ADLN Perpustakaan Universitas Airlangga
|
|
|
- Ade Susman
- 9 tahun lalu
- Tontonan:
Transkripsi
1 PERBANDINGAN METODE GENERALIZED CROSS VALIDATION DAN GENERALIZED MAXIMUM LIKELIHOOD DALAM REGRESI NONPARAMETRIK SPLINE UNTUK MEMPERKIRAKAN JUMLAH LEUKOSIT PADA TERSANGKA FLU BURUNG DI JAWA TIMUR RINGKASAN Dalam model regresi nonparametrik bentuk kurva regresi hanya diasumsikan mulus (smooth), dalam arti termuat di dalam ruang Sobolev,,,, kontinyu absolute dan. Data diharapkan mencari sendiri bentuk estimasinya, tanpa dipengaruhi oleh faktor subyektifitas peneliti (Eubank, 1988). Dengan demikian, fleksibilitas yang tinggi akan dimiliki oleh pendekatan regresi nonparametrik (Khair, 2006). Terdapat beberapa pendekatan untuk memperoleh bentuk estimator kurva regresi dalam regresi nonparametrik. Diantaranya adalah pendekatan histogram (Green dan Silverman, 1994), pendekatan Kernel (Hardle, 1990), Spline (Wahba, 1990), estimator deret orthogonal atau regresi Fourier (Eubank, 1998), K-Nearest Neighbour (Hardle, 1990) dan analisis Wavelet (Antoniadis dkk, 1994). Menurut (Khair, 2006) penggunaan pendekatan spline dengan basis polynomial truncated yang penyelesaiannya menggunakan optimasi least square dapat menjadi pilihan yang lebih baik. Spline polynomial truncated merupakan jumlahan dari fungsi polynomial dengan suatu fungsi (Sutarsi, 2008). Spline mempunyai keunggulan dalam mengatasi pola data yang menunjukkan naik/turun yang tajam dengan bantuan titik knot, serta kurva yang dihasilkan relative smooth / mulus (Hardle, 1990). Spline orde dengan knot pada,, didefinisikan sebagai suatu fungsi dengan bentuk: dimana dan β merupakan parameter. Dalam pemilihan, kriteria GCV didefinisikan sebagai: Dengan: 1 Pemilihan dilakukan dengan melihat nilai GCV yang minimum. vii
2 Sedangkan metode GML diperoleh dengan cara: Dengan 1 Nilai. Metode GML cukup popular dan baik untuk data yang berkorelasi (Wang, 1998). Dari hasil penelitian dengan sampel leukosit pada tersangka flu burung di Jawa Timur, didapatkan hasil, bahwa metode GCV dengan Spline linier adalah yang paling menghasilkan kurva yang smooth / mulus dibandingkan dengan metode GML. Hal ini berdasarkan nilai MSE yang paling kecil dan R 2 yang paling besar. Didapatkan titik knot pada metode ini adalah 8, dan model yang didapatkan adalah viii
3 COMPARISON BETWEEN GENERALIZED CROSS VALIDATION METHOD AND GENERALIZED MAXIMUM LIKELIHOOD METHOD IN NONPARAMETRIC SPLINE REGRESSION TO ESTIMATE THE LEUCOCYTE OF AVIAN INFLUENZA SUSPECT IN EAST JAVA SUMMARY In nonparametric regression, the shape of the regression curve is only assumed smooth, include in Sobolev space,,,, absolutely continuous and. The data expected to fit its estimation, without influenced the subjectivity of the researcher (Eubank, 1988). Therefore, the nonparametric regression has much flexibility (Khair, 2006). There are some approximations to make the shape of regression curve estimator in nonparametric regression, such as histogram estimation (Green dan Silverman, 1994), Kernel estimation (Hardle, 1990), Spline (Wahba, 1990), orthogonal sequence estimator or Fourier estimation regression (Eubank, 1998), K-Nearest Neighbors (Hardle, 1990) and Wavelet analysis (Antoniadis dkk, 1994). (Khair, 2006) said spline bases with truncated polynomial spline which terminate by least square optimation can be the better choice. Truncated polynomial spline is the cumulative of polynomial function with a function (Sutarsi, 2008). Spline has enhanced to control the data which model is up or down strictly with knot points, and result relatively more smooth (Hardle, 1990). Spline orde with knot,, is defined as a function: Where and is parameter. with To choose, GCV criteria is define as: 1 Choosing is base of the minimum value of GCV. GML method is obtained by: ix
4 With 1 The value of. GML method is popular and good for correlated data (Wang, 1998). The research result of leucocytes sample from avian influenza suspect in East Java finally found that GCV method with spline linier shape is smoother than GML method. The fact based on the regression curves, that describing by the least value of MSE and highest of R 2. From this method founded that knot point is 8, and by spline truncated polynomial the estimator model fit on model x
5 ABSTRACT COMPARISON BETWEEN GENERALIZED CROSS VALIDATION METHOD AND GENERALIZED MAXIMUM LIKELIHOOD METHOD IN NONPARAMETRIC SPLINE REGRESSION TO ESTIMATE THE LEUCOCYTE OF AVIAN INFLUENZA SUSPECT IN EAST JAVA Suppose that response variables,,..., have been observed at design points, following the regression model:, 1, 2,, Where. is an unknown regression function and,,,, are zero mean, uncorrelated random errors, and variance. The regression curve shape is unknown but only assumed smooth, included in the Sobolev space,,,, absolutely continuous. This paper will study how to estimate the regression curve from the sample. It will be explaining the estimator regression curve by declaration as the truncated polynomial spline which relatively simpler than other nonparametric regression curve approximation. The regression curve estimation using least square optimization: Furthermore, to know the smoothness of regression curve by using Generalized Cross Validation (GCV) and Generalized Maximum Likelihood (GML) methods. Which one of the methods is smoothest? Therefore from by using that estimator, so we can estimate the leukocytes of the avian influenza suspects in east Java. The result of this research found that the linier GCV method gives smoothest curve compared with the other GML methods. It came from the conclusion of the least value of MSE. This method also found the knot point is 8, and the models are: , , 8 Keywords: truncated polynomial spline, GCV, GML, leucocytes, avian influenza. xi
PEMODELAN REGRESI SPLINE (Studi Kasus: Herpindo Jaya Cabang Ngaliyan)
PEMODELAN REGRESI SPLINE (Studi Kasus: Herpindo Jaya Cabang Ngaliyan) I Made Budiantara Putra 1, I Gusti Ayu Made Srinadi 2, I Wayan Sumarjaya 3 1 Jurusan Matematika, Fakultas MIPA - Universitas Udayana
PEMILIHAN PARAMETER PENGHALUS DALAM REGRESI SPLINE LINIER. Agustini Tripena Br.Sb.
JMP : Volume 3 Nomor 1, Juni 2011 PEMILIHAN PARAMETER PENGHALUS DALAM REGRESI SPLINE LINIER Agustini Tripena Br.Sb. Fakultas Sains dan Teknik, Universitas Jenderal Soedirman Purwokerto, Indonesia ABSTRAK.
ESTIMATOR SPLINE KUBIK
Bimafika, 011, 3, 30-34 ESTIMATOR SPLINE KUBIK Johannis Takaria * Staff Pengajar Fakultas Keguruan Dan Ilmu Pendidikan Universitas Pattimura Ambon Diterima 10-1-010; Terbit 31-06-011 ABSTRACT Consider
PENENTUAN MODEL REGRESI SPLINE TERBAIK. Agustini Tripena 1
PENENTUAN MODEL REGRESI SPLINE TERBAIK Agustini Tripena 1 1) Program Studi Matematika, Fakultas Sains dan Teknik, Univesitas Jenderal Soedirman, Purwokerto [email protected] Abstrak Pada paper ini
REGRESI SPLINE SEBAGAI ALTERNATIF DALAM PEMODELAN KURS RUPIAH TERHADAP DOLAR AMERIKA SERIKAT SKRIPSI
REGRESI SPLINE SEBAGAI ALTERNATIF DALAM PEMODELAN KURS RUPIAH TERHADAP DOLAR AMERIKA SERIKAT SKRIPSI Oleh: SULTON SYAFII KATIJAYA NIM : J2E009041 JURUSAN STATISTIKA FAKULTAS SAINS DAN MATEMATIKA UNIVERSITAS
PEMODELAN KURS RUPIAH TERHADAP MATA UANG EURO DENGAN PENDEKATAN REGRESI SPLINE. Sulton Syafii Katijaya 1, Suparti 2, Sudarno 3.
PEMODELAN KURS RUPIAH TERHADAP MATA UANG EURO DENGAN PENDEKATAN REGRESI SPLINE Sulton Syafii Katijaya 1, Suparti 2, Sudarno 3 1 Mahasiswa Jurusan Statistika FSM UNDIP 2,3 Staff Pengajar Jurusan Statistika
PEMODELAN KURS RUPIAH TERHADAP DOLLAR AMERIKA SERIKAT MENGGUNAKAN
PEMODELAN KURS RUPIAH TERHADAP DOLLAR AMERIKA SERIKAT MENGGUNAKAN REGRESI PENALIZED SPLINE BERBASIS RADIAL SKRIPSI Disusun oleh: KARTIKANINGTIYAS H.S 24010211140076 JURUSAN STATISTIKA FAKULTAS SAINS DAN
MODEL REGRESI NONPARAMETRIK SPLINE TRUNCATED PADA PRODUK DOMESTIK REGIONAL BRUTO TERHADAP INVESTASI DI KABUPATEN TUBAN
MODEL REGRESI NONPARAMETRIK SPLINE TRUNCATED PADA PRODUK DOMESTIK REGIONAL BRUTO TERHADAP INVESTASI DI KABUPATEN TUBAN Amalia Ma rufa, Sri Subanti, Titin Sri Martini Program Studi Matematika FMIPA UNS
PEMODELAN KASUS KEMISKINAN DI JAWA TENGAH MENGGUNAKAN REGRESI NONPARAMETRIK METODE B-SPLINE
PEMODELAN KASUS KEMISKINAN DI JAWA TENGAH MENGGUNAKAN REGRESI NONPARAMETRIK METODE B-SPLINE SKRIPSI Disusun Oleh : ANISA SEPTI RAHMAWATI 24010212140046 DEPARTEMEN STATISTIKA FAKULTAS SAINS DAN MATEMATIKA
BAB 2 LANDASAN TEORI
BAB 2 LANDASAN TEORI Dalam bab ini diuraikan beberapa tinjauan pustaka sebagai landasan teori pendukung penulisan penelitian ini. 2.1 Analisis Regresi Suatu pasangan peubah acak seperti (tinggi, berat)
BAB I PENDAHULUAN. menganalisis hubungan fungsional antara variabel prediktor ( ) dan variabel
BAB I PENDAHULUAN 1.1 Latar Belakang Masalah Analisis regresi merupakan suatu metode yang digunakan untuk menganalisis hubungan fungsional antara variabel prediktor ( ) dan variabel respon ( ), dimana
PEMODELAN DATA INDEKS HARGA SAHAM GABUNGAN. Disusun Oleh : NOVIA AGUSTINA. Skripsi. Jurusan Statistika Fakultas Sains dan Matematika Undip
PEMODELAN DATA INDEKS HARGA SAHAM GABUNGAN MENGGUNAKAN REGRESI PENALIZED SPLINE Disusun Oleh : NOVIA AGUSTINA 24010211130039 Skripsi Diajukan Sebagai Salah Satu Syarat untuk Memperoleh Gelar Sarjana Sains
BAB II TINJAUAN PUSTAKA. variabel prediktor terhadap variabel respons. Hubungan fungsional
BAB II TINJAUAN PUSTAKA 2.1 Analisis Regresi Dalam ilmu statistika, metode yang dapat digunakan untuk menganalisis pola hubungan antara satu variabel atau lebih dengan satu variabel atau lebih lainnya
BAB III REGRESI SPLINE = + dimana merupakan fungsi pemulus yang tidak spesifik, dengan adalah
BAB III REGRESI SPLINE 3.1 Fungsi Pemulus Spline yaitu Fungsi regresi nonparametrik yang telah dituliskan pada bab sebelumnya = + dimana merupakan fungsi pemulus yang tidak spesifik, dengan adalah faktor
BAB I PENDAHULUAN 1.1. Latar Belakang
BAB I PENDAHULUAN 1.1. Latar Belakang Model regresi yang baik memerlukan data yang baik pula. Suatu data dikatakan baik apabila data tersebut berada di sekitar garis regresi. Kenyataannya, terkadang terdapat
ESTIMASI KURVA REGRESI PADA DATA LONGITUDINAL DENGAN WEIGHTED LEAST SQUARE
ESTIMASI KURVA REGRESI PADA DATA LONGITUDINAL DENGAN WEIGHTED LEAST SQUARE Dian Ragil P.. Abstrak Model varying-coefficient pada data longitudinal akan dikaji dalam proposal ini. Hubungan antara variabel
MODEL REGRESI SEMIPARAMETRIK MULTIVARIABEL DENGAN ESTIMATOR SPLINE PARSIAL
MODEL REGRESI SEMIPARAMETRIK MULTIVARIABEL DENGAN ESTIMATOR SPLINE PARSIAL Aplikasi Faktor Yang Mempengaruhi Kepuasan Pelayanan Kesehatan Di Rumah Sakit William Booth Surabaya Erika Untari Dewi Email :
BAB I PENDAHULUAN. dipergunakan untuk menaksir pola hubungan antara variabel prediktor atau
BAB I PENDAHULUAN 1.1 Latar Belakang Analisis regresi merupakan salah satu analisis dalam statistika yang dipergunakan untuk menaksir pola hubungan antara variabel prediktor atau variabel bebas X dengan
TINJAUAN PUSTAKA. Analisis regresi adalah suatu metode analisis data yang menggambarkan
5 II. TINJAUAN PUSTAKA 2.1 Analisis Regresi Analisis regresi adalah suatu metode analisis data yang menggambarkan hubungan antara variabel respon dengan satu atau beberapa variabel prediktor. Misalkan
PEMODELAN REGRESI SPLINE TRUNCATED UNTUK DATA LONGITUDINAL
PEMODELAN REGRESI SPLINE TRUNCATED UNTUK DATA LONGITUDINAL ( Studi Kasus : Harga Saham Bulanan pada Kelompok Saham Perbankan Periode Januari 2009 Desember 2015 ) SKRIPSI Disusun oleh: KHOIRUNNISA NUR FADHILAH
ADLN PERPUSTAKAAN UNIVERSITAS AIRLANGGA
ESTIMASI MODEL REGRESI NONPARAMETRIK BI-RESPONSE PADA DATA LONGITUDINAL BERDASARKAN ESTIMATOR WEIGHTED SPLINE TRUNCATED SKRIPSI DIAJUKAN UNTUK MEMENUHI SEBAGIAN PERSYARATAN DALAM MEMPEROLEH GELAR SARJANA
PENENTUAN GENERALIZED CROSS VALIDATION (GCV) SEBAGAI KRITERIA DALAM PEMILIHAN MODEL REGRESI B-SPLINE TERBAIK
Buletin Ilmiah Mat. Stat. dan Terapannya (Bimaster) Volume 02, No. 2 (2013), hal 121 126. PENENTUAN GENERALIZED CROSS VALIDATION (GCV) SEBAGAI KRITERIA DALAM PEMILIHAN MODEL REGRESI B-SPLINE TERBAIK Yuyun
PEMODELAN TINGKAT PENGANGGURAN TERBUKA DI PROVINSI JAWA TENGAH MENGGUNAKAN REGRESI SPLINE
PEMODELAN TINGKAT PENGANGGURAN TERBUKA DI PROVINSI JAWA TENGAH MENGGUNAKAN REGRESI SPLINE SKRIPSI Disusun oleh SETA SATRIA UTAMA 24010210120004 JURUSAN STATISTIKA FAKULTAS SAINS DAN MATEMATIKA UNIVERSITAS
BAB II LANDASAN TEORI
BAB II LANDASAN TEORI Pada bagian pertama bab ini diberikan tinjauan pustaka yang berisi penelitian sebelumnya yang mendasari penelitian ini Pada bagian kedua bab ini diberikan teori penunjang yang berisi
Aplikasi Spline Kuadrat Terkecil dalam Pemodelan Pertumbuhan Anak Berdasarkan Indeks Antropometri
Vol. 6, No.1, 0-8, Juli 009 Aplikasi Spline Kuadrat Terkecil dalam Pemodelan Pertumbuhan Anak Berdasarkan Indeks Antropometri Wahidah Sanusi Abstrak Penelitian ini dilakukan untuk mengestimasi model pertumbuhan
REGRESI SPLINE BIRESPON UNTUK MEMODELKAN KADAR GULA DARAH PENDERITA DIABETES MELITUS
REGRESI SPLINE BIRESPON UNTUK MEMODELKAN KADAR GULA DARAH PENDERITA DIABETES MELITUS Dhina Oktaviana P, I Nyoman Budiantara Mahasiswa Jurusan Statistika ITS Surabaya, Dosen Jurusan Statistika ITS Surabaya
Analisis Regresi Spline Kuadratik
Analisis Regresi Spline Kuadratik S 2 Oleh: Agustini Tripena Program Studi Matematika, Fakultas Sains dan Teknik, Univesitas Jenderal Soedirman, Purwokerto [email protected] Abstrak Regresi spline
BAB I PENDAHULUAN. 1.1 Latar Belakang
BAB I PENDAHULUAN 1.1 Latar Belakang Analisis regresi merupakan salah satu teknik analisis statistika yang paling banyak digunakan. Pada kejadian sehari hari terdapat hubungan sebab akibat yang muncul,
REGRESI SEMIPARAMETRIK SPLINE TRUNCATED DENGAN SOFTWARE R. Abstract. Keywords: Spline Truncated, GCV, Software R.
REGRESI SEMIPARAMETRIK SPLINE TRUNCATED DENGAN SOFTWARE R Tiani Wahyu Utami 1), Alan Prahutama 2) 1 Program studi Statistika, FMIPA, Universitas Mumammadiyah Semarang email: [email protected] 2 Departemen
APLIKASI SPLINE TRUNCATED DALAM REGRESI NONPARAMETRIK SKRIPSI FIKA KHAIRANI
APLIKASI SPLINE TRUNCATED DALAM REGRESI NONPARAMETRIK SKRIPSI FIKA KHAIRANI 120823020 DEPARTEMEN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS SUMATERA UTARA MEDAN 2015 APLIKASI
PENDUGAAN MODEL REGRESI SEMIPARAMETRIK MENGGUNAKAN PENDUGA KERNEL [SKRIPSI] KOMPETENSI STATISTIKA
PENDUGAAN MODEL REGRESI SEMIPARAMETRIK MENGGUNAKAN PENDUGA KERNEL [SKRIPSI] KOMPETENSI STATISTIKA oleh: NI PUTU PERDINA 0808405003 JURUSAN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS
MODEL REGRESI SEMI PARAMETRIK DENGAN ESTIMATOR SPLINE PARSIAL
MODEL REGRESI SEMI PARAMETRIK DENGAN ESTIMATOR SPLINE PARSIAL Aplikasi Pada Faktor Yang Mempengaruhi Prestasi Belajar (Nilai Praktek) Mahasiswa Sekolah Tinggi Ilmu Kesehatan William Booth Surabaya Erika
MODEL REGRESI NONPARAMETRIK BERDASARKAN ESTIMATOR POLINOMIAL LOKAL KERNEL PADA KASUS PERTUMBUHAN BALITA
MODEL REGRESI NONPARAMETRIK BERDASARKAN ESTIMATOR POLINOMIAL LOKAL KERNEL PADA KASUS PERTUMBUHAN BALITA 1 Mifta Luthfin Alfiani, 2 Indah Manfaati Nur, 3 Tiani Wahyu Utami 1,2,3 Program Studi Statistika,
PEMODELAN KASUS KEMISKINAN DI JAWA TENGAH MENGGUNAKAN REGRESI NONPARAMETRIK METODE B-SPLINE ABSTRACT
ISSN: 2339-2541 JURNAL GAUSSIAN, Volume 6, Nomor 1, Tahun 2017, Halaman 11-20 Online di: http://ejournal-s1.undip.ac.id/index.php/gaussian PEMODELAN KASUS KEMISKINAN DI JAWA TENGAH MENGGUNAKAN REGRESI
PERBANDINGAN TINGKAT AKURASI REGRESI NONPARAMETRIK SPLINE DAN REGRESI NONPARAMETRIK KERNEL PADA PERTUMBUHAN BALITA DI KOTA SURAKARTA
PERBANDINGAN TINGKAT AKURASI REGRESI NONPARAMETRIK SPLINE DAN REGRESI NONPARAMETRIK KERNEL PADA PERTUMBUHAN BALITA DI KOTA SURAKARTA Febriani Astuti, Kartiko, Sri Sulistijowati Handajani Jurusan Matematika
GENERALIZED CROSS VALIDATION DALAM REGRESI SMOOTHING SPLINE
Buletin Ilmiah Mat. Stat. dan Terapannya (Bimaster) Volume 02, No. 3 (2013), hal 191 196. GENERALIZED CROSS VALIDATION DALAM REGRESI SMOOTHING SPLINE Andi Sayuti, Dadan Kusnandar, Muhlasah Novitasari Mara
PEMILIHAN BANDWIDTH PADA ESTIMATOR NADARAYA-WATSON DENGAN TIPE KERNEL GAUSSIAN PADA DATA TIME SERIES
PEMILIHAN BANDWIDTH PADA ESTIMATOR NADARAYA-WATSON DENGAN TIPE KERNEL GAUSSIAN PADA DATA TIME SERIES (Studi Kasus: Penutupan Indeks Harga Saham Harian Jakarta Islamic Index (JII) Periode 1 Januari 2016
BAB I PENDAHULUAN 1.1. Latar Belakang
BAB I PENDAHULUAN 1.1. Latar Belakang Regresi merupakan salah satu teknik analisis statistika yang paling banyak digunakan. Banyak sekali teknik analisis statistika yang diturunkan atau didasarkan pada
ABSTRAK. Kata Kunci: regresi nonparametrik spline, knot, GCV, angka kematian bayi.
Judul : Pemodelan Regresi Nonparametrik Spline Pada Angka Kematian Bayi di Provinsi Bali Nama : Gede Abdi Hadi Suryawan Pembimbing : 1. I.Gst. Ayu Made Srinadi, S.Si.,M.Si. 2. I Wayan Sumarjaya, S.Si.,M.Stats.
ISSN: JURNAL GAUSSIAN, Volume 3, Nomor 2, Tahun 2014, Halaman Online di:
ISSN: 2339-2541 JURNAL GAUSSIAN, Volume 3, Nomor 2, Tahun 2014, Halaman 223-231 Online di: http://ejournal-s1.undip.ac.id/index.php/gaussian PEMILIHAN MODEL REGRESI POLINOMIAL LOKAL DAN SPLINE UNTUK ANALISIS
Oleh : Edwin Erifiandi (NRP ) Pembimbing : Prof. Dr. Drs. I Nyoman Budiantara, MSi
Oleh : Edwin Erifiandi (NRP. 1309 201 701) Pembimbing : Prof. Dr. Drs. I Nyoman Budiantara, MSi PENDAHULUAN Latar Belakang (1) () Salah satu metode statistika untuk memodelkan hubungan antar variabel adalah
MODEL REGRESI NONPARAMETRIK DENGAN PENDEKATAN DERET FOURIER PADA KASUS TINGKAT PENGANGGURAN TERBUKA DI JAWA TIMUR
UNIVERSITAS DIPONEGORO 01 ISBN: -0-1-0-1 MODEL REGRESI NONPARAMETRIK DENGAN PENDEKATAN DERET FOURIER PADA KASUS TINGKAT PENGANGGURAN TERBUKA DI JAWA TIMUR Alan Prahutama Dosen Jurusan Statistika Undip
PERBANDINGAN TINGKAT AKURASI REGRESI NONPARAMETRIK SPLINE DAN REGRESI NONPARAMETRIK KERNEL PADA PERTUMBUHAN BALITA DI KOTA SURAKARTA
PERBANDINGAN TINGKAT AKURASI REGRESI NONPARAMETRIK SPLINE DAN REGRESI NONPARAMETRIK KERNEL PADA PERTUMBUHAN BALITA DI KOTA SURAKARTA oleh FEBRIANI ASTUTI M0111036 SKRIPSI ditulis dan diajukan untuk memenuhi
Non Linear Estimation and Maximum Likelihood Estimation
Non Linear Estimation and Maximum Likelihood Estimation Non Linear Estimation and Maximum Likelihood Estimation Non Linear Estimation We have studied linear models in the sense that the parameters are
PEMILIHAN MODEL REGRESI NONPARAMETRIK TERBAIK UNTUK ANALISIS DATA INFLASI DI JAWA TENGAH SKRIPSI. Oleh: ELYAS DARMAWAN NIM.
PEMILIHAN MODEL REGRESI NONPARAMETRIK TERBAIK UNTUK ANALISIS DATA INFLASI DI JAWA TENGAH SKRIPSI Oleh: ELYAS DARMAWAN NIM. 24010210130061 JURUSAN STATISTIKA FAKULTAS SAINS DAN MATEMATIKA UNIVERSITAS DIPONEGORO
DEVELOPMENT OF MAXIMUM ENTROPY ESTIMATOR FOR CALIBRATING TRIP DISTRIBUTION MODELS
DEVELOPMENT OF MAXIMUM ENTROPY ESTIMATOR FOR CALIBRATING TRIP DISTRIBUTION MODELS f T ( i T 3 8 8. 4 1 3 W I D SUMMARY DEVELOPMENT OF MAXIMUM ENTROPY (ME) ESTIMATOR FOR CALIBRATING TRIP DISTRIBUTION MODELS,
Kata Kunci : regresi semiparametrik, spline, knot, GCV
Judul : Aplikasi Model Regresi Semiparametrik Spline Truncated (Studi Kasus: Pasien Demam Berdarah Dengue (DBD) di Rumah Sakit Puri Raharja) Nama : Ni Wayan Merry Nirmala Yani Pembimbing : 1. I.Gst. Ayu
PEMODELAN KURS RUPIAH TERHADAP DOLLAR AMERIKA SERIKAT MENGGUNAKAN REGRESI PENALIZED SPLINE BERBASIS RADIAL
ISSN: 2339-2541 JURNAL GAUSSIAN, Volume 4, Nomor 3, Tahun 2015, Halaman 533-541 Online di: http://ejournal-s1.undip.ac.id/index.php/gaussian PEMODELAN KURS RUPIAH TERHADAP DOLLAR AMERIKA SERIKAT MENGGUNAKAN
ANALISIS INFLASI KOTA SEMARANG MENGGUNAKAN METODE REGRESI NON PARAMETRIK B-SPLINE
ANALISIS INFLASI KOTA SEMARANG MENGGUNAKAN METODE REGRESI NON PARAMETRIK B-SPLINE SKRIPSI Oleh : ALVITA RACHMA DEVI 24010210120017 JURUSAN STATISTIKA FAKULTAS SAINS DAN MATEMATIKA UNIVERSITAS DIPONEGORO
SKRIPSI ditulis dan diajukan untuk memenuhi sebagian persyaratan memperoleh gelar Sarjana Sains Matematika
MODEL REGRESI SEMIPARAMETRIK SPLINE DAN PENERAPANNYA PADA FAKTOR YANG MEMENGARUHI KEPADATAN PENDUDUK DI JAWA TENGAH oleh YOHANI DEVI SUMANTARI M0112095 SKRIPSI ditulis dan diajukan untuk memenuhi sebagian
APLIKASI SPLINE ESTIMATOR TERBOBOT
APLIKASI SPLINE ESTIMATOR TERBOBOT I Nyoman Budiantara) APLIKASI SPLINE ESTIMATOR TERBOBOT I Nyoman Budiantara Dosen Fakultas Matematika dan Ilmu Pengetahuan Alam, Jurusan Statistika Institut Teknologi
BAB I PENDAHULUAN. Analisis regresi merupakan metode analisis data yang telah diterapkan
BAB I PENDAHULUAN 1.1 Latar Belakang Analisis regresi merupakan metode analisis data yang telah diterapkan secara luas pada berbagai bidang penelitian, sebagai contoh penelitian-penelitian dalam ilmu pengetahuan
ADLN PERPUSTAKAAN UNIVERSITAS AIRLANGGA ESTIMASI MODEL REGRESI SEMIPARAMETRIK BIRESPON PADA DATA LONGITUDINAL BERDASARKAN ESTIMATOR SPLINE TRUNCATED
ESTIMASI MODEL REGRESI SEMIPARAMETRIK BIRESPON PADA DATA LONGITUDINAL BERDASARKAN ESTIMATOR SPLINE TRUNCATED SKRIPSI UMI TRI RUHANA PROGRAM STUDI S-1 STATISTIKA DEPARTEMEN MATEMATIKA FAKULTAS SAINS DAN
Seminar Tugas Akhir. Dosen Pembimbing : Prof. Dr. Drs. I Nyoman Budiantara, MS
Seminar Tugas Akhir Oleh: Dhina Oktaviana P 1307 100 068 Dosen Pembimbing : Prof. Dr. Drs. I Nyoman Budiantara, MS JURUSAN STATISTIKA Fakultas Matematika dan Ilmu Pengetahuan Alam Institut Teknologi Sepuluh
ADLN-PERPUSTAKAAN UNIVERSITAS AIRLANGGA ESTIMASI MODEL REGRESI SEMIPARAMETRIK BIRESPON PADA DATA LONGITUDINAL BERDASARKAN ESTIMATOR LOKAL LINIER
ESTIMASI MODEL REGRESI SEMIPARAMETRIK BIRESPON PADA DATA LONGITUDINAL BERDASARKAN ESTIMATOR LOKAL LINIER SKRIPSI DIAJUKAN UNTUK MEMENUHI SEBAGIAN PERSYARATAN DALAM MEMPEROLEH GELAR SARJANA STATISTIKA DEPARTEMEN
ANALISIS REGRESI NONPARAMETRIK SPLINE MULTIVARIAT UNTUK PEMODELAN INDIKATOR KEMISKINAN DI INDONESIA
E-Jurnal Matematika Vol. 5 (3), Agustus 2016, pp. 111-116 ISSN: 2303-1751 ANALISIS REGRESI NONPARAMETRIK SPLINE MULTIVARIAT UNTUK PEMODELAN INDIKATOR KEMISKINAN DI INDONESIA Desak Ayu Wiri Astiti 1, I
APLIKASI REGRESI SPLINE UNTUK MEMPERKIRAKAN TINGKAT FERTILITAS WANITA BERDASARKAN UMUR
APLIKASI REGRESI SPLINE UNTUK MEMPERKIRAKAN TINGKAT FERTILITAS WANITA BERDASARKAN UMUR Oleh : Isnia Dwimayanti (0 09 06) Pembimbing : DR Drs I Nyoman Budiantara, MS ABSTRAK Tingginya tingkat fertilitas
ADLN PERPUSTAKAAN UNIVERSITAS AIRLANGGA ESTIMATOR DEBT FOURIER PADA MODEL REGRESI NONPARAMETRIK DENGAN ERROR BERDISTRIBUSI LOGNORMAL SKRIPSI
- ttor~pa. ~frl*..." ( (,- ",. '~.,.. l ~ r J J. r"" "" " ':" :;. - t/)''i;f')r.q".f''_ t>~~~. T~P~UT,ori ESTIMATOR DEBT FOURIER PADA MODEL REGRESI NONPARAMETRIK DENGAN ERROR BERDISTRIBUSI LOGNORMAL SKRIPSI
2-RP RENCANA PEMBELAJARAN. Semester : VI Hal: 1 dari 5. No.Revisi : 00. tim. Regresi Nonparametrik. Deskripsi. Kemampuan. lokal).
RP S1 SP 14 A. CAPAIAN PEMBELAJARAN : CP 11.1 : Mampu memodelkan data kuantitatif univariat linier nonlinier. CP15.2 : Mampu mengelola berja dalam tim CP15.4 : Bertanggung jawab atas hasil rja mandiri
PEMODELAN DATA INDEKS HARGA SAHAM GABUNGAN MENGGUNAKAN REGRESI PENALIZED SPLINE
ISSN: 2339-2541 JURNAL GAUSSIAN, Volume 4, Nomor 3, Tahun 2015, Halaman 603-612 Online di: http://ejournal-s1.undip.ac.id/index.php/gaussian PEMODELAN DATA INDEKS HARGA SAHAM GABUNGAN MENGGUNAKAN REGRESI
PEMODELAN HARGA CABAI DI KOTA SEMARANG TERHADAP HARGA INFLASI MENGGUNAKAN REGRESI SEMIPARAMETRIK POLINOMIAL LOKAL
PEMODELAN HARGA CABAI DI KOTA SEMARANG TERHADAP HARGA INFLASI MENGGUNAKAN REGRESI SEMIPARAMETRIK POLINOMIAL LOKAL Alan Prahutama, Suparti, Departemen Statistika, Fakultas Sains dan Matematika,Universitas
PREDIKSI INFLASI DI INDONESIA MENGGUNAKAN REGRESI NONPARAMETRIK B-SPLINE
PREDIKSI INFLASI DI INDONESIA MENGGUNAKAN REGRESI NONPARAMETRIK B-SPLINE Annita Nur Kusumastuti, Sri Sulistijowati Handajani, dan Respatiwulan Program Studi Matematika FMIPA UNS ABSTRAK. Inflasi identik
PENGUJIAN HIPOTESIS DALAM MODEL SPLINE PADA REGRESI NONPARAMETRIK
TESIS ST 2309 PENGUJIAN HIPOTESIS DALAM MODEL SPLINE PADA REGRESI NONPARAMETRIK AHMAD ZAKI NRP. 1305 201 015 DOSEN PEMBIMBING Dr. Drs. I Nyoman Budiantara, M.S. Ir. Mutiah Salamah Chamid, M.Kes. PROGRAM
Pemodelan Spline Truncated dalam Regresi Nonparametrik Birespon
Konferensi Nasional Sistem & Informatika 7 STMIK STIKOM Bali, Agustus 7 Pemodelan Spline Truncated dalam Regresi Nonparametrik Birespon Luh Putu Safitri Pratiwi Program Studi Sistem Informasi STMIK STIKOM
BAB I PENDAHULUAN. Daerah daratan adalah daerah yang terletak di atas dan di bawah
BAB I PENDAHULUAN 1.1 Latar Belakang Daerah daratan adalah daerah yang terletak di atas dan di bawah permukaan daratan dimulai dari batas garis pasang tertinggi. Daerah lautan adalah daerah yang terletak
ESTIMASI PARAMETER PADA MULTIPLE REGRESI MENGGUNAKAN MAKSIMUM LIKELIHOOD SKRIPSI SITI MAISAROH RITONGA
ESTIMASI PARAMETER PADA MULTIPLE REGRESI MENGGUNAKAN MAKSIMUM LIKELIHOOD SKRIPSI SITI MAISAROH RITONGA 070823013 DEPARTEMEN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS SUMATERA
PEMODELAN MULTIVARIATE ADAPTIVE REGRESSION SPLINES (MARS) PADA FAKTOR-FAKTOR RESIKO ANGKA KESAKITAN DIARE
PEMODELAN MULTIVARIATE ADAPTIVE REGRESSION SPLINES (MARS) PADA FAKTOR-FAKTOR RESIKO ANGKA KESAKITAN DIARE (Studi Kasus : Angka kesakitan Diare di Jawa Tengah, Jawa Timur dan Daerah Istimewa Yogyakarta
TINJAUAN PUSTAKA. Menurut Hardle (1994) analisis regresi adalah suatu metode analisis data yang
II. TINJAUAN PUSTAKA 2.1 Analisis Regresi Menurut Hardle (1994) analisis regresi adalah suatu metode analisis data yang menggambarkan hubungan antara variabel respon dengan satu atau beberapa variabel
MENENTUKAN MODEL KOEFISIEN REGRESI MULTIPLE VARIABEL DENGAN MENGGUNAKAN MAKSIMUM LIKELIHOOD SKRIPSI BENNY SOFYAN SAMOSIR
MENENTUKAN MODEL KOEFISIEN REGRESI MULTIPLE VARIABEL DENGAN MENGGUNAKAN MAKSIMUM LIKELIHOOD SKRIPSI BENNY SOFYAN SAMOSIR 080823004 DEPARTEMEN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS
ADLN PERPUSTAKAAN UNIVERSITAS AIRLANGGA
ESTIMASI MODEL REGRESI NONPARAMETRIK BIRESPON PADA DATA LONGITUDINAL BERDASARKAN ESTIMATOR POLINOMIAL LOKAL TERBOBOTI SKRIPSI DIAJUKAN UNTUK MEMENUHI SEBAGIAN PERSYARATAN DALAM MEMPEROLEH GELAR SARJANA
ISSN: JURNAL GAUSSIAN, Volume 5, Nomor 3, Tahun 2016, Halaman Online di:
ISSN: 2339-2541 JURNAL GAUSSIAN, Volume 5, Nomor 3, Tahun 2016, Halaman 447-454 Online di: http://ejournal-s1.undip.ac.id/index.php/gaussian PEMODELAN REGRESI SPLINE TRUNCATED UNTUK DATA LONGITUDINAL (
PERBANDINGAN HASIL PEMODELAN ARTIFICIAL NEURAL NETWORKS DAN KERNEL SMOOTHING PADA DATA REGRESI NON LINIER
TUGAS AKHIR - ST 1325 PERBANDINGAN HASIL PEMODELAN ARTIFICIAL NEURAL NETWORKS DAN KERNEL SMOOTHING PADA DATA REGRESI NON LINIER ADITYA HIDAYAT JATI NRP 1302100044 Dosen Pembimbing Dra. Kartika Fitriasari,
oleh FAIFAR NUR CHAYANINGTYAS M SKRIPSI ditulis dan diajukan untuk memenuhi sebagian persyaratan memperoleh gelar Sarjana Sains Matematika
MODEL REGRESI B-SPLINE PADA LAJU PERTUMBUHAN PENDUDUK DI INDONESIA oleh FAIFAR NUR CHAYANINGTYAS M0112032 SKRIPSI ditulis dan diajukan untuk memenuhi sebagian persyaratan memperoleh gelar Sarjana Sains
MODEL REGRESI NONPARAMETRIK SPLINE TRUNCATED PADA DATA INDEKS PEMBANGUNAN MANUSIA (IPM) DI INDONESIA. 1. Pendahuluan
MODEL REGRESI NONPARAMETRIK SPLINE TRUNCATED PADA DATA INDEKS PEMBANGUNAN MANUSIA (IPM) DI INDONESIA Kornelius Ronald Demu, Dewi Retno Sari Saputro, Purnami Widyaningsih Program Studi Matematika FMIPA
KLASIFIKASI KELOMPOK RUMAH TANGGA DI KABUPATEN BLORA MENGGUNAKAN MULTIVARIATE ADAPTIVE REGRESSION SPLINE (MARS) DAN FUZZY K-NEAREST NEIGHBOR (FK-NN)
KLASIFIKASI KELOMPOK RUMAH TANGGA DI KABUPATEN BLORA MENGGUNAKAN MULTIVARIATE ADAPTIVE REGRESSION SPLINE (MARS) DAN FUZZY K-NEAREST NEIGHBOR (FK-NN) SKRIPSI Oleh : YANI PUSPITA KRISTIANI 24010211120018
APLIKASI MODEL REGRESI SEMIPARAMETRIK SPLINE TRUNCATED (Studi Kasus: Pasien Demam Berdarah Dengue (DBD) di Rumah Sakit Puri Raharja)
E-Jurnal Matematika Vol 6 (1), Januari 2017, pp 65-73 ISSN: 2303-1751 APLIKASI MODEL REGRESI SEMIPARAMETRIK SPLINE TRUNCATED (Studi Kasus: Pasien Demam Berdarah Dengue (DBD) di Rumah Sakit Puri Raharja)
REGRESI NONPARAMETRIK DERET FOURIER BIRESPON
JURUSAN STATISTIKA Fakultas Matematika dan Ilmu Pengetahuan Alam Institut Teknologi 0 November Surabaa Surabaa 00 SEMINAR TESIS REGRESI NONPARAMETRIK DERET FOURIER BIRESPON Oleh : Rinii Semiati 308 0 009
PEMODELAN REGRESI NONPARAMETRIK DENGAN B SPLINE DAN MARS SARAH MAHDIA
PEMODELAN REGRESI NONPARAMETRIK DENGAN B SPLINE DAN MARS SARAH MAHDIA 090823001 DEPARTEMEN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS SUMATERA UTARA MEDAN 2011 PERSETUJUAN Judul
MODEL REGRESI SPLINE KNOT OPTIMAL UNTUK MENGETAHUI FAKTOR FAKTOR YANG MEMPENGARUHI JUMLAH KEMATIAN BAYI DI JAWA TIMUR
MODEL REGRESI SPLINE KNOT OPTIMAL UNTUK MENGETAHUI FAKTOR FAKTOR YANG MEMPENGARUHI JUMLAH KEMATIAN BAYI DI JAWA TIMUR Elsha Puspitasari, Drs. Hery Tri Sutanto, M.Si 2,,2 Jurusan Matematika, Fakultas Matematika
PEMODELAN REGRESI SPLINE UNTUK RATA- RATA BANYAK ANAK YANG DILAHIRKAN HIDUP DI KOTA SURABAYA, KABUPATEN SITUBONDO DAN KABUPATEN BANGKALAN
SIDANG LAPORAN TUGAS AKHIR PEMODELAN REGRESI SPLINE UNTUK RATA- RATA BANYAK ANAK YANG DILAHIRKAN HIDUP DI KOTA SURABAYA, KABUPATEN SITUBONDO DAN KABUPATEN BANGKALAN Oleh : Servianie Purnamasari (1310 030
BAB I PENDAHULUAN 1.1 Latar Belakang
BAB I PENDAHULUAN 1.1 Latar Belakang Analisis regresi pada dasarnya adalah studi mengenai ketergantungan variabel dependen (respon) dengan satu atau lebih variabel independen (variabel penjelas), dengan
STUDI PERBANDINGAN METODE ORDINARY LEAST SQUARE (OLS) DAN METODE THEIL DALAM MODEL PENENTUAN REGRESI LINIER SEDERHANA
STUDI PERBANDINGAN METODE ORDINARY LEAST SQUARE (OLS) DAN METODE THEIL DALAM MODEL PENENTUAN REGRESI LINIER SEDERHANA USWATUN HASANAH HARAHAP 090823072 DEPARTEMEN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU
Pemodelan Angka Putus Sekolah Usia SMA di Jawa Timur dengan Pendekatan Regresi Spline Multivariabel
Seminar Hasil Tugas Akhir Pemodelan Angka Putus Sekolah Usia SMA di Jawa Timur dengan Pendekatan Regresi Spline Multivariabel Mega Pradipta 1309100038 Pembimbing I : Dra. Madu Ratna, M.Si Pembimbing II
IMPACT OF SEVERAL ROUTE CHOICE MODELS ON THE ACCURACY OF ESTIMATED O-D MATRICES FROM TRAFFIC COUNTS
IMPACT OF SEVERAL ROUTE CHOICE MODELS ON THE ACCURACY OF ESTIMATED O-D MATRICES FROM TRAFFIC COUNTS S U M M A R Y IMPACT OF SEVERAL ROUTE CHOICE MODELS ON THE ACCURACY OF ESTIMATED O-D MATRICES FROM TRAFFIC
ANALISIS REGRESI TERPOTONG BEBERAPA NILAI AMATAN NURHAFNI
ANALISIS REGRESI TERPOTONG DENGAN BEBERAPA NILAI AMATAN NOL NURHAFNI SEKOLAH PASCASARJANAA INSTITUT PERTANIAN BOGOR BOGOR 2008 PERNYATAAN MENGENAI TESIS DAN SUMBER INFORMASI Dengan ini saya menyatakan
PERBANDINGAN TINGKAT EFISIENSI ANTARA METODE KUADRAT TERKECIL DENGAN METODE MINIMUM COVARIANCE DETERMINANT
PERBANDINGAN TINGKAT EFISIENSI ANTARA METODE KUADRAT TERKECIL DENGAN METODE MINIMUM COVARIANCE DETERMINANT PADA ESTIMASI PARAMETER MODEL REGRESI PRODUKSI JAGUNG DI JAWA TENGAH oleh KARINA PUTRIANI M0110047
BAB 1 PENDAHULUAN. hubungan antara variabel respon dengan satu atau beberapa variabel prediktor.
BAB 1 PENDAHULUAN A. Latar Belakang Masalah Analisis regresi merupakan metode analisis data yang menggambarkan hubungan antara variabel respon dengan satu atau beberapa variabel prediktor. Misalkan X adalah
ADLN PERPUSTAKAAN UNIVERSITAS AIRLANGGA
GENERALIZED EXPLORATORY FACTOR ANALYSIS DAN ESTIMATOR KERNEL MULTIPREDIKTOR DALAM PEMODELAN KALIBRASI SENYAWA AKTIF KURKUMIN Diajukan Untuk Memenuhi Sebagian Persyaratan dalam Memperoleh Gelar Sarjana
PERSEMBAHAN. Karya ini kupersembahkan untuk. kedua orang tuaku ibu Menik, bapak Slamet Suseno, ketiga kakakku Ani, Oky dan Pe i
ABSTRAK Ary Yunita. 2016. PERBANDINGAN KEAKURATAN PENDUGA RASIO VARIANSI POPULASI MENGGUNAKAN MEDIAN DAN KOEFISIEN VARIASI-MEDIAN VARIABEL BANTU PADA PENGAMBILAN SAMPEL ACAK SEDERHANA. Fakultas Matematika
EFISIENSI RELATIF ESTIMATOR FUNGSI KERNEL GAUSSIAN TERHADAP ESTIMATOR POLINOMIAL DALAM PERAMALAN USD TERHADAP JPY
UJM 2 (2) (2013) UNNES Journal of Mathematics http://journal.unnes.ac.id/sju/index.php/ujm EFISIENSI RELATIF ESTIMATOR FUNGSI KERNEL GAUSSIAN TERHADAP ESTIMATOR POLINOMIAL DALAM PERAMALAN USD TERHADAP
ESTIMASI KURVA REGRESI SEMIPARAMETRIK PADA DATA LONGITUDINAL BERDASARKAN ESTIMATOR POLINOMIAL LOKAL
Statistika Vol 1 No 1 Mei 213 ESTIMASI KURVA REGRESI SEMIPARAMETRIK PADA DATA LONGITUDINAL BERDASARKAN ESTIMATOR POLINOMIAL LOKAL Tiani Wahyu Utami 1 Program Studi S1 Statistika Universitas Muhammadiyah
KLASIFIKASI KELULUSAN MAHASISWA FAKULTAS SAINS DAN MATEMATIKA UNIVERSITAS DIPONEGORO MENGGUNAKAN MULTIVARIATE ADAPTIVE REGRESSION SPLINE (MARS)
KLASIFIKASI KELULUSAN MAHASISWA FAKULTAS SAINS DAN MATEMATIKA UNIVERSITAS DIPONEGORO MENGGUNAKAN MULTIVARIATE ADAPTIVE REGRESSION SPLINE (MARS) SKRIPSI Disusun oleh : RIZAL YUNIANTO GHOFAR 240102101410029
PREDIKSI INFLASI DI PROVINSI JAWA TENGAH DENGAN MENGGUNAKAN REGRESI KERNEL
PREDIKSI INFLASI DI PROVINSI JAWA TENGAH DENGAN MENGGUNAKAN REGRESI KERNEL Firmanti Suryandari, Sri Subanti, Bowo Winarno Program Studi Matematika FMIPA UNS ABSTRAK. Inflasi merupakan proses meningkatnya
PEMODELAN REGRESI 2-LEVEL DENGAN METODE ITERATIVE GENERALIZED LEAST SQUARE (IGLS) (Studi Kasus: Tingkat pendidikan Anak di Kabupaten Semarang)
PEMODELAN REGRESI 2-LEVEL DENGAN METODE ITERATIVE GENERALIZED LEAST SQUARE (IGLS) (Studi Kasus: Tingkat pendidikan Anak di Kabupaten Semarang) SKRIPSI Oleh: DYAN ANGGUN KRISMALA NIM: J2E 009 040 JURUSAN
E-Jurnal Matematika. 1 of 4 7/9/ :39 PM. Journal Help USER. Username OPEN JOURNAL SYSTEMS
E-Jurnal Matematika http://ojs.unud.ac.id/index.php/mtk 1 of 4 7/9/2015 10:39 PM E - J u r n a l M a t e m a t i k a OPEN JOURNAL SYSTEMS Journal Help USER Username E-Jurnal Matematika http://ojs.unud.ac.id/index.php/mtk
