KONSEP DASAR PROBABILITAS

Ukuran: px
Mulai penontonan dengan halaman:

Download "KONSEP DASAR PROBABILITAS"

Transkripsi

1 KONSEP DASAR PROBABILITAS Definisi: Probabilitas adalah peluang suatu kejadian Manfaat: Manfaat mengetahui probabilitas adalah membantu pengambilan keputusan yang tepat, karena kehidupan di dunia tidak ada kepastian, dan informasi yang tidak sempurna. Contoh: pembelian harga saham berdasarkan analisis harga saham peluang produk yang diluncurkan perusahaan (sukses atau tidak), dll.

2 Probabilitas: Suatu ukuran tentang kemungkinan suatu peristiwa (event) akan terjadi di masa mendatang. Probabilitas dinyatakan antara 0 sampai 1 atau dalam persentase. Percobaan: Pengamatan terhadap beberapa aktivitas atau proses yang memungkinkan timbulnya paling sedikit dua peristiwa tanpa memperhatikan peristiwa mana yang akan terjadi. Hasil (outcome): Suatu hasil dari sebuah percobaan. Peristiwa (event): Kumpulan dari satu atau lebih hasil yang terjadi pada sebuah percobaan atau kegiatan.

3 Contoh: Percobaan/ Kegiatan Pertandingan sepak bola Manchester City VS Arsenal. Hasil Arsenal menang Manchester City kalah Peristiwa Arsenal Menang

4 PENDEKATAN KLASIK Definisi: Setiap peristiwa mempunyai kesempatan yang sama untuk terjadi. Rumus: Probabilitas = jumlah kemungkinan hasil suatu peristiwa jumlah total kemungkinan hasil

5 PENDEKATAN KLASIK Percobaan Hasil Probabilitas Kegiatan melempar uang 1. Muncul gambar 2. Muncul angka 2 ½ Kegiatan perdagangan saham 1. Menjual saham 2. Membeli saham 2 ½ Perubahan harga 1. Inflasi (harga naik) 2. Deflasi (harga turun) 2 ½ Mahasiswa belajar 1. Lulus memuaskan 2. Lulus sangat memuaskan 3. Lulus terpuji 3 1/3

6 PENDEKATAN RELATIF Definisi: Probabilitas suatu kejadian tidak dianggap sama, tergantung dari berapa banyak suatu kejadian terjadi. Rumus: Probabilitas = jumlah peristiwa yang terjadi suatu peristiwa jumlah total percobaan Contoh: Hasil produksi semacam barang diambil 500 unit dan diperiksa, hasilnya terdapat 22 unit yang rusak atau frekuensi relatifnya 22:500 = 0,04. kemudian diambil 2000 unit yang lain, ternyata yang rusak 82 unit atau frekuensi relatifnya = 82:2000 = 0,04. Bila proses ini dilakukan berulang-ulang untuk jumlah yang mendekati tak terhingga kali maka akan dicapai suatu limit tertentu yaitu 4% yang berarti dalam proses produksi yang cukup lama, akan terdapat 4 unit barang yang rusak dari 100 unit yang diperiksa.

7 Aturan Probabilitas 1. Probabilitas adalah nilai antara 0 dan 1 yang merupakan hasil suatu proses atau eksperimen/pengamatan 2. Peristiwa bahwa A tidak terjadi disebut komplemen A dengan lambang A. Jika P(A) merupakan probabilitas kejadian A maka P(A )= 1- P(A) 3. Jika peristiwa A dan B ME, maka probabilitas A dan terjadi bersama adalah 0 4. Jika persitiwa A dan B ME, maka probabilitas baik A atau B terjadi adalah jumlah probabilitas masing-masing P(A atau B) = P(A) + P (B)

8 Aturan probabilitas (lanj.) 5. Jika peristiwa A dan B not ME, maka probabilitas baik A atau B terjadi adalah P(A ataub)= P(A) + P(B) P(A dan B) 6. Jika dua peristiwa saling dependen, maka probablilitas kondisional B terjadi setelah A terjadi adalah P(B/A)= P(A dan B)/P(A) 7. Jika peristiwa A dan B independen, probabilitas bahwa baik peristiwa A dan B akan terjadi adalah: P(A dan B) = P(A) x P(B) 8. Jika peristiwa A dan B not independen, probabilitas bahwa A dan B akan terjadi adalah: P(A dan B)= P (A) x P(B/A)

9 KONSEP DASAR HUKUM PROBABILITAS. Hukum Penjumlahan P(A ATAU B) = P(A) + P(B) Contoh : P(A) = 0,35, P(B)=0,40 DAN P (C)=0,25 Maka P(A ATAU C ) = 0,35 + 0,25 = 0,60 P (AUC) = Peristiwa atau Kejadian Bersama A AB B P(A ATAU B) = P(A) + P(B) P (AB) Apabila P(AB) = 0,2, maka, P(A ATAU B) = 0,35 + 0, 40 0,2 = 0,55

10 KONSEP DASAR HUKUM PROBABILITAS Peristiwa Saling Lepas P(AB) = 0 Maka P(A ATAU B) = P (A) + P(B) + 0 = P(A) + P(B) A B Hukum Perkalian P( A DAN B) = P(A) X P(B) P ( A B ) = P ( A ) x P ( B ) Apabila P(A)=0,35 DAN P(B) = 0,25 Maka P(A DAN B) = 0,35 X 0,25 = 0,0875 Kejadian Bersyarat P(B A) P(B A) = P(AB)/P(A)={P(A)+P(B)}/P(A)

11 Contoh soal 1.Sebuah dadu dilempar sekali, maka probabilitas tampaknya mata 3 atau 5 berapa? jawab: P (3U5) = P(3) + P(5) = 1/6 + 1/6 = 2/6 = 1/3

12 Contoh soal Sebuah kotak berisi 10 buah kelereng merah, 18 buah kelereng hitam, 22 buah kelereng putih. Kelereng diaduk baik-baik lalu diambil sebuah secara random (tiap anggota subyek mempunyai kesempatan sama untuk diambil. Berapa probabilitasnya akan terambil kelereng merah atau hitam? Jawab: M = kelereng merah 10/50 = 1/5 H = kelereng hitam 18/50 = 9/25 P (M U H) = P(M) + P(H) = 1/5 + 9/25 = 14/25 = 0,56

13 Contoh soal Ada 200 lembar undian dimana terdapat 1 lembar berhadiah pertama, 5 lembar berhadiah kedua, 20 lembar berhadiah ketiga dan sisanya tidak berhadiah. Apabila kita membeli 1 lembar undian itu, berapa probabilitasnya kita akan memenangkan hadiah pertama atau ketiga? Jawab: A = hadiah pertama 1/200 B = hadiah ketiga 20/200 P (A U B) = P (A) + P (B) = 1/ /200 = 0,105

14 Contoh soal Ada satu set kartu bridge yang akan diambil salah satu. Bila : A = kejadian akan terambil King, B = kejadian akan terambil Heart. Berapa probabilitasnya dalam sekali pengambilan itu akan diperoleh kartu King atau Heart? Jawab: A = king = 4/52 B = heart = 13/52 P (A U B) =P (A) + P(B) P(A B) = 4/ /52 1/52 = 0,308

15 Suatu kumpulan mahasiswa terdiri dari 30 mahasiswa dan 20 mahasiswi. Diketahui terdapat 10 mahasiswa FE dan 15 mahasiswi FE, sedang sisanya dari fakultas selain FE. Apabila kita mengambil seorang secara random, maka berapakah kemungkinanya seorang yang terambil tersebut adalah mahasiswa pria atau mahasiswa dari FE Jawab: A = mahasiswa pria = 30/50 B = mahasiswa FE = 25/50 P (AUB) = P(A) + P(B) P(A B) = 30/ /50 10/50 =0,9

16 Dari 100 unit barang yang akan diperiksa terdapat 20 barang yang rusak. Berapakah probabilitasnya bahwa dalam tiga kali pengambilan akan diperoleh barang yang bagus semua (barang yang sudah diambil dikembalikan lagi) Jawab: A = baik = 80 B = rusak = 20 C = pengambilan pertama baik D = pengambilan kedua baik E = pengambilan ketiga baik P(C D E) = P(C) x P(D) x P(E) = 80/100 x 80/100 x 80/100 = 0,512

17 SOAL 1. Ada 2 buah kotak A dan B. Kotak A berisi 25 bola merah dan 10 bola putih, kotak B berisi 5 bola merah dan 15 bola putih. Apabila salah satu dari kotak itu kita ambil dua bola secara berurutan (setelah diambil tidak dikembalikan), maka berapakah probabilitasnya dalam pengambilan bola pertama akan berwarna merah dan pengambilan kedua akan terdapat bola putih? 2. Dari satu ujian diperoleh informasi 70% lulus dan 30% gagal. Yang lulus 60% wanita dan 40% pria. Yang gagal 50% wanita dan 50% pria. Jika dipilih secara random seorang pria, berapakah probabilitasnya bahwa yang terpilih tersebut adalah pria yang gagal ujian 3. Diketahui bahwa 30% mesin cuci buatan pabrik X memerlukan perbaikan (service) selagi masih dalam masa garansi, sementara hanya 10% mesin pengering buatan pabrik yang sama yang membutuhkan perbaikan. Jika seseorang membeli satu set yang terdiri dari mesin cuci dan mesin pengering, berapa probabilitas kedua mesin tersebut memerlukan perbaikan selama masih dalam masa garansi dengan asumsi bahwa mesin cuci dan mesin pengering berfungsi secara terpisah (saling bebas) satu sama lainnya

18 Aturan e-learning: 1. Kerjakan soal 1, 2 dan 3 di slide sebelumnya 2. Jawaban dikumpul hari Rabu tanggal 16 Oktober 2013 tulis tangan 3. Keterlambatan pengumpulan jawaban ada pengurangan nilai 4. Selamat mengerjakan. 18

KONSEP DASAR PROBABILITAS

KONSEP DASAR PROBABILITAS KONSEP DASAR PROBABILITAS 1 OUTLINE BAGIAN II Probabilitas dan Teori Keputusan Konsep-Konsep Dasar Probabilitas Distribusi Probabilitas Diskrit Pengertian Probabilitas dan Manfaat Probabilitas Pendekatan

Lebih terperinci

TEORI KEMUNGKINAN (PROBABILITAS)

TEORI KEMUNGKINAN (PROBABILITAS) 3 TEORI KEMUNGKINAN (PROBABILITAS) Teori probabilitas atau peluang merupakan teori dasar dalam pengambilan keputusan yang memiliki sifat ketidakpastian. Ada 3 pendekatan : Pendekatan klasik Pendekatan

Lebih terperinci

Berapa Peluang anda. meninggal? selesai S-1? menjadi menteri? menjadi presiden?

Berapa Peluang anda. meninggal? selesai S-1? menjadi menteri? menjadi presiden? PELUANG Berapa Peluang anda meninggal? selesai S-1? menjadi menteri? menjadi presiden? Peluang Ukuran / derajat ketidakpastian suatu peristiwa Peluang Kemungkinan (Probability) (Possibility) Peristiwa

Lebih terperinci

Pertemuan 1 KONSEP DASAR PROBABILITAS

Pertemuan 1 KONSEP DASAR PROBABILITAS Pertemuan 1 KONSEP DASAR PROBABILITAS Pengantar Banyak kejadian dalam kehidupan sehari-hari yang sulit diketahui dengan pasti, terutama kejadian yang akan datang. Meskipun kejadian-kejadian tersebut tidak

Lebih terperinci

Peluang suatu kejadian

Peluang suatu kejadian Peluang suatu kejadian Percobaan: Percobaan adalah suatu tindakan atau kegiatan yang dapat memberikan beberapa kemungkinan hasil Ruang Sampel: Ruang sampel adalah himpunan semua hasil yang mungkin dari

Lebih terperinci

Teori Probabilitas 3.2. Debrina Puspita Andriani /

Teori Probabilitas 3.2. Debrina Puspita Andriani    / Teori Probabilitas 3.2 Debrina Puspita Andriani E-mail : [email protected] / [email protected] 2 Outline Konsep Probabilitas Ruang Sampel Komplemen Kejadian Probabilitas Bersyarat Berapa peluang munculnya

Lebih terperinci

Pertemuan 2. Hukum Probabilitas

Pertemuan 2. Hukum Probabilitas Pertemuan 2 Hukum Probabilitas Perumusan Probabilitas Kejadian Majemuk S S A B A B Maka banyak anggota himpunan gabungan A dan B adalah : n(a B) = n(a) + n(b) n(a B) Kejadian majemuk adalah gabungan atau

Lebih terperinci

ATURAN DASAR PROBABILITAS. EvanRamdan

ATURAN DASAR PROBABILITAS. EvanRamdan ATURAN DASAR PROBABILITAS BEBERAPA ATURAN DASAR PROBABILITAS Secara umum, beberapa kombinasi dari kejadian dalam sebuah eksperimen dapat dihitung probabilitasnya berdasarkan dua aturan, yaitu: 1) Aturan

Lebih terperinci

STATISTIK PERTEMUAN III

STATISTIK PERTEMUAN III STATISTIK PERTEMUAN III OUTLINE PERTEMUAN III BAGIAN II Probabilitas dan Teori Keputusan Konsep-Konsep Dasar Probabilitas Distribusi Probabilitas Diskrit Pengertian Probabilitas dan Manfaat Probabilitas

Lebih terperinci

Pertemuan Ke-1 BAB I PROBABILITAS

Pertemuan Ke-1 BAB I PROBABILITAS Pertemuan Ke-1 BAB I PROBABILITAS 1.1 Arti dan Pentingnya Probabilitas Probabilitas merupakan suatu nilai untuk mengukur besarnya tingkat kemungkinan terjadinya suatu kejadian yang acak. Kejadian Acak

Lebih terperinci

TEORI PROBABILITAS (TEORI KEMUNGKINAN)

TEORI PROBABILITAS (TEORI KEMUNGKINAN) BAB 6 TEORI PROBABILITAS (TEORI KEMUNGKINAN) Kompetensi Menjelaskan konsep dasar teori probabilitas Indikator 1. Menjelaskan probabilitas 2. Menjelaskan peristiwa mutually exclusive 3. Menjelaskan peristiwa

Lebih terperinci

, n(a) banyaknya kejadian A dan n(s) banyaknya ruang sampel

, n(a) banyaknya kejadian A dan n(s) banyaknya ruang sampel Peluang Suatu Kejadian a) Kisaran nilai peluang : 0 P( b) P( =, banyaknya kejadian A dan banyaknya ruang sampel c) Peluang komplemen suatu kejadian : P(A c ) = P( d) Peluang gabungan dari dua kejadian

Lebih terperinci

PE P L E U L A U N A G N

PE P L E U L A U N A G N PELUANG Berapa peluang Anda selesai S-1? Peluang Ukuran/derajat ketidakpastian suatu peristiwa Peluang Kemungkinan Peristiwa (probability) (possibility) sesuatu yang mungkin dapat terjadi Misal : Mengundi

Lebih terperinci

Ruang Sampel dan Kejadian

Ruang Sampel dan Kejadian Ruang Sampel dan Kejadian Perhatikan sekeping mata uang logam dengan sisi-sisi ANGKA dan GAMBAR Sisi Angka (A) Sisi Gambar (G) Maka : Ruang Sampel (S) = { A, G } Titik Sampel = A dan G, maka n(s) = 2 Kejadian

Lebih terperinci

BAB V TEORI PROBABILITAS

BAB V TEORI PROBABILITAS BAB V TEORI PROBABILITAS Probabilitas disebut juga dengan peluang atau kemungkinan. Probabilitas merupakan suatu nilai yang digunakan untuk mengukur tingkat terjadinya suatu kejadian yang acak. Oleh karena

Lebih terperinci

Tujuan Pembelajaran. mutually exclusive

Tujuan Pembelajaran. mutually exclusive Tujuan embelajaran Memahami dan menggunakan analisis kombinatorial untuk kejadian kompleks: permutasi dan kombinasi Mendefinisikan terminologi-terminologi penting dalam probabilitas dan menjelaskan bagaimana

Lebih terperinci

MATERI KULIAH STATISTIKA I PROBABLITAS. (Nuryanto, ST., MT)

MATERI KULIAH STATISTIKA I PROBABLITAS. (Nuryanto, ST., MT) MATERI KULIAH STATISTIKA I PROBABLITAS (Nuryanto, ST., MT) Pendahuluan Percobaan : proses yang menghasilkan data Ruang Contoh (S) : hasil percobaan himpunan yang memuat semua kemungkinan Kejadian = Event

Lebih terperinci

Probabilitas pendahuluan

Probabilitas pendahuluan Probabilitas pendahuluan Statistika deskriptif : menggambarkan data TEORI PROBABILITAS Statistik inferensi kesimpulan valid dan perkiraan akurat ttg populasi dengan mengobservasi sampel Teori probabilitas

Lebih terperinci

Pembahasan Contoh Soal PELUANG

Pembahasan Contoh Soal PELUANG Pembahasan Contoh Soal PELUANG 1. Nomor rumah yang dimaksud terdiri atas dua angka. Ini berarti ada dua tempat yang harus diisi, yaitu PULUHAN dan SATUAN. Karena nomor rumah harus ganjil, maka tempat Satuan

Lebih terperinci

Teori Probabilitas. Debrina Puspita Andriani /

Teori Probabilitas. Debrina Puspita Andriani    / Teori Probabilitas 5 Debrina Puspita Andriani E-mail : [email protected] / [email protected] 2 Outline Konsep Probabilitas Ruang Sampel Komplemen Kejadian Probabilitas Bersyarat Teorema Bayes Berapa

Lebih terperinci

PELUANG. LA - WB (Lembar Aktivitas Warga Belajar) MATEMATIKA PAKET C TINGKAT VI DERAJAT MAHIR 2 SETARA KELAS XI. Oleh: Hj. ITA YULIANA, S.Pd, M.

PELUANG. LA - WB (Lembar Aktivitas Warga Belajar) MATEMATIKA PAKET C TINGKAT VI DERAJAT MAHIR 2 SETARA KELAS XI. Oleh: Hj. ITA YULIANA, S.Pd, M. LA - WB (Lembar Aktivitas Warga Belajar) PELUANG Oleh: Hj. ITA YULIANA, S.Pd, M.Pd MATEMATIKA PAKET C TINGKAT VI DERAJAT MAHIR 2 SETARA KELAS XI Created By Ita Yuliana 13 Peluang Kompetensi Dasar 1. Menggunakan

Lebih terperinci

Kompetens n i s : Mahasiswa mam a pu p menjel enj a el s a ka k n gejala ekonomi dengan meng guna k n a konsep probabil i i l t i as

Kompetens n i s : Mahasiswa mam a pu p menjel enj a el s a ka k n gejala ekonomi dengan meng guna k n a konsep probabil i i l t i as Kompetensi: Mahasiswa mampu menjelaskan gejala ekonomi dengan menggunakan konsep probabilitas Hal. 9- Penelitian itu Penuh Kemungkinan (tdk pasti) Mengubah Saya tidak yakin Menjadi Saya yakin akan sukses

Lebih terperinci

Menghitung peluang suatu kejadian

Menghitung peluang suatu kejadian Menghitung peluang suatu kejadian A. Ruang Sampel, Titik Sampel, dan Kejadian Dari pandangan intuitif, peluang terjadinya suatu peristiwa atau kejadian adalah nilai yang menunjukkan seberapa besar kemungkinan

Lebih terperinci

April 20, Tujuan Pembelajaran

April 20, Tujuan Pembelajaran pril 20, 2011 1 Tujuan embelajaran Memahami dan menggunakan analisis kombinatorial untuk kejadian kompleks: permutasi dan kombinasi Mendefinisikan terminologi-terminologi penting dalam probabilitas dan

Lebih terperinci

Probabilitas = Peluang

Probabilitas = Peluang 1. Pendahuluan Probabilitas = Peluang Percobaan : proses yang menghasilkan data Ruang Contoh (S) : himpunan yang memuat semua kemungkinan hasil percobaan Kejadian = Event : himpunan bagian dari ruang contoh

Lebih terperinci

Perumusan Probabilitas Kejadian Majemuk S S A B A B Maka banyak anggota himpunan gabungan A dan B adalah : n(a n(a B) = n(a) + n(b) n(a n(a B) Kejadia

Perumusan Probabilitas Kejadian Majemuk S S A B A B Maka banyak anggota himpunan gabungan A dan B adalah : n(a n(a B) = n(a) + n(b) n(a n(a B) Kejadia HUKUM PROBABILITAS Pertemuan ke ke--4 Didin Astriani Prasetyowati, M.Stat Perumusan Probabilitas Kejadian Majemuk S S A B A B Maka banyak anggota himpunan gabungan A dan B adalah : n(a n(a B) = n(a) +

Lebih terperinci

TEORI PROBABILITAS 1

TEORI PROBABILITAS 1 TEORI PROBABILITAS 1 Berapa peluang munculnya angka 4 pada dadu merah??? Berapa peluang munculnya King heart? Berapa peluang munculnya gambar? 2 PELUANG ATAU PROBABILITAS adalah perbandingan antara kejadian

Lebih terperinci

Probabilitas. Tujuan Pembelajaran

Probabilitas. Tujuan Pembelajaran Probabilitas 1 Tujuan Pembelajaran 1.Menjelaskan Eksperimen, Hasil,, Ruang Sampel, & Peluang 2. Menjelaskan bagaimana menetapkan peluang 3. Menggunakan Tabel Kontingensi, Diagram Venn, atau Diagram Tree

Lebih terperinci

BAB 3 Teori Probabilitas

BAB 3 Teori Probabilitas BAB 3 Teori Probabilitas A. HIMPUNAN a. Penulisan Hipunan Cara Pendaftaran Cara Pencirian 1) A = {a,i,u,e,o} 1) A = {X: x huruf vokal } 2) B = {1,2,3,4,5} menghasilkan data diskrit 2) B = {X: 1 x 2} menghasilkan

Lebih terperinci

Definisi. Teori peluang adalah suatu teori yang akan membahas tentang ukuran atau derajat ketidakpastian suatu peristiwa.

Definisi. Teori peluang adalah suatu teori yang akan membahas tentang ukuran atau derajat ketidakpastian suatu peristiwa. PELUANG Definisi Teori peluang adalah suatu teori yang akan membahas tentang ukuran atau derajat ketidakpastian suatu peristiwa. Definisi 1 2 peristiwa atau lebih dinamakan saling ekslusif, jika terjadi

Lebih terperinci

LEMBAR AKTIVITAS SISWA PELUANG

LEMBAR AKTIVITAS SISWA PELUANG Nama Siswa : LEMBAR AKTIVITAS SISWA PELUANG 2 2. Kelas : Kompetensi Dasar (KURIKULUM 2013): 3.16 Memahami dan menerapkan berbagai aturan pencacahan melalui beberapa contoh nyata serta menyajikan alur perumusan

Lebih terperinci

Materi W12c P E L U A N G. Kelas X, Semester 2. B. Peluang Kejadian Majemuk. 3. Kejadian Majemuk saling Bebas Bersyarat.

Materi W12c P E L U A N G. Kelas X, Semester 2. B. Peluang Kejadian Majemuk. 3. Kejadian Majemuk saling Bebas Bersyarat. Materi W12c P E L U A N G Kelas X, Semester 2 B. Peluang Kejadian Majemuk 3. Kejadian Majemuk saling Bebas Bersyarat www.yudarwi.com B. Peluang Kejadian Majemuk 3. Kejadian Majemuk Saling Bebas Bersyarat

Lebih terperinci

KONSEP DASAR PROBABILITAS

KONSEP DASAR PROBABILITAS KONSEP DASAR PROBABILITAS PERTEMUAN VIII EvanRamdan PROBABILITAS Dalam menentukan banyaknya anggota kejadian, kadangkala kita tidak selalu dapat mendaftar semua titik sampel dalam percobaan tersebut. Untuk

Lebih terperinci

KONSEP DASAR PROBABILITAS OLEH : RIANDY SYARIF

KONSEP DASAR PROBABILITAS OLEH : RIANDY SYARIF KONSEP DASAR PROBABILITAS OLEH : RIANDY SYARIF Definisi Probabilitas adalah suatu ukuran tentang kemungkinan suatu peristiwa (event) akan terjadi dimasa mendatang. Probabilitas dinyatakan antara 0 s/d

Lebih terperinci

PELUANG. Standar kompetensi : Menggunakan aturan statistika, kaidah, pencacahan, dan sifatsifat peluang dalam pemecahan masalah

PELUANG. Standar kompetensi : Menggunakan aturan statistika, kaidah, pencacahan, dan sifatsifat peluang dalam pemecahan masalah 1 PELUANG Standar kompetensi : Menggunakan aturan statistika, kaidah, pencacahan, dan sifatsifat peluang dalam pemecahan masalah Kompetensi Dasar : Menggunakan aturan perkalian, permutasi dan kombinasi

Lebih terperinci

PERMUTASI, KOMBINASI DAN PELUANG. Kaidah pencacahan membantu dalam memecahkan masalah untuk menghitung

PERMUTASI, KOMBINASI DAN PELUANG. Kaidah pencacahan membantu dalam memecahkan masalah untuk menghitung PERMUTASI, KOMBINASI DAN PELUANG A. KAIDAH PENCACAHAN Kaidah pencacahan membantu dalam memecahkan masalah untuk menghitung berapa banyaknya cara yang mungkjin terjadi dalam suatu percobaan. Kaidah pencacahan

Lebih terperinci

PS-02 HUKUM-HUKUM PROBABILITAS. Nur Hayati, S.ST, MT Yogyakarta, Februari 2016

PS-02 HUKUM-HUKUM PROBABILITAS. Nur Hayati, S.ST, MT Yogyakarta, Februari 2016 PS-02 HUKUM-HUKUM PROBABILITAS Nur Hayati, S.ST, MT Yogyakarta, Februari 2016 Ruang Sampel Kejadian Hukum Probabilitas Pokok Bahasan Ruang Sampel Pengertian Ruang Sampel dan Titik Sampel Ruang Sampel adalah

Lebih terperinci

Pendahuluan Teori Peluang

Pendahuluan Teori Peluang Modul Pendahuluan Teori Peluang R.K. Sembiring, Ph.D. A PENDAHULUAN suransi berasal dari kata assurance atau insurance, yang berarti jaminan atau pertanggungan. Hidup penuh dengan ketidakpastian dan manusia

Lebih terperinci

SOAL-SOAL LATIHAN PELUANG UJIAN NASIONAL

SOAL-SOAL LATIHAN PELUANG UJIAN NASIONAL . UN 0 SOAL-SOAL LATIHAN PELUANG UJIAN NASIONAL Peserta didik memiliki kemampuan memahami konsep pada topik peluang suatu kejadian. Peserta didik memilki kemampuan mengaplikan konsep kalkulus dalam masalah

Lebih terperinci

Peluang. 2. Jika C n = 3. maka tentukan n. 3. Berapa banyak jabat tangan yang terjadi antara 5 orang?

Peluang. 2. Jika C n = 3. maka tentukan n. 3. Berapa banyak jabat tangan yang terjadi antara 5 orang? Peluang. Dari angka-angka, 5,, dan 9 dibuat bilangan yang terdiri atas tiga angka yang berbeda yang kurang dari 400. Ada berapa banyak bilangan yang didapat? Banyaknya ratusan x puluhan x satuan x 4 x

Lebih terperinci

Indikator Sub Indikator Banyaknya Butir. kejadian pada percobaan pelemparan uang logam. pelemparan dadu. pengambilan buah. pengambilan kartu bridge.

Indikator Sub Indikator Banyaknya Butir. kejadian pada percobaan pelemparan uang logam. pelemparan dadu. pengambilan buah. pengambilan kartu bridge. 51 52 53 54 Kisi-kisi Instrumen untuk Instrumen Tes Hasil Belajar Mata Pelajaran : Matematika Kelas/ Semester : XI BAHASA/ 2 Standar Kompetensi : Menggunakan aturan statistika, kaidah pencacahan, dan sifat-sifat

Lebih terperinci

Learning Outcomes Ruang Contoh Kejadian Aksioma Peluang Latihan. Aksioma Peluang. Julio Adisantoso. 16 Pebruari 2014

Learning Outcomes Ruang Contoh Kejadian Aksioma Peluang Latihan. Aksioma Peluang. Julio Adisantoso. 16 Pebruari 2014 16 Pebruari 2014 Learning Outcome Mahasiswa dapat memahami ruang contoh, kejadian, dan koleksi Mahasiswa dapat melakukan operasi himpunan kejadian Mahasiswa dapat memahami aksioma peluang Mahasiswa dapat

Lebih terperinci

Statistika & Probabilitas. Sumber: Materi Kuliah Statistika Dr. Ir. Rinaldi Munir, M.T

Statistika & Probabilitas. Sumber: Materi Kuliah Statistika Dr. Ir. Rinaldi Munir, M.T Statistika & Probabilitas Sumber: Materi Kuliah Statistika Dr. Ir. Rinaldi Munir, M.T Kejadian Kejadian adalah himpunan bagian (subset) dari ruang sampel S. Dapat dipahami, kejadian adalah himpunan dari

Lebih terperinci

Probabilitas dan Statistika Teori Peluang. Adam Hendra Brata

Probabilitas dan Statistika Teori Peluang. Adam Hendra Brata dan Statistika Teori Peluang Adam Hendra Brata / Peluang / Peluang atau Peluang merupakan ukuran numeric tentang seberapa sering peristiwa itu akan terjadi Semakin besar nilai probabilitas menyatakan bahwa

Lebih terperinci

Bab 3 Pengantar teori Peluang

Bab 3 Pengantar teori Peluang Bab 3 Pengantar teori Peluang Istilah peluang atau kemungkinan, sering kali diucapkan atau didengar. Sebagai contoh ketika manajer dari sebuah klub sepak bola ditanya wartawan tentang hasil pertandingan

Lebih terperinci

TEORI PROBABILITAS. a. Ruang Contoh. Definisi : Ruang contoh adalah himpunan semua kemungkinan hasil suatu percobaan, dan dilambangkan dengan S.

TEORI PROBABILITAS. a. Ruang Contoh. Definisi : Ruang contoh adalah himpunan semua kemungkinan hasil suatu percobaan, dan dilambangkan dengan S. TEORI PROBABILITAS ISTILAH YANG SERING DIGUNAKAN a. Ruang Contoh Definisi : Ruang contoh adalah himpunan semua kemungkinan hasil suatu percobaan, dan dilambangkan dengan S. Bayangkan percobaan melempar

Lebih terperinci

PROBABILITAS MODUL PROBABILITAS

PROBABILITAS MODUL PROBABILITAS MODUL 6 PROBABILITAS. Pendahuluan Masalah probabilitas adalah masalah frekuensi sesuatu kejadian. Dari itu, probabilitas suatu kejadian dapat diatasi sebagai perbandingan frekuensi kejadian itu dengan

Lebih terperinci

Probabilitas = Peluang (Bagian II)

Probabilitas = Peluang (Bagian II) Probabilitas = Peluang (Bagian II) 3. Peluang Suatu Kejadian Peluang dalam pengertian awam "kemungkinan" Mis : 1. Hari ini kemungkinan besar akan turun hujan 2. Kemungkinan tahun depan inflasi akan mencapai

Lebih terperinci

Beberapa Hukum Peluang. Bahan Kuliah II2092 Probabilitas dan Statistik Oleh: Rinaldi Munir Sekolah Teknik Elektro dan Informatika ITB

Beberapa Hukum Peluang. Bahan Kuliah II2092 Probabilitas dan Statistik Oleh: Rinaldi Munir Sekolah Teknik Elektro dan Informatika ITB Beberapa Hukum Peluang Bahan Kuliah II2092 Probabilitas dan Statistik Oleh: Rinaldi Munir Sekolah Teknik Elektro dan Informatika ITB 1 Suatu kejadian dapat merupakan gabungan atau irisan dari dua atau

Lebih terperinci

Learning Outcomes Peluang Bersyarat Latihan-1 Hukum Penggandaan Hukum Total Peluang Latihan-2. Peluang Bersyarat. Julio Adisantoso.

Learning Outcomes Peluang Bersyarat Latihan-1 Hukum Penggandaan Hukum Total Peluang Latihan-2. Peluang Bersyarat. Julio Adisantoso. 2 Maret 2014 Learning Outcome Mahasiswa dapat memahami kejadian dan peluang bersyarat Mahasiswa dapat memahami hukum penggandaan Mahasiswa dapat memahami hukum total peluang Mahasiswa dapat memiliki dasar

Lebih terperinci

Bab 1 PENGANTAR PELUANG

Bab 1 PENGANTAR PELUANG Bab 1 PENGANTAR PELUANG PENDAHULUAN Misalkan sebuah peristiwa A dapat terjadi sebanyak n kali diantara N peristiwa yang saling ekslusif dan masing-masing terjadi dengan kesempatan yang sama, maka peluang

Lebih terperinci

SOAL PELUANG KELAS XI MATEMATIKANET.COM 1.! B. 4 2 C. 2 2 D. E. 2 2 A. 840 B. 504 C. 162 D. 84 E. 168

SOAL PELUANG KELAS XI MATEMATIKANET.COM 1.! B. 4 2 C. 2 2 D. E. 2 2 A. 840 B. 504 C. 162 D. 84 E. 168 SOAL PELUANG KELAS XI MATEMATIKANET.COM 1.!!. A. B. 4 2 C. 2 2 D. 2 2 2.!!!. A. 840 B. 504 C. 162 D. 84 168 3. Untuk menuju kota C dari Kota A harus melewati kota B. Dari kota A menuju kota B melewati

Lebih terperinci

KONSEP DASAR PROBABILITAS DAN DISTRIBUSI PROBABILITAS LELY RIAWATI, ST, MT.

KONSEP DASAR PROBABILITAS DAN DISTRIBUSI PROBABILITAS LELY RIAWATI, ST, MT. KONSEP DASAR PROBABILITAS DAN DISTRIBUSI PROBABILITAS LELY RIAWATI, ST, MT. EKSPERIMEN suatu percobaan yang dapat diulang-ulang dengan kondisi yang sama CONTOH : Eksperimen : melempar dadu 1 kali Hasilnya

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2. Probabilitas Probabilitas adalah suatu nilai untuk mengukur tingkat kemungkinan terjadinya suatu peristiwa (event) akan terjadi di masa mendatang yang hasilnya tidak pasti (uncertain

Lebih terperinci

10. PELUANG A. Kaidah Pencacahan 1. Aturan perkalian

10. PELUANG A. Kaidah Pencacahan 1. Aturan perkalian 0. PELUANG A. Kaidah Pencacahan. Aturan perkalian Apabila suatu peristiwa dapat terjadi dengan n tahap yang berurutan, dimana tahap pertama terdapat a cara yang berbeda dan seterusnya sampai dengan tahap

Lebih terperinci

STATISTIKA LINGKUNGAN

STATISTIKA LINGKUNGAN STATISTIKA LINGKUNGAN TEORI PROBABILITAS Probabilitas -pendahuluan Statistika deskriptif : menggambarkan data Statistik inferensi kesimpulan valid dan perkiraan akurat ttg populasi dengan mengobservasi

Lebih terperinci

PELUANG KEJADIAN. Macam-macam permutasi 1. Permutasi n unsur dari n unsur n. P n. 2. Permutasi dengan beberapa unsur yang sama

PELUANG KEJADIAN. Macam-macam permutasi 1. Permutasi n unsur dari n unsur n. P n. 2. Permutasi dengan beberapa unsur yang sama PELUANG KEJADIAN A. Aturan Perkalian/Pengisian Tempat Jika kejadian pertama dapat terjadi dalam a cara berbeda, kejadian kedua dapat terjadi dalam b cara berbeda, kejadian ketiga dapat terjadi dalam c

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Teori Probabilitas (Peluang) Probabilitas adalah suatu nilai untuk mengukur tingkat kemungkinan terjadinya suatu peristiwa (event) akan terjadi di masa mendatang yang hasilnya

Lebih terperinci

Sekoin uang logam mempunyai dua permukaan H dan T dilemparkan berkali kali. Hasil yg diperoleh pada setiap pelemparan apakah H atau T di catat Hasil

Sekoin uang logam mempunyai dua permukaan H dan T dilemparkan berkali kali. Hasil yg diperoleh pada setiap pelemparan apakah H atau T di catat Hasil Pertemuan 13 &14 Sekoin uang logam mempunyai dua permukaan H dan T dilemparkan berkali kali. Hasil yg diperoleh pada setiap pelemparan apakah H atau T di catat Hasil dari keseluruhan event yang didapat

Lebih terperinci

Nilai Probabilitas berkisar antara 0 dan 1.

Nilai Probabilitas berkisar antara 0 dan 1. ROBBILITS Tujuan belajar : 1. Mengerti konsep probalitas 2. Mengerti hukum-hukum probabilita 3. Mengerti konsep mutually exclusif dan non exclusive, serta konsep bebas dan tak bebas 4. Memahami permutasi

Lebih terperinci

BIMBINGAN BELAJAR GEMILANG

BIMBINGAN BELAJAR GEMILANG BIMBINGAN BELAJAR GEMILANG A. Pilihlah jawaban yang tepat.. Banyaknya titik sampel dari pelemparan koin dan sebuah dadu adalah. 0. Banyaknya ruang sampel pada pelemparan buah mata uang sekaligus adalah.

Lebih terperinci

STATISTIK INDUSTRI 1. Agustina Eunike, ST., MT., MBA

STATISTIK INDUSTRI 1. Agustina Eunike, ST., MT., MBA STATISTIK INDUSTRI 1 Agustina Eunike, ST., MT., MBA Probabilitas PELUANG Eksperimen Aktivitas / pengukuran / observasi suatu fenomena yang bervariasi outputnya Ruang Sampel / Sample Space Semua output

Lebih terperinci

Modul ke: STATISTIK Probabilitas atau Peluang. 05Teknik. Fakultas. Bethriza Hanum ST., MT. Program Studi Teknik Mesin

Modul ke: STATISTIK Probabilitas atau Peluang. 05Teknik. Fakultas. Bethriza Hanum ST., MT. Program Studi Teknik Mesin Modul ke: STATISTIK Probabilitas atau Peluang Fakultas 05Teknik Bethriza Hanum ST., MT Program Studi Teknik Mesin Pengertian dan Pendekatan Mempelajari probabilitas kejadian suatu peristiwa sangat bermanfaat

Lebih terperinci

TEORI PROBABILITAS. Amir Hidayatulloh, S.E., M.Sc Prodi Akuntansi Fakultas Ekonomi dan Bisnis Universitas Ahmad Dahlan

TEORI PROBABILITAS. Amir Hidayatulloh, S.E., M.Sc Prodi Akuntansi Fakultas Ekonomi dan Bisnis Universitas Ahmad Dahlan TEORI PROBABILITAS Amir Hidayatulloh, S.E., M.Sc Prodi Akuntansi Fakultas Ekonomi dan Bisnis Universitas Ahmad Dahlan SAYA YAKIN MAHASISWA BELUM MELUPAKAN SAYA. YUK, INGAT SAYA KEMBALI SEBELUM KITA BERKENALAN

Lebih terperinci

PELUANG KEJADIAN MAJEMUK

PELUANG KEJADIAN MAJEMUK PELUANG KEJADIAN MAJEMUK Oleh : Saptana Surahmat Perhatikan masalah berikut : Dalam sebuak kotak kardus terdapat 12 buah lampu bohlam, tiga diantaranya rusak. Jika diamboil secara acak dua buah sekaligus,

Lebih terperinci

MAKALAH PELUANG OLEH :

MAKALAH PELUANG OLEH : MAKALAH PELUANG OLEH : Nama Kelompok 1. Asri Sihotang NIM.41031110 2. Astika Laras Hutagaol NIM.4103111012 3. Bethesda Butarbutar NIM.4103111013 4. Sefta A P Hutauruk NIM.4103111072 JURUSAN MATEMATIKA

Lebih terperinci

PROBABILITAS (PELUANG) PENGERTIAN PROBABILITAS

PROBABILITAS (PELUANG) PENGERTIAN PROBABILITAS PROBABILITAS (PELUANG) PENGERTIAN PROBABILITAS Dalam kehidupan sehari-hari kita sering mendengar dan menggunakan kata probabilitas (peluang). Kata ini mengisyaratkan bahwa kita berhadapan dengan sesuatu

Lebih terperinci

Aksioma Peluang. Bab Ruang Contoh

Aksioma Peluang. Bab Ruang Contoh Bab 2 Aksioma Peluang 2.1 Ruang Contoh Dalam suatu percobaan, kita tidak tahu dengan pasti apa hasil yang akan terjadi. Misalnya pada percobaan membeli lampu pijar, kita tidak tahu dengan pasti, apakah

Lebih terperinci

Pierre-Simon Laplace. Born 23 March 1749 Beaumont-en-Auge, Normandy, France Died 5 March 1827 (aged 77) Paris, France Mempelajari peluang dalam judi

Pierre-Simon Laplace. Born 23 March 1749 Beaumont-en-Auge, Normandy, France Died 5 March 1827 (aged 77) Paris, France Mempelajari peluang dalam judi Blaise Pascal Born June 19, 1623 Clermont-Ferrand, France Died August 19, 1662 (aged 39) Paris, France Memenangkan taruhan tentang hasil tos dua dadu yang dilakukan berulang-ulang Pierre-Simon Laplace

Lebih terperinci

2-1 Probabilitas adalah:

2-1 Probabilitas adalah: 2 Teori Probabilitas Pengertian probabilitas Kejadian, ruang sample dan probabilitas Aturan dasar probabilitas Probabilitas bersyarat Independensi Konsepsi kombinatorial Probabilitas total dan teorema

Lebih terperinci

peluang Contoh 6.1 Ali mempunyai 2 celana dan 3 baju yang berbeda. Berapa stelan celana dan baju berbeda yang dipunyai Ali? Matematika Dasar Page 46

peluang Contoh 6.1 Ali mempunyai 2 celana dan 3 baju yang berbeda. Berapa stelan celana dan baju berbeda yang dipunyai Ali? Matematika Dasar Page 46 peluang 6.1 Kaidah Pencacahan A. Aturan Perkalian Misal suatu plat nomor sepeda motor terdiri atas dua huruf berbeda yang diikuti tiga angka dengan angka pertama bukan 0. Berapa banyak plat nomor berbeda

Lebih terperinci

BAB 2 PELUANG RINGKASAN MATERI

BAB 2 PELUANG RINGKASAN MATERI BAB PELUANG A RINGKASAN MATERI. Kaidah Pencacahan Bila terdapat n tempat yang tersedia dengan k cara untuk mengisi tempat pertama, k cara untuk mengisi tempat kedua, dan seterusnya, maka cara untuk mengisi

Lebih terperinci

Pert 3 PROBABILITAS. Rekyan Regasari MP

Pert 3 PROBABILITAS. Rekyan Regasari MP Pert 3 PROBABILITAS Rekyan Regasari MP Berapakah kemungkinan sebuah koin yang dilempar akan menghasilkan gambar angka Berapakah kemungkinan gedung ini akan runtuh Berapakah kemungkinan seorang kreditur

Lebih terperinci

BAB V PENGANTAR PROBABILITAS

BAB V PENGANTAR PROBABILITAS BAB V PENGANTAR PROBABILITAS Istilah probabilitas atau peluang merupakan ukuran untuk terjadi atau tidak terjadinya sesuatu peristiwa. Ukuran ini merupakan acuan dasar dalam teori statistika. 1. Beberapa

Lebih terperinci

Jadi, seluruhnya ada 4 x 4 x 3 x 2 = 96 bilangan yang dapat disusun dengan angkaangka yang tidak boleh berulang.

Jadi, seluruhnya ada 4 x 4 x 3 x 2 = 96 bilangan yang dapat disusun dengan angkaangka yang tidak boleh berulang. Jika kejadian pertama dapat terjadi dengan n cara berbeda Kejadian kedua dapat terjadi dengan n cara berbeda Kejadian ketiga dapat terjadi dengan n 3 cara berbeda Kejadian keempat dapat terjadi dengan

Lebih terperinci

Peluang Aturan Perkalian, Permutasi, dan Kombinasi dalam Pemecahan Masalah Ruang Sampel Suatu Percobaan Peluang Suatu Kejadian dan Penafsirannya

Peluang Aturan Perkalian, Permutasi, dan Kombinasi dalam Pemecahan Masalah Ruang Sampel Suatu Percobaan Peluang Suatu Kejadian dan Penafsirannya 2 Aturan Perkalian, Permutasi, dan Kombinasi dalam ; Pemecahan Masalah Ruang Sampel Suatu Percobaan ; Suatu Kejadian dan Penafsirannya ; Pada era demokrasi saat ini untuk menduduki suatu jabatan tertentu

Lebih terperinci

Pendekatan Terhadap Probabilitas

Pendekatan Terhadap Probabilitas Probabilitas Probabilitas PROBABILITAS adalah suatu ukuran tentang kemungkinan bahwa suatu peris=wa (event) dimasa mendatang akan terjadi. Probabilitas hanya mempunyai nilai antara 0 dan 1 Eksperiment

Lebih terperinci

MODUL PELUANG MATEMATIKA SMA KELAS XI

MODUL PELUANG MATEMATIKA SMA KELAS XI KATA PENGANTAR Segala puji syukur bagi Allah SWT yang senantiasa melimpahkan rahmat dan karunia-nya. Sebaik-baiknya shalawat serta salam semoga Allah SWT limpahkan kepada Nabi Besar Muhammad SAW, beserta

Lebih terperinci

Distribusi Probabilitas Diskrit: Binomial & Multinomial

Distribusi Probabilitas Diskrit: Binomial & Multinomial Distribusi Probabilitas Diskrit: Binomial & Multinomial 6 Debrina Puspita Andriani E-mail : [email protected] / [email protected] 2 Outline Distribusi Variabel Acak Diskrit Distribusi Binomial Distribusi

Lebih terperinci

6. PELUANG A. Kaidah Pencacahan 1. Aturan perkalian

6. PELUANG A. Kaidah Pencacahan 1. Aturan perkalian 6. PELUANG A. Kaidah Pencacahan. Aturan perkalian Apabila suatu peristiwa dapat terjadi dengan n tahap yang berurutan, dimana tahap pertama terdapat a cara yang berbeda dan seterusnya sampai dengan tahap

Lebih terperinci

UKD-4 PELUANG 11 IPA 3 Jumat, 22 Sept 2017

UKD-4 PELUANG 11 IPA 3 Jumat, 22 Sept 2017 UKD-4 PELUANG 11 IPA 3 Jumat, 22 Sept 2017 1. Sebuah dadu dilempar sekali. Peluang munculnya mata dadu bukan kelipatan 3 B. 2/6 C. 3/6 D. 4/6 2. Dari 60 kali pelemparan sebuah dadu, maka frekuensi harapan

Lebih terperinci

Contoh Soal Soal Peluang

Contoh Soal Soal Peluang Contoh Soal Soal Peluang 1. 10 orang finalis suatu lomba kecantikan akan dipilih secara acak 3 yang terbaik. Banyak cara pemilihan tersebut ada cara. a. 70 b. 80 c. 120 d. 360 e. 720 ( Soal Ujian Nasional

Lebih terperinci

CONTOH BAHAN AJAR PENDEKATAN INDUKTIF-DEDUKTIF

CONTOH BAHAN AJAR PENDEKATAN INDUKTIF-DEDUKTIF CONTOH BAHAN AJAR PENDEKATAN INDUKTIF-DEDUKTIF 1 2 ATURAN PERKALIAN LEMBAR KERJA SISWA KE-1 Perhatikan soal yang berkaitan dengan perjalanan berikut ini. Pak Zidan dengan mobilnya akan bepergian dari kota

Lebih terperinci

MAKALAH M A T E M A T I K A

MAKALAH M A T E M A T I K A MAKALAH M A T E M A T I K A PELUANG DISUSUN OLEH EDI MICHAEL ANTONIUS XII.TSM GURU PEMBIMBING LUNGGUH SOLIHIN, S.Pd SEKOLAH MENENGAH KEJURUAN SETIH SETIO 1 MUARA BUNGO T.A 2016/2017 0 KATA PENGANTAR Pertama

Lebih terperinci

Peluang. Ilham Rais Arvianto, M.Pd. STMIK AKAKOM Yogyakarta

Peluang. Ilham Rais Arvianto, M.Pd. STMIK AKAKOM Yogyakarta eluang Ilham Rais rvianto, M.d STMIK KKOM Yogyakarta Ruang Sampel dan Titik Sampel Ruang sampel adalah himpunan dari semua kejadian yang mungkin muncul pada suatu percobaan. Ruang sampel dilambangkan dengan

Lebih terperinci

Materi #2 TIN315 Pemeliharaan dan Rekayasa Keandalan Genap 2015/2016

Materi #2 TIN315 Pemeliharaan dan Rekayasa Keandalan Genap 2015/2016 #2 PROBABILITAS 2.1. Pendahuluan Kata probabiliitas sering dipakai jika kehilangan sentuhan dalam mengimplikasikan bahwa suatu kejadian yang mempunyai peluang yang bagus akan terjadi. Dalam hal ini penilaian

Lebih terperinci

Eksperimen Hasil Kejadian KONSEP PROBABILITAS

Eksperimen Hasil Kejadian KONSEP PROBABILITAS KONSEP PROBABILITAS Sebelumnya, telah dipelajari statistika deskriptif yang fokus untuk menyimpulkan data yang telah dikumpulkan pada waktu sebelumnya. Pada bab ini, akan dibahas tentang aspek lain dari

Lebih terperinci

AMIYELLA ENDISTA. Website : BioStatistik

AMIYELLA ENDISTA.   Website :  BioStatistik AMIYELLA ENDISTA Email : [email protected] Website : www.berandakami.wordpress.com DEFINISI PROBABILITAS Harga angka yang menunjukkan seberapa besar kemungkinan suatu peristiwa terjadi, di antara

Lebih terperinci

4.2 Nilai Peluang Secara Teoritis

4.2 Nilai Peluang Secara Teoritis 4.2 Nilai Peluang Secara Teoritis Apa yang akan kamu pelajari? Mencari peluang dengan tiap titik sampel berkesempatan sama untuk terjadi Menentukan kepastian dan kemustahilan Kata Kunci: Peluang Teoritis

Lebih terperinci

Pertemuan ke-5 : Kamis, 7 April : Nevi Narendrati, M.Pd. Prodi : Pendidikan Matematika, Kelas 21

Pertemuan ke-5 : Kamis, 7 April : Nevi Narendrati, M.Pd. Prodi : Pendidikan Matematika, Kelas 21 Pertemuan ke-5 : Kamis, 7 April 2016 Dosen : Nevi Narendrati, M.Pd. Prodi : Pendidikan Matematika, Kelas 21 Materi Teori Peluang: 1. Operasi Kejadian 2. Peluang: definisi dan sifat-sifatnya Operasi Kejadian

Lebih terperinci

Definisi 1.1: Jika S dan A adalah himpunan semua kejadian tertentu yang memenuhi, maka

Definisi 1.1: Jika S dan A adalah himpunan semua kejadian tertentu yang memenuhi, maka Pertemuan 1: Kompetensi Dasar: Menggunakan konsep probabilitas sehingga dapat melakukan Tujuan: pendekatan perhitungan probabilitas. 1. Mahasiswa diharapkan mampu menentukan nilai probabilitas dengan pendekatan

Lebih terperinci

Ruang Sampel, Titik Sampel dan Kejadian

Ruang Sampel, Titik Sampel dan Kejadian Dasar Dasar robabilitas DSR DSR ROILITS Ruang Sampel, Titik Sampel dan Kejadian Ruang sampel (sample space atau semesta (universe merupakan himpunan dari semua hasil (outcome yang mungkin dari suatu percobaan

Lebih terperinci

PROBABILITAS (KEMUNGKINAN/PELUANG) PENDAHULUAN PENGERTIAN PROBABILITAS HUKUM PROBABILITAS

PROBABILITAS (KEMUNGKINAN/PELUANG) PENDAHULUAN PENGERTIAN PROBABILITAS HUKUM PROBABILITAS PROBABILITAS (KEMUNGKINAN/PELUANG) PENDAHULUAN PENGERTIAN PROBABILITAS HUKUM PROBABILITAS PENDAHULUAN Semua kejadian di alam selalu dikatakan ada ketidakpastian Adanya statistik karena adanya ketidakpastian

Lebih terperinci

Distribusi Probabilitas Diskrit: Binomial, Multinomial, & Binomial Negatif

Distribusi Probabilitas Diskrit: Binomial, Multinomial, & Binomial Negatif Distribusi Probabilitas Diskrit: Binomial, Multinomial, & Binomial Negatif 6 Debrina Puspita Andriani E-mail : [email protected] / [email protected] 2 Outline Distribusi Variabel Acak Diskrit Distribusi

Lebih terperinci

Hidup penuh dengan ketidakpastian

Hidup penuh dengan ketidakpastian BAB 2 Probabilitas Hidup penuh dengan ketidakpastian Tidak mungkin bagi kita untuk dapat mengatakan dengan pasti apa yang akan terjadi dalam 1 menit ke depan tapi Probabilitas akan memprediksikan masa

Lebih terperinci

PELUANG. A Aturan Pengisian Tempat. B Permutasi

PELUANG. A Aturan Pengisian Tempat. B Permutasi PELUANG KAIDAH PENCACAHAN kaidah pencacahan didefinisikan sebagai suatu cara atau aturan untuk menghitung semua kemungkinan yang dapat terjadi dalam suatu percobaan tertentu. Ada beberapa metode pencacahan,

Lebih terperinci

PELUANG SUATU KEJADIAN RPP MICRO TEACHING

PELUANG SUATU KEJADIAN RPP MICRO TEACHING PELUANG SUATU KEJADIAN RPP MICRO TEACHING Dosen Pengampu: Ervina Maret S, S. Si., M. Pd. Disusun oleh: Ridha Rokhani (10411.062) PROGRAM STUDI PENDIDIKAN MATEMATIKA FAKULTAS PENDIDIKAN MATEMATIKA DAN ILMU

Lebih terperinci

DALIL-DALIL PROBABILITAS

DALIL-DALIL PROBABILITAS DALIL-DALIL PROBABILITAS 1 Teori probabilitas 1. Tentang perobaan-perobaan yang sifatnya aak (atau tak tentu). 2. Konsep dasar probabilitas bilit dapat digunakan dalam menarik kesimpulan dari suatu perobaan

Lebih terperinci

DAFTAR TERJEMAH. No. Bab Kutipan Hal. Terjemah

DAFTAR TERJEMAH. No. Bab Kutipan Hal. Terjemah 97 Lampiran 1. Daftar Terjemah DAFTAR TERJEMAH No. Bab Kutipan Hal. Terjemah 1. I Q.S. Ar-Ra d ayat 11 1 Baginya (manusia) ada malaikatmalaikat yang selalu menjaganya bergiliran, dari depan dan belakangnya.

Lebih terperinci

STK 211 Metode statistika. Materi 3 Konsep Dasar Peluang

STK 211 Metode statistika. Materi 3 Konsep Dasar Peluang STK 211 Metode statistika Materi 3 Konsep Dasar Peluang 1 Pendahuluan Banyak kejadian-kejadian di dunia ini yang tidak pasti Misal: Akankah hujan sore hari ini? Akankah PSSI menang? dll Nilai Kejadian

Lebih terperinci