari mekanika yang membahas tentang hokum-hukum fisika tentang gerak benda. Dalam catatan kecil ini kita akan membahas

Lebih terperinci

FUNGSI DAN GRAFIK FUNGSI

FUNGSI DAN GRAFIK FUNGSI FUNGSI DAN GRAFIK FUNGSI Apabila suatu besaran y memiliki nilai yang tergantung dari nilai besaran lain x, maka dikatakan bahwa besaran y tersebut merupakan fungsi besaran x. secara umum ditulis: y= f(x)

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Transformasi Laplace Salah satu cara untuk menganalisis gejala peralihan (transien) adalah menggunakan transformasi Laplace, yaitu pengubahan suatu fungsi waktu f(t) menjadi

Lebih terperinci

Fisika Dasar 9/1/2016

Fisika Dasar 9/1/2016 1 Sasaran Pembelajaran 2 Mahasiswa mampu mencari besaran posisi, kecepatan, dan percepatan sebuah partikel untuk kasus 1-dimensi dan 2-dimensi. Kinematika 3 Cabang ilmu Fisika yang membahas gerak benda

Lebih terperinci