ESTIMASI INTERVAL SPLINE DALAM REGRESI NONPARAMETRIK
|
|
|
- Suhendra Makmur
- 9 tahun lalu
- Tontonan:
Transkripsi
1 Tess ESTIMASI INTERVAL SPLINE DALAM REGRESI NONPARAMETRIK Oleh : MUHAMMAD NAFI NRP PROGRAM PASCASARJANA PROGRAM STUDI STATISTIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM INSTITUT TEKNOLOGI SEPULUH NOPEMBER SURABAYA 00
2 Tess LATAR BELAKANG Regres Bentu urva detahu f ε ˆ...? f Paraetr α β ε Nonparaetr f ε - Pendeatan Kernel Hardle90 - Splne Wahba 990; Craven & Wahba 979; Budantara et al Deret Fourer & Wavelet Antonads et al 994
3 Splne -Model regres ang epuna nterprestas satst dan vsual sangat husus dan sangat ba -Dperoleh dar optas Penalzed Least Square PLS dan el flesbltas ang tngg -Mapu enangan arater data/fungs ang ulus -Mel eapuan ang sangat ba untu enangan data ang prlauna berubah-ubah pada sub-sub nterval tertentu Estator Interval Konfdens PLS Craven & Wahba 979 Baesan pror proper Wahba 983; Budantara 00b RKHS Graven & Wahba 79 wang 98 Gateau Euban 88 Bahasa ateats tngg Bahasa ateats tngg
4 Tess RUMUSAN MASALAH. Bagaana bentu estator?. Bagaana Interval Konfdens? 3. Bagaana aplas splne?
5 Tess TUJUAN PENELITIAN. Menga bentu estator Splne enggunaan Lelhood.. Menga Konstrus Interval Konfdens enggunaan Pvotal Quantt. 3. Menerapan splne pada data Berat Badan Balta d Kota Surabaa tahun 007.
6 Tess MANFAAT PENELITIAN. WAWASAN KEILMUAN. METODE ALTERNATIF BATASAN MASALAH - OPTIMASI LIKELIHOOD - DATA TENTANG BERAT BADAN BALITA DI KOTA SURABAYA TAHUN 007
7 Tess TINJAUAN PUSTAKA. Fungs Splne Splne adl potongan polnoal g puna sfat tersegen dan ontnu shg lebh flesbel dar polnoal basa. Pelhan Labda Optal Dgn GCV p p p f 0 ^ n n a n f n GCV
8 Tess TINJAUAN PUSTAKA 3. Interval Konfdens Pc θ d α 4. Pertubuhan Balta 5. Berat Badan
9 Tess BAHAN DAN ALAT. Jurnal dan referens. Progra S-Plus Data rata-rata Berat Badan Balta
10 Tess LANGKAH PENELITIAN START Menga estator urva regres f Menurunan IK urva regres f Fungs f dhapr dengan odel splne uadrat f 0 Menelesaan optas Penduga : Dstrbus : ^ f W ^ f f W... n σ a { ε ε} Mn T[... ] ' T[... ] } Mn { p p R R IK : P z W z α... n α / α / Aplas pada data A
11 Tess LANGKAH PENELITIAN A Perraan tt not Tentuan GCV optal Penentuan tt not optal Tentuan estator splne optal Buat Interval Konfdens End
12 Tess ANALISIS & PEMBAHASAN. Estator Splne Untu Kurva Regres f Dala regres nonparaetr f tda detahu dasusan teruat dala ruang Sobolev ooth < } ; { ] [ d f g b a W p p Dberan suatu bass ruang splne :... { < 0 Model Regres Splne dapat dtuls enad f ε ε 0
13 Tess ANALISIS & PEMBAHASAN Fungs Lelhood / / n n f Ep f Ep f L σ πσ σ πσ Dengan Optas Lelhood dperoleh estator: T T T T f ] [ ' ' ^ n n n n T L M O M M M M L L... n
14 Tess ANALISIS & PEMBAHASAN. Interval Konfdens untu urva regres Setelah encar espetas dan varans dar estator aa dperoleh Pvotal Quantt:... ˆ ˆ... 0 f U ω σ Interval onfdens α dperoleh dengan enelesaan persaaan α ω σ... ˆ ˆ 0 b f a P K
15 Interval onfdens α f α ω σ ω σ... ˆ ˆ... ˆ ˆ 0 0 K K a f b P Dengan a dan b eenuh persaaan: a b du u du u ϕ α ϕ
16 3. Aplas Model & Interval onfdens Splne Plot data dan splne lnear dengan tt not 5 dan 8 GCV: berat ba uur ba
17 Plot data dan splne uadrat dengan tt not 4 8 dan 4 GCV: berat ba uur ba
18 Model regres Splne ^ f
19 Interval Konfdens berat ba uur ba
20 Tess KESIMPULAN Untu eperoleh estas tt urva regres dala regres nonparaetr splne uuna dgunaan optas Penalzed Lelhood. Dsapng tu dapat pula enggunaan optas Lelhood ang eberan hasl relatf udah. Untu ebangun nterval onfdens dala regres nonparaetr splne uuna dgunaan pendeatan Baesan. Pendeatan Pvotal Quantt uga dapat dgunaan dan eberan hasl ang relatf sederhana. Model Splne uadrat sangat eada untu dgunaan enduga pola hubungan antara uur balta dan berat badan balta d Kota Surabaa.
21 Teraash
EKSPEKTASI SATU PEUBAH ACAK
EKSPEKTASI SATU PEUBAH ACAK Dalam hal n aan dbahas beberapa macam uuran yang dhtung berdasaran espetas dar satu peubah aca, ba dsrt maupun ontnu, yatu nla espetas, rataan, varans, momen, fungs pembangt
BAB 1 PENDAHULUAN. dependen (y) untuk n pengamatan berpasangan i i i. x : variabel prediktor; f x ) ). Bentuk kurva regresi f( x i
BAB 1 PENDAHULUAN 1.1 Latar Belakang Masalah Analss regres merupakan analss statstk yang dgunakan untuk memodelkan hubungan antara varabel ndependen (x) dengan varabel ( x, y ) n dependen (y) untuk n pengamatan
Analisis Sensitivitas
Analss Senstvtas Terdr dar aa : Analss Senstvtas, bla terad perubahan paraeter seara dsrt Progra Lnear Paraetr, bla terad perubahan paraeter seara ontnu Maa-aa perubahan pasa optu: Perubahan suu tetap,
MODEL REGRESI SEMIPARAMETRIK SPLINE UNTUK DATA LONGITUDINAL PADA KASUS KADAR CD4 PENDERITA HIV. Lilis Laome 1)
Paradgma, Vol. 13 No. 2 Agustus 2009 hlm. 189 194 MODEL REGRESI SEMIPARAMERIK SPLINE UNUK DAA LONGIUDINAL PADA KASUS KADAR CD4 PENDERIA HIV Lls Laome 1) 1) Jurusan Matemata FMIPA Unverstas Haluoleo Kendar
BAB II LANDASAN TEORI
BAB II LANDASAN TEORI Pada bagian pertama bab ini diberikan tinjauan pustaka yang berisi penelitian sebelumnya yang mendasari penelitian ini Pada bagian kedua bab ini diberikan teori penunjang yang berisi
TINJAUAN PUSTAKA. Analisis regresi adalah suatu metode analisis data yang menggambarkan
5 II. TINJAUAN PUSTAKA 2.1 Analisis Regresi Analisis regresi adalah suatu metode analisis data yang menggambarkan hubungan antara variabel respon dengan satu atau beberapa variabel prediktor. Misalkan
PEMODELAN PENGELUARAN RUMAH TANGGA UNTUK KONSUMSI MAKANAN DI KOTA SURABAYA DAN FAKTOR-FAKTOR YANG MEMPENGARUHI MENGGUNAKAN PENDEKATAN REGRESI SPLINE
PEMODELAN PENGELUARAN RUMAH TANGGA UNTUK KONSUMSI MAKANAN DI KOTA SURABAYA DAN FAKTOR-FAKTOR YANG MEMPENGARUHI MENGGUNAKAN PENDEKATAN REGRESI SPLINE Dew Arfanty Azm, Dra.Madu Ratna,M.S. dan 3 Prof. Dr.
BAB I PENDAHULUAN. menganalisis hubungan fungsional antara variabel prediktor ( ) dan variabel
BAB I PENDAHULUAN 1.1 Latar Belakang Masalah Analisis regresi merupakan suatu metode yang digunakan untuk menganalisis hubungan fungsional antara variabel prediktor ( ) dan variabel respon ( ), dimana
BAB V MODEL SEDERHANA DISTRIBUSI TEMPERATUR DAN SIMULASINYA
BAB V MOEL SEERHANA ISTRIBUSI TEMPERATUR AN SIMULASINYA Model matemata yang terdapat pada bab sebelumnya merupaan model umum untu njes uap pada reservor dengan bottom water. Model tersebut merupaan model
PEMODELAN ANGKA PUTUS SEKOLAH USIA SMA DI JAWA TIMUR DENGAN PENDEKATAN REGRESI SPLINE MULTIVARIABEL
PEMODELAN ANGKA PUTUS SEKOLAH USIA SMA DI AWA TIMUR DENGAN PENDEKATAN REGRESI SPLINE MULTIVARIABEL Mega Pradpta, Madu Ratna, I Nyoan Budantara urusan Statstka Fakultas MIPA Insttut Teknolog Sepuluh Nopeber
MODEL REGRESI NONPARAMETRIK BERDASARKAN ESTIMATOR POLINOMIAL LOKAL KERNEL PADA KASUS PERTUMBUHAN BALITA
MODEL REGRESI NONPARAMETRIK BERDASARKAN ESTIMATOR POLINOMIAL LOKAL KERNEL PADA KASUS PERTUMBUHAN BALITA 1 Mifta Luthfin Alfiani, 2 Indah Manfaati Nur, 3 Tiani Wahyu Utami 1,2,3 Program Studi Statistika,
BAB 2 LANDASAN TEORI
BAB 2 LANDASAN TEORI Dalam bab ini diuraikan beberapa tinjauan pustaka sebagai landasan teori pendukung penulisan penelitian ini. 2.1 Analisis Regresi Suatu pasangan peubah acak seperti (tinggi, berat)
PERMASALAHAN LOKASI (Model Dasar) [2]
PERMASALAHAN LOKASI Model Dasar [] Technques of Contnuous Space Locaton Probles Medan ethod» Rectlner / Manhattan / Ct bloc dstance Contour-Lne ethod» Constructs regons bounded b counter lne hch provde
Median Method. Types of Distance Rectilinear distance / Manhattan distance / City block distance / rigth-angle distance / rectangular distance
30/05/04 Technques of Contnuous Space Locaton Probles PERMASALAHAN LOKASI Model Dasar [] Medan ethod» Rectlner / Manhattan / Ct bloc dstance Contour-Lne ethod» Constructs regons bounded b counter lne hch
Pemodelan Spline Truncated dalam Regresi Nonparametrik Birespon
Konferensi Nasional Sistem & Informatika 7 STMIK STIKOM Bali, Agustus 7 Pemodelan Spline Truncated dalam Regresi Nonparametrik Birespon Luh Putu Safitri Pratiwi Program Studi Sistem Informasi STMIK STIKOM
PEMODELAN KURS RUPIAH TERHADAP MATA UANG EURO DENGAN PENDEKATAN REGRESI SPLINE. Sulton Syafii Katijaya 1, Suparti 2, Sudarno 3.
PEMODELAN KURS RUPIAH TERHADAP MATA UANG EURO DENGAN PENDEKATAN REGRESI SPLINE Sulton Syafii Katijaya 1, Suparti 2, Sudarno 3 1 Mahasiswa Jurusan Statistika FSM UNDIP 2,3 Staff Pengajar Jurusan Statistika
REGRESI SPLINE BIRESPON UNTUK MEMODELKAN KADAR GULA DARAH PENDERITA DIABETES MELITUS
REGRESI SPLINE BIRESPON UNTUK MEMODELKAN KADAR GULA DARAH PENDERITA DIABETES MELITUS Dhina Oktaviana P, I Nyoman Budiantara Mahasiswa Jurusan Statistika ITS Surabaya, Dosen Jurusan Statistika ITS Surabaya
MODEL REGRESI NONPARAMETRIK SPLINE TRUNCATED PADA DATA INDEKS PEMBANGUNAN MANUSIA (IPM) DI INDONESIA. 1. Pendahuluan
MODEL REGRESI NONPARAMETRIK SPLINE TRUNCATED PADA DATA INDEKS PEMBANGUNAN MANUSIA (IPM) DI INDONESIA Kornelius Ronald Demu, Dewi Retno Sari Saputro, Purnami Widyaningsih Program Studi Matematika FMIPA
PEMILIHAN PARAMETER PENGHALUS DALAM REGRESI SPLINE LINIER. Agustini Tripena Br.Sb.
JMP : Volume 3 Nomor 1, Juni 2011 PEMILIHAN PARAMETER PENGHALUS DALAM REGRESI SPLINE LINIER Agustini Tripena Br.Sb. Fakultas Sains dan Teknik, Universitas Jenderal Soedirman Purwokerto, Indonesia ABSTRAK.
PENENTUAN MODEL REGRESI SPLINE TERBAIK. Agustini Tripena 1
PENENTUAN MODEL REGRESI SPLINE TERBAIK Agustini Tripena 1 1) Program Studi Matematika, Fakultas Sains dan Teknik, Univesitas Jenderal Soedirman, Purwokerto [email protected] Abstrak Pada paper ini
REGRESI NONPARAMETRIK DERET FOURIER BIRESPON
JURUSAN STATISTIKA Fakultas Matematika dan Ilmu Pengetahuan Alam Institut Teknologi 0 November Surabaa Surabaa 00 SEMINAR TESIS REGRESI NONPARAMETRIK DERET FOURIER BIRESPON Oleh : Rinii Semiati 308 0 009
BAB 2 LANDASAN TEORI
BAB LANDASAN TEORI.. Populas dan Sampel Populas adalah eseluruhan unt atau ndvdu dalam ruang lngup yang ngn dtelt. Banyanya pengamatan atau anggota suatu populas dsebut uuran populas, sedangan suatu nla
MODEL REGRESI NONPARAMETRIK SPLINE TRUNCATED PADA PRODUK DOMESTIK REGIONAL BRUTO TERHADAP INVESTASI DI KABUPATEN TUBAN
MODEL REGRESI NONPARAMETRIK SPLINE TRUNCATED PADA PRODUK DOMESTIK REGIONAL BRUTO TERHADAP INVESTASI DI KABUPATEN TUBAN Amalia Ma rufa, Sri Subanti, Titin Sri Martini Program Studi Matematika FMIPA UNS
BAB III REGRESI SPLINE = + dimana merupakan fungsi pemulus yang tidak spesifik, dengan adalah
BAB III REGRESI SPLINE 3.1 Fungsi Pemulus Spline yaitu Fungsi regresi nonparametrik yang telah dituliskan pada bab sebelumnya = + dimana merupakan fungsi pemulus yang tidak spesifik, dengan adalah faktor
MODEL REGRESI NONPARAMETRIK DENGAN PENDEKATAN DERET FOURIER PADA KASUS TINGKAT PENGANGGURAN TERBUKA DI JAWA TIMUR
UNIVERSITAS DIPONEGORO 01 ISBN: -0-1-0-1 MODEL REGRESI NONPARAMETRIK DENGAN PENDEKATAN DERET FOURIER PADA KASUS TINGKAT PENGANGGURAN TERBUKA DI JAWA TIMUR Alan Prahutama Dosen Jurusan Statistika Undip
ε adalah error random yang diasumsikan independen, m X ) adalah fungsi
BAB I PENDAHULUAN 1.1 Latar Belakang Masalah Analss regres merupakan suatu metode yang dgunakan untuk menganalss hubungan antara dua atau lebh varabel. Pada analss regres terdapat dua jens varabel yatu
BAB 1 PENDAHULUAN. 1.1 Latar Belakang Masalah
BAB PENDAHULUAN. Latar Belaang Masalah Analss regres merupaan lmu peramalan dalam statst. Analss regres dapat dataan sebaga usaha mempreds atau meramalan perubahan. Regres mengemuaan tentang engntahuan
SEMINAR TUGAS AKHIR 16 JANUARI Penyaji : I Dewa Ayu Made Istri Wulandari Pembimbing : Prof.Dr.Drs. I Nyoman Budiantara, M.
16 JANUARI ANALISIS FAKTOR FAKTOR YANG MEMPENGARUHI PENDUDUK MISKIN DAN PENGELUARAN PERKAPITA MAKANAN DI JAWA TIMUR DENGAN METODE REGRESI NONPARAMETRIK BIRESPON SPLINE Penyaji : I Dewa Ayu Made Istri Wulandari
BAB I PENDAHULUAN. dipergunakan untuk menaksir pola hubungan antara variabel prediktor atau
BAB I PENDAHULUAN 1.1 Latar Belakang Analisis regresi merupakan salah satu analisis dalam statistika yang dipergunakan untuk menaksir pola hubungan antara variabel prediktor atau variabel bebas X dengan
Pemodelan Faktor-Faktor yang Mempengaruhi Jumlah Kasus Tuberkulosis di Jawa Timur Menggunakan Regresi Nonparametrik Spline
JURNAL SAINS DAN SENI ITS Vol. 5 No. (6) 337-35 (3-98X Prnt) D-7 Peodelan Faktor-Faktor yang Mepengaruh Julah Kasus Tuberkuloss d Jawa Tur Menggunakan Regres Nonparaetrk Splne Frda Fahrun Nsa dan I Nyoan
REGRESI SEMIPARAMETRIK SPLINE TRUNCATED DENGAN SOFTWARE R. Abstract. Keywords: Spline Truncated, GCV, Software R.
REGRESI SEMIPARAMETRIK SPLINE TRUNCATED DENGAN SOFTWARE R Tiani Wahyu Utami 1), Alan Prahutama 2) 1 Program studi Statistika, FMIPA, Universitas Mumammadiyah Semarang email: [email protected] 2 Departemen
APLIKASI REGRESI SPLINE UNTUK MEMPERKIRAKAN TINGKAT FERTILITAS WANITA BERDASARKAN UMUR
APLIKASI REGRESI SPLINE UNTUK MEMPERKIRAKAN TINGKAT FERTILITAS WANITA BERDASARKAN UMUR Oleh : Isnia Dwimayanti (0 09 06) Pembimbing : DR Drs I Nyoman Budiantara, MS ABSTRAK Tingginya tingkat fertilitas
PEMODELAN KURS RUPIAH TERHADAP DOLLAR AMERIKA SERIKAT MENGGUNAKAN
PEMODELAN KURS RUPIAH TERHADAP DOLLAR AMERIKA SERIKAT MENGGUNAKAN REGRESI PENALIZED SPLINE BERBASIS RADIAL SKRIPSI Disusun oleh: KARTIKANINGTIYAS H.S 24010211140076 JURUSAN STATISTIKA FAKULTAS SAINS DAN
ADLN Perpustakaan Universitas Airlangga
PERBANDINGAN METODE GENERALIZED CROSS VALIDATION DAN GENERALIZED MAXIMUM LIKELIHOOD DALAM REGRESI NONPARAMETRIK SPLINE UNTUK MEMPERKIRAKAN JUMLAH LEUKOSIT PADA TERSANGKA FLU BURUNG DI JAWA TIMUR RINGKASAN
BAB 3 MODEL ESTIMASI REGRESI NONPARAMETRIK
BAB 3 MODEL ESTIMASI REGRESI NONPARAMETRIK Dalam melakukan estimasi pada suatu kasus regresi nonparametrik, ada banyak metode yang dapat digunakan. Yasin (2009) dalam makalahnya melakukan estimasi regresi
Bab VII Contoh Aplikasi
Bab VII Contoh Aplkas Dala bab n akan dberkan lustras tentang aplkas statstk penguj VVVS dala eontor kestablan atrks korelas pada proses produks dudukan kabel tegangan tngg (flange) d PT PINDAD (Persero).
Aplikasi Spline Kuadrat Terkecil dalam Pemodelan Pertumbuhan Anak Berdasarkan Indeks Antropometri
Vol. 6, No.1, 0-8, Juli 009 Aplikasi Spline Kuadrat Terkecil dalam Pemodelan Pertumbuhan Anak Berdasarkan Indeks Antropometri Wahidah Sanusi Abstrak Penelitian ini dilakukan untuk mengestimasi model pertumbuhan
BAB III ESTIMASI PARAMETER PADA MODEL REGRESI LOGISTIK 2-LEVEL. Model hirarki 2-level merupakan model statistik yang digunakan untuk
BAB III ESTIMASI PARAMETER PADA MODEL REGRESI LOGISTIK -LEVEL Model hirarki -level erupakan odel statistik ang digunakan untuk enganalisis data ang bersarang, atau data ang epunai struktur hirarki -level.
BAB 2 LANDASAN TEORI. Untuk mengetahui pola perubahan nilai suatu variabel yang disebabkan oleh
BAB LANDASAN TEORI. Analss Regres Untu mengetahu pla perubahan nla suatu varabel yang dsebaban leh varabel lan dperluan alat analss yang memungnan ta unut membuat perraan nla varabel tersebut pada nla
BAB 3 Interpolasi. 1. Beda Hingga
BAB Iterpolas. Hgga. Iterpolas Lear da Kuadrat. Iterpolas -Maju da -Mudur Newto 4. Polo Iterpolas Terbag Newto 5. Polo Iterpolas Lagrage . Hgga Msala dbera suatu tabel la-la uers j j dar suatu ugs pada
PERBANDINGAN TINGKAT AKURASI REGRESI NONPARAMETRIK SPLINE DAN REGRESI NONPARAMETRIK KERNEL PADA PERTUMBUHAN BALITA DI KOTA SURAKARTA
PERBANDINGAN TINGKAT AKURASI REGRESI NONPARAMETRIK SPLINE DAN REGRESI NONPARAMETRIK KERNEL PADA PERTUMBUHAN BALITA DI KOTA SURAKARTA Febriani Astuti, Kartiko, Sri Sulistijowati Handajani Jurusan Matematika
Pemodelan Angka Harapan Hidup dan Angka Kematian Bayi di Jawa Timur dengan Pendekatan Regresi Nonparametrik Spline Birespon
Pemodelan Angka Harapan Hidup dan Angka Kematian Bayi di Jawa Timur dengan Pendekatan Regresi Nonparametrik Spline Birespon Angka Harapan Hidup Angka Kematian Bayi Penyaji: Ni Nyoman Trisna Juliandari
BAB I PENDAHULUAN. Analisis regresi merupakan metode statistika yang digunakan untuk
BAB I PENDAHULUAN 1.1 Latar Belakang Masalah Analss regres merupakan metode statstka ang dgunakan untuk meramalkan sebuah varabel respon Y dar satu atau lebh varabel bebas X, selan tu juga dgunakan untuk
Oleh : Edwin Erifiandi (NRP ) Pembimbing : Prof. Dr. Drs. I Nyoman Budiantara, MSi
Oleh : Edwin Erifiandi (NRP. 1309 201 701) Pembimbing : Prof. Dr. Drs. I Nyoman Budiantara, MSi PENDAHULUAN Latar Belakang (1) () Salah satu metode statistika untuk memodelkan hubungan antar variabel adalah
TINJAUAN PUSTAKA. Menurut Hardle (1994) analisis regresi adalah suatu metode analisis data yang
II. TINJAUAN PUSTAKA 2.1 Analisis Regresi Menurut Hardle (1994) analisis regresi adalah suatu metode analisis data yang menggambarkan hubungan antara variabel respon dengan satu atau beberapa variabel
Pemodelan Regresi Nonparametrik Spline Truncated Dan Aplikasinya pada Angka Kelahiran Kasar di Surabaya
JURNAL SAINS DAN SENI POMITS Vol., No., (04) 7-0 (0-98X Print) D-7 Pemodelan Regresi Nonparametrik Spline Truncated Dan Aplikasinya pada Angka Kelahiran Kasar di Surabaya Merly Fatriana Bintariningrum
Seminar Tugas Akhir. Dosen Pembimbing : Prof. Dr. Drs. I Nyoman Budiantara, MS
Seminar Tugas Akhir Oleh: Dhina Oktaviana P 1307 100 068 Dosen Pembimbing : Prof. Dr. Drs. I Nyoman Budiantara, MS JURUSAN STATISTIKA Fakultas Matematika dan Ilmu Pengetahuan Alam Institut Teknologi Sepuluh
Pemodelan Faktor-Faktor yang Mempengaruhi Indeks Pembangunan Manusia Menggunakan Regresi Nonparametrik Spline di Jawa Tengah
JURNAL SAINS DAN SENI ITS Vol. 5 No. 2 (2016) 2337-3520 (2301-928X Print) D-157 Pemodelan Faktor-Faktor yang Mempengaruhi Indeks Pembangunan Manusia Menggunakan Regresi Nonparametrik Spline di Jawa Tengah
BAB II TINJAUAN PUSTAKA. variabel prediktor terhadap variabel respons. Hubungan fungsional
BAB II TINJAUAN PUSTAKA 2.1 Analisis Regresi Dalam ilmu statistika, metode yang dapat digunakan untuk menganalisis pola hubungan antara satu variabel atau lebih dengan satu variabel atau lebih lainnya
APLIKASI SPLINE ESTIMATOR TERBOBOT
APLIKASI SPLINE ESTIMATOR TERBOBOT I Nyoman Budiantara) APLIKASI SPLINE ESTIMATOR TERBOBOT I Nyoman Budiantara Dosen Fakultas Matematika dan Ilmu Pengetahuan Alam, Jurusan Statistika Institut Teknologi
PEMODELAN PASANG SURUT AIR LAUT DI KOTA SEMARANG DENGAN PENDEKATAN REGRESI NONPARAMETRIK POLINOMIAL LOKAL KERNEL
PEMODELAN PASANG SURUT AIR LAUT DI KOTA SEMARANG DENGAN PENDEKATAN REGRESI NONPARAMETRIK POLINOMIAL LOKAL KERNEL Tan Wahyu Utam, Indah Manfaat Nur Unverstas Muhammadyah Semarang, emal : [email protected]
BAB I PENDAHULUAN. Analisis regresi merupakan metode analisis data yang telah diterapkan
BAB I PENDAHULUAN 1.1 Latar Belakang Analisis regresi merupakan metode analisis data yang telah diterapkan secara luas pada berbagai bidang penelitian, sebagai contoh penelitian-penelitian dalam ilmu pengetahuan
BAB 2 LANDASAN TEORI. 2.1 Permasalahan Cutting Stock Satu Dimensi
A 2 LANDASAN TEORI 2. Perasalahan Cuttng Stoc Satu Dens Perasalahan Cuttng stoc erupaan suatu perasalahan ang uncul arena bana paa aplasna ala bang pernustran. Msalan ala pernustran au, bagaana eanaeen
Bab III. Plant Nonlinear Dengan Fase Nonminimum
Bab III Plant Nonlnear Dengan Fase Nonmnmum Pada bagan n dbahas mengena penurunan learnng controller untu sstem nonlnear dengan derajat relatf yang detahu Dalam hal n hanya dperhatan pada sstem-sstem nonlnear
BAB III ANALISIS DISKRIMINAN. Analisis diskriminan (discriminant analysis) merupakan salah satu metode
BAB III ANALISIS DISKRIMINAN 3. Analss Dsrmnan Analss dsrmnan (dscrmnant analyss) merupaan salah satu metode yan dunaan dalam analss multvarat. Dalam analss dsrmnan terdapat dua jens varabel yan terlbat
PEMODELAN REGRESI SPLINE (Studi Kasus: Herpindo Jaya Cabang Ngaliyan)
PEMODELAN REGRESI SPLINE (Studi Kasus: Herpindo Jaya Cabang Ngaliyan) I Made Budiantara Putra 1, I Gusti Ayu Made Srinadi 2, I Wayan Sumarjaya 3 1 Jurusan Matematika, Fakultas MIPA - Universitas Udayana
BAB III PERBANDINGAN ANALISIS REGRESI MODEL LOG - LOG DAN MODEL LOG - LIN. Pada prinsipnya model ini merupakan hasil transformasi dari suatu model
BAB III PERBANDINGAN ANALISIS REGRESI MODEL LOG - LOG DAN MODEL LOG - LIN A. Regres Model Log-Log Pada prnspnya model n merupakan hasl transformas dar suatu model tdak lner dengan membuat model dalam bentuk
PENGUJIAN HIPOTESIS DALAM MODEL SPLINE PADA REGRESI NONPARAMETRIK
TESIS ST 2309 PENGUJIAN HIPOTESIS DALAM MODEL SPLINE PADA REGRESI NONPARAMETRIK AHMAD ZAKI NRP. 1305 201 015 DOSEN PEMBIMBING Dr. Drs. I Nyoman Budiantara, M.S. Ir. Mutiah Salamah Chamid, M.Kes. PROGRAM
Pemodelan Angka Putus Sekolah Usia SMA di Jawa Timur dengan Pendekatan Regresi Spline Multivariabel
Seminar Hasil Tugas Akhir Pemodelan Angka Putus Sekolah Usia SMA di Jawa Timur dengan Pendekatan Regresi Spline Multivariabel Mega Pradipta 1309100038 Pembimbing I : Dra. Madu Ratna, M.Si Pembimbing II
Faktor yang Mempengaruhi Terjangkitnya Penyakit Diare pada Balita di Propinsi Nanggroe Aceh Darussalam
Faktor yang Mempengaruhi Terjangkitnya Penyakit Diare pada Balita di Propinsi Nanggroe Aceh Darussalam Oleh: Urifah Hidayanti (1310 030 028) Dosen Pembimbing: Ir. Mutiah Salamah, M.Kes Ujian Tugas Akhir
Created by Simpo PDF Creator Pro (unregistered version)
Created by Smpo PDF Creator Pro (unregstered verson) http://www.smpopd.com Statst Bsns : BAB IV. UKURA PEMUSATA DATA. Pendahuluan Untu mendapatan gambaran yang lebh jelas tentang seumpulan data mengena
Analisis Regresi Spline Kuadratik
Analisis Regresi Spline Kuadratik S 2 Oleh: Agustini Tripena Program Studi Matematika, Fakultas Sains dan Teknik, Univesitas Jenderal Soedirman, Purwokerto [email protected] Abstrak Regresi spline
Analisis Regresi Spline Multivariabel untuk Pemodelan Kematian Penderita Demam Berdarah Dengue (DBD) di Jawa Timur
JURNAL SAINS DAN SENI ITS Vol., No., (Sept. 0) ISSN: 0-98X D- Analisis Regresi Spline Multivariabel untuk Pemodelan Kematian Penderita Demam Berdarah Dengue (DBD) di Jawa Timur Reza Mubarak dan I Nyoman
BAB 4 METODOLOGI PENELITIAN. data, dan teknik analisis data. Kerangka pemikiran hipotesis membahas hipotesis
BAB 4 METODOLOGI PENELITIAN Pada bab n akan durakan kerangka pemkran hpotess, teknk pengumpulan data, dan teknk analss data. Kerangka pemkran hpotess membahas hpotess pengujan pada peneltan, teknk pengumpulan
Regresi Linear Sederhana dan Korelasi
Regres Lnear Sederhana dan Korelas 1. Model Regres Lnear. Penaksr Kuadrat Terkecl 3. Predks Nla Respons 4. Inferens Untuk Parameter-parameter Regres 5. Kecocokan Model Regres 6. Korelas Utrwen Mukhayar
PEMODELAN REGRESI SPLINE TRUNCATED UNTUK DATA LONGITUDINAL
PEMODELAN REGRESI SPLINE TRUNCATED UNTUK DATA LONGITUDINAL ( Studi Kasus : Harga Saham Bulanan pada Kelompok Saham Perbankan Periode Januari 2009 Desember 2015 ) SKRIPSI Disusun oleh: KHOIRUNNISA NUR FADHILAH
PENDEKATAN REGRESI SEMIPARAMETRIK SPLINE LINIER UNTUK MEMODELKAN ANGKA KEMATIAN BAYI DI JAWA TIMUR
SULVIA MEGASARI 1310 100 037 PENDEKATAN REGRESI SEMIPARAMETRIK SPLINE LINIER UNTUK MEMODELKAN ANGKA KEMATIAN BAYI DI JAWA TIMUR 1 Sulvia Megasari dan I Nyoman Budiantara Jurusan Statistika, Fakultas Matematika
Pengolahan lanjut data gravitasi
Modul 6 Pengolahan lanjut data gravtas 1. Transformas/proyes e bdang datar (metode Damney atau Euvalen Tt Massa). Pemsahan Anomal Loal/Resdual dan Anomal Regonal a. Kontnuas b. Movng average c. Polynomal
Taksiran Kurva Regresi Spline pada Data Longitudinal dengan Kuadrat Terkecil
Vol. 11, No. 1, 77-83, Jul 2014 Taksran Kurva Regres Slne ada Data Longtudnal dengan Kuadrat Terkecl * Abstrak Makalah n mengka tentang estmas regres slne khususnya enggunaan ada data longtudnal. Data
Pemodelan Faktor-Faktor yang Mempengaruhi Unmet Need KB di Provinsi Jawa Timur dengan Pendekatan Regresi Nonparametrik Spline
JURNAL SAINS DAN SENI ITS Vol. No. (06 7-0 (0-98X Print D-6 Pemodelan Faktor-Faktor yang Mempengaruhi Unmet Need KB di Provinsi Jawa Timur dengan Pendekatan Regresi Nonparametrik Spline Anita Trias Anggraeni
Bootstrap Pada Regresi Linear dan Spline Truncated
Statstka, Vol. 8 No. 1, 47 54 Me 2008 Bootstrap Pada Regres Lnear dan Splne runcated Harson Darmaw 1) dan Bambang Wdjanarko Otok 2) 1) enaga Pengajar d Jurusan Matematka UNRI, Pekanbaru e-mal: [email protected]
REGRESI LINIER SEDERHANA (MASALAH ESTIMASI)
REGRESI LINIER SEDERHANA (MASALAH ESTIMASI) PowerPont Sldes byyana Rohmana Educaton Unversty of Indonesan 007 Laboratorum Ekonom & Koperas Publshng Jl. Dr. Setabud 9 Bandung, Telp. 0 013163-53 Hal-hal
MODEL REGRESI SEMI PARAMETRIK DENGAN ESTIMATOR SPLINE PARSIAL
MODEL REGRESI SEMI PARAMETRIK DENGAN ESTIMATOR SPLINE PARSIAL Aplikasi Pada Faktor Yang Mempengaruhi Prestasi Belajar (Nilai Praktek) Mahasiswa Sekolah Tinggi Ilmu Kesehatan William Booth Surabaya Erika
MODEL REGRESI SEMIPARAMETRIK CAMPURAN SPLINE TRUNCATED DAN DERET FOURIER (Studi Kasus : Angka Harapan Hidup Provinsi Jawa Timur)
TESIS SS 14501 MODEL REGRESI SEMIPARAMETRIK CAMPURAN SPLINE TRUNCATED DAN DERET FOURIER (Stud Kasus : Angka Harapan Hdup Provns Jawa Tmur) KHAERUN NISA NRP. 1315 01 018 DOSEN PEMBIMBING Prof. Dr. Drs.
Analitik Data Tingkat Lanjut (Klasifikasi)
7 Noveber 06 Analtk Data Tngkat Lanjut lasfkas Ia Cholssodn [email protected] Pokok Bahasan. onsep lasfkas. Lnear dan Non-Lnear Classfer 3. Algorta lasfkas: o Etree Learnng Machne ELM Untuk Regres Vs
KOLINEARITAS GANDA (MULTICOLLINEARITY) Oleh Bambang Juanda
KOLINEARITAS GANDA MULTICOLLINEARIT Oleh Bambang Juanda Model: = X + X + + X + ε. Hubungan Lnear Sempurna esa, Ja C X 0 C onstanta yg td semuanya 0. Mudah detahu rn td ada dugaan parameter oef dgn OLS,
ARUS BOLAK BALIK V R. i m
Modul 9 Elektroagnet KEGIATAN BEAJA A. ANDASAN TEOI AUS BOAK BAIK Arus dan tegangan lstrk bolak balk adalah arus dan tegangan lstrk yang berubah terhadap waktu atau erupakan fungs waktu. Yang berubah adalah
BAB 1 PENDAHULUAN. variabel respon dengan variabel prediktor. Menurut Eubank (1988), f(x i ) merupakan
BAB 1 PENDAHULUAN 1.1 Latar Belakang Masalah Metode regresi merupakan metode statistika untuk mengetahui hubungan antara variabel respon dengan variabel prediktor. Menurut Eubank (1988), f(x i ) merupakan
PEMODELAN REGRESI SPLINE UNTUK RATA- RATA BANYAK ANAK YANG DILAHIRKAN HIDUP DI KOTA SURABAYA, KABUPATEN SITUBONDO DAN KABUPATEN BANGKALAN
SIDANG LAPORAN TUGAS AKHIR PEMODELAN REGRESI SPLINE UNTUK RATA- RATA BANYAK ANAK YANG DILAHIRKAN HIDUP DI KOTA SURABAYA, KABUPATEN SITUBONDO DAN KABUPATEN BANGKALAN Oleh : Servianie Purnamasari (1310 030
II. TINJAUAN PUSTAKA 2.1 Metode Regresi 2.2 Model Aditif Terampat ( Generalized additive models , GAM)
II. TINJAUAN PUSTAKA. Metode Regresi Analisis regresi merupakan bagian dalam analisis statistika yang digunakan untuk memodelkan hubungan antara peubah tidak bebas (respon) dengan satu atau beberapa peubah
BAB 2 LANDASAN TEORI
BAB 2 LANDASAN TEORI 2.1 Pengertan Regres Regres pertama kal dpergunakan sebaga konsep statstka oleh Sr Francs Galton (1822 1911). Belau memperkenalkan model peramalan, penaksran, atau pendugaan, yang
PEMODELAN ANGKA KEMATIAN BAYI DI PROPINSI JAWA TIMUR DENGAN PENDEKATAN REGRESI NONPARAMETRIK SPLINE TUGAS AKHIR ST 1325
TUGAS AKHIR ST 325 PEMODELAN ANGKA KEMATIAN BAYI DI PROPINSI JAWA TIMUR DENGAN PENDEKATAN REGRESI NONPARAMETRIK SPLINE LIA DWI JAYANTI NRP 303 00 04 Dosen Pembimbing DR. DRS. I Nyoman Budiantara, MS. JURUSAN
BAB 4 PERHITUNGAN NUMERIK
Mata kulah KOMPUTASI ELEKTRO BAB PERHITUNGAN NUMERIK. Kesalahan error Pada Penelesaan Numerk Penelesaan secara numers dar suatu persamaan matemats kadang-kadang hana memberkan nla perkraan ang mendekat
IV. UKURAN SIMPANGAN, DISPERSI & VARIASI
IV. UKURAN SIMPANGAN, DISPERSI & VARIASI Pendahuluan o Ukuran dspers atau ukuran varas, yang menggambarkan derajat bagamana berpencarnya data kuanttatf, dntaranya: rentang, rentang antar kuartl, smpangan
BAB I PENDAHULUAN 1.1. Latar Belakang
BAB I PENDAHULUAN 1.1. Latar Belakang Model regresi yang baik memerlukan data yang baik pula. Suatu data dikatakan baik apabila data tersebut berada di sekitar garis regresi. Kenyataannya, terkadang terdapat
MODEL SPLINE TERBOBOT UNTUK MERANCANG KARTU MENUJU SEHAT (KMS) PROPINSI JAWA TIMUR
MODEL SPLINE TERBOBOT UNTUK MERANCANG KARTU MENUJU SEHAT (KMS) PROPINSI JAWA TIMUR Adi Wicaksono 1, Mutiah Salamah, dan Jerry Dwi Trijoyo Purnomo 1 Mahasiswa Statistika ITS Dosen Statistika ITS ABSTRAK
TINJAUAN PUSTAKA. Analisis regresi adalah suatu metode analisis data yang menggambarkan
II. TINJAUAN PUSTAKA 2.1 Analisis Regresi Analisis regresi adalah suatu metode analisis data yang menggambarkan hubungan fungsional antara variabel respon dengan satu atau beberapa variabel prediktor.
PENENTUAN GENERALIZED CROSS VALIDATION (GCV) SEBAGAI KRITERIA DALAM PEMILIHAN MODEL REGRESI B-SPLINE TERBAIK
Buletin Ilmiah Mat. Stat. dan Terapannya (Bimaster) Volume 02, No. 2 (2013), hal 121 126. PENENTUAN GENERALIZED CROSS VALIDATION (GCV) SEBAGAI KRITERIA DALAM PEMILIHAN MODEL REGRESI B-SPLINE TERBAIK Yuyun
INVERS DRAZIN DARI SUATU MATRIKS DENGAN MENGGUNAKAN BENTUK KANONIK JORDAN
Buletn Ilmah ath. Stat. dan erapannya (Bmaster) Volume 5, No. 3 (6), hal 8. INVERS DRAZIN DARI SUAU ARIKS DENGAN ENGGUNAKAN BENUK KANNIK JRDAN Eo Sulstyono, Shanta artha, Ea Wulan Ramadhan INISARI Suatu
