MATEMATIKA DISKRIT
BAB I HIMPUNAN Huruf-huruf besar A, B, C,... menyatakan himpunan dan huruf-huruf kecil a, b, c,... menyatakan elemen-elemen atau anggota dari himpunan. Notasi himpunan : p Є A A B atau B A A B atau B A / S p adalah elemen dari A atau p anggota dari A A adalah himpunan bagian/samadengan (subset) B atau B mengandung A A adalah himpunan bagian (proper subset) dari B atau sebaliknya; himpunan kosong himpunan semesta 1. Himpunan a. Suatu himpunan ditunjukkan oleh anggota-anggota himpunannya (Prinsiple of Extension) : Dua himpunan A dan B adalah sama jika dan hanya jika mereka mempunyai anggota yang sama. b. Suatu himpunan dapat digambarkan dalam hal sifatnya (Prinsiple of Abstraction) : Diberikan sembarang himpunan U dan mempunyai sifat himpunan P, ada suatu himpunan A sedemikian hingga elemen-elemen dari A merupakan anggota dari himpunan U yang mempunyai sifat himpunan P. c. Himpunan Ø tidak memuat satu elemenpun. Himpunan {0} memuat satu elemen yaitu 0. Himpunan {Ø} juga memuat satu elemen yaitu himpunan kosong (ini adalah himpunan dari himpunan). d. A B (A adalah subset dari B) menyatakan bahwa setiap elemen dari A juga anggota dari B, yang memungkinkan bahwa A = B. A B (A adalah proper subset dari B) menyatakan bahwa A adalah himpuan bagian dari B tetapi A B; atau setidaknya satu elemen di B yang tidak ada di A e. (ii) (i) Untuk sembarang himpunan A, A, kita kita mempunyai Ø A A U (iii) Jika A B dan B C, maka A C (iv) A = B jika dan hanya jika A B dan B A Bukti :
(i) (ii) (iii) (iv) Setiap himpunan A adalah suatu subset dari himpunan U karena, menurut definisi, semua anggota dari A adalah anggota dari U. Demikian juga himpunan Ø adalah subset dari A Setiap himpunan A adalah subset dari dirinya sendiri karena elemen elemen dari A adalah anggota dari A. Jika setiap elemen dari himpunan A anggota dari B, dan setiap elemen dari B adalah anggta dari suatu himpunan C, maka jelas setiap elemen dari maka A A adalah C. anggota dari C. dengan kata lain, jika A B dan B C, Jika A B dan B C maka A dan B mempunyai elemen-elemen yang sama, sehingga A = B. sebaliknya jika A = B maka A B dan B C karena setiaphimpunan adalah subset dari dirinya sendiri. Contoh : 1. Tulislah kembali pernyataan-pernyataan berikut dengan menggunakan notasi himpunan : a. 1 bukan anggota dari himpunan A 1 A b. 5 adalah anggota dari himpunan B 5 B c. A adalah himpunan bagian/sama dengan (subset) C A C d. A bukan himpunan bagian/sama dengan (subset) D A D e. F mengandung semua elemen dari G G F atau F G f. E dan F mengandung elemen-elemen yang sama E = F 2. Tuliskan elemen dari himpunan-himpunan berikut; dalam hal ini N = {1, 2, 3, } a. A = {x : x N, 3 x 12} A = {4, 5, 6, 7, 8, 9, 10, 11} b. B ={x : x N, x bilangan genap, x 15} B = {2, 4, 6, 8, 10, 12, 14} c. C = {x : x N, 4 + x = 3} C = Ø Latihan Soal : 1. Tuliskan elemen-elemen dari himpunan berikut; dalam hal ini N = {1, 2, 3, ) a. A = {x : x Є N, 3 x < 9} b. B = {x : x Є N, x 2 + 1 = 10} c. C = {x : x Є N, x bilangan ganjil, -5 < x < 5} 2. Tuliskan elemen-elemen dari himpunan berikut; dalam hal ini Z = {bilangan bulat) a. A = {x : x Є Z, 3 x < 9} b. B = {x : x Є Z, x 2 + 1 = 10} c. C = {x : x Є Z, x bilangan ganjil, -5 < x < 5}
3. Tentukan himpunan-himpunan berikut dengan menuliskan elemen-elemennya a. A = {x : x Є R, -5 x < 5} b. B = {x : x Є N, x kelipatan 3} c. C = {x : x warga negara Indonesia, x adalah remaja} 4. Misalkan A = {x : 3x = 6}. Apakah A = 2? 5. Perhatikan himpunan-himpunan berikut : {w}, {y, w, z}, {w, y, x}, {y, z, w}, {w, x, y, z}, {z, w}. Manakah dari himpunan-himpunan tersebut yang sama dengan himpunan A = {w, y, z}? 2. Diagram Venn a. B A; Himpunan sedangkan A dan A B dan dapat B tidak diperbandingkan dapat diperbandingkan (comparable) (noncomparable) jika A B atau jika A B B A. b. Himpunan A dan B adalah disjoint jika mereka tidak mempunyai elemen yang sama, yaitu bila tidak ada elemen di A yang menjadi anggota di B dan tidak ada elemen di B yang menjadi anggota di A. Sebuah diagram Venn adalah suatu perwakilan gambar dari himpunan-himpunan berupa titik-titik dalam bidang. Himpunan semesta U diwakili oleh bagian dalam suatu persegi, dan himpunan-himpunan yang lain diwakili oleh cakram-cakram dalam persgi. Jika A B, maka perwakilan cakram A seluruhnya akan berada di dalam cakram B seperti gambar (a). jika A dan B disjoint,yaitu tidak mempuyai elemen bersama. maka perwakilan cakram A akan terpisah dari cakram B seperti gambar (b). Gambar (c) adalah beberapa objek ada di A tetapi tidak di B, ada di B tetapi tidak di A, ada di A dan B, dan tidak di kedua-duanya. (a) A B (b) A & B saling asing (c) B U A A U Latihan soal : 1. Gambarkan sebuah diagram venn dari himpunan A, B dan C dimana A dan B mempunyai elemen bersama, B dan C mempunyai elemen bersama, tetapi himpunan A dan C disjoint. 2. Gambarkan sebuah diagram venn dari himpunan A, B dan C dimana A B, himpunan A dan C saling asing, tetapi himpunan B dan C mempunyai elemen bersama
3. Gambarkan sebuah diagram venn dari himpunan A, B dan C dimana ketiga himpunan tersebut saling asing. 4. Gambarkan sebuah diagram venn dari himpunan A, B dan C dimana akan membagi himpunan semesta U kedalam 2 3 = 8 bagian. Mengapa terdapat 8? 3. Operasi antar Himpunan a. Gabungan (union) Gabungan dari dua himpunan A dan B, dinyatakan dengan A U B, adalah himpunan semua elemen A atau B : A U B = {x : x Є A atau x Є B} b. Irisan (intersection) Irisan dua buah himpunan A dan B, dinyatakan dengan A B, adalah himpunan yang elemen-elemennya merupakan anggota dari A dan juga B. A B = {x : x Є A atau x Є B} c. Komplemen suatu Himpunan (Absolute Complement) Komplemen himpunan dinyatakan dengan A c, adalah himpunan dari elemenelemen yang merupakan anggota semesta tetapi bukan anggota A : A c = {x : x Є U, x A} d. Selisih dari Dua Himpunan (The Relative Complement) Selisih dari A dan B dinyatakan dengan A\B, adalah himpunan dari elemenelemen yang merupakan anggota dari A tetapi bukan anggota dari B : A\B = {x : x Є A, x B} A A B A B A A B A U B A B A c A\B Latihan soal : Diketahui : U = {1, 2, 3,..., 8, 9}, A = {1, 2, 3, 4}, B = {2, 4, 6, 8}, C ={3, 4, 5, 6} Tentukan : 1) A U B 14) B c 2) A U C 15) C c 3) B U C 16) A\B 4) B U B 17) C\A 5) (A U B) U C 18) B\C 6) A U (B U C) 19) B\A 7) A B 20) B\B
8) A C 21) A (B U C) 9) B C 22) (A B) U (A C) 10)B B 23) (A U B) c 11)(A B) C 24) A c B c 12)A (B C) 25) (A B)\C 13)A c 26) (A\B) c 4. Aljabar Himpunan Hukum atau sifat dari aljabar himpunan Hukum Idempotent 1a. A U A = A 1b. A A = A Hukum Assosiatif 2a. (A U B) U C = A U (B U C) 2b. (A B) C = A (B C) Hukum Komutatif 3a. A U B = B U A 3b. A B = B A Hukum Distributif 4a. A U (B C) = (A U B) (A U C) 4b. A (B U C)= (A B) U (A C) Hukum Identitas 5a. A U Ø = A 5b. A S = A 6a. A U S = S 6b. A Ø = Ø Hukum Involusi 7. (A c ) c = A Hukum Komplemen 8a. A U A c = S 8b. A A c = Ø 9a. S c = Ø 9b. Ø = S Dalil de Morgan 10a. (A U B) c = A c B c 10b. (A B) c = A c U B c Contoh : Gunakan hukum-hukum pada tabel diatas untuk membuktikan identitas berikut : (S A) U (B A) = A (S A) U (B A) = (A S) U (A B) sifat komutatif 3b = A (S U B) sifat distributif 4b = A (B U S) sifat komutatif 3a = A S sifat identitas 6a = A sifat identitas 5b Latihan soal : Buktikan identitas-identitas berikut : 1. (B U C) A = (B A) U (C A) 2. (B C) U A = (B U A) (C U A) 3. (A U B) (A U B c ) = A 4. A U (A B) = A 5. (B c U) (A c U Ø) = (A U B) c
5. Argumen dan Diagram Venn Pada bagian ini diagram venn digunakan untuk menunjukkan kebenaran dari suatu argumen. Contoh : 1. Terjemahkan setiap pernyataan berikut dalam bentuk diagram venn : a. Semua mahasiswa adalah malas b. Beberapa mahasiswa adalah malas c. Tidak ada mahasiswa yang malas d. Tidak semua mahasiswa adalah malas Jawab : orang malas mahasiswa Orang malas mahasiswa Orang malas mahasiswa (a) (b) dan (d) (c) (a) Himpunan mahasiswa tercakup dalam himpunan orang malas seperti ditunjukkan gambar a (b) Himpunan mahasiswa dan orang malas mempunyai suatu elemen bersama seperti gambar b (c) Himpunan mahasiswa dan orang malas adalah saling asing seperti gambar c. (d) Dalam hal ini himpunan mahasiwa tidk tercakup dalam himpunan orangorang malas. Ini enunjuk pada gambar b (dengan kemungkinan bahwa irisan himpunannya kosong) 2. Tunjukkan bahwa argumen berikut adalah benar : S 1 : Panci adalah sesuatu yang saya punya, terbuat dari timah S 2 : Saya mendapatkan semua pemberian kamu yang sangat berguna S 3 : Tak satupun dari panci saya yang berguna S : Pemberian kamu pada saya bukan terbuat dari timah Menurut S 1 barang dari timah tercakup dalam himpunan panci dan menurut S 3 himpunan panci dan barang berguna adalah saling asing; seperti digambarkan dalam diagram venn berikut : Barang dr timah Barang yg berguna panci
Menurut S 2 himpunan hadiah anda adalah subset dari himpunan barang berguna seperti gambar berikut : Barang panci Hadiah anda Barang yg berguna Kesimpulannya dengan jelas cocok oleh diagram venn di atas karena himpunan hadiah anda adalah disjoint dari himpunan barang yang tebal Latihan soal : 1. Perhatikan asumsi-asumsi berikut : S 1 : Penyair adalah orang yang bahagia S 2 : Setiap dokter adalah orang kaya S 3 : Tak satupun orang yang bahagia adalah orang kaya Tunjukkan kebenaran dari setiap kesimpulan berikut : a. Tak ada penyair yang kaya b. Dokter adalah orang yang bahagia c. Tak ada satupun yang menjadi penyair dan dokter 2. Tunjukkan bahwa argumen berikut adalah tidak benar : S 1 : Semua mahasiswa adalah pemalas S 2 : Tak seorangpun yang kaya adalah seorang mahasiswa S : Orang pemalas adalah tidak kaya 3. Tunjukkan bahwa argumen berikut benar S 1 : Tidak ada mahasiswa yang pemalas S 2 : John adalah seorang artis S 3 : Semua artis adalah pemalas S : John bukan seorang mahasiswa 4. Tunjukkan bahwa arguman berikut adalah benar : S 1 : Semua pengacara adalah orang kaya S 2 : Penyair adalah orang temperamental S 3 : Audrey adalah seorang pengacara S 4 : Tidak ada orang temperamental adalah orang kaya S : Audrey bukan seorang penyair
6. Induksi Lengkap Prinsip bentuk induksi matematika yang ekuivalen : 1. Bentuk I : Misalkan P adalah sebuah proporsisi yang didefinisikan pada bilangan bulat positif N; P(n) bisa benar atau salah utuk setiap n dalam N. anggap P mempunyai dua sifat berikut : (i) P(1) adalah benar (ii) P(n + 1) bernilai benar bilaman P(n) benar Maka P berlaku untuk setiap bilangan bulat positif. 2. Bentuk II (induksi lengkap) : Misalkan P adalah sebuah proporsisi yang didefinisikan pada bilangan bulat positif N, sedemikian hingga : (i) P(1) adalah benar (ii) P(n) bernilai benar bilaman P(k) benar untuk setiap 1 k n. Maka P berlaku untuk setiap bilangan bulat positif. Prinsip induksi matematika dimulai dengan n 0 = 1 dan membuktikanbahwa P(n) berlaku untuk setiap n 1. Atau dapat dimulai dengan sembarang n 0 = m dan membuktikan bahwa P(n) berlaku untuk setiap n m. Contoh : 1. Misalkan P adalah proposisi bahwa jumlah n bilangan ganjil pertama adalah n 2, yaitu, P(n): 1 + 3 + 5 + + (2n - 1) = n 2 (bilangan ganjil ke-n adalah 2n 1, dan bilangan ganjil berikutnya adalah 2n + 1). Buktikan P berlaku untuk setiap bilangan bulat positif n Є N. Penyelesaian : Karena 1 = 1 2, maka P(1) benar. Asumsikan P(n) benar. kita tambahkan 2n + 1 pada kedua sisi P(n), di dapat : 1 + 3 + + 5 + + (2n - 1) + (2n + 1) = n 2 + (2n + 1) = (n + 1) 2 yang mana adalah P(n + 1). Sehingga P(n + 1) benar bilaman P(n) benar. Menurut prinsip induksi matematika, P berlaku untuk setiap n 2. Buktikan proposisi P, jumlah n bilangan bulat positif pertama adalah ½ n(n + 1); yaitu P(n) : 1 + 2 + 3 + + n = ½ n (n + 1) Penyelesaian : Proposisi berlaku untuk n = 1 karena 1 = ½ (1) (1 + 1), sehingga P(1) benar. Asumsikan P(n) benar, kita tambahkan n + 1 pada keua sisi P(n), didapat : 1 + 2 + 3 + + n + (n + 1) = ½ n (n + 1) + (n + 1) = ½ [(n (n + 1) + 2(n + 1)] = ½ [(n + 1)(n + 2)]
Yang mana adalah P(n + 1) benar blamana P(n) benar. Menurut prinsip induksi, P berlaku untuk setiap n. Latihan soal : Buktikan proposisi berikut : 1. P(n) : 1 2 + 2 2 + + n 2 = 2. P(n) : 1 + 4 + 7 + + (3n 2) =