EKSISTENSI DAN KONSTRUKSI GENERALISASI
|
|
|
- Deddy Kusnadi
- 8 tahun lalu
- Tontonan:
Transkripsi
1 Jurnal Matematika UNAND Vol. V No. Hal SSN : c Jurusan Matematika FMPA UNAND KSSTNS DAN KONSTRUKS GNRALSAS {}-NVRS DAN {, 2}-NVRS ZAHY DL FTR, YANTA, NOVA NOLZA BAKAR Program Studi Matematika, Fakultas Matematika dan lmu Pengetahuan Alam, Universitas Andalas, Kampus UNAND Limau Manis Padang, ndonesia, [email protected] Abstrak. Generalisasi invers merupakan perluasan dari konsep invers matriks. Untuk setiap matriks A berukuran m n dari elemen real atau kompleks, terdapat matriks tunggal X sehingga memenuhi empat persamaan yang dikenal dengan persamaan Penrose. Generalisasi invers yang memenuhi keempat persamaan Penrose disebut invers Moore- Penrose, sedangkan yang hanya memenuhi beberapa persamaan Penrose tetap disebut sebagai generalisasi invers. Tugas akhir ini membahas tentang generalisasi {}-invers dan {, 2}-invers. Untuk menentukan {}-invers dan {, 2}-invers dari suatu matriks, maka matriks tersebut harus diubah kedalam bentuk normal Hermite terlebih dahulu. Kata Kunci: Matriks, generalisasi invers, persamaan Penrose, matriks normal Hermite.. Pendahuluan Matriks adalah kumpulan bilangan, simbol, atau ekspresi, berbentuk persegi panjang yang disusun menurut baris dan kolom. Bilangan-bilangan yang terdapat di suatu matriks disebut dengan entri atau anggota matriks. Matriks sama halnya dengan variabel biasa, dapat dikalikan, dijumlah, dikurangkan, dan didekomposisikan. Dengan representasi matriks, perhitungan dapat dilakukan dengan lebih terstruktur. Pada tahun 920.H Moore mendeskripsikan salah satu jenis invers matriks yang dikenal dengan nama generalisasi invers. Generalisasi invers merupakan perluasan dari konsep invers matriks, dimana invers matriks tidak lagi hanya untuk matriks yang nonsingular. Kemudian pada tahun 955 Roger Penrose berhasil mendeskripsikan empat persamaan yang harus dipenuhi untuk menentukan generalisasi invers 2. Persamaan tersebut dikenal sebagai persamaan Penrose, dan generalisasi invers yang memenuhi keempat persamaan Penrose dikenal dengan nama nvers Moore-Penrose. Sedangkan generalisasi invers yang hanya memenuhi beberapa persamaan Penrose tetap dinamakan sebagai generalisasi invers. Persamaan invers Moore-Penrose adalah sebagai berikut. AXA = A, (.) XAX = X, (.2) (AX) = AX, (.3) (XA) = XA. (.4) 77
2 78 Zahy dil Fitri dkk. Untuk memudahkan penyebutan, maka generalisasi invers dibagi ke dalam kelaskelas tertentu. Pembagian kelas-kelas ini didasarkan kepada banyaknya persamaan Penrose yang dapat dipenuhi berdasarkan persamaan (.) persamaan (.4), yaitu {}-invers, {, 2}-invers, {, 2, 3}-invers, {, 2, 4}-invers dan {, 2, 3, 4}-invers. 2. Persamaan Penrose Pada tahun 955, Penrose 2 menunjukkan bahwa untuk setiap matriks hingga A (persegi atau persegi panjang) dari elemen real atau kompleks, terdapat matriks tunggal X sehingga memenuhi empat persamaan yang dikenal sebagai Persamaan Penrose. Persamaan inilah yang menjadi dasar adanya gene-ralisasi invers suatu matriks. mpat persamaan Penrose tersebut adalah: AXA = A (2.) XAX = X (2.2) (AX) = AX (2.3) (XA) = XA (2.4) dimana A C m n, X C n m, dan A adalah transpos konjugat dari A. Matriks X yang memenuhi persamaan (2.), (2.2), (2.3), dan (2.4) disimbolkan dengan X = A. Generalisasi invers yang memenuhi keempat persamaan Penrose disebut nvers Moore-Penrose, sedangkan yang hanya memenuhi beberapa persamaan Penrose tetap disebut sebagai generalisasi invers. Teorema Jika A C n n matriks nonsingular, maka A = A. Definisi Misalkan A C m n dan X C n m () Matriks X disebut {}-invers dari matriks A jika memenuhi persamaan (2.) dan selanjutnya dinotasikan dengan X A {} atau A (). (2) Matriks X disebut {, 2}-invers dari matriks A jika memenuhi persamaan (2.) dan (2.2) yang selanjutnya dinotasikan dengan X A {, 2} atau A (,2). (3) Matriks X disebut {, 2, 3}-invers dari matriks A jika memenuhi persamaan (2.), (2.2) dan (2.3) yang selanjutnya dinotasikan dengan X A {, 2, 3} atau A (,2,3). (4) Matriks X disebut {, 2, 4}-invers dari matriks A jika memenuhi persamaan (2.),(2.2) dan (2.4) yang selanjutnya dinotasikan dengan X A {, 2, 4} atau A (,2,4). (5) Matriks X disebut {, 2, 3, 4}-invers dari matriks A jika memenuhi persamaan (2.),(2.2), (2.3) dan (2.4) yang selanjutnya dinotasikan dengan X A {, 2, 3, 4} atau A (,2,3,4). Teorema Jika A C m n dan A {, 2, 3, 4} tidak kosong, maka invers Moore-Penrose untuk A adalah tunggal.
3 Contoh 2.4. Bentuk normal Hermite dari matriks 2 3 A = adalah ksistensi dari {}-nvers Dan {, 2}-nvers 79 0 AP = 0 2. (2.5) ksistensi dan Konstruksi dari {}-invers Teorema Misalkan R = r K (3.) merupakan matriks partisi yang berukuran m n dengan rk(r) = r dimana K C r (n r), maka {}-invers dari R C m n adalah S = r 0 r (m r) (3.2) 0 (n r) r L yang berukuran n m dengan L C (n r) (m r). Bukti. Diambil sebarang S C n m dimana S yang diberikan oleh (3.2) dengan L C (n r) (m r), dan matriks R C m n yang diberikan oleh (3.) dengan K C r (n r). Akan dibuktikan bahwa matriks S merupakan {}-invers dari R, dengan kata lain memenuhi persamaan (2.). Perhatikan bahwa RSR = r K r 0 r (m r) r K 0 (n r) r L = r K = R. Teorema Misalkan A C m n dengan rk(a) = r, C m m dan P C n n merupakan matriks nonsingular sedemikian sehingga AP = r K dimana K C r (n r), maka {}-invers dari A dapat dibentuk dari matriks partisi berikut ini A () = P r 0 r (m r) 0 (n r) r L dengan L C (n r) (m r)
4 80 Zahy dil Fitri dkk. Bukti. Misalkan P C n n dan C m m keduanya merupakan matriks nonsingular, maka terdapat C n n sedemikian sehingga P = P = n dan C m m sedemikian sehingga = = m. Perhatikan bahwa AP = r K AP = r K ( )A(P ) = r K A = r K Akan ditunjukkan A () merupakan {}-invers dari A, dengan kata lain memenuhi (2.). Perhatikan bahwa AA () A = r K r K = r K = A P Contoh 3.3. Diberikan matriks 0 2i i i A = i i r 0 r (m r) 0 (n r) r L yang berukuran 3 6. Akan ditentukan {}-invers dari A. Untuk mendapatkan {}- invers dari A, pertama matriks A disederhanakan ke dalam bentuk normal Hermite. Diperoleh bentuk normal Hermite dari A, yakni i 2 i AP = i dimana 2 i 0 0 = = i 3
5 dan Dengan mengambil ksistensi dari {}-nvers Dan {, 2}-nvers P =. (3.3) α L = β γ C 4, δ maka {}-invers dari A adalah A () r O = P O L i 0 0 = 0 0 α β γ i δ iα 3 α α 2 i 0 0 iβ = 3 β β iγ 3 γ γ iδ 3 δ δ Perlu dicatat bahwa, secara umum, skalar iα, iβ, iγ, iδ bukan imajiner murni, karena α, β, γ, δ adalah kompleks. Lema 3.4. Misalkan A C m n dengan rk(a) = r, λ C, dan λ didefinisikan sebagai { λ λ (λ 0) = 0 (λ = 0) maka (a) (A () ) A {} (b) Jika A nonsingular, maka A () = A tunggal
6 82 Zahy dil Fitri dkk. (c) λ A () (λa) {} (d) rk(a () ) rk(a) (e) Jika S dan T adalah nonsingular, maka T A () S SAT {} (f) Jika AA () dan A () A adalah idempoten dan matriks nonsingular, maka AA () dan A () A mempunyai rank yang sama seperti A. 4. ksistensi dan Konstruksi dari {, 2}-invers Lema Jika Y, Z A {} dan X = Y AZ, maka X A {, 2}. Bukti. Misalkan Y, Z A {} dan X = Y AZ, akan dibuktikan X A {, 2}. Matriks Y, Z A {}, berarti memenuhi AY A = A dan AZA = A. Diketahui X = Y AZ, maka akan ditunjukkan bahwa X memenuhi persamaan (2.) dan (2.2), yaitu () AXA = A(Y AZ)A = (AY A)ZA = AZA = A (2) XAX = (Y AZ)A(Y AZ) = Y (AZA)Y AZ = Y AY AZ = Y (AY A)Z = Y AZ = X Teorema Misalkan matriks A C m n dengan rk(a) = r dan X A {}. Maka X A {, 2} jika dan hanya jika rk(x) = rk(a). Teorema Misalkan matriks A C m n dengan rk(a) = r, dan X A {, 2} dengan rk(x) = rk(a), maka X = P r 0 r (m r) (4.) 0 (n r) r 0 (n r) (m r) dimana C m m dan P C n n merupakan matriks nonsingular. Bukti. Misalkan A C m n dengan rk(a) = r, dan X A {, 2} dengan rk(x) = rk(a). Akan ditunjukkan bahwa X = P r 0 r (m r). 0 (n r) r 0 (n r) (m r) Oleh karena A C m n dan rk(a) = r, maka A dapat ditulis sebagai A = r K. Selanjutnya rk(a) = rk(x) = r, maka untuk X A {} berlaku X = P r 0 r (m r). 0 (n r) r 0 (m r) (n r)
7 ksistensi dari {}-nvers Dan {, 2}-nvers 83 Selanjutnya akan ditunjukkan bahwa X pada persamaan (4.) memenuhi persamaan (2.) dan (2.2). Perhatikan bahwa AXA = r K P r 0 r (m r) 0 (n r) r 0 (m r) (n r) r K = r K = A XAX = P r 0 r (m r) r K 0 (n r) r 0 (m r) (n r) P r 0 r (m r) 0 (n r) r 0 (m r) (n r) = P r 0 r (m r) 0 (n r) r 0 (m r) (n r) = X Contoh 4.4. Diberikan matriks 0 2i i i A = i i Akan ditentukan {, 2}- invers dari A. Dengan memilih L = O, maka diperoleh {, 2}- invers dari A r O X = P O L i 0 0 = i i X =
8 84 Zahy dil Fitri dkk. Daftar Pustaka Anton, H Aljabar Linear lementer(terjemahan); edisi ke 8. rlangga, Jakarta 2 Ben-srael, A and Greville, Thomas N Generalized nverses Theory And Aplication; Second dition. Springer-Verlag New York, nc, USA 3 H.S, D.Suryadi dan S.Harini M Teori dan Soal Pendahuluan Aljabar Linier. Ghalia ndonesia, Jakarta 4 Hadley, G Linear Algebra (terjemahan). rlangga, Jakarta 5 Leon, S.J Aljabar Linear dan Aplikasinya(terjemahan); edisi ke 5. rlangga, Jakarta 6 Piziak, R and Odell, P.L Matrix Theory From Generalized nverses to Jordan Form. Taylor and Francis Group, Canada 7 Supranto, J Pengantar Matrix. PT RNKA CPTA, Jakarta
GENERALISASI INVERS SUATU MATRIKS YANG MEMENUHI PERSAMAAN PENROSE. Jl. Prof. H. Soedarto, S.H. Tembalang Semarang
GNRALISASI INVRS SUATU MATRIKS YANG MMNUHI PRSAMAAN PNROS ImronArdi Gunawan, SolichinZaki, YD Sumanto,, ProgramStudiMatematika FSM UniversitasDiponegoro Jl Prof H Soedarto, SH Tembalang Semarang Generalized
Invers Tergeneralisasi Matriks atas Z p
SEMINAR NASIONAL MATEMATIKA DAN PENDIDIKAN MATEMATIKA UNY 2016 Invers Tergeneralisasi Matriks atas Z p Evi Yuliza 1 1 Fakultas MIPA Universitas Sriwijaya evibc3@yahoocom PM A-1 - Abstrak Sebuah matriks
PENENTUAN HARGA OPSI CALL TIPE EROPA MENGGUNAKAN METODE TRINOMIAL
Jurnal Matematika UNAND Vol. 5 No. Hal. 3 39 ISSN : 2303 290 c Jurusan Matematika FMIPA UNAND PENENTUAN HARGA OPSI CALL TIPE EROPA MENGGUNAKAN METODE TRINOMIAL MIKA ALVIONITA S, RIRI LESTARI Program Studi
SOLUSI POSITIF DARI SISTEM SINGULAR DISKRIT
Jurnal Matematika UNAND Vol. 2 No. 3 Hal. 77 81 ISSN : 2303 2910 c Jurusan Matematika FMIPA UNAND SOLUSI POSITIF DARI SISTEM SINGULAR DISKRIT BETTY ARYANI Program Studi Matematika, Fakultas Matematika
FAKTORISASI LDU PADA MATRIKS NONPOSITIF TOTAL NONSINGULAR
Jurnal Matematika UNAND Vol. 5 No. 2 Hal. 33 37 ISSN : 2303 2910 c Jurusan Matematika FMIPA UNAND FAKTORISASI LDU PADA MATRIKS NONPOSITIF TOTAL NONSINGULAR YULIA GUSTINA Program Studi Matematika, Fakultas
BAB II LANDASAN TEORI. yang biasanya dinyatakan dalam bentuk sebagai berikut: =
BAB II LANDASAN TEORI 2.1 Matriks Definisi 2.1 (Lipschutz, 2006): Matriks adalah susunan segiempat dari skalarskalar yang biasanya dinyatakan dalam bentuk sebagai berikut: Setiap skalar yang terdapat dalam
KAJIAN MATRIKS JORDAN DAN APLIKASINYA PADA SISTEM LINEAR WAKTU DISKRIT
KAJIAN MATRIKS JORDAN DAN APLIKASINYA PADA SISTEM LINEAR WAKTU DISKRIT Nama Mahasiswa : Aprilliantiwi NRP : 1207100064 Jurusan : Matematika Dosen Pembimbing : 1 Soleha, SSi, MSi 2 Dian Winda Setyawati,
APLIKASI INVERS SEMU (PSEUDOINVERSE) DENGAN METODE GREVILLE S PADA ANALISIS REGRESI LINEAR BERGANDA. Abstract
APLIKASI INVERS SEMU (PSEUDOINVERSE) DENGAN METODE GREVILLE S PADA ANALISIS REGRESI LINEAR BERGANDA Muhtar Safi i 1, Khurul Wardati, Moh. Farhan Qudratullah 1, Prodi Matematika, Fakultas Sains dan Teknologi,
GRUP ALJABAR DAN -MODUL REGULAR SKRIPSI SARJANA MATEMATIKA OLEH: FITRIA EKA PUSPITA
GRUP ALJABAR DAN -MODUL REGULAR SKRIPSI SARJANA MATEMATIKA OLEH: FITRIA EKA PUSPITA 07934028 JURUSAN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS ANDALAS PADANG 2011 ABSTRAK Misalkan
HUBUNGAN ANTARA HIMPUNAN KUBIK ASIKLIK DENGAN RECTANGLE
Jurnal Matematika UNAND Vol. 3 No. 1 Hal. 58 62 ISSN : 2303 2910 c Jurusan Matematika FMIPA UNAND HUBUNGAN ANTARA HIMPUNAN KUBIK ASIKLIK DENGAN RECTANGLE SISKA NURMALA SARI Program Studi Matematika, Fakultas
Generalized Inverse Pada Matriks Atas
Jurnal Sains Matematika dan Statistika, Vol., No., Juli ISSN 6 - Generalized Inverse Pada Matriks Atas Corry Corazon Marzuki, Yulia Rosita, Jurusan Matematika, Fakultas Sains dan Teknologi, UIN Sultan
BAB II KAJIAN PUSTAKA. operasi matriks, determinan dan invers matriks), aljabar max-plus, matriks atas
BAB II KAJIAN PUSTAKA Pada bab ini akan diuraikan mengenai matriks (meliputi definisi matriks, operasi matriks, determinan dan invers matriks), aljabar max-plus, matriks atas aljabar max-plus, dan penyelesaian
SOLUSI REFLEKSIF DAN ANTI-REFLEKSIF DARI PERSAMAAN MATRIKS AX = B
SOLUSI REFLEKSIF DAN ANTI-REFLEKSIF DARI PERSAMAAN MATRIKS AX = B Arrohman 1, Sri Gemawati 2, Asli Sirait 2 1 Mahasiswa Program Studi S1 Matematika 2 Dosen Jurusan Matematika Fakultas Matematika dan Ilmu
MATRIKS UNITER, SIMILARITAS UNITER DAN MATRIKS NORMAL. Anis Fitri Lestari. Mahasiswa Universitas Muhammadiyah Ponorogo ABSTRAK
MATRIKS UNITER, SIMILARITAS UNITER DAN MATRIKS NORMAL Anis Fitri Lestari Mahasiswa Universitas Muhammadiyah Ponorogo ABSTRAK Matriks normal merupakan matriks persegi yang entri-entrinya bilangan kompleks
(MS.3) SUBRUANG CONINVARIAN DARI MATRIKS KUADRAT KOMPLEKS
Seminar Nasional Statistika 2 November 20 Vol 2, November 20 (MS.3) SUBRUANG CONINVARIAN DARI MATRIKS KUADRAT KOMPLEKS Euis Hartini Jurusan Matematika, Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas
PEMBUKTIAN RUMUS BENTUK TUTUP BEDA MUNDUR BERDASARKAN DERET TAYLOR
Jurnal Matematika UNAND Vol. VI No. Hal. 68 76 ISSN : 233 29 c Jurusan Matematika FMIPA UNAND PEMBUKTIAN RUMUS BENTUK TUTUP BEDA MUNDUR BERDASARKAN DERET TAYLOR WIDIA ASTUTI Program Studi Matematika, Fakultas
ORDER UNSUR DARI GRUP S 4
Jurnal Matematika UNAND Vol. VI No. 1 Hal. 142 147 ISSN : 2303 2910 c Jurusan Matematika FMIPA UNAND ORDER UNSUR DARI GRUP S 4 FEBYOLA, YANITA, MONIKA RIANTI HELMI Program Studi Matematika, Fakultas Matematika
DIAGONALISASI MATRIKS KOMPLEKS
Buletin Ilmiah Mat Stat dan Terapannya (Bimaster) Volume 04, No 3 (2015), hal 337-346 DIAGONALISASI MATRIKS KOMPLEKS Heronimus Hengki, Helmi, Mariatul Kiftiah INTISARI Matriks kompleks merupakan matriks
RUANG FAKTOR. Oleh : Muhammad Kukuh
Muhammad Kukuh, Ruang RUANG FAKTOR Oleh : Muhammad Kukuh Abstraksi Pada struktur aljabar dikenal istilah grup faktor yaitu Jika grup dan N Subgrup normal G, maka grup faktor dengan operasi Apabila G ruang
KAJIAN MATRIKS JORDAN DAN APLIKASINYA PADA SISTEM LINEAR WAKTU DISKRIT
KAJIAN MATRIKS JORDAN DAN APLIKASINYA PADA SISTEM LINEAR WAKTU DISKRIT Oleh: APRILLIANTIWI NRP. 1207100064 Dosen Pembimbing: 1. Soleha, S.Si, M.Si 2. Dian Winda S., S.Si, M.Si LATAR BELAKANG Matriks dan
WARP PADA SEBUAH SEGITIGA
Jurnal Matematika UNAND Vol. 3 No. 3 Hal. 26 33 ISSN : 2303 2910 c Jurusan Matematika FMIPA UNAND WARP PADA SEBUAH SEGITIGA ABDUL ZAKY, MAHDHIVAN SYAFWAN Program Studi Matematika, Fakultas Matematika dan
MATERI ALJABAR LINEAR LANJUT RUANG VEKTOR
MATERI ALJABAR LINEAR LANJUT RUANG VEKTOR Disusun oleh: Dwi Lestari, M.Sc email: [email protected] JURUSAN PENDIDIKAN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS NEGERI YOGYAKARTA
SOLUSI POSITIF DARI PERSAMAAN LEONTIEF DISKRIT
Jurnal Matematika UNAND Vol. 2 No. 3 Hal. 103 108 ISSN : 2303 2910 c Jurusan Matematika FMIPA UNAND SOLUSI POSITIF DARI PERSAMAAN LEONTIEF DISKRIT RASITA ANAS Program Studi Matematika, Fakultas Matematika
STABILISASI SISTEM DESKRIPTOR LINIER KONTINU
Jurnal Matematika UNAND Vol. No. 1 Hal. 1 5 ISSN : 303 910 c Jurusan Matematika FMIPA UNAND STABILISASI SISTEM DESKRIPTOR LINIER KONTINU YULIAN SARI Program Studi Matematika, Pascasarjana Fakultas Matematika
STABILISASI SISTEM DESKRIPTOR DISKRIT LINIER POSITIF
Jurnal Matematika UNAND Vol. VI No. 1 Hal. 83 89 ISSN : 2303 2910 c Jurusan Matematika FMIPA UNAND STABILISASI SISTEM DESKRIPTOR DISKRIT LINIER POSITIF LILI ANDRIANI Program Studi Magister Matematika,
BAB II TINJAUAN PUSTAKA
5 BAB II TINJAUAN PUSTAKA A Matriks 1 Pengertian Matriks Definisi 21 Matriks adalah kumpulan bilangan bilangan yang disusun secara khusus dalam bentuk baris kolom sehingga membentuk empat persegi panjang
STABILISASI SISTEM KONTROL LINIER DENGAN PENEMPATAN NILAI EIGEN
Jurnal Matematika UNAND Vol 2 No 3 Hal 126 133 ISSN : 2303 2910 c Jurusan Matematika FMIPA UNAND STABILISASI SISTEM KONTROL LINIER DENGAN PENEMPATAN NILAI EIGEN FAURI Program Studi Matematika, Fakultas
Skew- Semifield dan Beberapa Sifatnya
Kode Makalah M-1 Skew- Semifield dan Beberapa Sifatnya K a r y a t i Jurusan Pendidikan Matematika Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Negeri Yogyakarta E-mail: [email protected]
DEKOMPOSISI PRA A*-ALJABAR
Jurnal Matematika UNAND Vol. 1 No. 2 Hal. 13 20 ISSN : 2303 2910 c Jurusan Matematika FMIPA UNAND DEKOMPOSISI PRA A*-ALJABAR RAHMIATI ABAS Program Studi Matematika, Fakultas Matematika dan Ilmu Pengetahuan
HIMPUNAN KUBIK ASIKLIK DAN KUBUS DASAR
Jurnal Matematika UNAND Vol. 2 No. 4 Hal. 43 49 ISSN : 2303 2910 c Jurusan Matematika FMIPA UNAND HIMPUNAN KUBIK ASIKLIK DAN KUBUS DASAR WIWI ULMAYANI Program Studi Matematika, Fakultas Matematika dan
BAB 2 LANDASAN TEORI. yang dibicarakan yang akan digunakan pada bab selanjutnya. Bentuk umum dari matriks bujur sangkar adalah sebagai berikut:
BAB 2 LANDASAN TEORI Pada bab ini dibicarakan mengenai matriks yang berbentuk bujur sangkar dengan beberapa definisi, teorema, sifat-sifat dan contoh sesuai dengan matriks tertentu yang dibicarakan yang
STRUKTUR SEMILATTICE PADA PRA A -ALJABAR
Jurnal Matematika UNAND Vol. 3 No. 1 Hal. 63 67 ISSN : 2303 2910 c Jurusan Matematika FMIPA UNAND STRUKTUR SEMILATTICE PADA PRA A -ALJABAR ROZA ARDILLA Program Studi Matematika, Fakultas Matematika dan
KEKONVERGENAN BARISAN DI RUANG HILBERT PADA PEMETAAN TIPE-NONSPREADING DAN NONEXPANSIVE
Jurnal Matematika UNAND Vol. 2 No. 1 Hal. 42 51 ISSN : 2303 2910 c Jurusan Matematika FMIPA UNAND KEKONVERGENAN BARISAN DI RUANG HILBERT PADA PEMETAAN TIPE-NONSPREADING DAN NONEXPANSIVE DEBI OKTIA HARYENI
Perluasan Teorema Cayley-Hamilton pada Matriks
Vol. 8, No.1, 1-11, Juli 2011 Perluasan Teorema Cayley-Hamilton pada Matriks Nur Erawati, Azmimy Basis Panrita Abstrak Teorema Cayley-Hamilton menyatakan bahwa setiap matriks bujur sangkar memenuhi persamaan
APLIKASI DEKOMPOSISI NILAI SINGULAR PADA KOMPRESI UKURAN FILE GAMBAR
Jurnal Matematika UNAND Vol. 4 No. 1 Hal. 31 39 ISSN : 303 910 c Jurusan Matematika FMIPA UNAND APLIKASI DEKOMPOSISI NILAI SINGULAR PADA KOMPRESI UKURAN FILE GAMBAR AMANATUL FIRDAUSI, MAHDHIVAN SYAFWAN,
KETEROBSERVASIAN SISTEM LINIER DISKRIT
Jurnal Matematika UNAND Vol. 4 No. 1 Hal. 108 114 ISSN : 2303 2910 c Jurusan Matematika FMIPA UNAND KETEROBSERVASIAN SISTEM LINIER DISKRIT MIDIAN MANURUNG Program Studi Matematika, Fakultas Matematika
MATRIKS JORDAN DAN APLIKASINYA PADA SISTEM LINIER WAKTU DISKRIT. Soleha, Dian Winda Setyawati Jurusan Matematika, FMIPA Institut Teknologi Surabaya
MATRIKS JORDAN DAN APLIKASINYA PADA SISTEM LINIER WAKTU DISKRIT Soleha, Dian Winda Setyawati Jurusan Matematika, FMIPA Institut Teknologi Surabaya Abstract. Matrix is diagonalizable (similar with matrix
SUATU BUKTI DARI WEDDERBURN S LITTLE THEOREM
Jurnal Matematika UNAND Vol. 1 No. 2 Hal. 66 70 ISSN : 2303 2910 c Jurusan Matematika FMIPA UNAND SUATU BUKTI DARI WEDDERBURN S LITTLE THEOREM PUTRI ANGGRAYNI Program Studi Matematika, Fakultas Matematika
BAB II LANDASAN TEORI
BAB II LANDASAN TEORI A. Matriks 1. Pengertian Matriks Definisi II. A. 1 Matriks didefinisikan sebagai susunan segi empat siku- siku dari bilangan- bilangan yang diatur dalam baris dan kolom (Anton, 1987:22).
REALISASI POSITIF STABIL ASIMTOTIK SISTEM LINIER DISKRIT DENGAN POLE KONJUGAT KOMPLEKS
Jurnal Matematika UNAND Vol. 5 No. 1 Hal. 27 33 ISSN : 2303 2910 c Jurusan Matematika FMIPA UNAND REALISASI POSITIF STABIL ASIMTOTIK SISTEM LINIER DISKRIT DENGAN POLE KONJUGAT KOMPLEKS ISWAN RINA Program
KETEROBSERVASIAN SISTEM DESKRIPTOR DISKRIT LINIER
Jurnal Matematika UNAND Vol 2 No 3 Hal 42 49 ISSN : 2303 290 c Jurusan Matematika FMIPA UNAND KETEROBSERVASIAN SISTEM DESKRIPTOR DISKRIT LINIER DIANA SYAFRIDA Program Studi Matematika Fakultas Matematika
PENYELESAIAN SISTEM PERSAMAAN LINEAR KOMPLEKS MENGGUNAKAN METODE DEKOMPOSISI NILAI SINGULAR (SVD) TUGAS AKHIR. Oleh : DEWI YULIANTI
PENYELESAIAN SISTEM PERSAMAAN LINEAR KOMPLEKS MENGGUNAKAN METODE DEKOMPOSISI NILAI SINGULAR (SVD) TUGAS AKHIR Diajukan Sebagai Salah Satu Syarat untuk Memperoleh Gelar Sarjana Sains Pada Jurusan Matematika
OPERASI MODIFIKASI ARITMATIKA INTERVAL TERHADAP INVERS MATRIKS INTERVAL
Buletin Ilmiah Mat. Stat. dan Terapannya (Bimaster) Volume 05, No. 1 (2016), hal 9-18 OPERASI MODIFIKASI ARITMATIKA INTERVAL TERHADAP INVERS MATRIKS INTERVAL Dodi Arianto, Helmi, Mariatul Kiftiah INTISARI
MENENTUKAN NILAI EIGEN DAN VEKTOR EIGEN MATRIKS INTERVAL TUGAS AKHIR
MENENTUKAN NILAI EIGEN DAN VEKTOR EIGEN MATRIKS INTERVAL TUGAS AKHIR Diajukan sebagai Salah Satu Syarat untuk Memperoleh Gelar Sarjana Sains pada Jurusan Matematika oleh DEVI SAFITRI 10654004470 FAKULTAS
Aljabar Linear Elementer MA SKS. 07/03/ :21 MA-1223 Aljabar Linear 1
Aljabar Linear Elementer MA SKS 7//7 : MA- Aljabar Linear Jadwal Kuliah Hari I Hari II jam jam Sistem Penilaian UTS 4% UAS 4% Quis % 7//7 : MA- Aljabar Linear Silabus : Bab I Matriks dan Operasinya Bab
REALISASI SISTEM LINIER INVARIANT WAKTU
Jurnal Matematika UNAND Vol 2 No 3 Hal 134 141 ISSN : 2303 2910 c Jurusan Matematika FMIPA UNAND REALISASI SISTEM LINIER INVARIANT WAKTU ANGGI SYAPUTRA Program Studi Matematika, Fakultas Matematika dan
GENERALIZED INVERSE. Musafir Kumar 1)
GENERALIZED INVERSE Musafir Kumar 1) 1) Dosen Pendidikan Matematika FKIP Unsyiah Abstrak Tulisan ini bertujuan untuk menhgetahui pengertian dari generalized inverse. Teorema-teorema dan sifat-sifat yang
G a a = e = a a. b. Berdasarkan Contoh 1.2 bagian b diperoleh himpunan semua bilangan bulat Z. merupakan grup terhadap penjumlahan bilangan.
2. Grup Definisi 1.3 Suatu grup < G, > adalah himpunan tak-kosong G bersama-sama dengan operasi biner pada G sehingga memenuhi aksioma- aksioma berikut: a. operasi biner bersifat asosiatif, yaitu a, b,
PEMBUKTIAN BENTUK TUTUP RUMUS BEDA MAJU BERDASARKAN DERET TAYLOR
Jurnal Matematika UAD Vol. 5 o. 4 Hal. 8 ISS : 233 29 c Jurusan Matematika FMIPA UAD PEMBUKTIA BETUK TUTUP RUMUS BEDA MAJU BERDASARKA DERET TAYLOR ADE PUTRI, RADHIATUL HUSA Program Studi Matematika, Fakultas
PENGKONSTRUKSIAN BILANGAN TIDAK KONGRUEN
Jurnal Matematika UNAND Vol. 2 No. 4 Hal. 27 33 ISSN : 2303 2910 c Jurusan Matematika FMIPA UNAND PENGKONSTRUKSIAN BILANGAN TIDAK KONGRUEN RATI MAYANG SARI Program Studi Matematika Fakultas Matematika
MENENTUKAN INVERS MOORE PENROSE DARI MATRIKS KOMPLEKS
MENENTUKAN INVERS MOORE PENROSE DARI MATRIKS KOMPLEKS skripsi disajikan sebagai salah satu syarat untuk memperoleh gelar Sarjana Sains Program Studi Matematika oleh Astin Wita Yunihapsari 4150407021 JURUSAN
TINJAUAN PUSTAKA. Dalam bab ini akan dibahas beberapa konsep mendasar meliputi ruang vektor,
II. TINJAUAN PUSTAKA Dalam bab ini akan dibahas beberapa konsep mendasar meliputi ruang vektor, ruang Bernorm dan ruang Banach, ruang barisan, operator linear (transformasi linear) serta teorema-teorema
Aljabar Linier Elementer. Kuliah 1 dan 2
Aljabar Linier Elementer Kuliah 1 dan 2 1.3 Matriks dan Operasi-operasi pada Matriks Definisi: Matriks adalah susunan bilangan dalam empat persegi panjang. Bilangan-bilangan dalam susunan tersebut disebut
OBSERVER UNTUK SISTEM KONTROL LINIER KONTINU
Jurnal Matematika UNAND Vol 5 No 1 Hal 96 12 ISSN : 233 291 c Jurusan Matematika FMIPA UNAND OBSERVER UNTUK SISTEM KONTROL LINIER KONTINU SUKMA HAYATI, ZULAKMAL Program Studi Matematika, Fakultas Matematika
Aljabar Linier Elementer. Kuliah 7
Aljabar Linier Elementer Kuliah 7 Materi Kuliah Ekspansi kofaktor Aturan Cramer 2 2.4 Espansi Kofaktor; Aturan Cramer Definisi: Jika A adalah matriks bujur sangkar, maka minor dari entri a ij dinyatakan
Part II SPL Homogen Matriks
Part II SPL Homogen Matriks SPL Homogen Bentuk Umum SPL homogen dalam m persamaan dan n variabel x 1, x 2,, x n : a 11 x 1 + a 12 x 2 + + a 1n x n = 0 a 21 x 1 + a 22 x 2 + + a 2n x n = 0 a m1 x 1 + a
REALISASI POSITIF STABIL ASIMTOTIK DARI SISTEM LINIER DISKRIT
Jurnal Matematika UNAND Vol. 3 No. Hal. 35 42 ISSN : 233 29 c Jurusan Matematika FMIPA UNAND REALISASI POSITIF STABIL ASIMTOTIK DARI SISTEM LINIER DISKRIT NOVITA ASWAN Program Studi Magister Matematika,
II. TINJAUAN PUSTAKA. Suatu matriks didefinisikan dengan huruf kapital yang dicetak tebal, misalnya A,
II. TINJAUAN PUSTAKA 2.1 Konsep-konsep Matriks Definisi Matriks Suatu matriks didefinisikan dengan huruf kapital yang dicetak tebal, misalnya A, B, X, Y. Elemen-elemen di dalamnya disebut skalar yang berasal
BAB 3 KONDISI RANK SEHINGGA MATRIKS AB DAN BA SERUPA. Pada bab ini akan diperkenalkan konsep matriks penrose dan grup inverse
BAB 3 KS RAK SEHGGA MATRKS AB A BA SERUPA Pada bab ini akan diperkenalkan konsep matriks penrose dan grup inverse serta akan ditunjukkan syarat cukup, syarat perlu atau keduanya pada rank matriks A dan
Ruang Baris, Ruang Kolom, dan Ruang Null (Kernel)
Ruang Baris, Ruang Kolom, dan Ruang Null (Kernel) Kuliah Aljabar Linier Semester Ganjil 2015-2016 MZI Fakultas Informatika Telkom University FIF Tel-U November 2015 MZI (FIF Tel-U) Ruang Baris, Kolom,
SATUAN ACARA PERKULIAHAN MATA KULIAH : ALJABAR LINIER JURUSAN : TEKNIK KOMPUTER JUMLAH SKS : Definisi, Notasi, dan Operasi Vektor 2.
SATUAN ACARA PERKULIAHAN MATA KULIAH : ALJABAR LINIER JURUSAN : TEKNIK KOMPUTER JUMLAH SKS : 3 Minggu Ke Pokok Bahasan dan TIU Sub Pokok Bahasan Sasaran Belajar Cara Pengajaran Media Tugas Referens i 1
OPERATOR PADA RUANG BARISAN TERBATAS
OPERATOR PADA RUANG BARISAN TERBATAS Muslim Ansori *,Tiryono 2, Suharsono S 2,Dorrah Azis 2 Jurusan Matematika FMIPA Universitas Lampung,2 Jln. Soemantri Brodjonegoro No Bandar Lampung email: [email protected]
BAB I PENDAHULUAN Latar Belakang Masalah
BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Perkalian skalar perplectic merupakan bagian dari teori perkalian skalar indefinite. Untuk menjelaskan pengertian perkalian skalar perplectic, terlebih dahulu
RUANG TOPOLOGI LEMBUT KABUR
Jurnal Matematika UNAND Vol. 5 No. 2 Hal. 122 128 ISSN : 2303 2910 c Jurusan Matematika FMIPA UNAND RUANG TOPOLOGI LEMBUT KABUR SRI NOVITA SARI Program Studi Matematika, Fakultas Matematika dan Ilmu Pengetahuan
MENENTUKAN INVERS MOORE PENROSE DARI SUATU MATRIKS DENGAN MENGGUNAKAN DEKOMPOSISI NILAI SINGULAR SKRIPSI. Disusun oleh : DINA MARIYA J2A
MENENTUKAN INVERS MOORE PENROSE DARI SUATU MATRIKS DENGAN MENGGUNAKAN DEKOMPOSISI NILAI SINGULAR SKRIPSI Disusun oleh : DINA MARIYA J2A 004 011 JURUSAN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN
DIAGONALISASI MATRIKS HILBERT
Jurnal UJMC, Volume 3, Nomor 2, Hal 7-24 pissn : 2460-3333 eissn : 2579-907X DIAGONALISASI MATRIKS HILBERT Randhi N Darmawan Universitas PGRI Banyuwangi, randhinumeric@gmailcom Abstract The Hilbert matrix
Fadly Ramadhan, Thresye, Akhmad Yusuf
ISSN: 978-44 Vol.0 No. (06) Hal.8-7 DETERMINAN MATRIKS DENGAN ELEMEN BILANGAN FIBONACCI ORDER- YANG DIGENERALISASI Fadly Ramadhan, Thresye, Akhmad Yusuf Program Studi Matematika Fakultas MIPA Universitas
GELANGGANG ARTIN. Kata Kunci: Artin ring, prim ideal, maximal ideal, nilradikal.
Jurnal Matematika UNAND Vol. 2 No. 2 Hal. 108 114 ISSN : 2303 2910 c Jurusan Matematika FMIPA UNAND GELANGGANG ARTIN IMELDA FAUZIAH, NOVA NOLIZA BAKAR, ZULAKMAL Program Studi Matematika, Fakultas Matematika
Menentukan Nilai Eigen Tak Dominan Suatu Matriks Definit Negatif Menggunakan Metode Kuasa Invers dengan Shift
Jurnal Penelitian Sains Volume 14 Nomer 1(A) 14103 Menentukan Nilai Eigen Tak Dominan Suatu Matriks Definit Negatif Menggunakan Metode Kuasa Invers dengan Shift Yuli Andriani Jurusan Matematika FMIPA,
PENYELESAIAN SISTEM DESKRIPTOR LINIER DISKRIT BEBAS WAKTU DENGAN MENGGUNAKAN METODE DEKOMPOSISI KANONIK
Jurnal Matematika UNAND Vol 1 No 2 Hal 52 59 ISSN : 2303 2910 c Jurusan Matematika FMIPA UNAND PENYELESAIAN SISTEM DESKRIPTOR LINIER DISKRIT BEBAS WAKTU DENGAN MENGGUNAKAN METODE DEKOMPOSISI KANONIK USWATUN
Karakteristik Operator Positif Pada Ruang Hilbert
SEMINAR NASIONAL MATEMATIKA DAN PENDIDIKAN MATEMATIKA UNY 05 A - 4 Karakteristik Operator Positif Pada Ruang Hilbert Gunawan Fakultas Keguruan dan Ilmu Pendidikan, Universitas Muhammadiyah Purwokerto gunoge@gmailcom
BAB II LANDASAN TEORI. selanjutnya sebagai bahan acuan yang mendukung tujuan penulisan. Materi-materi
BAB II LANDASAN TEORI Pada bab ini akan dibahas tentang landasan teori yang digunakan pada bab selanjutnya sebagai bahan acuan yang mendukung tujuan penulisan. Materi-materi yang diuraikan berupa definisi-definisi
1.1. Definisi, Notasi, dan Operasi Vektor 1.2. Susunan Koordinat Ruang R n 1.3. Vektor di dalam R n 1.4. Persamaan garis lurus dan bidang rata
SATUAN ACARA PERKULIAHAN (SAP) MATA KULIAH : MATEMATIKA INFORMATIKA 2 JURUSAN : S1-TEKNIK INFORMATIKA KODE MATA KULIAH : IT-045214 Referensi : [1]. Yusuf Yahya, D. Suryadi. H.S., Agus S., Matematika untuk
METODE PANGKAT DAN METODE DEFLASI DALAM MENENTUKAN NILAI EIGEN DAN VEKTOR EIGEN DARI MATRIKS
METODE PANGKAT DAN METODE DEFLASI DALAM MENENTUKAN NILAI EIGEN DAN VEKTOR EIGEN DARI MATRIKS Arif Prodi Matematika, FST- UINAM Wahyuni Prodi Matematika, FST-UINAM Try Azisah Prodi Matematika, FST-UINAM
SATUAN ACARA PERKULIAHAN UNIVERSITAS GUNADARMA
Mata Kuliah : Matematika Diskrit 2 Kode / SKS : IT02 / 3 SKS Program Studi : Sistem Komputer Fakultas : Ilmu Komputer & Teknologi Informasi. Pendahuluan 2. Vektor.. Pengantar mata kuliah aljabar linier.
APLIKASI INVERS SEMU (PSEUDOINVERSE) DENGAN METODE GREVILLE S PADA ANALISIS REGRESI LINEAR BERGANDA SKRIPSI
APLIKASI INVERS SEMU (PSEUDOINVERSE) DENGAN METODE GREVILLE S PADA ANALISIS REGRESI LINEAR BERGANDA SKRIPSI untuk memenuhi sebagian persyaratan mencapai derajat Sarjana S-1 Program Studi Matematika Diajukan
EKSISTENSI TITIK TETAP DARI SUATU TRANSFORMASI LINIER PADA RUANG BANACH
EKSISTENSI TITIK TETAP DARI SUATU TRANSFORMASI LINIER PADA RUANG BANACH Nur Aeni Prodi Matematika, Fakultas Sains dan Teknologi, UINAM nuraeniayatullah@gmailcom Info: Jurnal MSA Vol 3 No 1 Edisi: Januari
MATEMATIKA INFORMATIKA 2 TEKNIK INFORMATIKA UNIVERSITAS GUNADARMA FENI ANDRIANI
MATEMATIKA INFORMATIKA 2 TEKNIK INFORMATIKA UNIVERSITAS GUNADARMA FENI ANDRIANI SAP (1) Buku : Suryadi H.S. 1991, Pengantar Aljabar dan Geometri analitik Vektor Definisi, Notasi, dan Operasi Vektor Susunan
MENENTUKAN PERPANGKATAN MATRIKS TANPA MENGGUNAKAN EIGENVALUE
MENENTUKAN PERPANGKATAN MATRIKS TANPA MENGGUNAKAN EIGENVALUE Rini Pratiwi 1*, Rolan Pane 2, Asli Sirait 2 1 Mahasiswa Program Studi S1 Matematika 2 Dosen Jurusan Matematika Fakultas Matematika dan Ilmu
KARAKTERISTIK G-HOMOMORFISMA SKRIPSI SARJANA MATEMATIKA OLEH MEGA PARAMITASARI
KARAKTERISTIK G-HOMOMORFISMA SKRIPSI SARJANA MATEMATIKA OLEH MEGA PARAMITASARI 06 934 013 JURUSAN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS ANDALAS PADANG 2011 ABSTRAK Misalkan
Matematika Teknik I: Matriks, Inverse, dan Determinan. Oleh: Dadang Amir Hamzah STT DR. KHEZ MUTTAQIEN 2015
Matematika Teknik I: Matriks, Inverse, dan Determinan Oleh: Dadang Amir Hamzah STT DR. KHEZ MUTTAQIEN 2015 Dadang Amir Hamzah (STT) Matematika Teknik I Semester 3, 2015 1 / 33 Outline 1 Matriks Dadang
BAB II DASAR DASAR TEORI
BAB II DASA DASA TEOI.. uang ruang Vektor.. uang Vektor Umum Defenisi dan sifat sifat sederhana Defenisi : Misalkan V adalah sebarang himpunan benda yang didefenisikan dua operasi, yakni penambahan perkalian
SEMINAR NASIONAL BASIC SCIENCE II
ISBN : 978--97-- PROSEDING SEMINAR NASIONAL BASIC SCIENCE II Konstribusi Sains Untuk Pengembangan Pendidikan, Biodiversitas dan Metigasi Bencana Pada Daerah Kepulauan SCIENTIFIC COMMITTEE: Prof. H.J. Sohilait,
KAITAN SPEKTRUM KETETANGGAAN DARI GRAF SEKAWAN
Jurnal Matematika UNAND Vol. 3 No. 4 Hal. 1 5 ISSN : 2303 2910 c Jurusan Matematika FMIPA UNAND KAITAN SPEKTRUM KETETANGGAAN DARI GRAF SEKAWAN DWI HARYANINGSIH Program Studi Matematika, Fakultas Matematika
BAB I PENDAHULUAN. 3) Untuk mengetahui apa yang dimaksud dengan invers matriks. 4) Untuk mengetahui apa yang dimaksud dengan determinan matriks
1.1 LATAR BELAKANG BAB I PENDAHULUAN Teori matriks merupakan salah satu cabang ilmu aljabar linier yang menjadi pembahasan penting dalam ilmu matematika. Sejalan dengan perkembangan ilmu pengetahuan, aplikasi
MATRIKS INVERS TERGENERALISIR
MATRIKS INVERS TERGENERALISIR Tasari Program Studi Pendidikan Matematika, Universitas Widya Dharma Klaten ABSTRAK Tujuan penelitian ini adalah : () untuk mengetahui pengertian invers tergeneralisir dari
PRA A*-ALJABAR SEBAGAI SEBUAH POSET
Jurnal Matematika UNAND Vol. 1 No. 2 Hal. 32 38 ISSN : 2303 2910 c Jurusan Matematika FMIPA UNAND PRA A*-ALJABAR SEBAGAI SEBUAH POSET WELLY RAHMAYANTI Program Studi Matematika, Fakultas Matematika dan
PENGGUNAAN METODE LYAPUNOV UNTUK MENGUJI KESTABILAN SISTEM LINIER
Jurnal Matematika UNAND Vol. 3 No. 2 Hal. 29 33 ISSN : 233 291 c Jurusan Matematika FMIPA UNAND PENGGUNAAN METODE LYAPUNOV UNTUK MENGUJI KESTABILAN SISTEM LINIER OKTAVIA LOVE LINA Program Studi Matematika,
Sistem Persamaan Linier (SPL)
Sistem Persamaan Linier (SPL) Kuliah Aljabar Linier Semester Ganjil 2015-2016 MZI Fakultas Informatika Telkom University FIF Tel-U Agustus 2015 MZI (FIF Tel-U) SPL Agustus 2015 1 / 27 Acknowledgements
METODE PSEUDO ARC-LENGTH DAN PENERAPANNYA PADA PENYELESAIAN SISTEM PERSAMAAN NONLINIER TERPARAMETERISASI
Jurnal Matematika UNAND Vol. 5 No. 4 Hal. 9 17 ISSN : 233 291 c Jurusan Matematika FMIPA UNAND METODE PSEUDO ARC-LENGTH DAN PENERAPANNYA PADA PENYELESAIAN SISTEM PERSAMAAN NONLINIER TERPARAMETERISASI RAHIMA
Aljabar Linier Elementer. Kuliah 27
Aljabar Linier Elementer Kuliah 27 Materi Kuliah Transformasi Linier Invers Matriks Transformasi Linier Umum //24 Yanita, Matematika FMIPA Unand 2 Transformasi Linier Satu ke satu dan Sifat-sifatnya Definisi
PERMANEN DAN DOMINAN SUATU MATRIKS ATAS ALJABAR MAX-PLUS INTERVAL
PERMANEN DAN DOMINAN SUATU MATRIKS ATAS ALJABAR MAX-PLUS INTERVAL Siswanto Jurusan Matematika FMIPA UNS [email protected] Abstrak Misalkan R himpunan bilangan real. Aljabar Max-Plus adalah himpunan
SOLUSI PENDEKATAN TERBAIK SISTEM PERSAMAAN LINEAR TAK KONSISTEN MENGGUNAKAN DEKOMPOSISI NILAI SINGULAR
Buletin Ilmiah Math. Stat. dan Terapannya (Bimaster) Volume 03, No. 1 (2014), hal 91 98. SOLUSI PENDEKATAN TERBAIK SISTEM PERSAMAAN LINEAR TAK KONSISTEN MENGGUNAKAN DEKOMPOSISI NILAI SINGULAR Febrianti,
PENYELESAIAN INVERS MATRIKS MENGGUNAKAN METODE GENERALIZED INVERSE TUGAS AKHIR
PENYELESAIAN INVERS MATRIKS MENGGUNAKAN METODE GENERALIZED INVERSE TUGAS AKHIR Diajukan sebagai Salah Satu Syarat untuk Memperoleh Gelar Sarjana Sains pada Jurusan Matematika oleh DESI MURNITA 9 FAKULTAS
BAB II LANDASAN TEORI
BAB II LANDASAN TEORI Pada bab ini dibahas penelitian-penelitian tentang aljabar maks-plus yang telah dilakukan dan teori-teori yang menunjang penelitian masalah nilai eigen dan vektor eigen yang diperumum
(Departemen Matematika FMIPA-IPB) Matriks Bogor, / 66
MATRIKS Departemen Matematika FMIPA-IPB Bogor, 2012 (Departemen Matematika FMIPA-IPB) Matriks Bogor, 2012 1 / 66 Topik Bahasan 1 Matriks 2 Operasi Matriks 3 Determinan matriks 4 Matriks Invers 5 Operasi
I PENDAHULUAN II LANDASAN TEORI
I PENDAHULUAN 1.1 Latar Belakang Matriks merupakan istilah yang digunakan untuk menunjukkan jajaran persegi panjang dari bilangan-bilangan dan setiap matriks akan mempunyai baris dan kolom. Salah satu
PROSIDING ISBN : Dhian Arista Istikomah, S.Si, M.Sc 1. Abstrak
KARAKTERISASI E SEMIGRUP Dhian Arista Istikomah, S.Si, M.Sc A- Universitas PGRI Yogyakarta [email protected] Abstrak Dalam suatu semigrup terdapat himpunan elemen idempoten yang menjadi latar E semigrup
MODUL V EIGENVALUE DAN EIGENVEKTOR
MODUL V EIGENVALUE DAN EIGENVEKTOR 5.. Pendahuluan Biasanya jika suatu matriks A berukuran mm dan suatu vektor pada R m, tidak ada hubungan antara vektor dan vektor A. Tetapi seringkali kita menemukan
