Kuliah Umum: LINGKARAN DAN SEGI TAK TERHINGGA
|
|
|
- Iwan Sasmita
- 8 tahun lalu
- Tontonan:
Transkripsi
1 Kuliah Umum: LINGKARAN DAN SEGI TAK TERHINGGA Hendra Gunawan Campus Center ITB, 18 April 2015
2 Yang Mana Lingkaran, dan Yang Mana Segi Tak Terhingga? ¼ ½ 1 2
3 metro.co.uk 3
4 LINGKARAN Sejak 2500 tahun silam, bentuk lingkaran dianggap sebagai bentuk yang paling sempurna. Beberapa sifat istimewa lingkaran yang diketahui saat ini antara lain: Di antara bangun datar yang luasnya sama, lingkaran mempunyai keliling minimum. Lingkaran merupakan bentuk yang cocok untuk penutup lubang saluran air (ia takkan jatuh ke lubangnya). dev.physicslab.org 4
5 Apa yang Diketahui Orang Mesir Kuno dan Babilonia tentang Lingkaran Mesir Kuno (~1650 SM): Luas = (4/3) 4 r 2. r Babilonia (~1000 SM): Keliling = 50r/8. 5
6 Temuan Archimedes ( SM) tentang Lingkaran Luas = Kr 2, dengan r K = keliling : diameter 22/7. Archimedes menaksir K dengan segi-96 beraturan (mulai dgn segi-6, lalu segi- 12, segi-24, segi-48, dan akhirnya segi-96 beraturan). Archimedes juga menemukan rumus volume dan luas permukaan bola. 6
7 Bilangan π (BC, before calculator*) Lambang bilangan π pertama kali dipakai oleh William Jones pada π = keliling : diameter. Mesir Kuno: π (4/3) 4 3,16. Babilonia: π 25/8 = 3,125. Archimedes: π 22/7 3,14. 7
8 Bilangan π (AD, after decimals*) Claudius Ptolemy π John Machin 3, Zu Chongzi Madhava Daniel Ferguson Al-Khasi Gottfried W. Leibniz π Christoph Grienberger = arctan1 = Yasumada Kanada Isaac Newton Shigeru Kondo r ,1 triliun angka (2013) 8
9 Berapa Banyak Sisi dan Titik Sudut (a) Persegi (b) Lingkaran 4 sisi, 4 titik sudut?? 9
10 Apakah ½ Lingkaran Mempunyai Tak Terhingga Sisi dan Titik Sudut? titik sudut? tak terhingga sisi? bukan titik sudut? satu sisi? Apa yang dimaksud dengan sisi dan titik sudut? 10
11 Kita Perlu Definisi Sisi dan Titik Sudut untuk Bangun Datar Sembarang* *KECUALI: 11
12 Berapa Banyak Sisi dan Titik Sudut 4 sisi, 4 titik sudut 4 sisi, 4 titik sudut 3 sisi, 3 titik sudut 2 sisi, 2 titik sudut 1 sisi, 1 titik sudut 1 sisi, 0 titik sudut 12
13 Sisi Bangun datar yang kita bahas dikelilingi oleh suatu lintasan tertutup sederhana yang kebanyakan terdiri dari sejumlah kurva mulus. Sebagai contoh, bangun persegi dikelilingi oleh suatu lintasan yang terdiri dari dari 4 kurva mulus, sementara lingkaran hanya terdiri dari 1 kurva mulus. Nah, kurva-kurva mulus itulah yang kemudian kita definisikan sebagai sisi-sisi bangun datar tersebut. 13
14 Titik Sudut Pada bangun datar yang dikelilingi oleh suatu lintasan yang terdiri sejumlah terhingga kurva mulus, titik sudut adalah titik singular pada lintasan tsb. Di titik singular, lintasannya tidak mulus tetapi patah alias membentuk sudut (bukan 180 o ). titik singular Di titik lainnya yang bukan titik singular, lintasannya mulus, tidak patah. Di sekitar titik ini, walau kurvanya melengkung, ia sangat mirip dengan garis lurus tidak membentuk sudut! 14
15 Menghitung Banyak Sisi dan Titik Sudut 12 sisi, 12 titik sudut 4 sisi, 4 titik sudut 2 sisi, 2 titik sudut 2 sisi, 2 titik sudut 2 sisi, 2 titik sudut 1 sisi, 1 titik sudut 15
16 Lingkaran hanya mempunyai 1 sisi dan tidak mempunyai titik sudut. Mark Twain: A circle is a round straight line with a hole in the middle. 16
17 Bangun Apa Ini? Apa yg terjadi di sini? Let s zoom 8x ¼ ½ 1 17
18 Bangun Apa Ini? Hasil zoom 8x
19 SEGI TAK TERHINGGA Bangun ini memiliki tak terhingga sisi dan tak terhingga titik sudut. Tetapi, apakah O merupakan titik sudut? ¼ ½ 1 19
20 Definisi Titik Sudut dan Sisi yang Lebih Umum Pertama kita identifikasi setiap titik pada lintasan tepi: apakah ia memiliki rank 0 atau rank 1. rank 1 rank 0 ϒ Titik x є ϒ memiliki rank 1 apabila ϒ mempunyai garis singgung di titik x tersebut. Bila tidak, maka x memiliki rank 0 (titik singular). 20
21 Definisi Titik Sudut dan Sisi yang Lebih Umum Selanjutnya, kita definisikan relasi ekuivalen di antara dua titik yang memiliki rank 1: A ~ B apabila kita dapat menelusuri ϒ dari A ke B tanpa melalui titik yang memiliki rank 0. rank 1 rank 1 A B A ~ B Sisi yang memuat A didefinisikan sebagai: {P є ϒ P memiliki rank 1 dan P ~ A} Jika A ~ B, maka sisi yang memuat A identik dengan sisi yang memuat B. ϒ 21
22 Definisi Titik Sudut dan Sisi yang Lebih Umum Ada dua kemungkinan utk titik yang memiliki rank 0: atau merupakan titik sudut, atau titik singular yang tidak membentuk sudut. O bukan titik sudut! ¼ ½ 1 22
23 Bagaimana dengan Bangun Ini? Titik sudut y = x tak terhingga banyaknya O juga titik sudut! ¼ ½
24 Kasus Menarik pada Segi Tak Terhingga O memiliki rank 1, tapi terisolasi! 24
25 TITIK PADA TEPI BANGUN DATAR MEMILIKI RANK 1 MEMILIKI RANK 0 BAGIAN DARI SISI YANG MEMILIKI PANJANG POSITIF TERISOLASI; SISI YANG MEMILIKI PANJANG NOL TITIK SUDUT BUKAN TITIK SUDUT 25
26 Serpihan Salju Koch Pada Serpihan Salju Koch, setiap titik memiliki rank 0, tetapi bukan titik sudut! Serpihan Salju Koch tidak mempunyai sisi maupun titik sudut! 26
27 Georg Cantor: The essence of mathematics is its freedom! TERIMA KASIH ATAS PERHATIANNYA! Materi presentasi ini dicuplik dan dikembangkan dari buku Lingkaran: Menguak Misteri Bilangan π, Bangun Datar dan Bangun Ruang Terkait dengan Lingkaran (Graha Ilmu, 2015) *Istilah Before Calculator dan After Decimals digunakan oleh E. Bombieri & A.J. van der Poorten 27
Archimedes dan Taksiran Bilangan π
Bersains, Vol. 1, No. 7 (Juli 2015) Archimedes dan Taksiran Bilangan π Hendra Gunawan Beri saya tempat untuk bertumpu, dan saya akan angkat Bumi ini. Demikian ujar Archimedes dari Syracusa (287 212 SM),
6 Menguak Misteri Bilangan π
6 Menguak Misteri Bilangan π Penemuan Archimedes tentang bilangan π (yang merupakan rasio keliling dan diamater lingkaran) bukan merupakan akhir dari cerita tentang lingkaran. Sebaliknya, penemuan ini
13 Segi-Tak-Terhingga dan Fraktal
13 Segi-Tak-Terhingga dan Fraktal Kalau lingkaran hanya mempunyai satu sisi, bukan segi-tak-terhingga, apakah ada bangun datar yang mempunyai tak terhingga sisi? Jawabannya ya, memang ada. Kita akan mempelajari
7 Sisi dan Titik Sudut Bangun Datar
7 Sisi dan Titik Sudut Bangun Datar Bila segi n mempunyai n sisi dan n titik sudut, berapakah banyak sisi dan titik sudut pada lingkaran? Pertanyaan ini ternyata masih merupakan bahan diskusi yang menarik
Gara-Gara Hantu Lingkaran. Hendra Gunawan
Gara-Gara Hantu Lingkaran Hendra Gunawan 2014 Daftar Isi dan Kata Pengantar ii Gara-Gara Hantu Lingkaran Hendra Gunawan iii Hendra Gunawan Gara-Gara Hantu Lingkaran Gara-Gara Hantu Lingkaran Hendra Gunawan,
22/7: Aproksimasi Nilai Π. Freedom Institute, 22 Juli 2013
22/7: Aproksimasi Nilai Π Hendra Gunawan Freedom Institute, 22 Juli 2013 Orang Babilonia & Mesir Kuno sebagai Geo meter (Ahli ukur Bumi): Mengukur keliling dan luas tanah? Napak Tilas Perjanjian Lama,
MA1121 Pengantar Matematika
Catatan Kuliah MA1121 Pengantar Matematika Oleh Hendra Gunawan KK Analisis & Geometri FMIPA-ITB Bandung, Desember 2005 0 PENGANTAR Matakuliah MA1121 Pengantar Matematika I merupakan jembatan antara matematika
8 Lintasan, Kurva Mulus, dan Titik Singular
8 Lintasan, Kurva Mulus, dan Titik Singular Pada bab sebelumnya kita sudah membahas bagaimana kita dapat menentukan banyak sisi dan banyak titik sudut suatu bangun datar dengan mengamati lintasan tepi
MA2111 PENGANTAR MATEMATIKA Semester I, Tahun 2015/2016. Hendra Gunawan
MA2111 PENGANTAR MATEMATIKA Semester I, Tahun 2015/2016 Hendra Gunawan 5 KUANTOR II: METODE MEMILIH (c) Hendra Gunawan (2015) 2 Masih Berurusan dengan Kuantor Sekarang kita akan membahas metode memilih,
GEOMETRI ANALITIK BIDANG & RUANG
HANDOUT (BAHAN AJAR) GEOMETRI ANALITIK BIDANG & RUANG Sofyan Mahfudy IAIN Mataram KATA PENGANTAR Alhamdulillah puji syukur kepada Alloh Ta ala yang dengan rahmat dan karunia-nya penulis dapat menyelesaikan
LINGKARAN; Menguak Misteri Bilangan π, Bangun Datar dan Bangun Ruang Terkait dengan Lingkaran, oleh Hendra Gunawan Hak Cipta 2015 pada penulis
LINGKARAN; Menguak Misteri Bilangan π, Bangun Datar dan Bangun Ruang Terkait dengan Lingkaran, oleh Hendra Gunawan Hak Cipta 2015 pada penulis GRAHA ILMU Ruko Jambusari 7A Yogyakarta 55283 Telp: 0274-882262;
FILSAFAT SAINS NILAI PI (π)
FILSAFAT SAINS NILAI PI (π) Rukmono Budi Utomo NIM.30115301 February 28, 2016 Barisan Fibonacci 1.Asal-Usul Bilangan Pi (π) 1 1.Asal-Usul Bilangan Pi (π) 2 3 Bilangan Pi (π) Bilangan Pi atau dilambangkan
9 Menghitung Besar Sudut di Titik Sudut
9 Menghitung Besar Sudut di Titik Sudut Besar sudut di setiap titik sudut pada segi-banyak relatif mudah dihitung. Pada segi-n beraturan, besar sudut di setiap titik sudutnya sama dengan 180 o 360 o /n.
5 Archimedes Bergelut dengan Lingkaran
5 Archimedes Bergelut dengan Lingkaran Beri saya tempat untuk bertumpu, maka saya bisa mengangkat Bumi. Demikian ujar Archimedes dari Syracusa (287 212 SM), salah seorang jebolan sekolah yang diasuh oleh
Gara-Gara Hantu Lingkaran. Hendra Gunawan
Gara-Gara Hantu Lingkaran Hendra Gunawan 2014 1 Misteri Lingkaran Mulai Menghantui Menurut catatan sejarah, dari tahun 2600 SM (saat Piramida Besar dibangun) hingga tahun 575 SM (puncak peradaban Babilonia),
11 Lebih Jauh tentang Lingkaran
11 Lebih Jauh tentang Lingkaran Lingkaran memang menarik ya! Selain fakta bahwa luasnya sama dengan seperempat keliling kali diameternya, kita juga telah menemukan beberapa sifat istimewa dari lingkaran,
10 Grafik Sudut Deviasi Bangun Datar
10 Grafik Sudut Deviasi Bangun Datar Kita telah mempelajari bagaimana menghitung besar sudut belok di setiap titik pada tepi suatu bangun datar. Satu hal yang menarik tentang lingkaran adalah bahwa besar
BERGELUT DENGAN HANTU LINGKARAN
BAGIAN I BERGELUT DENGAN HANTU LINGKARAN Bagian I Bergelut dengan Hantu Lingkaran 1 2 Hendra Gunawan Gara-Gara Hantu Lingkaran 1 Misteri Lingkaran Mulai Menghantui Menurut catatan sejarah, dari tahun 2600
15 Polihedron Reguler dan Rumus Euler
15 Polihedron Reguler dan Rumus Euler Di antara pembaca mungkin ada yang bertanya-tanya, mengapa Archimedes tidak menggunakan polihedron reguler (beraturan) untuk menaksir volume dan luas permukaan bola,
3 Antiphon dan Eudoxus Turun Tangan 13
3 Antiphon dan Eudoxus Turun Tangan Antiphon dan Eudoxus memang tidak setenar Pythagoras. Bahkan nama mereka mungkin tidak pernah disebut-sebut di buku pelajaran matematika sekolah. Padahal, Antiphon (425
MA1201 MATEMATIKA 2A Hendra Gunawan
MA1201 MATEMATIKA 2A Hendra Gunawan Semester II, 2016/2017 27 Januari 2017 Bab Sebelumnya 7. Teknik Pengintegralan 7.1 Aturan Dasar Pengintegralan 7.2 Pengintegralan Parsial 7.3 Integral Trigonometrik
Implementasi Metode Jumlah Riemann untuk Mendekati Luas Daerah di Bawah Kurva Suatu Fungsi Polinom dengan Divide and Conquer
Implementasi Metode Jumlah Riemann untuk Mendekati Luas Daerah di Bawah Kurva Suatu Fungsi Polinom dengan Divide and Conquer Dewita Sonya Tarabunga - 13515021 Program Studi Tenik Informatika Sekolah Teknik
2 Pythagoras Membuka Jalan 7
2 Pythagoras Membuka Jalan Siapa yang tidak pernah mendengar nama Pythagoras? Di sekolah dasar, nama Pythagoras biasanya disebut dalam pelajaran matematika di tahun kelima atau keenam, ketika guru membahas
BAHAN BELAJAR: LINGKARAN. Untung Trisna Suwaji. Agus Suharjana
BAHAN BELAJAR: LINGKARAN Untung Trisna Suwaji Agus Suharjana KEMENTERIAN PENDIDIKAN DAN KEBUDAYAAN PUSAT PENGEMBANGAN DAN PEMBERDAYAAN PENDIDIK DAN TENAGA KEPENDIDIKAN (PPPPTK) MATEMATIKA YOGYAKARTA 2015
2 Pythagoras Membuka Jalan 7
2 Pythagoras Membuka Jalan Siapa yang tidak pernah mendengar nama Pythagoras? Di sekolah dasar, nama Pythagoras biasanya disebut dalam pelajaran matematika di tahun kelima atau keenam, ketika guru membahas
Home Page. Title Page. Contents. Page 1 of 25. Go Back. Full Screen. Close. Quit
1 Page 1 of 25 Himpunan Bilangan dan Fungsi Page 1 of 25 October 5, 2011 CONTENTS 1 Himpunan Bilangan 3 1.1 Himpunan Bilangan Asli.................................. 3 1.2 Himpuan Bilangan Cacah.................................
MA2111 PENGANTAR MATEMATIKA Semester I, Tahun 2015/2016. Hendra Gunawan
MA2111 PENGANTAR MATEMATIKA Semester I, Tahun 2015/2016 Hendra Gunawan 6 KUANTOR III: INDUKSI (c) Hendra Gunawan (2015) 2 Pernyataan Berkuantor Universal (1) Pada bab sebelumnya kita telah membahas metode
MA3231. Pengantar Analisis Real. Hendra Gunawan, Ph.D. Semester II, Tahun
MA3231 Pengantar Analisis Real Semester II, Tahun 2016-2017 Hendra Gunawan, Ph.D. Eudoxus & Lingkaran Fakta bahwa luas lingkaran sebanding dengan kuadrat diameternya dibuktikan* secara rigorous oleh Eudoxus
MA1201 MATEMATIKA 2A Hendra Gunawan
MA101 MATEMATIKA A Hendra Gunawan Semester II, 016/017 1 Maret 017 Bab Sebelumnya 9.1 Barisan Tak Terhingga 9. Deret Tak Terhingga 9.3 Deret Positif: Uji Integral 9.4 Deret Positif: Uji Lainnya 9.5 Deret
(A) 3 (B) 5 (B) 1 (C) 8
. Turunan dari f ( ) = + + (E) 7 + +. Turunan dari y = ( ) ( + ) ( ) ( + ) ( ) ( + ) ( + ) ( + ) ( ) ( + ) (E) ( ) ( + ) 7 5 (E) 9 5 9 7 0. Jika f ( ) = maka f () = 8 (E) 8. Jika f () = 5 maka f (0) +
4 Jasa Besar Euclid. 4 Jasa Besar Euclid 19
4 Jasa Besar Euclid Kota Alexandria (Al-Iskandariya), yang terletak di pantai utara Mesir, dibangun oleh Alexander Agung pada tahun 322 SM, menyaingi kota Athena. Pada tahun 300 SM, Raja Ptolemy I Soter
MA2111 PENGANTAR MATEMATIKA Semester I, Tahun 2015/2016. Hendra Gunawan
MA2111 PENGANTAR MATEMATIKA Semester I, Tahun 2015/2016 Hendra Gunawan Intro: Apa itu Matematika? Matematika adalah.. 2 Archimedes & Lingkaran Archimedes mempelajari lingkaran. Ia berhasil membuktikan
2. Untuk interval 0 < x < 360, nilai x yang nantinya akan memenuhi persamaan trigonometri cos x 2 sin x = 2 3 cos adalah
Soal Babak Semifinal OMITS 007. Hubungan antara a dan b agar fungsi f x = a sin x + b cos x mempunyai nilai stasioner di x = π adalah a. a = b b. a = b d. a = b e. a = b a = b. Untuk interval 0 < x < 60,
BAB I VEKTOR DALAM BIDANG
BAB I VEKTOR DALAM BIDANG I. KURVA BIDANG : Penyajian secara parameter Suatu kurva bidang ditentukan oleh sepasang persamaan parameter. ; dalam I dan kontinue pada selang I, yang pada umumnya sebuah selang
Hendra Gunawan. 8 November 2013
MA1101 MATEMATIKA 1A Hendra Gunawan Semester I, 013/014 8 November 013 Apa yang Telah Dipelajari pada Bab 4 1. Notasi Sigma dan Luas Daerah di Bawah Kurva. Jumlah Riemann dan Integral Tentu 3. Teorema
Pembahasan Seleksi Nasional Masuk Perguruan Tinggi Negeri (SNMPTN)
Pembahasan Seleksi Nasional Masuk Perguruan Tinggi Negeri (SNMPTN) Bidang Matematika Kode Paket 578 Oleh : Fendi Alfi Fauzi 1. Diketahui vektor u = (a,, 1) dan v = (a, a, 1). Jika vektor u tegak lurus
Hendra Gunawan. 18 September 2013
MA1101 MATEMATIKA 1A Hendra Gunawan Semester I, 2013/2014 18 September 2013 Review: Teorema Nilai Antara Jika f kontinu pada [a,b],, f(a) < 0 dan f(b) > 0 (atau sebaliknya, f(a) > 0 dan f(b) < 0), maka
Hendra Gunawan. 2 Oktober 2013
MA1101 MATEMATIKA 1A Hendra Gunawan Semester I, 2013/2014 2 Oktober 2013 Apa yang Telah Dipelajari pada Bab 2 2.1 Dua Masalah Satu Tema 2.2 Turunan 2.3 Aturan Turunan 2.4 Turunan Fungsi Trigonometri 2.5Aturan
UN SMA IPA 2003 Matematika
UN SMA IPA 00 Matematika Kode Soal Doc. Version : 0-0 halaman 0. Persamaan kuadrat (k + )² - (k - ) +k - = 0, mempunyai akar-akar nyata dan sama. Jumlah kedua persamaan tersebut 9 9 0. Jika akar-akar persamaan
MA5031 Analisis Real Lanjut Semester I, Tahun 2015/2016. Hendra Gunawan
MA5031 Analisis Real Lanjut Semester I, Tahun 2015/2016 Hendra Gunawan 4.2 Sifat-Sifat Fungsi Kontinu Diberikan f dan g, keduanya terdefinisi pada himpunan A, kita definisikan f + g, f g, fg, f/g secara
= + atau = - 2. TURUNAN 2.1 Definisi Turunan fungsi f adalah fungsi yang nilainya di setiap bilangan sebarang c di dalam D f diberikan oleh
JURUSAN PENDIDIKAN MATEMATIKA FPMIPA-UPI BANDUNG HAND OUT TURUNAN DAN DIFERENSIASI OLEH: FIRDAUS-UPI 0716 1. GARIS SINGGUNG 1.1 Definisi Misalkan fungsi f kontinu di c. Garis singgung ( tangent line )
Hendra Gunawan. 5 Maret 2014
MA101 MATEMATIKA A Hendra Gunawan Semester II, 013/014 5 Maret 014 Kuliah yang Lalu 10.1 Parabola, aboa, Elips, danhiperbola a 10.4 Persamaan Parametrik Kurva di Bidang 10.5 SistemKoordinatPolar 11.1 Sistem
Hendra Gunawan. 26 Februari 2014
MA1201 MATEMATIKA 2A Hendra Gunawan Semester II, 2013/2014 26 Februari 2014 9.6 Deret Pangkat Kuliah yang Lalu Menentukan selang kekonvergenan deret pangkat 9.7 Operasi pada Deret Pangkat Mlkk Melakukan
MATEMATIKA. Hendra Gunawan
MENULIS SKRIPSI MATEMATIKA Hendra Gunawan 26 Maret 2011 MATEMATIKA BUKAN BARU LAHIR KEMARIN 2 ±4000 tahun y.l. bangsa Babilonia telah menggunakan geometri sebagai basis perhitungan astronomis. Bangsa Mesir
Hendra Gunawan. 16 Oktober 2013
MA1101 MATEMATIKA 1A Hendra Gunawan Semester I, 2013/2014 16 Oktober 2013 Latihan (Kuliah yang Lalu) 1. Diketahui g(x) = x 3 /3, x є [ 2,2]. Hitung nilai rata rata g pada [ 2,2] dan tentukan c є ( 2,2)
BAB II VEKTOR DAN GERAK DALAM RUANG
BAB II VEKTOR DAN GERAK DALAM RUANG 1. KOORDINAT CARTESIUS DALAM RUANG DIMENSI TIGA SISTEM TANGAN KANAN SISTEM TANGAN KIRI RUMUS JARAK,,,, 16 Contoh : Carilah jarak antara titik,, dan,,. Solusi :, Persamaan
MA1201 MATEMATIKA 2A Hendra Gunawan
MA1201 MATEMATIKA 2A Hendra Gunawan Semester II, 2016/2017 15 Maret 2017 Kuliah yang Lalu 10.1-2 Parabola, Elips, dan Hiperbola 10.4 Persamaan Parametrik Kurva di Bidang 10.5 Sistem Koordinat Polar 11.1
LAMPIRAN IV KARTU SOAL DAN JAWABAN PERSAMAAN GARIS SINGGUNG KURVA DAN FUNGSI NAIK DAN TURUN. Diketahui: g x = dan titik (, 0)
160 LAMPIRAN IV KARTU SOAL DAN JAWABAN PERSAMAAN GARIS SINGGUNG KURVA DAN 1. Tentukan persamaan garis singgung fungsi f x = x 2 di titik (2, 4). FUNGSI NAIK DAN TURUN Diketahui: f x = dan titik (2,...)
MA5031 Analisis Real Lanjut Semester I, Tahun 2015/2016. Hendra Gunawan
MA5031 Analisis Real Lanjut Semester I, Tahun 2015/2016 Hendra Gunawan 3.3 Himpunan Kompak Himpunan tak terhingga lebih sulit ditangani daripada himpunan terhingga. Namun ada himpunan tak terhingga yang
KAJI LATIH 1. menutupi daerah seluas 2 cm 2, maka jarijarinya. cm (C) cm (D) 2
0. Diameter sebuah lingkaran cm. Untuk =,4, maka kelilingnya adalah. (),4 cm (),6 cm () 6,8 cm (D) 5, cm 0. Keliling daerah pada gambar di bawah ( = ) () 64 cm () 8 cm () 8 cm (D) 00 cm 0. Luas arsiran
MA5031 Analisis Real Lanjut Semester I, Tahun 2015/2016. Hendra Gunawan
MA5031 Analisis Real Lanjut Semester I, Tahun 2015/2016 Hendra Gunawan 5. Kalkulus Diferensial 5.1 Konsep Turunan Beberapa Definisi yang Setara Kekontinuan dan Keterdiferensialan secara Kontinu 5.2 Sifat-Sifat
Masukan pengertian dan di setiap topik dan buat daftar pustaka.. latar dan tujuan ambil dari silabus online book,,, ingat ok!!!!
Masukan pengertian dan di setiap topik dan buat daftar pustaka.. latar dan tujuan ambil dari silabus online book,,, ingat ok!!!! LINGKARAN Lingkaran adalah kurva tertutup sederhana yang merupakan tempat
OLIMPIADE SAINS TERAPAN NASIONAL SEKOLAH MENENGAH KEJURUAN TINGKAT PROPINSI JAWA TENGAH 2010 BIDANG MATEMATIKA TEKNOLOGI
OLIMPIADE SAINS TERAPAN NASIONAL SEKOLAH MENENGAH KEJURUAN TINGKAT PROPINSI JAWA TENGAH 2010 BIDANG MATEMATIKA TEKNOLOGI SESI III (ISIAN SINGKAT DAN ESSAY) WAKTU : 180 MENIT ============================================================
MA1201 MATEMATIKA 2A Hendra Gunawan
MA101 MATEMATIKA A Hendra Gunawan Semester II, 016/017 10 Maret 01 Kuliah ang Lalu 10.1- Parabola, Elips, dan Hiperbola 10.4 Persamaan Parametrik Kurva di Bidang 10.5 Sistem Koordinat Polar 11.1 Sistem
MA1201 MATEMATIKA 2A Hendra Gunawan
MA1201 MATEMATIKA 2A Hendra Gunawan Semester II, 2016/2017 8 Maret 2017 Kuliah yang Lalu 10.1-2 Parabola, Elips, dan Hiperbola 10.4 Persamaan Parametrik Kurva di Bidang 10.5 Sistem Koordinat Polar 11.1
Hendra Gunawan. 4 April 2014
MA1201 MATEMATIKA 2A Hendra Gunawan Semester II, 2013/2014 4 April 2014 Kuliah yang Lalu 12.1 Fungsi dua (atau lebih) peubah 12.2 Turunan Parsial 12.3 Limit dan Kekontinuan 12.4 Turunan fungsi dua peubah
Hendra Gunawan. 30 Agustus 2013
MA1101 MATEMATIKA 1A Hendra Gunawan Semester I, 2013/2014 30 Agustus 2013 Latihan (Kuliah yang Lalu) Selesaikan pertaksamaan berikut: 1. x + 1 < 2/x. (sudah dijawab) 2. x 3 < x + 1. 8/30/2013 (c) Hendra
PEMBELAJARAN SEGIEMPAT, SEGITIGA DAN LINGKARAN LAPORAN. Diajukan untuk memenuhi salah satu tugas mata kuliah Pendidikan Matematika II
PEMBELAJARAN SEGIEMPAT, SEGITIGA DAN LINGKARAN LAPORAN Diajukan untuk memenuhi salah satu tugas mata kuliah Pendidikan Matematika II Dosen Dr. Karso, M.Pd Disusun oleh : Indri Nur Oktaviani 1003282 Saeful
INTEGRAL ( MAT ) Disusun Oleh : Drs. Pundjul Prijono. Nip PEMERINTAH KOTA MALANG DINAS PENDIDIKAN
MODUL MATEMATIKA INTEGRAL ( MAT 12.1.1 ) Disusun Oleh : Drs. Pundjul Prijono Nip. 19580117.198101.1.003 PEMERINTAH KOTA MALANG DINAS PENDIDIKAN SMA NEGERI 6 Jalan Mayjen Sungkono No. 58 Telp. (0341) 752036
Matematika Dasar NILAI EKSTRIM
NILAI EKSTRIM Misal diberikan kurva f( ) dan titik ( a,b ) merupakan titik puncak ( titik maksimum atau minimum ). Maka garis singgung kurva di titik ( a,b ) akan sejajar sumbu X atau [ ] mempunyai gradien
Rumus dan Contoh Soal Bangun Datar dan Bangun Ruang
Rumus dan Contoh Soal Bangun Datar dan Bangun Ruang 2. Menghitung Luas Segi Banyak Bangun datar pada Gambar (a) dan (b) dinamakan juga segi banyak. Bangun (a) dibentuk oleh persegipanjang dan persegi.
LOMBA MATEMATIKA NASIONAL KE-26
LOMBA MATEMATIKA NASIONAL KE-6 Babak Penyisihan Tingkat SMA Minggu, 8 November 015 HIMPUNAN MAHASISWA MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS GADJAH MADA SEKIP UTARA UNIT III
BAB II TABUNG, KERUCUT, DAN BOLA. Memahami sifat-sifat tabung, kerucut dan bola, serta menentukan ukurannya
BAB II TABUNG, KERUCUT, DAN BOLA Tujuan Pembelajaran Memahami sifat-sifat tabung, kerucut dan bola, serta menentukan ukurannya A. Pendahuluan Istilah tabung, kerucut, dan bola di sini adalah istilah-istilah
Solusi dan Penyelesaian. Persamaan Lingkaran. Solusi 6. (a) m = 8 (b) m = ±2 (c*) m = 1 (d*) m > 10. (b) di luar lingkaran (c) di dalam lingkaran
Solusi dan Penyelesaian Persamaan Lingkaran # Ralat Soal --- tidak ada --- Bagian A Solusi Solusi 1. (a) x 2 + y 2 = 13 (b) x 2 + y 2 = 1 5 Solusi 2. (a) (x + 1) 2 + (y 2) 2 = 9 (b*) tidak ada persamaan
MA5031 Analisis Real Lanjut Semester I, Tahun 2015/2016. Hendra Gunawan
MA5031 Analisis Real Lanjut Semester I, Tahun 2015/2016 Hendra Gunawan 3.2 Himpunan Buka dan Himpunan Tutup Titik limit dari suatu himpunan tidak harus merupakan anggota himpunan tersebut. Pada interval
Sifat-Sifat Bangun Datar
Sifat-Sifat Bangun Datar Bangun datar merupakan sebuah bangun berupa bidang datar yang dibatasi oleh beberapa ruas garis. Jumlah dan model ruas garis yang membatasi bangun tersebut menentukan nama dan
Pembahasan SNMPTN 2011 Matematika IPA Kode 576
Pembahasan SNMPTN 011 Matematika IPA Kode 576 Oleh Tutur Widodo Juni 011 1. Diketahui vektor u = (a,, 1) dan v = (a, a, 1). Jika vektor u tegak lurus pada v, maka nilai a adalah... a. 1 b. 0 c. 1 d. e.
SUKSES BELAJAR KALKULUS
SUKSES BELAJAR KALKULUS Hendra Gunawan, Ph.D. Bandung, 14 Maret 2007 BELAJAR =? proses menumbuhkembangkan pengetahuan dan/atau keterampilan, dengan/melalui pengalaman, pengamatan, mencoba melakukan, praktek/latihan,
BAB III TURUNAN DALAM RUANG DIMENSI-n
BAB III TURUNAN DALAM RUANG DIMENSI-n 1. FUNGSI DUA PEUBAH ATAU LEBIH fungsi bernilai riil dari peubah riil, fungsi bernilai vektor dari peubah riil Fungsi bernilai riil dari dua peubah riil yakni, fungsi
MA5031 Analisis Real Lanjut Semester I, Tahun 2015/2016. Hendra Gunawan
MA5031 Analisis Real Lanjut Semester I, Tahun 2015/2016 Hendra Gunawan 2.2 Sistem Bilangan Real sebagai Lapangan Terurut Operasi Aritmetika. Sifat-sifat dasar urutan dan aritmetika dari Sistem Bilangan
MA5031 Analisis Real Lanjut Semester I, Tahun 2015/2016. Hendra Gunawan
MA5031 Analisis Real Lanjut Semester I, Tahun 2015/2016 Hendra Gunawan 2. Konstruksi Bilangan Real 2.1 Barisan Cauchy Motivasi & Definisi 2.2 Sistem Bilangan Real sbg Lapangan Terurut Aritmetika pada bilangan
BAB II LANDASAN TEORI
BAB II LANDASAN TEORI 2.1 Latar Belakang Historis Fondasi dari integral pertama kali dideklarasikan oleh Cavalieri, seorang ahli matematika berkebangsaan Italia pada tahun 1635. Cavalieri menemukan bahwa
01. Hasil dari ( ) : (-3-1) adalah. (A) -12 (B) -3 (C) 3 (D) 12
0. Hasil dari (-8 + 30) : (-3 - ) (A) - (B) -3 (C) 3 (D) 0. Pada lomba matematika ditentukan untuk jawaban yang benar mendapatkan skor, jawaban salah mendapatkan skor, sedangkan bila tidak menjawab mendapat
BAGIAN PERTAMA. Bilangan Real, Barisan, Deret
BAGIAN PERTAMA Bilangan Real, Barisan, Deret 2 Hendra Gunawan Pengantar Analisis Real 3 0. BILANGAN REAL 0. Bilangan Real sebagai Bentuk Desimal Dalam buku ini pembaca diasumsikan telah mengenal dengan
12 Bangun Datar Mirip Lingkaran
12 Bangun Datar Mirip Lingkaran Penutup lubang berbentuk lingkaran tidak mungkin jatuh ke dalam lubangnya karena lebar yang diperlukan oleh cakram lingkaran untuk jatuh sama dengan lebar lubang yang tersedia.
MA3231 Analisis Real
MA3231 Analisis Real Hendra Gunawan* *http://hgunawan82.wordpress.com Analysis and Geometry Group Bandung Institute of Technology Bandung, INDONESIA Program Studi S1 Matematika ITB, Semester II 2016/2017
MA5032 ANALISIS REAL
(Semester I Tahun 2011-2012) Dosen FMIPA - ITB E-mail: [email protected]. August 17, 2011 Zeno, seorang filsuf dan matematikawan Yunani Kuno (490-435 SM), mengemukakan sebuah paradoks tentang suatu
MAKALAH MATEMATIKA DASAR TURUNAN (DIFERENSIAL)
MAKALAH MATEMATIKA DASAR TURUNAN (DIFERENSIAL) KATA PENGANTAR Puji dan Syukur kami panjatkan ke Hadirat Tuhan Yang Maha Esa, karena berkat limpahan Rahmat dan Karunia-nya sehingga kami dapat menyusun makalah
Soal-soal dan Pembahasan UN Matematika SMP/MTs Tahun Pelajaran 2010/2011
Soal-soal dan Pembahasan UN Matematika SMP/MTs Tahun Pelajaran 2010/2011 1. Diketahui A = 7x + 5 dan B = 2x 3. Nilai A B adalah A. -9x +2 B. -9x +8 C. -5x + 2 D. -5x +8 BAB II BENTUK ALJABAR A B = -7x
SOAL BRILLIANT COMPETITION 2013
PILIHAN GANDA. Pada suatu segitiga ABC, titik D berada di AC sehingga AD : DC = 4 :. Titik E berada di BC sehingga BE : EC = : 3. Titik F adalah titik perpotongan antara garis BD dan garis AE. Jika luas
LATIHAN SOAL PROFESIONAL
LATIHAN SOAL PROFESIONAL 1. Jika 7 x = 8; maka 7 +x =. A. 686 B. 512 C. 4 D. 256 E. 178 7 x = 2 (7 x ) = 2 7 x = 2 7 x+ = 7. 7 x = 7. 2 = 4. 2 = 686 2. Panjang sisi miring segitiga siku-siku sama kaki
BAB I PENDAHULUAN. 1.1 Latar Belakang Masalah
1 BAB I PENDAHULUAN 1.1 Latar Belakang Masalah Kata geometri berasal dari bahasa Yunani yaitu geos yang berarti bumi dan metron yang berarti pengukuran. Orang-orang dahulu baik yang berbangsa Mesir, Cina,
14 Menghitung Volume Bangun Ruang
14 Menghitung Volume Bangun Ruang Pengetahuan kita tentang lingkaran berguna bagi kita dalam memahami bola dan bangun ruang lainnya yang mempunyai penampang lingkaran, seperti elipsoida, silinder, dan
Ringkasan Materi Matematika Untuk SMP Persiapan UN Web : erajenius.blogspot.com --- FB. : Era Jenius --- CP
Lingkaran & Garis Singgung A. Unsur-Unsur Lingkaran Lingkaran adalah tempat kedudukan titik-titik yang berjarak sama terhadap satu titik tetap yang disebut titik pusat lingkaran. Lambang lingkaran dengan
3. Daerah yang dibatasi oleh dua buah jari-jari dan sebuah busur pada lingkaran adalah
1. Unsur-unsur di bawah ini yang merupakan unsur lingkaran adalah. A. Jari-jari, tali busur, juring dan diagonal B. Diameter, busur, sisi dan bidang diagonal C. Juring, tembereng, apotema dan jari-jari
Interferensi Cahaya. Agus Suroso Fisika Teoretik Energi Tinggi dan Instrumentasi, Institut Teknologi Bandung
Interferensi Cahaya Agus Suroso ([email protected]) Fisika Teoretik Energi Tinggi dan Instrumentasi, Institut Teknologi Bandung Agus Suroso (FTETI-ITB) Interferensi Cahaya 1 / 39 Contoh gejala interferensi
Matematika Proyek Perintis I Tahun 1979
Matematika Proyek Perintis I Tahun 979 MA-79-0 Irisan himpunan : A = { x x < } dan himpunan B = { x < x < 8 } ialah himpunan A. { x x < 8 } { x x < } { x < x < 8 } { x < x < } { x < x } MA-79-0 Apabila
KISI-KISI UJIAN SEKOLAH
KISI-KISI UJIAN SEKOLAH Matematika SEKOLAH MENENGAH PERTAMA DAERAH KHUSUS IBUKOTA (DKI) JAKARTA TAHUN PELAJARAN 2012-2013 KISI KISI PENULISAN SOAL UJIAN SEKOLAH TAHUN PELAJARAN 2012-2013 Jenjang : SMP
Lingkaran. 1. Pengertian. 2. Unsur-unsur Lingkaran
Lingkaran 1. Pengertian Lingkaran merupakan suatu kurva tertutup sederhana yang merupakan tempat kedudukan titik-titik yang berjarak sama terhadap suatu titik tertentu. Jarak yang sama tersebut disebut
INTEGRAL ( MAT ) Disusun Oleh : Drs. Pundjul Prijono. Nip PEMERINTAH KOTA MALANG DINAS PENDIDIKAN
MODUL MATEMATIKA INTEGRAL ( MAT 12.1.1 ) Disusun Oleh : Drs. Pundjul Prijono Nip. 19580117.198101.1.003 PEMERINTAH KOTA MALANG DINAS PENDIDIKAN SMA NEGERI 6 Jalan Mayjen Sungkono No. 58 Telp. (0341) 752036
Hendra Gunawan. 4 September 2013
MA1101 MATEMATIKA 1A Hendra Gunawan Semester I, 2013/2014 4 September 2013 Latihan (Kuliah yang Lalu) 1. Tentukan daerah asal dan daerah nilai fungsi 2 f(x) = 1 x. sudah dijawab 2. Gambar grafik fungsi
Hendra Gunawan. 5 Februari 2014
MA1201 MATEMATIKA 2A Hendra Gunawan Semester II, 2013/2014 5 Februari 2014 Bab Sebelumnya 7. Teknik Pengintegralan 7.1 Aturan Dasar Pengintegralan 7.2 Pengintegralan Parsial il 7.3 Integral Trigonometrik
Hendra Gunawan. 11 Oktober 2013
MA1101 MATEMATIKA 1A Hendra Gunawan Semester I, 2013/2014 11 Oktober 2013 Latihan (Kuliah yang Lalu) Dengan memperhatikan: daerah asal dan daerahhasilnya, titik titik potong dengan sumbu koordinat, asimtot
NEWTON S CRADLE (AYUNAN NEWTON)
Dapatkan soal-soal lainnya di http://forum.pelatihan-osn.com Olimpiade Sain Nasional 20007 Eksperimen Fisika Hal 1 dari 5 NEWTON S CRADLE (AYUNAN NEWTON) Ayunan Newton adalah salah satu permainan Fisika
LAPORAN PRAKTIKUM FISIKA DASAR MODUL 5 MOMEN INERSIA
LAPORAN PRAKTIKUM FISIKA DASAR MODUL 5 MOMEN INERSIA Nama : Lukman Santoso NPM : 240110090123 Tanggal / Jam Asisten : 17 November 2009/ 15.00-16.00 WIB : Dini Kurniati TEKNIK DAN MANAJEMEN INDUSTRI PERTANIAN
INTEGRAL. disebut integral tak tentu dan f(x) disebut integran. = X n+1 + C, a = konstanta
INTEGRAL Jika f(x) = F (x) adalah turunan pertama dari fungsi F(x) maka F(x) adalah antiturunan dari f(x)dan ditulis dengan F(x) = (dibaca integral f(x) terhadap x) = lambang integral, f(x) = integran.
Soal Babak Penyisihan MIC LOGIKA 2011
Soal Babak Penyisihan MIC LOGIKA 2011 1. Jika adalah bilangan bulat dan angka puluhan dari adalah tujuh, maka angka satuan dari adalah... a. 1 c. 5 e. 9 b. 4 d. 6 2. ABCD adalah pesergi dengan panjang
INTEGRAL. Bab. Di unduh dari : Bukupaket.com. Integral tak tentu Fungsi aljabar Derivatif Antiderivatif A. KOMPETENSI DASAR DAN PENGALAMAN BELAJAR
Bab INTEGRAL A. KOMPETENSI DASAR DAN PENGALAMAN BELAJAR Kompetensi Dasar Setelah mengikuti pembelajaran integral siswa mampu:. Mampu mentransformasi diri dalam berperilaku jujur, tangguh menghadapi masalah,
MATEMATIKA II. Turunan dan Aplikasinya. Rudi Prihandoko. March 9, 2017 ver 0.6
MATEMATIKA II Turunan dan Aplikasinya Rudi Prihandoko March 9, 2017 ver 0.6 KUIS I KUIS Misalkan ABCDE adalah NIM Anda. Misalkan pula f(x) = (Ax2 + Bx + C) 2 Ax 2 + Dx + E adalah suatu fungsi rasional.
PEMBUKTIAN TEOREMA BUTTERFLY DI GEOMETRI BOLA. Yuman Agistia. Mahasiswa Program Studi Pendidikan Matematika.
PEMBUKTIAN TEOREMA BUTTERFLY DI GEOMETRI BOLA Yuman Agistia Mahasiswa Program Studi Pendidikan Matematika e-mail: [email protected] Abstrak Makalah ini membahas tentang pembuktian Teorema Butterfly.
