BAB I PENDAHULUAN Latar Belakang Masalah

Ukuran: px
Mulai penontonan dengan halaman:

Download "BAB I PENDAHULUAN Latar Belakang Masalah"

Transkripsi

1 BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Perkalian skalar perplectic merupakan bagian dari teori perkalian skalar indefinite. Untuk menjelaskan pengertian perkalian skalar perplectic, terlebih dahulu diberikan pengertian tentang matriks reverse. Matriks reverse yaitu matriks yang diperoleh dengan membalik urutan baris dari suatu matriks. Misalkan diberikan vektor x dan y, perkalian skalar perplectic didefinisikan sebagai perkalian skalar vektor x dengan reverse dari vektor y. Selanjutnya matriks yang mengawetkan perkalian perplectic disebut sebagai matriks perplectic. Dari sini muncul sebuah permasalahan yang mendasari pembuatan tugas akhir ini, yaitu bagaimana cara untuk memperoleh faktorisasi QR dari suatu matriks A dengan matriks Q merupakan matriks perplectic. Permasalahan ini akan dijabarkan dalam 2 masalah utama sebagai berikut. Masalah 1. Diberikan matriks real A, dapatkah dibentuk faktorisasi QR dari matriks A jika Q merupakan matriks ortogonal perplectic? Pada faktorisasi QR biasa, diketahui bahwa jika diberikan suatu matriks A maka akan diperoleh matriks Q yang ortogonal dan matriks R yang berbentuk matriks segitiga atas dengan A = QR. Kesulitan utama dalam menyelesaikan Masalah 1 di atas adalah menemukan bentuk yang tepat dari matriks R. Sebagian solusi dari Masalah 1 dapat ditemukan untuk kasus dimana A merupakan suatu matriks khusus, yaitu matriks yang invariant terhadap operasi membalik urutan baris dan kolom matriks tersebut secara berurutan. Matriks khusus ini selanjutnya dikenal sebagai matriks centrosymmetric. Pada bab selanjutnya akan ditunjukkan bahwa jika matriks Q perplectic dan ortogonal, maka matriks Q centrosymmetric. Kemudian akan ditunjukkan juga bahwa jika matriks A centrosymmetric dan 1

2 2 A = QR dengan matriks Q centrosymmetric, maka matriks R juga centrosymmetric. Oleh karena itu dengan membatasi Masalah 1 pada kasus khusus dimana A merupakan matriks centrosymmetric, dapat diperoleh faktorisasi yang mempertahankan struktur dalam bentuk matriks centrosymmetric. Berdasarkan analisis Masalah 1 di atas, timbul permasalahan selanjutnya sebagai berikut. Masalah 2. Diberikan matriks real centrosymmetric A, bagaimanakah bentuk faktorisasi QR dari matriks A jika Q dan R merupakan matriks centrosymmetric? Dalam kasus pada Masalah 2, akan lebih mudah untuk mencari bentuk yang tepat dari matriks R. Pertama-tama diklaim bahwa matriks segitiga atas bukan merupakan bentuk yang tepat dari matriks R. Untuk membuktikan klaim ini, dimisalkan A adalah matriks persegi yang centrosymmetric dan Q dan R adalah matriks yang diperoleh dari faktorisasi QR biasa dari matriks A. Diandaikan setelah melakukan faktorisasi QR biasa tersebut diperoleh hasil bahwa matriks Q perplectic dan matriks R centrosymmetric, akibatnya R merupakan matriks segitiga atas dan centrosymmetric sehingga R haruslah merupakan matriks diagonal. Berdasarkan pembahasan di atas dapat diambil kesimpulan bahwa setiap matriks centrosymmetric merupakan hasil perkalian dari matriks ortogonal perplectic dengan matriks diagonal. Ini merupakan hasil kesimpulan yang menarik, akan tetapi counter example berikut menunjukkan bahwa kesimpulan tersebut tidaklah benar. Diberikan matriks centrosymmetric A dengan A = Karena matriks ortogonal perplectic merupakan matriks centrosymmetric, maka matriks real ortogonal perplectic berukuran 2 2 yang dapat dibuat hanyalah matriks berikut ± 1 0 ; ±

3 3 Dimisalkan setiap matriks di atas dikalikan dari kanan dengan suatu matriks diagonal α 0 dimana α, β R. Perkalian ini akan menghasilkan matriks 0 β berikut ± α 0 ; ± 0 β. 0 β α 0 Jelas bahwa tidak ada α, β R yang dapat dipilih sedemikian hingga matriks A sama dengan sebarang matriks hasil perkalian di atas. Oleh karena itu matriks A bukan merupakan perkalian dari matriks ortogonal perplectic dengan matriks diagonal. Berdasarkan pembahasan di atas, untuk memperoleh matriks R yang centrosymmetric maka asumsi bahwa R berbentuk matriks segitiga atas harus dihilangkan. Jadi seperti apakah bentuk matriks yang tepat untuk R? Jawabannya tidak tentu, akan tetapi pada tugas akhir ini akan ditunjukkan bahwa salah satu bentuk yang tepat untuk R adalah matriks double-cone Tujuan dan Manfaat Penelitian Tujuan utama dari tugas akhir ini adalah untuk membentuk faktorisasi QR dari suatu matriks khusus yaitu matriks centrosymmetric, yang dapat mempertahankan struktur matriks centrosymmetric tersebut dengan cara menemukan bentuk yang tepat untuk matriks R sedemikian hingga diperoleh matriks Q dan R yang juga centrosymmetric. Selain tujuan utama tersebut, tugas akhir ini juga bertujuan untuk menjelaskan pengertian matriks centrosymmetric, menjelaskan tahap-tahap penggunaan block perplectic reflector dalam pembentukan faktorisasi QR centrosymmetric, dan menjelaskan penerapan faktorisasi QR centrosymmetric dalam menyelesaikan sistem linear centrosymmetric. Pada tugas akhir ini terdapat manfaat secara langsung maupun secara tidak langsung. Manfaat secara langsung yaitu faktorisasi QR centrosymmetric yang telah diperoleh dapat digunakan untuk menyelesaikan masalah sistem linear

4 4 centrosymmetric, sedangkan manfaat secara tidak langsung yaitu hasil dari penelitian ini memperlihatkan bahwa selain faktorisasi QR biasa yang telah dikenal, ternyata dapat dibentuk faktorisasi QR dalam bentuk lain jika dilihat dari jenis atau bentuk matriks Q maupun R, sehingga hal ini dapat menjadi motivasi agar dilakukan penelitian lebih lanjut untuk menemukan bentuk faktorisasi QR yang lain Tinjauan Pustaka Tulisan ini secara keseluruhan mengacu pada artikel ilmiah yang ditulis oleh Burnik (2015). Dalam artikel ini dibahas tentang pembentukan faktorisasi QR yang mempertahankan bentuk atau struktur suatu matriks, dalam hal ini yaitu matriks centrosymmetric. Dalam artikel ini terdapat beberapa pembuktian teorema maupun lemma yang belum ditulis secara lengkap dan terperinci. Oleh karena itu perlu untuk melengkapi tulisan yang bersumber dari literatur tersebut. Bahan acuan lain yang cukup penting dalam penulisan tugas akhir ini yaitu artikel ilmiah yang ditulis oleh Singer dan Singer (2008). Artikel ini membahas tentang pengertian block reflector yang menjadi dasar dan alat utama dalam pembentukan faktorisasi QR centrosymmetric. Selain itu dibahas juga mengenai matriks Householder yang merupakan bentuk khusus dari block reflector. Selain kedua bahan acuan utama di atas, sebagian besar materi-materi dasar diperoleh dari buku Anton (2010). Dari buku tersebut diperoleh penjelasan lengkap tentang matriks, operasi baris elementer, sistem persamaan linear, nilai eigen dan vektor eigen, proses Gram-Schmidt, serta dekomposisi nilai singular. Kemudian dari buku Schott (2015) diperoleh penjelasan mengenai salah satu definisi invers tergeneralisasi Moore-Penrose yang digunakan untuk pembuktian hukum kanselasi. Dari artikel ilmiah yang ditulis oleh Mackey, dkk. (2005) diperoleh penjelasan mengenai matriks ortogonal perplectic. Dari buku Malik, dkk. (2007) diperoleh penjelasan mengenai definisi grup. Dari artikel ilmiah yang ditulis oleh Schreiber dan Parlett (1988) diperoleh penjelasan tambahan mengenai

5 5 block reflector. Dari buku Anthony dan Harvey (2012) diperoleh penjelasan mengenai rank matriks, range, basis, pertidaksamaan Cauchy-Schwarz dan proyeksi. Dan yang terakhir dari artikel ilmiah yang ditulis oleh Aprilia (2015) diperoleh penjelasan mengenai pembentukan faktorisasi QR biasa menggunakan algoritma bertipe householder Metode Penelitian Metode yang digunakan dalam penulisan skripsi ini adalah dengan terlebih dahulu melakukan studi literatur mengenai faktorisasi QR centrosymmetric. Pertama-tama dipelajari materi-materi dasar yang terkait diantaranya tentang pengertian, jenis, dan operasi matriks serta nilai eigen dan vektor eigen. Nilai eigen dan vektor eigen menjadi dasar untuk mempelajari proses Gram-Schmidt dan dekomposisi nilai singular. Kemudian setelah itu dipelajari materi-materi inti diantaranya invers tergeneralisasi Moore-Penrose, matriks perplectic, matriks centrosymmetric, dan block perplectic reflector. Selanjutnya dengan menggunakan materi yang telah dipelajari, dibentuk faktorisasi QR centrosymmetric yang dapat digunakan untuk menyelesaikan masalah sistem linear centrosymmetric. Terakhir akan dibuat program faktorisasi QR centrosymmetric menggunakan software MATLAB Sistematika Penulisan Pada penulisan tugas akhir ini, penulis menggunakan sistematika sebagai berikut. BAB I. PENDAHULUAN Pada bab ini dibahas mengenai latar belakang masalah yang menjadi alasan penulisan. Dibahas juga mengenai tujuan dan manfaat penelitian, tinjauan pustaka, metode penelitian, serta sistematika penulisan. BAB II. DASAR TEORI Pada bab ini diberikan materi-materi dasar yang akan digunakan pada bab

6 6 selanjutnya. Diantara materi tersebut yaitu penjelasan tentang perkalian skalar standar, perkalian skalar perplectic, nilai eigen dan vektor eigen, proses Gram-Schmdit, dekomposisi nilai singular, invers tergeneralisasi Moore-Penrose, serta hukum kanselasi. BAB III. MATRIKS CENTROSYMMETRIC Bab ini merupakan awal dari pembahasan utama pada tulisan ini. Pada bab ini akan diberikan definisi, lemma, dan teorema, serta contoh yang berkaitan dengan matriks perplectic, matriks centrosymmetric, matriks ortogonal perplectic, block perplectic reflector, penyisipan, serta matriks double-cone. BAB IV. FAKTORISASI QR CENTROSYMMETRIC Pada bab ini akan diberikan hasil utama dari tulisan ini yaitu Teorema Pertama-tama akan dibahas mengenai langkah dasar faktorisasi yang dilanjutkan dengan pembentukan faktorisasi QR centrosymmetric. Selanjutnya akan dijelaskan mengenai penerapan faktorisasi tersebut dalam menyelesaikan masalah sistem linear centrosymmetric. Kemudian pada akhir bab ini akan dibuat program faktorisasi tersebut menggunakan software MATLAB. BAB V. PENUTUP Bab ini berisi tentang kesimpulan, yaitu paparan garis-garis besar isi dari tiap bab. Bab ini juga berisi saran-saran yang berguna untuk penelitian selanjutnya dengan materi yang masih berkaitan.

BAB I PENDAHULUAN Latar Belakang Masalah

BAB I PENDAHULUAN Latar Belakang Masalah BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Suatu matriks A C m n dikatakan memiliki faktorisasi LU jika matriks tersebut dapat dinyatakan sebagai A = LU dengan L C m m matriks invertibel segitiga bawah

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA 5 BAB II TINJAUAN PUSTAKA A Matriks 1 Pengertian Matriks Definisi 21 Matriks adalah kumpulan bilangan bilangan yang disusun secara khusus dalam bentuk baris kolom sehingga membentuk empat persegi panjang

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar Belakang

BAB I PENDAHULUAN 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Pembahasan mendasar mengenai matriks terutama yang berkaitan dengan matriks yang dapat didiagonalisasi telah jelas disajikan dalam referensi yang biasanya digunakan

Lebih terperinci

BAB II LANDASAN TEORI. yang biasanya dinyatakan dalam bentuk sebagai berikut: =

BAB II LANDASAN TEORI. yang biasanya dinyatakan dalam bentuk sebagai berikut: = BAB II LANDASAN TEORI 2.1 Matriks Definisi 2.1 (Lipschutz, 2006): Matriks adalah susunan segiempat dari skalarskalar yang biasanya dinyatakan dalam bentuk sebagai berikut: Setiap skalar yang terdapat dalam

Lebih terperinci

SOLUSI PENDEKATAN TERBAIK SISTEM PERSAMAAN LINEAR TAK KONSISTEN MENGGUNAKAN DEKOMPOSISI NILAI SINGULAR

SOLUSI PENDEKATAN TERBAIK SISTEM PERSAMAAN LINEAR TAK KONSISTEN MENGGUNAKAN DEKOMPOSISI NILAI SINGULAR Buletin Ilmiah Math. Stat. dan Terapannya (Bimaster) Volume 03, No. 1 (2014), hal 91 98. SOLUSI PENDEKATAN TERBAIK SISTEM PERSAMAAN LINEAR TAK KONSISTEN MENGGUNAKAN DEKOMPOSISI NILAI SINGULAR Febrianti,

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang Masalah

BAB I PENDAHULUAN Latar Belakang Masalah BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Matematika merupakan salah satu bidang ilmu yang sangat berperan dalam kehidupan sehari-hari. Banyak permasalahan dalam kehidupan sehari-hari yang akan lebih

Lebih terperinci

MATRIKS UNITER, SIMILARITAS UNITER DAN MATRIKS NORMAL. Anis Fitri Lestari. Mahasiswa Universitas Muhammadiyah Ponorogo ABSTRAK

MATRIKS UNITER, SIMILARITAS UNITER DAN MATRIKS NORMAL. Anis Fitri Lestari. Mahasiswa Universitas Muhammadiyah Ponorogo ABSTRAK MATRIKS UNITER, SIMILARITAS UNITER DAN MATRIKS NORMAL Anis Fitri Lestari Mahasiswa Universitas Muhammadiyah Ponorogo ABSTRAK Matriks normal merupakan matriks persegi yang entri-entrinya bilangan kompleks

Lebih terperinci

TINJAUAN PUSTAKA. Dalam bab ini akan dibahas beberapa konsep mendasar meliputi ruang vektor,

TINJAUAN PUSTAKA. Dalam bab ini akan dibahas beberapa konsep mendasar meliputi ruang vektor, II. TINJAUAN PUSTAKA Dalam bab ini akan dibahas beberapa konsep mendasar meliputi ruang vektor, ruang Bernorm dan ruang Banach, ruang barisan, operator linear (transformasi linear) serta teorema-teorema

Lebih terperinci

G a a = e = a a. b. Berdasarkan Contoh 1.2 bagian b diperoleh himpunan semua bilangan bulat Z. merupakan grup terhadap penjumlahan bilangan.

G a a = e = a a. b. Berdasarkan Contoh 1.2 bagian b diperoleh himpunan semua bilangan bulat Z. merupakan grup terhadap penjumlahan bilangan. 2. Grup Definisi 1.3 Suatu grup < G, > adalah himpunan tak-kosong G bersama-sama dengan operasi biner pada G sehingga memenuhi aksioma- aksioma berikut: a. operasi biner bersifat asosiatif, yaitu a, b,

Lebih terperinci

DIAGONALISASI MATRIKS KOMPLEKS

DIAGONALISASI MATRIKS KOMPLEKS Buletin Ilmiah Mat Stat dan Terapannya (Bimaster) Volume 04, No 3 (2015), hal 337-346 DIAGONALISASI MATRIKS KOMPLEKS Heronimus Hengki, Helmi, Mariatul Kiftiah INTISARI Matriks kompleks merupakan matriks

Lebih terperinci

NILAI EIGEN DAN VEKTOR EIGEN disebut vektor eigen dari matriks A =

NILAI EIGEN DAN VEKTOR EIGEN disebut vektor eigen dari matriks A = NILAI EIGEN DAN VEKTOR EIGEN >> DEFINISI NILAI EIGEN DAN VEKTOR EIGEN Jika A adalah sebuah matriks n n, maka sebuah vektor taknol x pada R n disebut vektor eigen (vektor karakteristik) dari A jika Ax adalah

Lebih terperinci

BAB III MATRIKS HERMITIAN. dan konsep-konsep lainnya yang berkaitan dengan matriks Hermitian. Matriks

BAB III MATRIKS HERMITIAN. dan konsep-konsep lainnya yang berkaitan dengan matriks Hermitian. Matriks BAB III MATRIKS HERMITIAN Pada bab ini, akan dibahas beberapa konsep penting dari matriks Hermitian dan konsep-konsep lainnya yang berkaitan dengan matriks Hermitian. Matriks Hermitian merupakan kelas

Lebih terperinci

Lampiran 1 Pembuktian Teorema 2.3

Lampiran 1 Pembuktian Teorema 2.3 LAMPIRAN 16 Lampiran 1 Pembuktian Teorema 2.3 Sebelum membuktikan Teorema 2.3, terlebih dahulu diberikan beberapa definisi yang berhubungan dengan pembuktian Teorema 2.3. Definisi 1 (Matriks Eselon Baris)

Lebih terperinci

7. NILAI-NILAI VEKTOR EIGEN. Nilai Eigen dan Vektor Eigen Diagonalisasi Diagonalisasi Ortogonal

7. NILAI-NILAI VEKTOR EIGEN. Nilai Eigen dan Vektor Eigen Diagonalisasi Diagonalisasi Ortogonal 7. NILAI-NILAI VEKTOR EIGEN Nilai Eigen dan Vektor Eigen Diagonalisasi Diagonalisasi Ortogonal Nilai Eigen, Vektor Eigen Diketahui A matriks nxn dan x adalah suatu vektor pada R n, maka biasanya tdk ada

Lebih terperinci

MATERI ALJABAR LINEAR LANJUT RUANG VEKTOR

MATERI ALJABAR LINEAR LANJUT RUANG VEKTOR MATERI ALJABAR LINEAR LANJUT RUANG VEKTOR Disusun oleh: Dwi Lestari, M.Sc email: dwilestari@uny.ac.id JURUSAN PENDIDIKAN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS NEGERI YOGYAKARTA

Lebih terperinci

ALJABAR LINIER MAYDA WARUNI K, ST, MT ALJABAR LINIER (I)

ALJABAR LINIER MAYDA WARUNI K, ST, MT ALJABAR LINIER (I) ALJABAR LINIER MAYDA WARUNI K, ST, MT ALJABAR LINIER (I) 1 MATERI ALJABAR LINIER VEKTOR DALAM R1, R2 DAN R3 ALJABAR VEKTOR SISTEM PERSAMAAN LINIER MATRIKS, DETERMINAN DAN ALJABAR MATRIKS, INVERS MATRIKS

Lebih terperinci

BAB II KAJIAN PUSTAKA. operasi matriks, determinan dan invers matriks), aljabar max-plus, matriks atas

BAB II KAJIAN PUSTAKA. operasi matriks, determinan dan invers matriks), aljabar max-plus, matriks atas BAB II KAJIAN PUSTAKA Pada bab ini akan diuraikan mengenai matriks (meliputi definisi matriks, operasi matriks, determinan dan invers matriks), aljabar max-plus, matriks atas aljabar max-plus, dan penyelesaian

Lebih terperinci

BAB 2 RUANG HILBERT. 2.1 Definisi Ruang Hilbert

BAB 2 RUANG HILBERT. 2.1 Definisi Ruang Hilbert BAB 2 RUANG HILBERT Pokok pembicaraan kita dalam tugas akhir ini berpangkal pada teori ruang Hilbert. Untuk itu di bab ini akan diberikan definisi ruang Hilbert dan ciri-cirinya, separabilitas ruang Hilbert,

Lebih terperinci

SATUAN ACARA PERKULIAHAN UNIVERSITAS GUNADARMA

SATUAN ACARA PERKULIAHAN UNIVERSITAS GUNADARMA Mata Kuliah : Matematika Diskrit 2 Kode / SKS : IT02 / 3 SKS Program Studi : Sistem Komputer Fakultas : Ilmu Komputer & Teknologi Informasi. Pendahuluan 2. Vektor.. Pengantar mata kuliah aljabar linier.

Lebih terperinci

SUMMARY ALJABAR LINEAR

SUMMARY ALJABAR LINEAR SUMMARY ALJABAR LINEAR SUMANANG MUHTAR GOZALI KBK ANALISIS UNIVERSITAS PENDIDIKAN INDONESIA BANDUNG 2010 2 KATA PENGANTAR Bismillahirrahmanirrahim Segala puji bagi Allah Rabb semesta alam. Shalawat serta

Lebih terperinci

PENYELESAIAN SISTEM PERSAMAAN LINEAR KOMPLEKS MENGGUNAKAN METODE DEKOMPOSISI NILAI SINGULAR (SVD) TUGAS AKHIR. Oleh : DEWI YULIANTI

PENYELESAIAN SISTEM PERSAMAAN LINEAR KOMPLEKS MENGGUNAKAN METODE DEKOMPOSISI NILAI SINGULAR (SVD) TUGAS AKHIR. Oleh : DEWI YULIANTI PENYELESAIAN SISTEM PERSAMAAN LINEAR KOMPLEKS MENGGUNAKAN METODE DEKOMPOSISI NILAI SINGULAR (SVD) TUGAS AKHIR Diajukan Sebagai Salah Satu Syarat untuk Memperoleh Gelar Sarjana Sains Pada Jurusan Matematika

Lebih terperinci

untuk setiap x sehingga f g

untuk setiap x sehingga f g Jadi ( f ( f ) bernilai nol untuk setiap x, sehingga ( f ( f ) fungsi nol atau ( f ( f ) Aksioma 5 Ambil f, g F, R, ( f g )( f g ( g( g( ( f g)( Karena ( f g )( ( f g)( untuk setiap x sehingga f g Aksioma

Lebih terperinci

GARIS-GARIS BESAR PROGRAM PENGAJARAN PROGRAM STUDI: S1 SISTEM INFORMASI Semester : 1

GARIS-GARIS BESAR PROGRAM PENGAJARAN PROGRAM STUDI: S1 SISTEM INFORMASI Semester : 1 GARIS-GARIS BESAR PROGRAM PENGAJARAN PROGRAM STUDI: S1 SISTEM INFORMASI Semester : 1 Berlaku mulai: Gasal/2010 MATA KULIAH : MATRIK DAN TRANSFORMASI LINEAR KODE MATA KULIAH / SKS : 410102042 / 3 SKS MATA

Lebih terperinci

II. LANDASAN TEORI. Pada bab ini akan dijelaskan mengenai teori-teori yang berhubungan dengan

II. LANDASAN TEORI. Pada bab ini akan dijelaskan mengenai teori-teori yang berhubungan dengan II. LANDASAN TEORI Pada bab ini akan dijelaskan mengenai teori-teori yang berhubungan dengan penelitian ini sehingga dapat dijadikan sebagai landasan berfikir dalam melakukan penelitian dan akan mempermudah

Lebih terperinci

KAJIAN MATRIKS JORDAN DAN APLIKASINYA PADA SISTEM LINEAR WAKTU DISKRIT

KAJIAN MATRIKS JORDAN DAN APLIKASINYA PADA SISTEM LINEAR WAKTU DISKRIT KAJIAN MATRIKS JORDAN DAN APLIKASINYA PADA SISTEM LINEAR WAKTU DISKRIT Nama Mahasiswa : Aprilliantiwi NRP : 1207100064 Jurusan : Matematika Dosen Pembimbing : 1 Soleha, SSi, MSi 2 Dian Winda Setyawati,

Lebih terperinci

RUANG FAKTOR. Oleh : Muhammad Kukuh

RUANG FAKTOR. Oleh : Muhammad Kukuh Muhammad Kukuh, Ruang RUANG FAKTOR Oleh : Muhammad Kukuh Abstraksi Pada struktur aljabar dikenal istilah grup faktor yaitu Jika grup dan N Subgrup normal G, maka grup faktor dengan operasi Apabila G ruang

Lebih terperinci

PENYELESAIAN SISTEM PERSAMAAN LINEAR FUZZY KOMPLEKS MENGGUNAKAN METODE DEKOMPOSISI QR TUGAS AKHIR

PENYELESAIAN SISTEM PERSAMAAN LINEAR FUZZY KOMPLEKS MENGGUNAKAN METODE DEKOMPOSISI QR TUGAS AKHIR PENYELESAIAN SISTEM PERSAMAAN LINEAR FUZZY KOMPLEKS MENGGUNAKAN METODE DEKOMPOSISI QR TUGAS AKHIR Diajukan sebagai Salah Satu Syarat untuk Memperoleh Gelar Sarjana Sains pada Jurusan Matematika Oleh :

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI Pada bab ini akan dibahas beberapa definisi dan teorema dengan atau tanpa bukti yang akan digunakan untuk menentukan regularisasi sistem singular linier. Untuk itu akan diberikan terlebih

Lebih terperinci

BAB V DIAGONALISASI DAN DEKOMPOSISI MATRIKS. Sub bab ini membahas tentang faktorisasi matriks A berorde nxn ke dalam hasil

BAB V DIAGONALISASI DAN DEKOMPOSISI MATRIKS. Sub bab ini membahas tentang faktorisasi matriks A berorde nxn ke dalam hasil BAB V DIAGONALISASI DAN DEKOMPOSISI MATRIKS. Diagonalisasi Sub bab ini membahas tentang faktorisasi matriks A berorde nn ke dalam hasil kali berbentuk PDP, di mana D adalah matriks diagonal. Jika diperoleh

Lebih terperinci

PROGRAM STUDI PENDIDIKAN MATEMATIKA FAKULTAS KEGURUAN DAN ILMU PENDIDIKAN UNIVERSITAS VETERAN BANGUN NUSANTARA SUKOHARJO

PROGRAM STUDI PENDIDIKAN MATEMATIKA FAKULTAS KEGURUAN DAN ILMU PENDIDIKAN UNIVERSITAS VETERAN BANGUN NUSANTARA SUKOHARJO PERANGKAT PEMBELAJARAN MATA KULIAH : ALJABAR LINIER 2 KODE : MKK414515 DOSEN PENGAMPU : Annisa Prima Exacta, M.Pd. PROGRAM STUDI PENDIDIKAN MATEMATIKA FAKULTAS KEGURUAN DAN ILMU PENDIDIKAN UNIVERSITAS

Lebih terperinci

Solusi Sistem Persamaan Linear Ax = b

Solusi Sistem Persamaan Linear Ax = b Solusi Sistem Persamaan Linear Ax = b Kie Van Ivanky Saputra April 27, 2009 K V I Saputra (Analisis Numerik) Kuliah Sistem Persamaan Linier c April 27, 2009 1 / 9 Review 1 Substitusi mundur pada sistem

Lebih terperinci

BAB III OPERATOR LINEAR TERBATAS PADA RUANG HILBERT. Operator merupakan salah satu materi yang akan dibahas dalam fungsi

BAB III OPERATOR LINEAR TERBATAS PADA RUANG HILBERT. Operator merupakan salah satu materi yang akan dibahas dalam fungsi BAB III OPERATOR LINEAR TERBATAS PADA RUANG HILBERT 3.1 Operator linear Operator merupakan salah satu materi yang akan dibahas dalam fungsi real yaitu suatu fungsi dari ruang vektor ke ruang vektor. Ruang

Lebih terperinci

MA Analisis dan Aljabar Teori=4 Praktikum=0 II (angka. 17 Juli

MA Analisis dan Aljabar Teori=4 Praktikum=0 II (angka. 17 Juli INSTITUT TEKNOLOGI KALIMANTAN JURUSAN MATEMATIKA DAN TEKNOLOGI INFORMASI PROGRAM STUDI MATEMATIKA SILABUS MATA KULIAH KODE Rumpun MK BOBOT (sks) SEMESTER Tgl Penyusunan Aljabar Linear ELementer MA Analisis

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI A. Matriks 1. Pengertian Matriks Definisi II. A. 1 Matriks didefinisikan sebagai susunan segi empat siku- siku dari bilangan- bilangan yang diatur dalam baris dan kolom (Anton, 1987:22).

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Sistem Persamaan Linier Sistem Persamaan dengan m persamaan dan n bilangan tak diketahui ditulis dengan : Dimana x 1, x 2, x n : bilangan tak diketahui a,b : konstanta Jika SPL

Lebih terperinci

Penyelesaian Sistem Persamaan Linear (SPL) Dengan Dekomposisi QR

Penyelesaian Sistem Persamaan Linear (SPL) Dengan Dekomposisi QR Penyelesaian Sistem Persamaan Linear (SPL) Dengan Dekomposisi QR Shelvia Mandasari #1 M Subhan *2 Meira Parma Dewi *3 # Student of Mathematics Department State University of Padang Indonesia * Lecturers

Lebih terperinci

Kata Pengantar. Puji syukur kehadirat Yang Maha Kuasa yang telah memberikan pertolongan hingga modul ajar ini dapat terselesaikan.

Kata Pengantar. Puji syukur kehadirat Yang Maha Kuasa yang telah memberikan pertolongan hingga modul ajar ini dapat terselesaikan. i Kata Pengantar Puji syukur kehadirat Yang Maha Kuasa yang telah memberikan pertolongan hingga modul ajar ini dapat terselesaikan. Modul ajar ini dimaksudkan untuk membantu penyelenggaraan kuliah jarak

Lebih terperinci

Menentukan Nilai Eigen Tak Dominan Suatu Matriks Definit Negatif Menggunakan Metode Kuasa Invers dengan Shift

Menentukan Nilai Eigen Tak Dominan Suatu Matriks Definit Negatif Menggunakan Metode Kuasa Invers dengan Shift Jurnal Penelitian Sains Volume 14 Nomer 1(A) 14103 Menentukan Nilai Eigen Tak Dominan Suatu Matriks Definit Negatif Menggunakan Metode Kuasa Invers dengan Shift Yuli Andriani Jurusan Matematika FMIPA,

Lebih terperinci

BAB II DETERMINAN DAN INVERS MATRIKS

BAB II DETERMINAN DAN INVERS MATRIKS BAB II DETERMINAN DAN INVERS MATRIKS A. OPERASI ELEMENTER TERHADAP BARIS DAN KOLOM SUATU MATRIKS Matriks A = berdimensi mxn dapat dibentuk matriks baru dengan menggandakan perubahan bentuk baris dan/atau

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang Masalah

BAB I PENDAHULUAN Latar Belakang Masalah BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Ruang vektor adalah suatu grup abelian yang dilengkapi dengan operasi pergandaan skalar atas suatu lapangan. Suatu ruang vektor dapat dikawankan dengan ruang

Lebih terperinci

Trihastuti Agustinah

Trihastuti Agustinah TE 9467 Teknik Nmerik Sistem Linear Trihastti Agstinah Bidang Stdi Teknik Sistem Pengatran Jrsan Teknik Elektro - FTI Institt Teknologi Seplh Nopember O U T L I N E. Objektif. Teori. Contoh 4. Simplan

Lebih terperinci

g(x, y) = F 1 { f (u, v) F (u, v) k} dimana F 1 (F (u, v)) diselesaikan dengan: f (x, y) = 1 MN M + vy )} M 1 N 1

g(x, y) = F 1 { f (u, v) F (u, v) k} dimana F 1 (F (u, v)) diselesaikan dengan: f (x, y) = 1 MN M + vy )} M 1 N 1 Fast Fourier Transform (FFT) Dalam rangka meningkatkan blok yang lebih spesifik menggunakan frekuensi dominan, akan dikalikan FFT dari blok jarak, dimana jarak asal adalah: FFT = abs (F (u, v)) = F (u,

Lebih terperinci

APLIKASI METODE PANGKAT DALAM MENGAPROKSIMASI NILAI EIGEN KOMPLEKS PADA MATRIKS

APLIKASI METODE PANGKAT DALAM MENGAPROKSIMASI NILAI EIGEN KOMPLEKS PADA MATRIKS Jurnal UJMC, Volume, Nomor, Hal 36-40 pissn : 460-3333 eissn : 579-907X APLIKASI METODE PANGKAT DALAM MENGAPROKSIMASI NILAI EIGEN KOMPLEKS PADA MATRIKS Novita Eka Chandra dan Wiwin Kusniati Universitas

Lebih terperinci

3 Langkah Determinan Matriks 3x3 Metode OBE

3 Langkah Determinan Matriks 3x3 Metode OBE 3 Langkah Determinan Matriks 3x3 Metode OBE Ogin Sugianto sugiantoogin@yahoo.co.id penma2b.wordpress.com Majalengka, 10 Oktober 2016 Selain metode Sarrus dan Minor-Kofaktor, ada satu metode lain yang dapat

Lebih terperinci

I PENDAHULUAN II LANDASAN TEORI

I PENDAHULUAN II LANDASAN TEORI I PENDAHULUAN 1.1 Latar Belakang Matriks merupakan istilah yang digunakan untuk menunjukkan jajaran persegi panjang dari bilangan-bilangan dan setiap matriks akan mempunyai baris dan kolom. Salah satu

Lebih terperinci

Analisis Matriks. Ahmad Muchlis

Analisis Matriks. Ahmad Muchlis Analisis Matriks Ahmad Muchlis January 22, 2014 2 Notasi Pada umumnya matriks yang kita bicarakan dalam naskah ini adalah matriks kompleks. Himpunan semua matriks kompleks [real] berukuran m n dinyatakan

Lebih terperinci

GARIS-GARIS BESAR PROGRAM PEMBELAJARAN

GARIS-GARIS BESAR PROGRAM PEMBELAJARAN GARIS-GARIS BESAR PROGRAM PEMBELAJARAN Mata Kuliah : Aljabar Linear Kode / SKS : TIF-5xxx / 3 SKS Dosen : - Deskripsi Singkat : Mata kuliah ini berisi Sistem persamaan Linier dan Matriks, Determinan, Vektor

Lebih terperinci

APLIKASI MATRIKS DAN RUANG VEKTOR, oleh Dr. Adiwijaya Hak Cipta 2014 pada penulis GRAHA ILMU Ruko Jambusari 7A Yogyakarta Telp: ;

APLIKASI MATRIKS DAN RUANG VEKTOR, oleh Dr. Adiwijaya Hak Cipta 2014 pada penulis GRAHA ILMU Ruko Jambusari 7A Yogyakarta Telp: ; APLIKASI MATRIKS DAN RUANG VEKTOR, oleh Dr. Adiwijaya Hak Cipta 2014 pada penulis GRAHA ILMU Ruko Jambusari 7A Yogyakarta 55283 Telp: 0274-889398; Fax: 0274-889057; E-mail: info@grahailmu.co.id Hak Cipta

Lebih terperinci

1.1 MATRIKS DAN JENISNYA Matriks merupakan kumpulan bilangan yang berbentuk segi empat yang tersusun dalam baris dan kolom.

1.1 MATRIKS DAN JENISNYA Matriks merupakan kumpulan bilangan yang berbentuk segi empat yang tersusun dalam baris dan kolom. Bab MATRIKS DAN OPERASINYA Memahami matriks dan operasinya merupakan langkah awal dalam memahami buku ini. Beberapa masalah real dapat direpresentasikan dalam bentuk matriks. Masalah tersebut antara lain

Lebih terperinci

MENENTUKAN INVERS MOORE PENROSE DARI SUATU MATRIKS DENGAN MENGGUNAKAN DEKOMPOSISI NILAI SINGULAR SKRIPSI. Disusun oleh : DINA MARIYA J2A

MENENTUKAN INVERS MOORE PENROSE DARI SUATU MATRIKS DENGAN MENGGUNAKAN DEKOMPOSISI NILAI SINGULAR SKRIPSI. Disusun oleh : DINA MARIYA J2A MENENTUKAN INVERS MOORE PENROSE DARI SUATU MATRIKS DENGAN MENGGUNAKAN DEKOMPOSISI NILAI SINGULAR SKRIPSI Disusun oleh : DINA MARIYA J2A 004 011 JURUSAN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN

Lebih terperinci

BAB 3 FUNGSI MONOTON MATRIKS

BAB 3 FUNGSI MONOTON MATRIKS BAB 3 FUNGSI MONOTON MATRIKS Pada bab ini akan dibahas fungsi monoton matriks. Dalam mengkontruksi fungsi monoton matriks banyak istilah yang harus kita ketahui sebelumnya. Beberapa konsep yang akan dibahas

Lebih terperinci

Eigen value & Eigen vektor

Eigen value & Eigen vektor Eigen value & Eigen vektor Hubungan antara vektor x (bukan nol) dengan vektor Ax yang berada di R n pada proses transformasi dapat terjadi dua kemungkinan : 1) 2) Tidak mudah untuk dibayangkan hubungan

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI Pada bab ini dibahas penelitian-penelitian tentang aljabar maks-plus yang telah dilakukan dan teori-teori yang menunjang penelitian masalah nilai eigen dan vektor eigen yang diperumum

Lebih terperinci

DIAGONALISASI MATRIKS ATAS RING KOMUTATIF DENGAN ELEMEN SATUAN INTISARI

DIAGONALISASI MATRIKS ATAS RING KOMUTATIF DENGAN ELEMEN SATUAN INTISARI Buletin Ilmiah Mat. Stat. dan Terapannya (Bimaster) Volume 02, No. 3 (2013), hal. 183-190 DIAGONALISASI MATRIKS ATAS RING KOMUTATIF DENGAN ELEMEN SATUAN Fidiah Kinanti, Nilamsari Kusumastuti, Evi Noviani

Lebih terperinci

Ketaksamaan Cauchy-Schwarz, Ketaksamaan Bessel, dan Kesamaan Parseval di Ruang n-hasilkali Dalam Baku. Hendra Gunawan

Ketaksamaan Cauchy-Schwarz, Ketaksamaan Bessel, dan Kesamaan Parseval di Ruang n-hasilkali Dalam Baku. Hendra Gunawan Ketaksamaan Cauchy-Schwarz, Ketaksamaan Bessel, dan Kesamaan Parseval di Ruang n-hasilkali Dalam Baku Hendra Gunawan Departemen Matematika, ITB, Bandung 40132 hgunawan@dns.math.itb.ac.id 1 Abstrak Beberapa

Lebih terperinci

ALGORITMA ELIMINASI GAUSS INTERVAL DALAM MENDAPATKAN NILAI DETERMINAN MATRIKS INTERVAL DAN MENCARI SOLUSI SISTEM PERSAMAAN INTERVAL LINEAR

ALGORITMA ELIMINASI GAUSS INTERVAL DALAM MENDAPATKAN NILAI DETERMINAN MATRIKS INTERVAL DAN MENCARI SOLUSI SISTEM PERSAMAAN INTERVAL LINEAR Buletin Ilmiah Math. Stat. dan Terapannya (Bimaster) Volume 04, No. 3 (2015), hal 313 322. ALGORITMA ELIMINASI GAUSS INTERVAL DALAM MENDAPATKAN NILAI DETERMINAN MATRIKS INTERVAL DAN MENCARI SOLUSI SISTEM

Lebih terperinci

4. SISTEM PERSAMAAN DAN PERTIDAKSAMAAN

4. SISTEM PERSAMAAN DAN PERTIDAKSAMAAN 4. SISTEM PERSAMAAN DAN PERTIDAKSAMAAN 4.1 Persamaan Garis a. Bentuk umum persamaan garis Garis lurus yang biasa disebut garis merupakan kurva yang paling sederhana dari semua kurva. Misalnya titik A(2,1)

Lebih terperinci

Part II SPL Homogen Matriks

Part II SPL Homogen Matriks Part II SPL Homogen Matriks SPL Homogen Bentuk Umum SPL homogen dalam m persamaan dan n variabel x 1, x 2,, x n : a 11 x 1 + a 12 x 2 + + a 1n x n = 0 a 21 x 1 + a 22 x 2 + + a 2n x n = 0 a m1 x 1 + a

Lebih terperinci

Yang dibahas : Ortogonal Basis ortogonal Ortonormal Matrik ortogonal Komplemen ortogonal Proyeksi ortogonal Faktorisasi QR

Yang dibahas : Ortogonal Basis ortogonal Ortonormal Matrik ortogonal Komplemen ortogonal Proyeksi ortogonal Faktorisasi QR Ortogonal Yang dibahas : Ortogonal Basis ortogonal Ortonormal Matrik ortogonal Komplemen ortogonal Proyeksi ortogonal Faktorisasi QR Ortogonal Himpunan vektor {v, v,.., v k } dalam R n disebut himpunan

Lebih terperinci

MENYELESAIKAN SISTEM PERSAMAAN LINIER MENGGUNAKAN ANALISIS SVD SKRIPSI. Oleh : Irdam Haidir Ahmad J2A

MENYELESAIKAN SISTEM PERSAMAAN LINIER MENGGUNAKAN ANALISIS SVD SKRIPSI. Oleh : Irdam Haidir Ahmad J2A MENYELESAIKAN SISTEM PERSAMAAN LINIER MENGGUNAKAN ANALISIS SVD SKRIPSI Oleh : Irdam Haidir Ahmad J2A 005 023 PROGRAM STUDI MATEMATIKA JURUSAN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS

Lebih terperinci

BAB II TEORI KODING DAN TEORI INVARIAN

BAB II TEORI KODING DAN TEORI INVARIAN BAB II TEORI KODING DAN TEORI INVARIAN Pada bab 1 ini akan dibahas definisi kode, khususnya kode linier atas dan pencacah bobot Hammingnya. Di samping itu, akan dijelaskanan invarian, ring invarian dan

Lebih terperinci

METODE PANGKAT DAN METODE DEFLASI DALAM MENENTUKAN NILAI EIGEN DAN VEKTOR EIGEN DARI MATRIKS

METODE PANGKAT DAN METODE DEFLASI DALAM MENENTUKAN NILAI EIGEN DAN VEKTOR EIGEN DARI MATRIKS METODE PANGKAT DAN METODE DEFLASI DALAM MENENTUKAN NILAI EIGEN DAN VEKTOR EIGEN DARI MATRIKS Arif Prodi Matematika, FST- UINAM Wahyuni Prodi Matematika, FST-UINAM Try Azisah Prodi Matematika, FST-UINAM

Lebih terperinci

II. TINJAUAN PUSATAKA

II. TINJAUAN PUSATAKA 4 II. TINJAUAN PUSATAKA 2.1 Operator Definisi 2.1.1 (Kreyszig, 1989) Suatu pemetaan pada ruang vektor khususnya ruang bernorma disebut operator. Definisi 2.1.2 (Kreyszig, 1989) Diberikan ruang Bernorm

Lebih terperinci

Beberapa Sifat Operator Self Adjoint dalam Ruang Hilbert

Beberapa Sifat Operator Self Adjoint dalam Ruang Hilbert Vol 12, No 2, 153-159, Januari 2016 Beberapa Sifat Operator Self Adjoint dalam Ruang Hilbert Firman Abstrak Misalkan adalah operator linier dengan adalah ruang Hilbert Pada operator linier dikenal istilah

Lebih terperinci

II. TINJAUAN PUSTAKA. negatifnya. Yang termasuk dalam bilangan cacah yaitu 0,1,2,3,4, sehingga

II. TINJAUAN PUSTAKA. negatifnya. Yang termasuk dalam bilangan cacah yaitu 0,1,2,3,4, sehingga II. TINJAUAN PUSTAKA 2.1 Bilangan Bulat Bilangan Bulat merupakan bilangan yang terdiri dari bilangan cacah dan negatifnya. Yang termasuk dalam bilangan cacah yaitu 0,1,2,3,4, sehingga negatif dari bilangan

Lebih terperinci

MATRIKS INVERS TERGENERALISIR

MATRIKS INVERS TERGENERALISIR MATRIKS INVERS TERGENERALISIR Tasari Program Studi Pendidikan Matematika, Universitas Widya Dharma Klaten ABSTRAK Tujuan penelitian ini adalah : () untuk mengetahui pengertian invers tergeneralisir dari

Lebih terperinci

(Departemen Matematika FMIPA-IPB) Matriks Bogor, / 66

(Departemen Matematika FMIPA-IPB) Matriks Bogor, / 66 MATRIKS Departemen Matematika FMIPA-IPB Bogor, 2012 (Departemen Matematika FMIPA-IPB) Matriks Bogor, 2012 1 / 66 Topik Bahasan 1 Matriks 2 Operasi Matriks 3 Determinan matriks 4 Matriks Invers 5 Operasi

Lebih terperinci

Aljabar Linear Elementer MA SKS. 07/03/ :21 MA-1223 Aljabar Linear 1

Aljabar Linear Elementer MA SKS. 07/03/ :21 MA-1223 Aljabar Linear 1 Aljabar Linear Elementer MA SKS 7//7 : MA- Aljabar Linear Jadwal Kuliah Hari I Hari II jam jam Sistem Penilaian UTS 4% UAS 4% Quis % 7//7 : MA- Aljabar Linear Silabus : Bab I Matriks dan Operasinya Bab

Lebih terperinci

MATRIKS INVERS MOORE-PENROSE DALAM PENYELESAIAN SISTEM PERSAMAAN LINIER

MATRIKS INVERS MOORE-PENROSE DALAM PENYELESAIAN SISTEM PERSAMAAN LINIER MATRIKS INVERS MOORE-PENROSE DALAM PENYELESAIAN SISTEM PERSAMAAN LINIER SKRIPSI Disusun Oleh : IDA MISSHOBAH MUNIR RAHAYU J2A 004 019 JURUSAN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS

Lebih terperinci

MATRIKS VEKTOR DETERMINAN SISTEM LINEAR ALJABAR LINEAR

MATRIKS VEKTOR DETERMINAN SISTEM LINEAR ALJABAR LINEAR MATRIKS VEKTOR DETERMINAN SISTEM LINEAR ALJABAR LINEAR 7.1 Matriks DEFINISI Susunan bilangan (fungsi) berbentuk persegi panjang yang ditutup dengan tanda kurung. Bilangan (fungsi) disebut entri-entri matriks.

Lebih terperinci

MATRIKS A = ; B = ; C = ; D = ( 5 )

MATRIKS A = ; B = ; C = ; D = ( 5 ) MATRIKS A. DEFINISI MATRIKS Matriks adalah suatu susunan bilangan berbentuk segi empat dari suatu unsur-unsur pada beberapa sistem aljabar. Unsur-unsur tersebut bisa berupa bilangan dan juga suatu peubah.

Lebih terperinci

II. TINJAUAN PUSTAKA. Suatu matriks didefinisikan dengan huruf kapital yang dicetak tebal, misalnya A,

II. TINJAUAN PUSTAKA. Suatu matriks didefinisikan dengan huruf kapital yang dicetak tebal, misalnya A, II. TINJAUAN PUSTAKA 2.1 Konsep-konsep Matriks Definisi Matriks Suatu matriks didefinisikan dengan huruf kapital yang dicetak tebal, misalnya A, B, X, Y. Elemen-elemen di dalamnya disebut skalar yang berasal

Lebih terperinci

Aljabar Linier Sistem koordinat, dimensi ruang vektor dan rank

Aljabar Linier Sistem koordinat, dimensi ruang vektor dan rank Aljabar Linier Sistem koordinat, dimensi ruang vektor dan rank khozin mu tamar 9 Oktober 2014 PERTEMUAN-4 : SISTEM KOORDINAT, DIMEN- SI RUANG VEKTOR DAN RANK 1. Sistem koordinat (a) Ketunggalan scalar

Lebih terperinci

Aljabar Linear Elementer

Aljabar Linear Elementer BAB I RUANG VEKTOR Pada kuliah Aljabar Matriks kita telah mendiskusikan struktur ruang R 2 dan R 3 beserta semua konsep yang terkait. Pada bab ini kita akan membicarakan struktur yang merupakan bentuk

Lebih terperinci

Penggunaan Dekomposisi QR Dalam Estimabilitas Parameter-Parameter Model Linier

Penggunaan Dekomposisi QR Dalam Estimabilitas Parameter-Parameter Model Linier Penggunaan Dekomposisi QR Dalam Estimabilitas Parameter-Parameter Model Linier Sigit Nugroho Jurusan Matematika FMIPA Universitas Bengkulu E-mail: sigit.nugroho.1960@gmail.com Abstrak.Artikel ini membahas

Lebih terperinci

Matematika Teknik INVERS MATRIKS

Matematika Teknik INVERS MATRIKS INVERS MATRIKS Dalam menentukan solusi suatu SPL selama ini kita dihadapkan kepada bentuk matriks diperbesar dari SPL. Cara lain yang akan dikenalkan disini adalah dengan melakukan OBE pada matriks koefisien

Lebih terperinci

PENYELESAIAN SISTEM PERSAMAAN LINEAR FUZZY MENGGUNAKAN DEKOMPOSISI CHOLESCY TUGAS AKHIR. Oleh: IRAWATI

PENYELESAIAN SISTEM PERSAMAAN LINEAR FUZZY MENGGUNAKAN DEKOMPOSISI CHOLESCY TUGAS AKHIR. Oleh: IRAWATI PENYELESAIAN SISTEM PERSAMAAN LINEAR FUZZY MENGGUNAKAN DEKOMPOSISI CHOLESCY TUGAS AKHIR Diajukan sebagai Salah Satu Syarat untuk Memperoleh Gelar Sarjana Sains pada Jurusan Matematika Oleh: IRAWATI 10854004183

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI Pada bab ini akan dipaparkan mengenai konsep dasar tentang matriks meliputi definisi matriks, jenis-jenis matriks, operasi matriks, determinan, kofaktor, invers suatu matriks, serta

Lebih terperinci

0. Diperoleh bahwa: Selanjutnya dibuktikan tertutup terhadap perkalian skalar:

0. Diperoleh bahwa: Selanjutnya dibuktikan tertutup terhadap perkalian skalar: f g) f g C atau ( f g). Diperoleh bahwa: f g) ( f g) dg f ( f dg g) g dg f g Selanjutnya dibuktikan tertutup terhadap perkalian skalar: Ambil. f ) f C, R. Ditunjukkan bahwa. f C atau (. f ).. f ). diketahui

Lebih terperinci

Analisis Fungsional. Oleh: Dr. Rizky Rosjanuardi, M.Si Jurusan Pendidikan Matematika UNIVERSITAS PENDIDIKAN INDONESIA

Analisis Fungsional. Oleh: Dr. Rizky Rosjanuardi, M.Si Jurusan Pendidikan Matematika UNIVERSITAS PENDIDIKAN INDONESIA Analisis Fungsional Oleh: Dr. Rizky Rosjanuardi, M.Si Jurusan Pendidikan Matematika UNIVERSITAS PENDIDIKAN INDONESIA Lingkup Materi Ruang Metrik dan Ruang Topologi Kelengkapan Ruang Banach Ruang Hilbert

Lebih terperinci

KAJIAN METODE KONDENSASI CHIO PADA DETERMINAN MATRIKS

KAJIAN METODE KONDENSASI CHIO PADA DETERMINAN MATRIKS Buletin Ilmiah Mat. Stat. dan Terapannya (Bimaster) Volume 04, No. 3 (2015), hal 279 284. KAJIAN METODE KONDENSASI CHIO PADA DETERMINAN MATRIKS Adrianus Sumitro, Nilamsari Kusumastuti, Shantika Martha

Lebih terperinci

Kriteria Unjuk Kerja. Besaran vektor. Vektor satuan Menggambar Vektor

Kriteria Unjuk Kerja. Besaran vektor. Vektor satuan Menggambar Vektor DESKRIPSI KOMPETENSI MATA KULIAH Mata Kuliah : Matematika Kode Mata Kuliah : TKF 201 SKS : 2 Unit Kompetensi : Memecahkan persoalan matematika dasar. Kompetensi 1. Menguasai teori a) Menggambar Vektor

Lebih terperinci

Trihastuti Agustinah

Trihastuti Agustinah TE 467 Teknik Numerik Sistem Linear Trihastuti Agustinah Bidang Studi Teknik Sistem Pengaturan Jurusan Teknik Elektro - FTI Institut Teknologi Sepuluh Nopember O U T L I N E OBJEKTIF 2 3 CONTOH 4 SIMPULAN

Lebih terperinci

KS KALKULUS DAN ALJABAR LINEAR Eigen Value Eigen Vector TIM KALIN

KS KALKULUS DAN ALJABAR LINEAR Eigen Value Eigen Vector TIM KALIN KS091206 KALKULUS DAN ALJABAR LINEAR Eigen Value Eigen Vector TIM KALIN TUJUAN INSTRUKSIONAL KHUSUS Setelah menyelesaikan pertemuan ini mahasiswa diharapkan: Dapat menghitung eigen value dan eigen vector

Lebih terperinci

Part III DETERMINAN. Oleh: Yeni Susanti

Part III DETERMINAN. Oleh: Yeni Susanti Part III DETERMINAN Oleh: Yeni Susanti Perhatikan determinan matriks ukuran 2x2 berikut: Pada masing-masing jumlahan dan Terdapat wakil dari setiap baris dan setiap kolom. Bagaimana dengan tanda + (PLUS)

Lebih terperinci

LAPORAN TUGAS AKHIR. Topik Tugas Akhir : Kajian Matematika Murni PENERAPAN PROSES ORTHOGONALISASI GRAM-SCHMIDT DALAM MEMBENTUK FAKTORISASI QR

LAPORAN TUGAS AKHIR. Topik Tugas Akhir : Kajian Matematika Murni PENERAPAN PROSES ORTHOGONALISASI GRAM-SCHMIDT DALAM MEMBENTUK FAKTORISASI QR LAPORAN TUGAS AKHIR Topik Tugas Akhir : Kajian Matematika Murni PENERAPAN PROSES ORTHOGONALISASI GRAM-SCHMIDT DALAM MEMBENTUK FAKTORISASI QR TUGAS AKHIR Diajukan Kepada Fakultas Keguruan dan Ilmu Pendidikan

Lebih terperinci

II. TINJAUAN PUSTAKA. Sistem dinamik adalah sistem yang berubah dari waktu ke waktu (Farlow,et al.,

II. TINJAUAN PUSTAKA. Sistem dinamik adalah sistem yang berubah dari waktu ke waktu (Farlow,et al., II. TINJAUAN PUSTAKA 2.1 Sistem Dinamik Sistem dinamik adalah sistem yang berubah dari waktu ke waktu (Farlow,et al., 2002). Salah satu tujuan utama dari sistem dinamik adalah mempelajari perilaku dari

Lebih terperinci

EKSISTENSI DAN KONSTRUKSI GENERALISASI

EKSISTENSI DAN KONSTRUKSI GENERALISASI Jurnal Matematika UNAND Vol. V No. Hal. 77 85 SSN : 2303 290 c Jurusan Matematika FMPA UNAND KSSTNS DAN KONSTRUKS GNRALSAS {}-NVRS DAN {, 2}-NVRS ZAHY DL FTR, YANTA, NOVA NOLZA BAKAR Program Studi Matematika,

Lebih terperinci

Aljabar Linier Elementer. Kuliah 1 dan 2

Aljabar Linier Elementer. Kuliah 1 dan 2 Aljabar Linier Elementer Kuliah 1 dan 2 1.3 Matriks dan Operasi-operasi pada Matriks Definisi: Matriks adalah susunan bilangan dalam empat persegi panjang. Bilangan-bilangan dalam susunan tersebut disebut

Lebih terperinci

4.1 Algoritma Ortogonalisasi Gram-Schmidt yang Diperumum

4.1 Algoritma Ortogonalisasi Gram-Schmidt yang Diperumum BAB 4 ORTOGONALISASI GRAM-SCHMIDT YANG DIPERUMUM Diberikan sebarang barisan hingga vektor di ruang Hilbert berdimensi hingga. Pada bab ini akan diberikan algoritma untuk menghitung frame Parseval pada

Lebih terperinci

(MS.3) SUBRUANG CONINVARIAN DARI MATRIKS KUADRAT KOMPLEKS

(MS.3) SUBRUANG CONINVARIAN DARI MATRIKS KUADRAT KOMPLEKS Seminar Nasional Statistika 2 November 20 Vol 2, November 20 (MS.3) SUBRUANG CONINVARIAN DARI MATRIKS KUADRAT KOMPLEKS Euis Hartini Jurusan Matematika, Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas

Lebih terperinci

Yang dipelajari. 1. Masalah Nilai Eigen dan Penyelesaiannya 2. Masalah Pendiagonalan. Referensi : Kolman & Howard Anton. Ilustrasi

Yang dipelajari. 1. Masalah Nilai Eigen dan Penyelesaiannya 2. Masalah Pendiagonalan. Referensi : Kolman & Howard Anton. Ilustrasi 7// NILAI EIGEN dan VEKTOR EIGEN Yang dipelajari.. Masalah Nilai Eigen dan Penyelesaiannya. Masalah Pendiagonalan Referensi : Kolman & Howard Anton. Ilustrasi Misalkan t : R n R n dengan definisi t(x)

Lebih terperinci

GARIS-GARIS BESAR PROGRAM PENGAJARAN PROGRAM STUDI : S1 SISTEM KOMPUTER Semester : 2

GARIS-GARIS BESAR PROGRAM PENGAJARAN PROGRAM STUDI : S1 SISTEM KOMPUTER Semester : 2 GARIS-GARIS BESAR PROGRAM PENGAJARAN PROGRAM STUDI : S1 SISTEM KOMPUTER Semester : 2 Berlaku mulai: Genap/2011 MATA KULIAH : MATRIK DAN TRANSFORMASI LINEAR NOMOR KODE / SKS : 410202051/ 3 SKS PRASYARAT

Lebih terperinci

Sebuah garis dalam bidang xy bisa disajikan secara aljabar dengan sebuah persamaan berbentuk :

Sebuah garis dalam bidang xy bisa disajikan secara aljabar dengan sebuah persamaan berbentuk : Persamaan Linear Sebuah garis dalam bidang xy bisa disajikan secara aljabar dengan sebuah persamaan berbentuk : a x + a y = b Persamaan jenis ini disebut sebuah persamaan linear dalam peubah x dan y. Definisi

Lebih terperinci

BAB I PENDAHULUAN. 3) Untuk mengetahui apa yang dimaksud dengan invers matriks. 4) Untuk mengetahui apa yang dimaksud dengan determinan matriks

BAB I PENDAHULUAN. 3) Untuk mengetahui apa yang dimaksud dengan invers matriks. 4) Untuk mengetahui apa yang dimaksud dengan determinan matriks 1.1 LATAR BELAKANG BAB I PENDAHULUAN Teori matriks merupakan salah satu cabang ilmu aljabar linier yang menjadi pembahasan penting dalam ilmu matematika. Sejalan dengan perkembangan ilmu pengetahuan, aplikasi

Lebih terperinci

Diagonalisasi Matriks Segitiga Atas Ring komutatif Dengan Elemen Satuan

Diagonalisasi Matriks Segitiga Atas Ring komutatif Dengan Elemen Satuan Diagonalisasi Matriks Segitiga Atas Ring komutatif Dengan Elemen Satuan Fitri Aryani 1, Rahmadani 2 Jurusan Matematika Fakultas Sains dan Teknologi UIN Suska Riau e-mail: khodijah_fitri@uin-suskaacid Abstrak

Lebih terperinci

Bab 2 LANDASAN TEORI

Bab 2 LANDASAN TEORI 17 Bab 2 LANDASAN TEORI 2.1 Aljabar Matriks 2.1.1 Definisi Matriks Matriks adalah suatu kumpulan angka-angka yang juga sering disebut elemen-elemen yang disusun secara teratur menurut baris dan kolom sehingga

Lebih terperinci

Pengolahan Dasar Matriks Bagus Sartono

Pengolahan Dasar Matriks Bagus Sartono Pengolahan Dasar Matriks Bagus Sartono bagusco@gmail.com Departemen Statistika FMIPA IPB Notasi Dasar Matriks A mxn, m A n, [a ij ] mxn : matriks berukuran m x n (m baris, n kolom) a ij adalah elemen matriks

Lebih terperinci

PENYELESAIAN SISTEM PERSAMAAN LINEAR FUZZY MENGGUNAKAN METODE DEKOMPOSISI NILAI SINGULAR (SVD) TUGAS AKHIR. Oleh : SABRINA INDAH MARNI

PENYELESAIAN SISTEM PERSAMAAN LINEAR FUZZY MENGGUNAKAN METODE DEKOMPOSISI NILAI SINGULAR (SVD) TUGAS AKHIR. Oleh : SABRINA INDAH MARNI PENYELESAIAN SISTEM PERSAMAAN LINEAR FUZZY MENGGUNAKAN METODE DEKOMPOSISI NILAI SINGULAR (SVD) TUGAS AKHIR Diajukan sebagai Salah Satu Syarat untuk Memperoleh Gelar Sarjana Sains pada Jurusan Matematika

Lebih terperinci

ALJABAR LINEAR BASIS RUANG BARIS DAN BASIS RUANG KOLOM SEBUAH MATRIKS. Dosen Pengampu: DARMADI, S.Si, M.Pd. Oleh: Kelompok III

ALJABAR LINEAR BASIS RUANG BARIS DAN BASIS RUANG KOLOM SEBUAH MATRIKS. Dosen Pengampu: DARMADI, S.Si, M.Pd. Oleh: Kelompok III ALJABAR LINEAR BASIS RUANG BARIS DAN BASIS RUANG KOLOM SEBUAH MATRIKS Dosen Pengampu: DARMADI, SSi, MPd Oleh: Kelompok III 1 Andik Dwi S (06411008) 2 Indah Kurniawati (06411090) 3 Mahfuat M (06411104)

Lebih terperinci