BAB I PENDAHULUAN Latar Belakang Masalah
|
|
|
- Sudomo Kartawijaya
- 9 tahun lalu
- Tontonan:
Transkripsi
1 BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Perkalian skalar perplectic merupakan bagian dari teori perkalian skalar indefinite. Untuk menjelaskan pengertian perkalian skalar perplectic, terlebih dahulu diberikan pengertian tentang matriks reverse. Matriks reverse yaitu matriks yang diperoleh dengan membalik urutan baris dari suatu matriks. Misalkan diberikan vektor x dan y, perkalian skalar perplectic didefinisikan sebagai perkalian skalar vektor x dengan reverse dari vektor y. Selanjutnya matriks yang mengawetkan perkalian perplectic disebut sebagai matriks perplectic. Dari sini muncul sebuah permasalahan yang mendasari pembuatan tugas akhir ini, yaitu bagaimana cara untuk memperoleh faktorisasi QR dari suatu matriks A dengan matriks Q merupakan matriks perplectic. Permasalahan ini akan dijabarkan dalam 2 masalah utama sebagai berikut. Masalah 1. Diberikan matriks real A, dapatkah dibentuk faktorisasi QR dari matriks A jika Q merupakan matriks ortogonal perplectic? Pada faktorisasi QR biasa, diketahui bahwa jika diberikan suatu matriks A maka akan diperoleh matriks Q yang ortogonal dan matriks R yang berbentuk matriks segitiga atas dengan A = QR. Kesulitan utama dalam menyelesaikan Masalah 1 di atas adalah menemukan bentuk yang tepat dari matriks R. Sebagian solusi dari Masalah 1 dapat ditemukan untuk kasus dimana A merupakan suatu matriks khusus, yaitu matriks yang invariant terhadap operasi membalik urutan baris dan kolom matriks tersebut secara berurutan. Matriks khusus ini selanjutnya dikenal sebagai matriks centrosymmetric. Pada bab selanjutnya akan ditunjukkan bahwa jika matriks Q perplectic dan ortogonal, maka matriks Q centrosymmetric. Kemudian akan ditunjukkan juga bahwa jika matriks A centrosymmetric dan 1
2 2 A = QR dengan matriks Q centrosymmetric, maka matriks R juga centrosymmetric. Oleh karena itu dengan membatasi Masalah 1 pada kasus khusus dimana A merupakan matriks centrosymmetric, dapat diperoleh faktorisasi yang mempertahankan struktur dalam bentuk matriks centrosymmetric. Berdasarkan analisis Masalah 1 di atas, timbul permasalahan selanjutnya sebagai berikut. Masalah 2. Diberikan matriks real centrosymmetric A, bagaimanakah bentuk faktorisasi QR dari matriks A jika Q dan R merupakan matriks centrosymmetric? Dalam kasus pada Masalah 2, akan lebih mudah untuk mencari bentuk yang tepat dari matriks R. Pertama-tama diklaim bahwa matriks segitiga atas bukan merupakan bentuk yang tepat dari matriks R. Untuk membuktikan klaim ini, dimisalkan A adalah matriks persegi yang centrosymmetric dan Q dan R adalah matriks yang diperoleh dari faktorisasi QR biasa dari matriks A. Diandaikan setelah melakukan faktorisasi QR biasa tersebut diperoleh hasil bahwa matriks Q perplectic dan matriks R centrosymmetric, akibatnya R merupakan matriks segitiga atas dan centrosymmetric sehingga R haruslah merupakan matriks diagonal. Berdasarkan pembahasan di atas dapat diambil kesimpulan bahwa setiap matriks centrosymmetric merupakan hasil perkalian dari matriks ortogonal perplectic dengan matriks diagonal. Ini merupakan hasil kesimpulan yang menarik, akan tetapi counter example berikut menunjukkan bahwa kesimpulan tersebut tidaklah benar. Diberikan matriks centrosymmetric A dengan A = Karena matriks ortogonal perplectic merupakan matriks centrosymmetric, maka matriks real ortogonal perplectic berukuran 2 2 yang dapat dibuat hanyalah matriks berikut ± 1 0 ; ±
3 3 Dimisalkan setiap matriks di atas dikalikan dari kanan dengan suatu matriks diagonal α 0 dimana α, β R. Perkalian ini akan menghasilkan matriks 0 β berikut ± α 0 ; ± 0 β. 0 β α 0 Jelas bahwa tidak ada α, β R yang dapat dipilih sedemikian hingga matriks A sama dengan sebarang matriks hasil perkalian di atas. Oleh karena itu matriks A bukan merupakan perkalian dari matriks ortogonal perplectic dengan matriks diagonal. Berdasarkan pembahasan di atas, untuk memperoleh matriks R yang centrosymmetric maka asumsi bahwa R berbentuk matriks segitiga atas harus dihilangkan. Jadi seperti apakah bentuk matriks yang tepat untuk R? Jawabannya tidak tentu, akan tetapi pada tugas akhir ini akan ditunjukkan bahwa salah satu bentuk yang tepat untuk R adalah matriks double-cone Tujuan dan Manfaat Penelitian Tujuan utama dari tugas akhir ini adalah untuk membentuk faktorisasi QR dari suatu matriks khusus yaitu matriks centrosymmetric, yang dapat mempertahankan struktur matriks centrosymmetric tersebut dengan cara menemukan bentuk yang tepat untuk matriks R sedemikian hingga diperoleh matriks Q dan R yang juga centrosymmetric. Selain tujuan utama tersebut, tugas akhir ini juga bertujuan untuk menjelaskan pengertian matriks centrosymmetric, menjelaskan tahap-tahap penggunaan block perplectic reflector dalam pembentukan faktorisasi QR centrosymmetric, dan menjelaskan penerapan faktorisasi QR centrosymmetric dalam menyelesaikan sistem linear centrosymmetric. Pada tugas akhir ini terdapat manfaat secara langsung maupun secara tidak langsung. Manfaat secara langsung yaitu faktorisasi QR centrosymmetric yang telah diperoleh dapat digunakan untuk menyelesaikan masalah sistem linear
4 4 centrosymmetric, sedangkan manfaat secara tidak langsung yaitu hasil dari penelitian ini memperlihatkan bahwa selain faktorisasi QR biasa yang telah dikenal, ternyata dapat dibentuk faktorisasi QR dalam bentuk lain jika dilihat dari jenis atau bentuk matriks Q maupun R, sehingga hal ini dapat menjadi motivasi agar dilakukan penelitian lebih lanjut untuk menemukan bentuk faktorisasi QR yang lain Tinjauan Pustaka Tulisan ini secara keseluruhan mengacu pada artikel ilmiah yang ditulis oleh Burnik (2015). Dalam artikel ini dibahas tentang pembentukan faktorisasi QR yang mempertahankan bentuk atau struktur suatu matriks, dalam hal ini yaitu matriks centrosymmetric. Dalam artikel ini terdapat beberapa pembuktian teorema maupun lemma yang belum ditulis secara lengkap dan terperinci. Oleh karena itu perlu untuk melengkapi tulisan yang bersumber dari literatur tersebut. Bahan acuan lain yang cukup penting dalam penulisan tugas akhir ini yaitu artikel ilmiah yang ditulis oleh Singer dan Singer (2008). Artikel ini membahas tentang pengertian block reflector yang menjadi dasar dan alat utama dalam pembentukan faktorisasi QR centrosymmetric. Selain itu dibahas juga mengenai matriks Householder yang merupakan bentuk khusus dari block reflector. Selain kedua bahan acuan utama di atas, sebagian besar materi-materi dasar diperoleh dari buku Anton (2010). Dari buku tersebut diperoleh penjelasan lengkap tentang matriks, operasi baris elementer, sistem persamaan linear, nilai eigen dan vektor eigen, proses Gram-Schmidt, serta dekomposisi nilai singular. Kemudian dari buku Schott (2015) diperoleh penjelasan mengenai salah satu definisi invers tergeneralisasi Moore-Penrose yang digunakan untuk pembuktian hukum kanselasi. Dari artikel ilmiah yang ditulis oleh Mackey, dkk. (2005) diperoleh penjelasan mengenai matriks ortogonal perplectic. Dari buku Malik, dkk. (2007) diperoleh penjelasan mengenai definisi grup. Dari artikel ilmiah yang ditulis oleh Schreiber dan Parlett (1988) diperoleh penjelasan tambahan mengenai
5 5 block reflector. Dari buku Anthony dan Harvey (2012) diperoleh penjelasan mengenai rank matriks, range, basis, pertidaksamaan Cauchy-Schwarz dan proyeksi. Dan yang terakhir dari artikel ilmiah yang ditulis oleh Aprilia (2015) diperoleh penjelasan mengenai pembentukan faktorisasi QR biasa menggunakan algoritma bertipe householder Metode Penelitian Metode yang digunakan dalam penulisan skripsi ini adalah dengan terlebih dahulu melakukan studi literatur mengenai faktorisasi QR centrosymmetric. Pertama-tama dipelajari materi-materi dasar yang terkait diantaranya tentang pengertian, jenis, dan operasi matriks serta nilai eigen dan vektor eigen. Nilai eigen dan vektor eigen menjadi dasar untuk mempelajari proses Gram-Schmidt dan dekomposisi nilai singular. Kemudian setelah itu dipelajari materi-materi inti diantaranya invers tergeneralisasi Moore-Penrose, matriks perplectic, matriks centrosymmetric, dan block perplectic reflector. Selanjutnya dengan menggunakan materi yang telah dipelajari, dibentuk faktorisasi QR centrosymmetric yang dapat digunakan untuk menyelesaikan masalah sistem linear centrosymmetric. Terakhir akan dibuat program faktorisasi QR centrosymmetric menggunakan software MATLAB Sistematika Penulisan Pada penulisan tugas akhir ini, penulis menggunakan sistematika sebagai berikut. BAB I. PENDAHULUAN Pada bab ini dibahas mengenai latar belakang masalah yang menjadi alasan penulisan. Dibahas juga mengenai tujuan dan manfaat penelitian, tinjauan pustaka, metode penelitian, serta sistematika penulisan. BAB II. DASAR TEORI Pada bab ini diberikan materi-materi dasar yang akan digunakan pada bab
6 6 selanjutnya. Diantara materi tersebut yaitu penjelasan tentang perkalian skalar standar, perkalian skalar perplectic, nilai eigen dan vektor eigen, proses Gram-Schmdit, dekomposisi nilai singular, invers tergeneralisasi Moore-Penrose, serta hukum kanselasi. BAB III. MATRIKS CENTROSYMMETRIC Bab ini merupakan awal dari pembahasan utama pada tulisan ini. Pada bab ini akan diberikan definisi, lemma, dan teorema, serta contoh yang berkaitan dengan matriks perplectic, matriks centrosymmetric, matriks ortogonal perplectic, block perplectic reflector, penyisipan, serta matriks double-cone. BAB IV. FAKTORISASI QR CENTROSYMMETRIC Pada bab ini akan diberikan hasil utama dari tulisan ini yaitu Teorema Pertama-tama akan dibahas mengenai langkah dasar faktorisasi yang dilanjutkan dengan pembentukan faktorisasi QR centrosymmetric. Selanjutnya akan dijelaskan mengenai penerapan faktorisasi tersebut dalam menyelesaikan masalah sistem linear centrosymmetric. Kemudian pada akhir bab ini akan dibuat program faktorisasi tersebut menggunakan software MATLAB. BAB V. PENUTUP Bab ini berisi tentang kesimpulan, yaitu paparan garis-garis besar isi dari tiap bab. Bab ini juga berisi saran-saran yang berguna untuk penelitian selanjutnya dengan materi yang masih berkaitan.
BAB I PENDAHULUAN Latar Belakang Masalah
BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Suatu matriks A C m n dikatakan memiliki faktorisasi LU jika matriks tersebut dapat dinyatakan sebagai A = LU dengan L C m m matriks invertibel segitiga bawah
BAB II TINJAUAN PUSTAKA
5 BAB II TINJAUAN PUSTAKA A Matriks 1 Pengertian Matriks Definisi 21 Matriks adalah kumpulan bilangan bilangan yang disusun secara khusus dalam bentuk baris kolom sehingga membentuk empat persegi panjang
BAB I PENDAHULUAN 1.1 Latar Belakang
BAB I PENDAHULUAN 1.1 Latar Belakang Pembahasan mendasar mengenai matriks terutama yang berkaitan dengan matriks yang dapat didiagonalisasi telah jelas disajikan dalam referensi yang biasanya digunakan
BAB II LANDASAN TEORI. yang biasanya dinyatakan dalam bentuk sebagai berikut: =
BAB II LANDASAN TEORI 2.1 Matriks Definisi 2.1 (Lipschutz, 2006): Matriks adalah susunan segiempat dari skalarskalar yang biasanya dinyatakan dalam bentuk sebagai berikut: Setiap skalar yang terdapat dalam
SOLUSI PENDEKATAN TERBAIK SISTEM PERSAMAAN LINEAR TAK KONSISTEN MENGGUNAKAN DEKOMPOSISI NILAI SINGULAR
Buletin Ilmiah Math. Stat. dan Terapannya (Bimaster) Volume 03, No. 1 (2014), hal 91 98. SOLUSI PENDEKATAN TERBAIK SISTEM PERSAMAAN LINEAR TAK KONSISTEN MENGGUNAKAN DEKOMPOSISI NILAI SINGULAR Febrianti,
BAB I PENDAHULUAN Latar Belakang Masalah
BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Matematika merupakan salah satu bidang ilmu yang sangat berperan dalam kehidupan sehari-hari. Banyak permasalahan dalam kehidupan sehari-hari yang akan lebih
MATRIKS UNITER, SIMILARITAS UNITER DAN MATRIKS NORMAL. Anis Fitri Lestari. Mahasiswa Universitas Muhammadiyah Ponorogo ABSTRAK
MATRIKS UNITER, SIMILARITAS UNITER DAN MATRIKS NORMAL Anis Fitri Lestari Mahasiswa Universitas Muhammadiyah Ponorogo ABSTRAK Matriks normal merupakan matriks persegi yang entri-entrinya bilangan kompleks
TINJAUAN PUSTAKA. Dalam bab ini akan dibahas beberapa konsep mendasar meliputi ruang vektor,
II. TINJAUAN PUSTAKA Dalam bab ini akan dibahas beberapa konsep mendasar meliputi ruang vektor, ruang Bernorm dan ruang Banach, ruang barisan, operator linear (transformasi linear) serta teorema-teorema
G a a = e = a a. b. Berdasarkan Contoh 1.2 bagian b diperoleh himpunan semua bilangan bulat Z. merupakan grup terhadap penjumlahan bilangan.
2. Grup Definisi 1.3 Suatu grup < G, > adalah himpunan tak-kosong G bersama-sama dengan operasi biner pada G sehingga memenuhi aksioma- aksioma berikut: a. operasi biner bersifat asosiatif, yaitu a, b,
DIAGONALISASI MATRIKS KOMPLEKS
Buletin Ilmiah Mat Stat dan Terapannya (Bimaster) Volume 04, No 3 (2015), hal 337-346 DIAGONALISASI MATRIKS KOMPLEKS Heronimus Hengki, Helmi, Mariatul Kiftiah INTISARI Matriks kompleks merupakan matriks
NILAI EIGEN DAN VEKTOR EIGEN disebut vektor eigen dari matriks A =
NILAI EIGEN DAN VEKTOR EIGEN >> DEFINISI NILAI EIGEN DAN VEKTOR EIGEN Jika A adalah sebuah matriks n n, maka sebuah vektor taknol x pada R n disebut vektor eigen (vektor karakteristik) dari A jika Ax adalah
BAB III MATRIKS HERMITIAN. dan konsep-konsep lainnya yang berkaitan dengan matriks Hermitian. Matriks
BAB III MATRIKS HERMITIAN Pada bab ini, akan dibahas beberapa konsep penting dari matriks Hermitian dan konsep-konsep lainnya yang berkaitan dengan matriks Hermitian. Matriks Hermitian merupakan kelas
Lampiran 1 Pembuktian Teorema 2.3
LAMPIRAN 16 Lampiran 1 Pembuktian Teorema 2.3 Sebelum membuktikan Teorema 2.3, terlebih dahulu diberikan beberapa definisi yang berhubungan dengan pembuktian Teorema 2.3. Definisi 1 (Matriks Eselon Baris)
7. NILAI-NILAI VEKTOR EIGEN. Nilai Eigen dan Vektor Eigen Diagonalisasi Diagonalisasi Ortogonal
7. NILAI-NILAI VEKTOR EIGEN Nilai Eigen dan Vektor Eigen Diagonalisasi Diagonalisasi Ortogonal Nilai Eigen, Vektor Eigen Diketahui A matriks nxn dan x adalah suatu vektor pada R n, maka biasanya tdk ada
MATERI ALJABAR LINEAR LANJUT RUANG VEKTOR
MATERI ALJABAR LINEAR LANJUT RUANG VEKTOR Disusun oleh: Dwi Lestari, M.Sc email: [email protected] JURUSAN PENDIDIKAN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS NEGERI YOGYAKARTA
ALJABAR LINIER MAYDA WARUNI K, ST, MT ALJABAR LINIER (I)
ALJABAR LINIER MAYDA WARUNI K, ST, MT ALJABAR LINIER (I) 1 MATERI ALJABAR LINIER VEKTOR DALAM R1, R2 DAN R3 ALJABAR VEKTOR SISTEM PERSAMAAN LINIER MATRIKS, DETERMINAN DAN ALJABAR MATRIKS, INVERS MATRIKS
BAB II KAJIAN PUSTAKA. operasi matriks, determinan dan invers matriks), aljabar max-plus, matriks atas
BAB II KAJIAN PUSTAKA Pada bab ini akan diuraikan mengenai matriks (meliputi definisi matriks, operasi matriks, determinan dan invers matriks), aljabar max-plus, matriks atas aljabar max-plus, dan penyelesaian
BAB 2 RUANG HILBERT. 2.1 Definisi Ruang Hilbert
BAB 2 RUANG HILBERT Pokok pembicaraan kita dalam tugas akhir ini berpangkal pada teori ruang Hilbert. Untuk itu di bab ini akan diberikan definisi ruang Hilbert dan ciri-cirinya, separabilitas ruang Hilbert,
SATUAN ACARA PERKULIAHAN UNIVERSITAS GUNADARMA
Mata Kuliah : Matematika Diskrit 2 Kode / SKS : IT02 / 3 SKS Program Studi : Sistem Komputer Fakultas : Ilmu Komputer & Teknologi Informasi. Pendahuluan 2. Vektor.. Pengantar mata kuliah aljabar linier.
SUMMARY ALJABAR LINEAR
SUMMARY ALJABAR LINEAR SUMANANG MUHTAR GOZALI KBK ANALISIS UNIVERSITAS PENDIDIKAN INDONESIA BANDUNG 2010 2 KATA PENGANTAR Bismillahirrahmanirrahim Segala puji bagi Allah Rabb semesta alam. Shalawat serta
PENYELESAIAN SISTEM PERSAMAAN LINEAR KOMPLEKS MENGGUNAKAN METODE DEKOMPOSISI NILAI SINGULAR (SVD) TUGAS AKHIR. Oleh : DEWI YULIANTI
PENYELESAIAN SISTEM PERSAMAAN LINEAR KOMPLEKS MENGGUNAKAN METODE DEKOMPOSISI NILAI SINGULAR (SVD) TUGAS AKHIR Diajukan Sebagai Salah Satu Syarat untuk Memperoleh Gelar Sarjana Sains Pada Jurusan Matematika
untuk setiap x sehingga f g
Jadi ( f ( f ) bernilai nol untuk setiap x, sehingga ( f ( f ) fungsi nol atau ( f ( f ) Aksioma 5 Ambil f, g F, R, ( f g )( f g ( g( g( ( f g)( Karena ( f g )( ( f g)( untuk setiap x sehingga f g Aksioma
GARIS-GARIS BESAR PROGRAM PENGAJARAN PROGRAM STUDI: S1 SISTEM INFORMASI Semester : 1
GARIS-GARIS BESAR PROGRAM PENGAJARAN PROGRAM STUDI: S1 SISTEM INFORMASI Semester : 1 Berlaku mulai: Gasal/2010 MATA KULIAH : MATRIK DAN TRANSFORMASI LINEAR KODE MATA KULIAH / SKS : 410102042 / 3 SKS MATA
II. LANDASAN TEORI. Pada bab ini akan dijelaskan mengenai teori-teori yang berhubungan dengan
II. LANDASAN TEORI Pada bab ini akan dijelaskan mengenai teori-teori yang berhubungan dengan penelitian ini sehingga dapat dijadikan sebagai landasan berfikir dalam melakukan penelitian dan akan mempermudah
KAJIAN MATRIKS JORDAN DAN APLIKASINYA PADA SISTEM LINEAR WAKTU DISKRIT
KAJIAN MATRIKS JORDAN DAN APLIKASINYA PADA SISTEM LINEAR WAKTU DISKRIT Nama Mahasiswa : Aprilliantiwi NRP : 1207100064 Jurusan : Matematika Dosen Pembimbing : 1 Soleha, SSi, MSi 2 Dian Winda Setyawati,
RUANG FAKTOR. Oleh : Muhammad Kukuh
Muhammad Kukuh, Ruang RUANG FAKTOR Oleh : Muhammad Kukuh Abstraksi Pada struktur aljabar dikenal istilah grup faktor yaitu Jika grup dan N Subgrup normal G, maka grup faktor dengan operasi Apabila G ruang
PENYELESAIAN SISTEM PERSAMAAN LINEAR FUZZY KOMPLEKS MENGGUNAKAN METODE DEKOMPOSISI QR TUGAS AKHIR
PENYELESAIAN SISTEM PERSAMAAN LINEAR FUZZY KOMPLEKS MENGGUNAKAN METODE DEKOMPOSISI QR TUGAS AKHIR Diajukan sebagai Salah Satu Syarat untuk Memperoleh Gelar Sarjana Sains pada Jurusan Matematika Oleh :
BAB 2 LANDASAN TEORI
BAB 2 LANDASAN TEORI Pada bab ini akan dibahas beberapa definisi dan teorema dengan atau tanpa bukti yang akan digunakan untuk menentukan regularisasi sistem singular linier. Untuk itu akan diberikan terlebih
BAB V DIAGONALISASI DAN DEKOMPOSISI MATRIKS. Sub bab ini membahas tentang faktorisasi matriks A berorde nxn ke dalam hasil
BAB V DIAGONALISASI DAN DEKOMPOSISI MATRIKS. Diagonalisasi Sub bab ini membahas tentang faktorisasi matriks A berorde nn ke dalam hasil kali berbentuk PDP, di mana D adalah matriks diagonal. Jika diperoleh
PROGRAM STUDI PENDIDIKAN MATEMATIKA FAKULTAS KEGURUAN DAN ILMU PENDIDIKAN UNIVERSITAS VETERAN BANGUN NUSANTARA SUKOHARJO
PERANGKAT PEMBELAJARAN MATA KULIAH : ALJABAR LINIER 2 KODE : MKK414515 DOSEN PENGAMPU : Annisa Prima Exacta, M.Pd. PROGRAM STUDI PENDIDIKAN MATEMATIKA FAKULTAS KEGURUAN DAN ILMU PENDIDIKAN UNIVERSITAS
Solusi Sistem Persamaan Linear Ax = b
Solusi Sistem Persamaan Linear Ax = b Kie Van Ivanky Saputra April 27, 2009 K V I Saputra (Analisis Numerik) Kuliah Sistem Persamaan Linier c April 27, 2009 1 / 9 Review 1 Substitusi mundur pada sistem
BAB III OPERATOR LINEAR TERBATAS PADA RUANG HILBERT. Operator merupakan salah satu materi yang akan dibahas dalam fungsi
BAB III OPERATOR LINEAR TERBATAS PADA RUANG HILBERT 3.1 Operator linear Operator merupakan salah satu materi yang akan dibahas dalam fungsi real yaitu suatu fungsi dari ruang vektor ke ruang vektor. Ruang
MA Analisis dan Aljabar Teori=4 Praktikum=0 II (angka. 17 Juli
INSTITUT TEKNOLOGI KALIMANTAN JURUSAN MATEMATIKA DAN TEKNOLOGI INFORMASI PROGRAM STUDI MATEMATIKA SILABUS MATA KULIAH KODE Rumpun MK BOBOT (sks) SEMESTER Tgl Penyusunan Aljabar Linear ELementer MA Analisis
BAB II LANDASAN TEORI
BAB II LANDASAN TEORI A. Matriks 1. Pengertian Matriks Definisi II. A. 1 Matriks didefinisikan sebagai susunan segi empat siku- siku dari bilangan- bilangan yang diatur dalam baris dan kolom (Anton, 1987:22).
BAB 2 LANDASAN TEORI
BAB 2 LANDASAN TEORI 2.1 Sistem Persamaan Linier Sistem Persamaan dengan m persamaan dan n bilangan tak diketahui ditulis dengan : Dimana x 1, x 2, x n : bilangan tak diketahui a,b : konstanta Jika SPL
Penyelesaian Sistem Persamaan Linear (SPL) Dengan Dekomposisi QR
Penyelesaian Sistem Persamaan Linear (SPL) Dengan Dekomposisi QR Shelvia Mandasari #1 M Subhan *2 Meira Parma Dewi *3 # Student of Mathematics Department State University of Padang Indonesia * Lecturers
Kata Pengantar. Puji syukur kehadirat Yang Maha Kuasa yang telah memberikan pertolongan hingga modul ajar ini dapat terselesaikan.
i Kata Pengantar Puji syukur kehadirat Yang Maha Kuasa yang telah memberikan pertolongan hingga modul ajar ini dapat terselesaikan. Modul ajar ini dimaksudkan untuk membantu penyelenggaraan kuliah jarak
Menentukan Nilai Eigen Tak Dominan Suatu Matriks Definit Negatif Menggunakan Metode Kuasa Invers dengan Shift
Jurnal Penelitian Sains Volume 14 Nomer 1(A) 14103 Menentukan Nilai Eigen Tak Dominan Suatu Matriks Definit Negatif Menggunakan Metode Kuasa Invers dengan Shift Yuli Andriani Jurusan Matematika FMIPA,
BAB II DETERMINAN DAN INVERS MATRIKS
BAB II DETERMINAN DAN INVERS MATRIKS A. OPERASI ELEMENTER TERHADAP BARIS DAN KOLOM SUATU MATRIKS Matriks A = berdimensi mxn dapat dibentuk matriks baru dengan menggandakan perubahan bentuk baris dan/atau
Trihastuti Agustinah
TE 9467 Teknik Nmerik Sistem Linear Trihastti Agstinah Bidang Stdi Teknik Sistem Pengatran Jrsan Teknik Elektro - FTI Institt Teknologi Seplh Nopember O U T L I N E. Objektif. Teori. Contoh 4. Simplan
g(x, y) = F 1 { f (u, v) F (u, v) k} dimana F 1 (F (u, v)) diselesaikan dengan: f (x, y) = 1 MN M + vy )} M 1 N 1
Fast Fourier Transform (FFT) Dalam rangka meningkatkan blok yang lebih spesifik menggunakan frekuensi dominan, akan dikalikan FFT dari blok jarak, dimana jarak asal adalah: FFT = abs (F (u, v)) = F (u,
APLIKASI METODE PANGKAT DALAM MENGAPROKSIMASI NILAI EIGEN KOMPLEKS PADA MATRIKS
Jurnal UJMC, Volume, Nomor, Hal 36-40 pissn : 460-3333 eissn : 579-907X APLIKASI METODE PANGKAT DALAM MENGAPROKSIMASI NILAI EIGEN KOMPLEKS PADA MATRIKS Novita Eka Chandra dan Wiwin Kusniati Universitas
3 Langkah Determinan Matriks 3x3 Metode OBE
3 Langkah Determinan Matriks 3x3 Metode OBE Ogin Sugianto [email protected] penma2b.wordpress.com Majalengka, 10 Oktober 2016 Selain metode Sarrus dan Minor-Kofaktor, ada satu metode lain yang dapat
I PENDAHULUAN II LANDASAN TEORI
I PENDAHULUAN 1.1 Latar Belakang Matriks merupakan istilah yang digunakan untuk menunjukkan jajaran persegi panjang dari bilangan-bilangan dan setiap matriks akan mempunyai baris dan kolom. Salah satu
Analisis Matriks. Ahmad Muchlis
Analisis Matriks Ahmad Muchlis January 22, 2014 2 Notasi Pada umumnya matriks yang kita bicarakan dalam naskah ini adalah matriks kompleks. Himpunan semua matriks kompleks [real] berukuran m n dinyatakan
GARIS-GARIS BESAR PROGRAM PEMBELAJARAN
GARIS-GARIS BESAR PROGRAM PEMBELAJARAN Mata Kuliah : Aljabar Linear Kode / SKS : TIF-5xxx / 3 SKS Dosen : - Deskripsi Singkat : Mata kuliah ini berisi Sistem persamaan Linier dan Matriks, Determinan, Vektor
APLIKASI MATRIKS DAN RUANG VEKTOR, oleh Dr. Adiwijaya Hak Cipta 2014 pada penulis GRAHA ILMU Ruko Jambusari 7A Yogyakarta Telp: ;
APLIKASI MATRIKS DAN RUANG VEKTOR, oleh Dr. Adiwijaya Hak Cipta 2014 pada penulis GRAHA ILMU Ruko Jambusari 7A Yogyakarta 55283 Telp: 0274-889398; Fax: 0274-889057; E-mail: [email protected] Hak Cipta
1.1 MATRIKS DAN JENISNYA Matriks merupakan kumpulan bilangan yang berbentuk segi empat yang tersusun dalam baris dan kolom.
Bab MATRIKS DAN OPERASINYA Memahami matriks dan operasinya merupakan langkah awal dalam memahami buku ini. Beberapa masalah real dapat direpresentasikan dalam bentuk matriks. Masalah tersebut antara lain
MENENTUKAN INVERS MOORE PENROSE DARI SUATU MATRIKS DENGAN MENGGUNAKAN DEKOMPOSISI NILAI SINGULAR SKRIPSI. Disusun oleh : DINA MARIYA J2A
MENENTUKAN INVERS MOORE PENROSE DARI SUATU MATRIKS DENGAN MENGGUNAKAN DEKOMPOSISI NILAI SINGULAR SKRIPSI Disusun oleh : DINA MARIYA J2A 004 011 JURUSAN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN
BAB 3 FUNGSI MONOTON MATRIKS
BAB 3 FUNGSI MONOTON MATRIKS Pada bab ini akan dibahas fungsi monoton matriks. Dalam mengkontruksi fungsi monoton matriks banyak istilah yang harus kita ketahui sebelumnya. Beberapa konsep yang akan dibahas
Eigen value & Eigen vektor
Eigen value & Eigen vektor Hubungan antara vektor x (bukan nol) dengan vektor Ax yang berada di R n pada proses transformasi dapat terjadi dua kemungkinan : 1) 2) Tidak mudah untuk dibayangkan hubungan
BAB II LANDASAN TEORI
BAB II LANDASAN TEORI Pada bab ini dibahas penelitian-penelitian tentang aljabar maks-plus yang telah dilakukan dan teori-teori yang menunjang penelitian masalah nilai eigen dan vektor eigen yang diperumum
DIAGONALISASI MATRIKS ATAS RING KOMUTATIF DENGAN ELEMEN SATUAN INTISARI
Buletin Ilmiah Mat. Stat. dan Terapannya (Bimaster) Volume 02, No. 3 (2013), hal. 183-190 DIAGONALISASI MATRIKS ATAS RING KOMUTATIF DENGAN ELEMEN SATUAN Fidiah Kinanti, Nilamsari Kusumastuti, Evi Noviani
Ketaksamaan Cauchy-Schwarz, Ketaksamaan Bessel, dan Kesamaan Parseval di Ruang n-hasilkali Dalam Baku. Hendra Gunawan
Ketaksamaan Cauchy-Schwarz, Ketaksamaan Bessel, dan Kesamaan Parseval di Ruang n-hasilkali Dalam Baku Hendra Gunawan Departemen Matematika, ITB, Bandung 40132 [email protected] 1 Abstrak Beberapa
ALGORITMA ELIMINASI GAUSS INTERVAL DALAM MENDAPATKAN NILAI DETERMINAN MATRIKS INTERVAL DAN MENCARI SOLUSI SISTEM PERSAMAAN INTERVAL LINEAR
Buletin Ilmiah Math. Stat. dan Terapannya (Bimaster) Volume 04, No. 3 (2015), hal 313 322. ALGORITMA ELIMINASI GAUSS INTERVAL DALAM MENDAPATKAN NILAI DETERMINAN MATRIKS INTERVAL DAN MENCARI SOLUSI SISTEM
4. SISTEM PERSAMAAN DAN PERTIDAKSAMAAN
4. SISTEM PERSAMAAN DAN PERTIDAKSAMAAN 4.1 Persamaan Garis a. Bentuk umum persamaan garis Garis lurus yang biasa disebut garis merupakan kurva yang paling sederhana dari semua kurva. Misalnya titik A(2,1)
Part II SPL Homogen Matriks
Part II SPL Homogen Matriks SPL Homogen Bentuk Umum SPL homogen dalam m persamaan dan n variabel x 1, x 2,, x n : a 11 x 1 + a 12 x 2 + + a 1n x n = 0 a 21 x 1 + a 22 x 2 + + a 2n x n = 0 a m1 x 1 + a
Yang dibahas : Ortogonal Basis ortogonal Ortonormal Matrik ortogonal Komplemen ortogonal Proyeksi ortogonal Faktorisasi QR
Ortogonal Yang dibahas : Ortogonal Basis ortogonal Ortonormal Matrik ortogonal Komplemen ortogonal Proyeksi ortogonal Faktorisasi QR Ortogonal Himpunan vektor {v, v,.., v k } dalam R n disebut himpunan
MENYELESAIKAN SISTEM PERSAMAAN LINIER MENGGUNAKAN ANALISIS SVD SKRIPSI. Oleh : Irdam Haidir Ahmad J2A
MENYELESAIKAN SISTEM PERSAMAAN LINIER MENGGUNAKAN ANALISIS SVD SKRIPSI Oleh : Irdam Haidir Ahmad J2A 005 023 PROGRAM STUDI MATEMATIKA JURUSAN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS
BAB II TEORI KODING DAN TEORI INVARIAN
BAB II TEORI KODING DAN TEORI INVARIAN Pada bab 1 ini akan dibahas definisi kode, khususnya kode linier atas dan pencacah bobot Hammingnya. Di samping itu, akan dijelaskanan invarian, ring invarian dan
METODE PANGKAT DAN METODE DEFLASI DALAM MENENTUKAN NILAI EIGEN DAN VEKTOR EIGEN DARI MATRIKS
METODE PANGKAT DAN METODE DEFLASI DALAM MENENTUKAN NILAI EIGEN DAN VEKTOR EIGEN DARI MATRIKS Arif Prodi Matematika, FST- UINAM Wahyuni Prodi Matematika, FST-UINAM Try Azisah Prodi Matematika, FST-UINAM
II. TINJAUAN PUSATAKA
4 II. TINJAUAN PUSATAKA 2.1 Operator Definisi 2.1.1 (Kreyszig, 1989) Suatu pemetaan pada ruang vektor khususnya ruang bernorma disebut operator. Definisi 2.1.2 (Kreyszig, 1989) Diberikan ruang Bernorm
Beberapa Sifat Operator Self Adjoint dalam Ruang Hilbert
Vol 12, No 2, 153-159, Januari 2016 Beberapa Sifat Operator Self Adjoint dalam Ruang Hilbert Firman Abstrak Misalkan adalah operator linier dengan adalah ruang Hilbert Pada operator linier dikenal istilah
II. TINJAUAN PUSTAKA. negatifnya. Yang termasuk dalam bilangan cacah yaitu 0,1,2,3,4, sehingga
II. TINJAUAN PUSTAKA 2.1 Bilangan Bulat Bilangan Bulat merupakan bilangan yang terdiri dari bilangan cacah dan negatifnya. Yang termasuk dalam bilangan cacah yaitu 0,1,2,3,4, sehingga negatif dari bilangan
MATRIKS INVERS TERGENERALISIR
MATRIKS INVERS TERGENERALISIR Tasari Program Studi Pendidikan Matematika, Universitas Widya Dharma Klaten ABSTRAK Tujuan penelitian ini adalah : () untuk mengetahui pengertian invers tergeneralisir dari
(Departemen Matematika FMIPA-IPB) Matriks Bogor, / 66
MATRIKS Departemen Matematika FMIPA-IPB Bogor, 2012 (Departemen Matematika FMIPA-IPB) Matriks Bogor, 2012 1 / 66 Topik Bahasan 1 Matriks 2 Operasi Matriks 3 Determinan matriks 4 Matriks Invers 5 Operasi
Aljabar Linear Elementer MA SKS. 07/03/ :21 MA-1223 Aljabar Linear 1
Aljabar Linear Elementer MA SKS 7//7 : MA- Aljabar Linear Jadwal Kuliah Hari I Hari II jam jam Sistem Penilaian UTS 4% UAS 4% Quis % 7//7 : MA- Aljabar Linear Silabus : Bab I Matriks dan Operasinya Bab
MATRIKS INVERS MOORE-PENROSE DALAM PENYELESAIAN SISTEM PERSAMAAN LINIER
MATRIKS INVERS MOORE-PENROSE DALAM PENYELESAIAN SISTEM PERSAMAAN LINIER SKRIPSI Disusun Oleh : IDA MISSHOBAH MUNIR RAHAYU J2A 004 019 JURUSAN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS
MATRIKS VEKTOR DETERMINAN SISTEM LINEAR ALJABAR LINEAR
MATRIKS VEKTOR DETERMINAN SISTEM LINEAR ALJABAR LINEAR 7.1 Matriks DEFINISI Susunan bilangan (fungsi) berbentuk persegi panjang yang ditutup dengan tanda kurung. Bilangan (fungsi) disebut entri-entri matriks.
MATRIKS A = ; B = ; C = ; D = ( 5 )
MATRIKS A. DEFINISI MATRIKS Matriks adalah suatu susunan bilangan berbentuk segi empat dari suatu unsur-unsur pada beberapa sistem aljabar. Unsur-unsur tersebut bisa berupa bilangan dan juga suatu peubah.
II. TINJAUAN PUSTAKA. Suatu matriks didefinisikan dengan huruf kapital yang dicetak tebal, misalnya A,
II. TINJAUAN PUSTAKA 2.1 Konsep-konsep Matriks Definisi Matriks Suatu matriks didefinisikan dengan huruf kapital yang dicetak tebal, misalnya A, B, X, Y. Elemen-elemen di dalamnya disebut skalar yang berasal
Aljabar Linier Sistem koordinat, dimensi ruang vektor dan rank
Aljabar Linier Sistem koordinat, dimensi ruang vektor dan rank khozin mu tamar 9 Oktober 2014 PERTEMUAN-4 : SISTEM KOORDINAT, DIMEN- SI RUANG VEKTOR DAN RANK 1. Sistem koordinat (a) Ketunggalan scalar
Aljabar Linear Elementer
BAB I RUANG VEKTOR Pada kuliah Aljabar Matriks kita telah mendiskusikan struktur ruang R 2 dan R 3 beserta semua konsep yang terkait. Pada bab ini kita akan membicarakan struktur yang merupakan bentuk
Penggunaan Dekomposisi QR Dalam Estimabilitas Parameter-Parameter Model Linier
Penggunaan Dekomposisi QR Dalam Estimabilitas Parameter-Parameter Model Linier Sigit Nugroho Jurusan Matematika FMIPA Universitas Bengkulu E-mail: [email protected] Abstrak.Artikel ini membahas
Matematika Teknik INVERS MATRIKS
INVERS MATRIKS Dalam menentukan solusi suatu SPL selama ini kita dihadapkan kepada bentuk matriks diperbesar dari SPL. Cara lain yang akan dikenalkan disini adalah dengan melakukan OBE pada matriks koefisien
PENYELESAIAN SISTEM PERSAMAAN LINEAR FUZZY MENGGUNAKAN DEKOMPOSISI CHOLESCY TUGAS AKHIR. Oleh: IRAWATI
PENYELESAIAN SISTEM PERSAMAAN LINEAR FUZZY MENGGUNAKAN DEKOMPOSISI CHOLESCY TUGAS AKHIR Diajukan sebagai Salah Satu Syarat untuk Memperoleh Gelar Sarjana Sains pada Jurusan Matematika Oleh: IRAWATI 10854004183
BAB 2 LANDASAN TEORI
BAB 2 LANDASAN TEORI Pada bab ini akan dipaparkan mengenai konsep dasar tentang matriks meliputi definisi matriks, jenis-jenis matriks, operasi matriks, determinan, kofaktor, invers suatu matriks, serta
0. Diperoleh bahwa: Selanjutnya dibuktikan tertutup terhadap perkalian skalar:
f g) f g C atau ( f g). Diperoleh bahwa: f g) ( f g) dg f ( f dg g) g dg f g Selanjutnya dibuktikan tertutup terhadap perkalian skalar: Ambil. f ) f C, R. Ditunjukkan bahwa. f C atau (. f ).. f ). diketahui
Analisis Fungsional. Oleh: Dr. Rizky Rosjanuardi, M.Si Jurusan Pendidikan Matematika UNIVERSITAS PENDIDIKAN INDONESIA
Analisis Fungsional Oleh: Dr. Rizky Rosjanuardi, M.Si Jurusan Pendidikan Matematika UNIVERSITAS PENDIDIKAN INDONESIA Lingkup Materi Ruang Metrik dan Ruang Topologi Kelengkapan Ruang Banach Ruang Hilbert
KAJIAN METODE KONDENSASI CHIO PADA DETERMINAN MATRIKS
Buletin Ilmiah Mat. Stat. dan Terapannya (Bimaster) Volume 04, No. 3 (2015), hal 279 284. KAJIAN METODE KONDENSASI CHIO PADA DETERMINAN MATRIKS Adrianus Sumitro, Nilamsari Kusumastuti, Shantika Martha
Kriteria Unjuk Kerja. Besaran vektor. Vektor satuan Menggambar Vektor
DESKRIPSI KOMPETENSI MATA KULIAH Mata Kuliah : Matematika Kode Mata Kuliah : TKF 201 SKS : 2 Unit Kompetensi : Memecahkan persoalan matematika dasar. Kompetensi 1. Menguasai teori a) Menggambar Vektor
Trihastuti Agustinah
TE 467 Teknik Numerik Sistem Linear Trihastuti Agustinah Bidang Studi Teknik Sistem Pengaturan Jurusan Teknik Elektro - FTI Institut Teknologi Sepuluh Nopember O U T L I N E OBJEKTIF 2 3 CONTOH 4 SIMPULAN
KS KALKULUS DAN ALJABAR LINEAR Eigen Value Eigen Vector TIM KALIN
KS091206 KALKULUS DAN ALJABAR LINEAR Eigen Value Eigen Vector TIM KALIN TUJUAN INSTRUKSIONAL KHUSUS Setelah menyelesaikan pertemuan ini mahasiswa diharapkan: Dapat menghitung eigen value dan eigen vector
Part III DETERMINAN. Oleh: Yeni Susanti
Part III DETERMINAN Oleh: Yeni Susanti Perhatikan determinan matriks ukuran 2x2 berikut: Pada masing-masing jumlahan dan Terdapat wakil dari setiap baris dan setiap kolom. Bagaimana dengan tanda + (PLUS)
LAPORAN TUGAS AKHIR. Topik Tugas Akhir : Kajian Matematika Murni PENERAPAN PROSES ORTHOGONALISASI GRAM-SCHMIDT DALAM MEMBENTUK FAKTORISASI QR
LAPORAN TUGAS AKHIR Topik Tugas Akhir : Kajian Matematika Murni PENERAPAN PROSES ORTHOGONALISASI GRAM-SCHMIDT DALAM MEMBENTUK FAKTORISASI QR TUGAS AKHIR Diajukan Kepada Fakultas Keguruan dan Ilmu Pendidikan
II. TINJAUAN PUSTAKA. Sistem dinamik adalah sistem yang berubah dari waktu ke waktu (Farlow,et al.,
II. TINJAUAN PUSTAKA 2.1 Sistem Dinamik Sistem dinamik adalah sistem yang berubah dari waktu ke waktu (Farlow,et al., 2002). Salah satu tujuan utama dari sistem dinamik adalah mempelajari perilaku dari
EKSISTENSI DAN KONSTRUKSI GENERALISASI
Jurnal Matematika UNAND Vol. V No. Hal. 77 85 SSN : 2303 290 c Jurusan Matematika FMPA UNAND KSSTNS DAN KONSTRUKS GNRALSAS {}-NVRS DAN {, 2}-NVRS ZAHY DL FTR, YANTA, NOVA NOLZA BAKAR Program Studi Matematika,
Aljabar Linier Elementer. Kuliah 1 dan 2
Aljabar Linier Elementer Kuliah 1 dan 2 1.3 Matriks dan Operasi-operasi pada Matriks Definisi: Matriks adalah susunan bilangan dalam empat persegi panjang. Bilangan-bilangan dalam susunan tersebut disebut
4.1 Algoritma Ortogonalisasi Gram-Schmidt yang Diperumum
BAB 4 ORTOGONALISASI GRAM-SCHMIDT YANG DIPERUMUM Diberikan sebarang barisan hingga vektor di ruang Hilbert berdimensi hingga. Pada bab ini akan diberikan algoritma untuk menghitung frame Parseval pada
(MS.3) SUBRUANG CONINVARIAN DARI MATRIKS KUADRAT KOMPLEKS
Seminar Nasional Statistika 2 November 20 Vol 2, November 20 (MS.3) SUBRUANG CONINVARIAN DARI MATRIKS KUADRAT KOMPLEKS Euis Hartini Jurusan Matematika, Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas
Yang dipelajari. 1. Masalah Nilai Eigen dan Penyelesaiannya 2. Masalah Pendiagonalan. Referensi : Kolman & Howard Anton. Ilustrasi
7// NILAI EIGEN dan VEKTOR EIGEN Yang dipelajari.. Masalah Nilai Eigen dan Penyelesaiannya. Masalah Pendiagonalan Referensi : Kolman & Howard Anton. Ilustrasi Misalkan t : R n R n dengan definisi t(x)
GARIS-GARIS BESAR PROGRAM PENGAJARAN PROGRAM STUDI : S1 SISTEM KOMPUTER Semester : 2
GARIS-GARIS BESAR PROGRAM PENGAJARAN PROGRAM STUDI : S1 SISTEM KOMPUTER Semester : 2 Berlaku mulai: Genap/2011 MATA KULIAH : MATRIK DAN TRANSFORMASI LINEAR NOMOR KODE / SKS : 410202051/ 3 SKS PRASYARAT
Sebuah garis dalam bidang xy bisa disajikan secara aljabar dengan sebuah persamaan berbentuk :
Persamaan Linear Sebuah garis dalam bidang xy bisa disajikan secara aljabar dengan sebuah persamaan berbentuk : a x + a y = b Persamaan jenis ini disebut sebuah persamaan linear dalam peubah x dan y. Definisi
BAB I PENDAHULUAN. 3) Untuk mengetahui apa yang dimaksud dengan invers matriks. 4) Untuk mengetahui apa yang dimaksud dengan determinan matriks
1.1 LATAR BELAKANG BAB I PENDAHULUAN Teori matriks merupakan salah satu cabang ilmu aljabar linier yang menjadi pembahasan penting dalam ilmu matematika. Sejalan dengan perkembangan ilmu pengetahuan, aplikasi
Diagonalisasi Matriks Segitiga Atas Ring komutatif Dengan Elemen Satuan
Diagonalisasi Matriks Segitiga Atas Ring komutatif Dengan Elemen Satuan Fitri Aryani 1, Rahmadani 2 Jurusan Matematika Fakultas Sains dan Teknologi UIN Suska Riau e-mail: khodijah_fitri@uin-suskaacid Abstrak
Bab 2 LANDASAN TEORI
17 Bab 2 LANDASAN TEORI 2.1 Aljabar Matriks 2.1.1 Definisi Matriks Matriks adalah suatu kumpulan angka-angka yang juga sering disebut elemen-elemen yang disusun secara teratur menurut baris dan kolom sehingga
Pengolahan Dasar Matriks Bagus Sartono
Pengolahan Dasar Matriks Bagus Sartono [email protected] Departemen Statistika FMIPA IPB Notasi Dasar Matriks A mxn, m A n, [a ij ] mxn : matriks berukuran m x n (m baris, n kolom) a ij adalah elemen matriks
PENYELESAIAN SISTEM PERSAMAAN LINEAR FUZZY MENGGUNAKAN METODE DEKOMPOSISI NILAI SINGULAR (SVD) TUGAS AKHIR. Oleh : SABRINA INDAH MARNI
PENYELESAIAN SISTEM PERSAMAAN LINEAR FUZZY MENGGUNAKAN METODE DEKOMPOSISI NILAI SINGULAR (SVD) TUGAS AKHIR Diajukan sebagai Salah Satu Syarat untuk Memperoleh Gelar Sarjana Sains pada Jurusan Matematika
ALJABAR LINEAR BASIS RUANG BARIS DAN BASIS RUANG KOLOM SEBUAH MATRIKS. Dosen Pengampu: DARMADI, S.Si, M.Pd. Oleh: Kelompok III
ALJABAR LINEAR BASIS RUANG BARIS DAN BASIS RUANG KOLOM SEBUAH MATRIKS Dosen Pengampu: DARMADI, SSi, MPd Oleh: Kelompok III 1 Andik Dwi S (06411008) 2 Indah Kurniawati (06411090) 3 Mahfuat M (06411104)
