Pertemuan 1 KONSEP DASAR PROBABILITAS
|
|
|
- Agus Yuwono
- 8 tahun lalu
- Tontonan:
Transkripsi
1 Pertemuan 1 KONSEP DASAR PROBABILITAS
2 Pengantar Banyak kejadian dalam kehidupan sehari-hari yang sulit diketahui dengan pasti, terutama kejadian yang akan datang. Meskipun kejadian-kejadian tersebut tidak pasti, tetapi kita bisa melihat fakta-fakta yang ada untuk menuju derajat kepastian atau derajat keyakinan bahwa sesuatu akan terjadi. Derajat / tingkat kepastian atau keyakinan dari munculnya hasil percobaan statistik disebut Probabilitas (Peluang), yang dinyatakan dengan P.
3 Konsep dan Definisi Dasar Definisi Probabilitas adalah peluang suatu kejadian Manfaat: Manfaat mengetahui probabilitas adalah membantu pengambilan keputusan yang tepat, karena kehidupan di dunia tidak ada kepastian, dan informasi yang tidak sempurna. Contoh: Pembelian harga saham berdasarkan analisis harga saham Peluang produk yang diluncurkan perusahaan (sukses atau tidak), dan lain-lain.
4 Percobaan/ Eksperimen Sembarang proses yang menghasilkan data. Contoh : lemparan sebuah mata uang logam peluncuran rudal dan pengamatan kecepatannya pada saat-saat tertentu jajak pendapat tentang rencana diberlakukannya undang-undang tertentu.
5 Ruang Sampel Himpunan semua hasil yg mungkin dari percobaan. Hasil suatu percobaan bisa dinyatakan lebih dari satu ruang sampel. Contoh : - Pelemparan sebuah uang logam, S = {G, A} - Percobaan melemparkan sebuah dadu. Jika yang diselidiki adalah nomor yang muncul di sebelah atas, maka ruang sampelnya S 1 = {1, 2, 3, 4, 5, 6}. Jika yang diselidiki adalah nomor genap atau ganjil yang muncul, maka ruang sampelnya adalah S 2 = {ganjil, genap}.
6 MENENTUKAN RUANG SAMPEL SUATU PERCOBAAN Penentuan ruang sampel suatu percobaan, dapat dilakukan dengan 3 cara, yaitu dengan cara mendaftar, membuat tabel, & diagram pohon.
7 CONTOH PENENTUAN RUANG SAMPEL Percobaan : pengguliran sepasang dadu. Cara mendaftar Ruang sampelnya terdiri dari 36 titik sampel, yaitu : S = {(i,j) i,j = 1,2,3,4,5,6} S = {(1,1),(1,2),(1,3),(1,4),(1,5),(1,6),(2,1),(2,2),(2,3),(2, 4),(2,5),(2,6),(3,1),(3,2),(3,3),(3,4),(3,5),(3,6),(4,1), (4,2),(4,3),(4,4),(4,5),(4,6),(5,1),(5,2),(5,3),(5,4),(5,5),(5,6),(6,1),(6,2),(6,3),(6,4),(6,5),(6,6)}
8 Cara membuat tabel
9 Cara diagram pohon
10 TITIK SAMPEL : Setiap unsur / elemen / anggota dari ruang sampel. KEJADIAN/ PERISTIWA : Hasil dr suatu percobaan yg punya sifat tertentu. Himpunan bagian dari ruang sampel (E S). Contoh : - Sebuah dadu digulirkan. Ingin diketahui mengenai kejadian A bahwa hasil guliran dadu tersebut dapat dibagi tiga. A = {3, 6}. - Bila diketahui ruang sampel S = {t t 0}, dengan t menyatakan usia (thn) komponen mesin tertentu, maka kejadian A bahwa komponen akan rusak sebelum akhir tahun kelima adalah A = {t 0 t < 5}.
11 Contoh Dilakukan percobaan, yaitu diperiksa 3 buah sikring satu persatu secara berurutan dan mencatat kondisi sikring tersebut dengan memberi notasi B untuk sikring yang baik dan R untuk sikring yang rusak. Maka ruang sampel pada eksperimen probabilitas pemeriksaan tersebut adalah S = {BBB, BBR, BRB, RBB, BRR, RBR, RRB, RRR}. Jumlah outcome dalam ruang sampel S adalah n(s) = 2 3 = 8. Jika A menyatakan kejadian diperoleh satu sikring yang rusak, maka A = {BBR, BRB, RBB}. Jumlah outcome dalam ruang peristiwa adalah n(a) = 3.
12 Latihan Soal 1. Dua buah uang logam dilemparkan. Tentukan yang dimaksud dengan percobaan, ruang sampel, dan titik sampelnya! Serta berikan contoh tentang kejadian! 2. Misalkan empat produk diambil secara acak dari suatu proses produksi di pabrik. Kemudian setiap produk tersebut diperiksa dan dapat digolongkan sebagai cacat (C) dan tidak cacat (B). Tentukan yang dimaksud dengan percobaan, ruang sampel, dan titik sampelnya! Serta beri contoh kejadian!
13 Definisi probabilitas Bila kejadian A terjadi dalam m cara dari seluruh n cara yang mungkin terjadi dan masing-masing n cara itu mempunyai kesempatan yang sama untuk muncul, maka probabilitas kejadian A, ditulis P(A), dapat dituliskan : P( A) n( A) n( S) m n
14 Sifat-sifat probabilitas kejadian A : 0 P(A) 1, artinya nilai probabilitas kejadian A selalu terletak antara 0 dan 1 P(A) = 0, artinya dalam hal kejadian A tidak terjadi (himpunan kosong), maka probabilitas kejadian A adalah 0. Dapat dikatakan bahwa kejadian A mustahil untuk terjadi. P(A) = 1, artinya dalam hal kejadian A, maka probabilitas kejadian A adalah 1. Dapat dikatakan bahwa kejadian A pasti terjadi. Komplemen: Peristiwa A tidak terjadi, ditulis A' P( A') 1 P( A)
15 Contoh : Sebuah koin dilemparkan dua kali. Berapakah probabilitas bahwa paling sedikit muncul satu Muka? Jawab : Misal M = Muka, B = Belakang Ruang sampel untuk percobaan ini adalah S = {MM, MB, BM, BB} Kejadian A = muncul paling sedikit satu Muka adalah A = {MM, MB, BM} Jadi, Probabilitas bahwa paling sedikit muncul satu Muka adalah n( A) P( A) n( S) 3 4
16 Contoh: Suatu campuran kembang gula berisi 6 mint, 4 coffee, dan 3 coklat. Bila seseorang membuat suatu pemilihan acak dari salah satu kembang gula ini, carilah probabilitas untuk mendapatkan mint. Jawab : Misal, M = mint, C = coffee, T = coklat Probabilitas mendapatkan mint n( M ) P( M ) n( S) 6 13
17 Pendekatan Perhitungan a) Pendekatan Klasik Probabilitas Diasumsikan seluruh hasil experimen memiliki kemungkinan yang sama. Kejadian A dapat terjadi sebanyak n(a) cara dari seluruh n(s) cara Kejadian A sukses Kejadian A gagal Contoh : peristiwa A merupakan peristiwa munculnya mata dadu genap dari pelemparan sebuah dadu, berapakah peluang terjadinya peristiwa A?
18 PENDEKATAN KLASIK Percobaan Hasil Probabilitas Kegiatan uang melempar 1. Muncul gambar 2. Muncul angka 2 ½ Kegiatan perdagangan saham 1. Menjual saham 2. Membeli saham 2 ½ Perubahan harga 1. Inflasi (harga naik) 2. Deflasi (harga turun) 2 ½ Mahasiswa belajar 1. Lulus memuaskan 2. Lulus sangat memuaskan 3. Lulus terpuji 3 1/3
19
20 Latihan Soal: 1. Sebuah dadu bermata 6 dilemparkan. Tentukan probabilitas muncul mata Hitunglah probabilitas memperoleh kartu hati jika sebuah kartu diambil secara acak dari seperangkat kartu bridge yang lengkap 3. Hitunglah probabilitas diperolehnya bola merah jika sebuah bola diambil dari suatu kotak yang berisi 10 bola merah dan 10 bola putih.
21 b) Pendekatan Frekuensi Relatif Contoh : penelitian yang dilakukan terhadap 50 mahasiswa terhadap nilai mata kuliah ALPRO. Berapakah besarnya peluang mahasiswa mendapatkan nilai 50 dan 70? Jawab Nilai (x) f
22 Latihan Soal: 1. Pada suatu percobaan statistik, yaitu pelemparan sebuah dadu yang diulang sebanyak n = 1000 kali, frekuensi munculnya mata X adalah seperti pada tabel Mata Dadu (X) Frekuensi (f) Tentukan probabilitas munculnya mata Dari 100 mahasiswa yang mengikuti ujian Statistika, distribusi frekuensi nilai mahasiswa adalah seperti tabel Nilai (X) Frekuensi (f)
23 c) Pendekatan Subjektif Didasarkan atas penilaian seseorang dalam menyatakan tingkat kepercayaan Biasanya dalam bentuk opini atau pendapat
24 Latihan Soal 1. Tentukan ruang sampel dari percobaan-percobaan berikut ini : a) Pelemparan sebuah dadu dan selanjutnya uang logam b) Pelemparan 3 uang logam c) Pelemparan dua keping uang logam dan sebuah dadu 2. Pada percobaan pelemparan dua buah dadu, tulislah anggota-anggota kejadian : a) jumlah kedua mata dadu 4 b) hasil kali kedua mata dadu 6 atau 8 3. Sebuah dadu dilempar sekali, tentukan peluang: a) muncul angka prima b) muncul angka genap atau prima
25 5. Dua buah dadu dilempar sekali bersama-sama, tentukan peluang bahwa: a) jumlah kedua angka kurang dari 6 b) jumlah kedua angka lebih dari 8 6. Dua buah dadu dilempar sekali bersama-sama. Tentukan peluang bahwa: a) dua mata dadu muncul angka tidak sama b) dua mata dadu muncul angka sama 7. Dari seperangkat kartu bridge diambil 1 kartu, tentukan peluang kejadian kartu yang terambil a) kartu AS b) kartu merah (berwarna merah) 8. Dari seperangkat kartu bridge diambil 4 kartu, tentukan peluang kejadian kartu yang terambil! a) kartu AS b) kartu kuning
KONSEP DASAR PROBABILITAS. Didin Astriani Prasetyowati, M.Stat Fakultas Ilmu Komputer Universitas Indo Global Mandiri
1 KONSEP DASAR PROBABILITAS Didin Astriani Prasetyowati, M.Stat Fakultas Ilmu Komputer Universitas Indo Global Mandiri Pengantar : 2 Banyak kejadian dalam kehidupan sehari-hari yang sulit diketahui dengan
Probabilitas dan Statistika Teori Peluang. Adam Hendra Brata
dan Statistika Teori Peluang Adam Hendra Brata / Peluang / Peluang atau Peluang merupakan ukuran numeric tentang seberapa sering peristiwa itu akan terjadi Semakin besar nilai probabilitas menyatakan bahwa
Peluang suatu kejadian
Peluang suatu kejadian Percobaan: Percobaan adalah suatu tindakan atau kegiatan yang dapat memberikan beberapa kemungkinan hasil Ruang Sampel: Ruang sampel adalah himpunan semua hasil yang mungkin dari
Ruang Sampel dan Kejadian
Ruang Sampel dan Kejadian Perhatikan sekeping mata uang logam dengan sisi-sisi ANGKA dan GAMBAR Sisi Angka (A) Sisi Gambar (G) Maka : Ruang Sampel (S) = { A, G } Titik Sampel = A dan G, maka n(s) = 2 Kejadian
PELUANG. Standar kompetensi : Menggunakan aturan statistika, kaidah, pencacahan, dan sifatsifat peluang dalam pemecahan masalah
1 PELUANG Standar kompetensi : Menggunakan aturan statistika, kaidah, pencacahan, dan sifatsifat peluang dalam pemecahan masalah Kompetensi Dasar : Menggunakan aturan perkalian, permutasi dan kombinasi
Perumusan Probabilitas Kejadian Majemuk S S A B A B Maka banyak anggota himpunan gabungan A dan B adalah : n(a n(a B) = n(a) + n(b) n(a n(a B) Kejadia
HUKUM PROBABILITAS Pertemuan ke ke--4 Didin Astriani Prasetyowati, M.Stat Perumusan Probabilitas Kejadian Majemuk S S A B A B Maka banyak anggota himpunan gabungan A dan B adalah : n(a n(a B) = n(a) +
Menghitung peluang suatu kejadian
Menghitung peluang suatu kejadian A. Ruang Sampel, Titik Sampel, dan Kejadian Dari pandangan intuitif, peluang terjadinya suatu peristiwa atau kejadian adalah nilai yang menunjukkan seberapa besar kemungkinan
Peluang. Ilham Rais Arvianto, M.Pd. STMIK AKAKOM Yogyakarta
eluang Ilham Rais rvianto, M.d STMIK KKOM Yogyakarta Ruang Sampel dan Titik Sampel Ruang sampel adalah himpunan dari semua kejadian yang mungkin muncul pada suatu percobaan. Ruang sampel dilambangkan dengan
Pertemuan 2. Hukum Probabilitas
Pertemuan 2 Hukum Probabilitas Perumusan Probabilitas Kejadian Majemuk S S A B A B Maka banyak anggota himpunan gabungan A dan B adalah : n(a B) = n(a) + n(b) n(a B) Kejadian majemuk adalah gabungan atau
Hidup penuh dengan ketidakpastian
BAB 2 Probabilitas Hidup penuh dengan ketidakpastian Tidak mungkin bagi kita untuk dapat mengatakan dengan pasti apa yang akan terjadi dalam 1 menit ke depan tapi Probabilitas akan memprediksikan masa
KONSEP DASAR PROBABILITAS
KONSEP DASAR PROBABILITAS PERTEMUAN VIII EvanRamdan PROBABILITAS Dalam menentukan banyaknya anggota kejadian, kadangkala kita tidak selalu dapat mendaftar semua titik sampel dalam percobaan tersebut. Untuk
PELUANG KEJADIAN MAJEMUK
PELUANG KEJADIAN MAJEMUK Oleh : Saptana Surahmat Perhatikan masalah berikut : Dalam sebuak kotak kardus terdapat 12 buah lampu bohlam, tiga diantaranya rusak. Jika diamboil secara acak dua buah sekaligus,
KONSEP DASAR PROBABILITAS
KONSEP DASAR PROBABILITAS Definisi: Probabilitas adalah peluang suatu kejadian Manfaat: Manfaat mengetahui probabilitas adalah membantu pengambilan keputusan yang tepat, karena kehidupan di dunia tidak
Peluang. Jadi, Ruang Sampel sebanyak {6}. Pada Dadu, ada 1, 2, 3, 4, 5, 6. Pada Kartu Remi, ada : Jadi, Ruang Sampel sebanyak {52}.
Peluang A. Populasi dan Sampel Populasi adalah himpunan semua obyek yang diteliti. Sampel adalah himpunan bagian dari populasi. Contoh: Dalam rangka menentukan tingkat kecerdasan rata-rata siswa SMP di
TEORI PROBABILITAS 1
TEORI PROBABILITAS 1 Berapa peluang munculnya angka 4 pada dadu merah??? Berapa peluang munculnya King heart? Berapa peluang munculnya gambar? 2 PELUANG ATAU PROBABILITAS adalah perbandingan antara kejadian
matematika PELUANG: DEFINISI DAN KEJADIAN BERSYARAT K e l a s Kurikulum 2006 Tujuan Pembelajaran
Kurikulum 2006 matematika K e l a s XI EUANG: DEFINISI DAN KEJADIAN BERSYARAT Tujuan embelajaran Setelah mempelajari materi ini, kamu diharapkan memiliki kemampuan berikut.. Memahami konsep dasar peluang.
Teori Probabilitas 3.2. Debrina Puspita Andriani /
Teori Probabilitas 3.2 Debrina Puspita Andriani E-mail : [email protected] / [email protected] 2 Outline Konsep Probabilitas Ruang Sampel Komplemen Kejadian Probabilitas Bersyarat Berapa peluang munculnya
BAB V TEORI PROBABILITAS
BAB V TEORI PROBABILITAS Probabilitas disebut juga dengan peluang atau kemungkinan. Probabilitas merupakan suatu nilai yang digunakan untuk mengukur tingkat terjadinya suatu kejadian yang acak. Oleh karena
Probabilitas = Peluang (Bagian II)
Probabilitas = Peluang (Bagian II) 3. Peluang Suatu Kejadian Peluang dalam pengertian awam "kemungkinan" Mis : 1. Hari ini kemungkinan besar akan turun hujan 2. Kemungkinan tahun depan inflasi akan mencapai
PELUANG. LA - WB (Lembar Aktivitas Warga Belajar) MATEMATIKA PAKET C TINGKAT VI DERAJAT MAHIR 2 SETARA KELAS XI. Oleh: Hj. ITA YULIANA, S.Pd, M.
LA - WB (Lembar Aktivitas Warga Belajar) PELUANG Oleh: Hj. ITA YULIANA, S.Pd, M.Pd MATEMATIKA PAKET C TINGKAT VI DERAJAT MAHIR 2 SETARA KELAS XI Created By Ita Yuliana 13 Peluang Kompetensi Dasar 1. Menggunakan
MATERI KULIAH STATISTIKA I PROBABLITAS. (Nuryanto, ST., MT)
MATERI KULIAH STATISTIKA I PROBABLITAS (Nuryanto, ST., MT) Pendahuluan Percobaan : proses yang menghasilkan data Ruang Contoh (S) : hasil percobaan himpunan yang memuat semua kemungkinan Kejadian = Event
PERMUTASI, KOMBINASI DAN PELUANG. Kaidah pencacahan membantu dalam memecahkan masalah untuk menghitung
PERMUTASI, KOMBINASI DAN PELUANG A. KAIDAH PENCACAHAN Kaidah pencacahan membantu dalam memecahkan masalah untuk menghitung berapa banyaknya cara yang mungkjin terjadi dalam suatu percobaan. Kaidah pencacahan
Pertemuan Ke-1 BAB I PROBABILITAS
Pertemuan Ke-1 BAB I PROBABILITAS 1.1 Arti dan Pentingnya Probabilitas Probabilitas merupakan suatu nilai untuk mengukur besarnya tingkat kemungkinan terjadinya suatu kejadian yang acak. Kejadian Acak
Bab 3 Pengantar teori Peluang
Bab 3 Pengantar teori Peluang Istilah peluang atau kemungkinan, sering kali diucapkan atau didengar. Sebagai contoh ketika manajer dari sebuah klub sepak bola ditanya wartawan tentang hasil pertandingan
Statistika & Probabilitas. Sumber: Materi Kuliah Statistika Dr. Ir. Rinaldi Munir, M.T
Statistika & Probabilitas Sumber: Materi Kuliah Statistika Dr. Ir. Rinaldi Munir, M.T Kejadian Kejadian adalah himpunan bagian (subset) dari ruang sampel S. Dapat dipahami, kejadian adalah himpunan dari
BIMBINGAN BELAJAR GEMILANG
BIMBINGAN BELAJAR GEMILANG A. Pilihlah jawaban yang tepat.. Banyaknya titik sampel dari pelemparan koin dan sebuah dadu adalah. 0. Banyaknya ruang sampel pada pelemparan buah mata uang sekaligus adalah.
STATISTICS. WEEK 2 Hanung N. Prasetyo TELKOM POLYTECHNIC/HANUNGNP
STTISTICS WEEK 2 Hanung N. rasetyo OLYTECHNIC/HNUNGN Ruang sample dari suatu eksperimen merupakan suatu himpunan semua kemungkinan hasil suatu eksperimen. Ruang sample dinotasikan dengan Ώ Sedangkan kejadian
KONSEP DASAR PROBABILITAS
KONSEP DASAR PROBABILITAS PENDAHULUAN Tanpa kita sadari kehidupan kita sehari-hari selalu berhubungan dengan matematika, khususnya peluang. Misalnya dalam pemilihan umum terdapat 5 orang calon presiden,
Definisi 1.1: Jika S dan A adalah himpunan semua kejadian tertentu yang memenuhi, maka
Pertemuan 1: Kompetensi Dasar: Menggunakan konsep probabilitas sehingga dapat melakukan Tujuan: pendekatan perhitungan probabilitas. 1. Mahasiswa diharapkan mampu menentukan nilai probabilitas dengan pendekatan
MAKALAH PELUANG OLEH :
MAKALAH PELUANG OLEH : Nama Kelompok 1. Asri Sihotang NIM.41031110 2. Astika Laras Hutagaol NIM.4103111012 3. Bethesda Butarbutar NIM.4103111013 4. Sefta A P Hutauruk NIM.4103111072 JURUSAN MATEMATIKA
REFERENSI 1 source : Cara Menentukan Ruang Sampel Suatu Kejadian
REFERENSI 1 source : http://mafia.mafiaol.com/2014/06/cara-menentukan-ruang-sampel-suatu-kejadian.html Cara Menentukan Ruang Sampel Suatu Kejadian I. Peluang Kita ketahui bahwa pengertian dari ruang sampel
KONSEP DASAR PROBABILITAS
KONSEP DASAR PROBABILITAS 1 OUTLINE BAGIAN II Probabilitas dan Teori Keputusan Konsep-Konsep Dasar Probabilitas Distribusi Probabilitas Diskrit Pengertian Probabilitas dan Manfaat Probabilitas Pendekatan
PELUANG. Makalah Ini Disusun Untuk Memenuhi Tugas Kajian Matematika SMP 2 Dosen Pengampu: Koryna Aviory, S.Si., M.Pd.
PELUANG Makalah Ini Disusun Untuk Memenuhi Tugas Kajian Matematika SMP 2 Dosen Pengampu: Koryna Aviory, S.Si., M.Pd. Disusun Oleh: 1. Ernawati (14144100125) 2. Nadia Nur Farohmah (14144100135) 3. Dedi
PEUBAH ACAK & DISTRIBUSI PROBABILITAS. Nur Hayati, S.ST, MT Yogyakarta, Februari 2016
PEUBAH ACAK & DISTRIBUSI PROBABILITAS Nur Hayati, S.ST, MT Yogyakarta, Februari 2016 Pendahuluan Bidang Statistika Penarikan kesimpulan populasi dan sifat populasi. Percobaan hasil berkemungkinan Percobaan
Bab 3. PELUANG A. RUANG SAMPEL B. PELUANG KEJADIAN TUNGGAL ( A ) Nama: Kelas : 11 IPA ! = 5
Nama: Kelas : IA Bab. ELUANG ) Dua koin dilempar. Tentukan peluang munculnya: a) angka & gambar b) minimal gambar I II A G A A, A A, G G G, A G, G n(s) a) A & G: / / I II b) minimal G / A. RUANG SAMEL
PENCACAHAN RUANG SAMPEL
PENCACAHAN RUANG SAMPEL PERTEMUAN VII EvanRamdan PENDAHULUAN Tanpa kita sadari kehidupan kita sehari-hari selalu berhubungan dengan matematika, khususnya peluang. Misalnya dalam pemilihan umum terdapat
LEMBAR AKTIVITAS SISWA PELUANG
Nama Siswa : LEMBAR AKTIVITAS SISWA PELUANG 2 2. Kelas : Kompetensi Dasar (KURIKULUM 2013): 3.16 Memahami dan menerapkan berbagai aturan pencacahan melalui beberapa contoh nyata serta menyajikan alur perumusan
Berapa Peluang anda. meninggal? selesai S-1? menjadi menteri? menjadi presiden?
PELUANG Berapa Peluang anda meninggal? selesai S-1? menjadi menteri? menjadi presiden? Peluang Ukuran / derajat ketidakpastian suatu peristiwa Peluang Kemungkinan (Probability) (Possibility) Peristiwa
Teori Probabilitas. Debrina Puspita Andriani /
Teori Probabilitas 5 Debrina Puspita Andriani E-mail : [email protected] / [email protected] 2 Outline Konsep Probabilitas Ruang Sampel Komplemen Kejadian Probabilitas Bersyarat Teorema Bayes Berapa
PELUANG. Hasil Kedua. Hasil Pertama. Titik Sampel GG GA A
PELUANG Percobaan dalam statistika menyatakan tiap proses yang menghasilkan data mentah. Ruang sampel adalah himpunan semua hasil yang mungkin dari suatu percobaan statistika dan dinyatakan dalam lambang
LAMPIRAN X BAHAN AJAR
181 LAMPIRAN X BAHAN AJAR Nama Sekolah : SMPN 2 Nan Sabaris Mata Pelajaran : Matematika Kelas / Semester : VIII / II Materi Pokok : Peluang Tahun Pelajaran : 2016 / 2017 Jumlah Pertemuan : 5 Pertemuan
sbl4peluang - - PELUANG - - Peluang 9308 Matematika P (putih) Les Privat dirumah bimbelaqila.com - Download Format Word di belajar.bimbelaqila.
- - PELUANG - - Modul ini singkron dengan Aplikasi Android, Download melalui Play Store di HP Kamu, ketik di pencarian sblpeluang Jika Kamu kesulitan, Tanyakan ke tentor bagaimana cara downloadnya. Aplikasi
Unit 5 PELUANG. Clara Ika Sari Budhayanti. Pendahuluan
Unit 5 PELUANG lara Ika Sari Budhayanti Pendahuluan P ada unit lima ini kita akan membahas peluang. Peluang merupakan salah satu cabang matematika yang mempelajari cara menghitung tingkat keyakinan seseorang
MODUL PELUANG MATEMATIKA SMA KELAS XI
KATA PENGANTAR Segala puji syukur bagi Allah SWT yang senantiasa melimpahkan rahmat dan karunia-nya. Sebaik-baiknya shalawat serta salam semoga Allah SWT limpahkan kepada Nabi Besar Muhammad SAW, beserta
BAB V PENGANTAR PROBABILITAS
BAB V PENGANTAR PROBABILITAS Istilah probabilitas atau peluang merupakan ukuran untuk terjadi atau tidak terjadinya sesuatu peristiwa. Ukuran ini merupakan acuan dasar dalam teori statistika. 1. Beberapa
Peluang. 2. Jika C n = 3. maka tentukan n. 3. Berapa banyak jabat tangan yang terjadi antara 5 orang?
Peluang. Dari angka-angka, 5,, dan 9 dibuat bilangan yang terdiri atas tiga angka yang berbeda yang kurang dari 400. Ada berapa banyak bilangan yang didapat? Banyaknya ratusan x puluhan x satuan x 4 x
Jadi, seluruhnya ada 4 x 4 x 3 x 2 = 96 bilangan yang dapat disusun dengan angkaangka yang tidak boleh berulang.
Jika kejadian pertama dapat terjadi dengan n cara berbeda Kejadian kedua dapat terjadi dengan n cara berbeda Kejadian ketiga dapat terjadi dengan n 3 cara berbeda Kejadian keempat dapat terjadi dengan
4.2 Nilai Peluang Secara Teoritis
4.2 Nilai Peluang Secara Teoritis Apa yang akan kamu pelajari? Mencari peluang dengan tiap titik sampel berkesempatan sama untuk terjadi Menentukan kepastian dan kemustahilan Kata Kunci: Peluang Teoritis
SOAL PELUANG KELAS XI MATEMATIKANET.COM 1.! B. 4 2 C. 2 2 D. E. 2 2 A. 840 B. 504 C. 162 D. 84 E. 168
SOAL PELUANG KELAS XI MATEMATIKANET.COM 1.!!. A. B. 4 2 C. 2 2 D. 2 2 2.!!!. A. 840 B. 504 C. 162 D. 84 168 3. Untuk menuju kota C dari Kota A harus melewati kota B. Dari kota A menuju kota B melewati
MAKALAH M A T E M A T I K A
MAKALAH M A T E M A T I K A PELUANG DISUSUN OLEH EDI MICHAEL ANTONIUS XII.TSM GURU PEMBIMBING LUNGGUH SOLIHIN, S.Pd SEKOLAH MENENGAH KEJURUAN SETIH SETIO 1 MUARA BUNGO T.A 2016/2017 0 KATA PENGANTAR Pertama
DAFTAR TERJEMAH. No. Bab Kutipan Hal. Terjemah
97 Lampiran 1. Daftar Terjemah DAFTAR TERJEMAH No. Bab Kutipan Hal. Terjemah 1. I Q.S. Ar-Ra d ayat 11 1 Baginya (manusia) ada malaikatmalaikat yang selalu menjaganya bergiliran, dari depan dan belakangnya.
PELUANG. Titik Sampel GG
PELUNG Percobaan dalam statistika menyatakan tiap proses yang menghasilkan data mentah. Ruang sampel adalah himpunan semua hasil yang mungkin dari suatu percobaan statistika dan dinyatakan dalam lambang
Probabilitas dan Statistika Variabel Acak dan Fungsi Distribusi Peluang Diskrit. Adam Hendra Brata
dan Statistika dan Fungsi Peluang Adam Hendra Brata acak adalah sebuah fungsi yang memetakan hasil kejadian yang ada di alam (seperti : buka dan tutup; terang, redup dan gelap; merah, kuning dan hijau;
UKD-4 PELUANG 11 IPA 3 Jumat, 22 Sept 2017
UKD-4 PELUANG 11 IPA 3 Jumat, 22 Sept 2017 1. Sebuah dadu dilempar sekali. Peluang munculnya mata dadu bukan kelipatan 3 B. 2/6 C. 3/6 D. 4/6 2. Dari 60 kali pelemparan sebuah dadu, maka frekuensi harapan
Probabilitas. Tujuan Pembelajaran
Probabilitas 1 Tujuan Pembelajaran 1.Menjelaskan Eksperimen, Hasil,, Ruang Sampel, & Peluang 2. Menjelaskan bagaimana menetapkan peluang 3. Menggunakan Tabel Kontingensi, Diagram Venn, atau Diagram Tree
peluang Contoh 6.1 Ali mempunyai 2 celana dan 3 baju yang berbeda. Berapa stelan celana dan baju berbeda yang dipunyai Ali? Matematika Dasar Page 46
peluang 6.1 Kaidah Pencacahan A. Aturan Perkalian Misal suatu plat nomor sepeda motor terdiri atas dua huruf berbeda yang diikuti tiga angka dengan angka pertama bukan 0. Berapa banyak plat nomor berbeda
RENCANA PELAKSANAAN PEMBELAJARAN ( R P P ) Mata Pelajaran : Matematika Satuan Pendidikan : SMA Kelas/Semester : XI IPS/ 1 Alokasi waktu : 2 x 45 menit
RENCANA PELAKSANAAN PEMBELAJARAN ( R P P ) Mata Pelajaran : Matematika Satuan Pendidikan : SMA Kelas/Semester : XI IPS/ 1 Alokasi waktu : x 45 menit I Standar Kompetensi 11 Menggunakan aturan statistika,
6. PELUANG A. Kaidah Pencacahan 1. Aturan perkalian
6. PELUANG A. Kaidah Pencacahan. Aturan perkalian Apabila suatu peristiwa dapat terjadi dengan n tahap yang berurutan, dimana tahap pertama terdapat a cara yang berbeda dan seterusnya sampai dengan tahap
PE P L E U L A U N A G N
PELUANG Berapa peluang Anda selesai S-1? Peluang Ukuran/derajat ketidakpastian suatu peristiwa Peluang Kemungkinan Peristiwa (probability) (possibility) sesuatu yang mungkin dapat terjadi Misal : Mengundi
I. PENDAHULUAN II. TINJAUAN PUSTAKA
I. PENDAHULUAN 1.1 Latar Belakang Pada masa sekarang, ditengah berkembangnya dunia industri tentunya terdapat berbagai permasalahan dalam bidang-bidang keindustrian. Permasalahan-permasalahan yang biasa
KONSEP PROBABILITAS & DISTRIBUSI PROBABILITAS
KONSEP PROBABILITAS & DISTRIBUSI PROBABILITAS 5 Pengendalian Kualitas Debrina Puspita Andriani Teknik Industri Universitas Brawijaya e- Mail : [email protected] Blog : hbp://debrina.lecture.ub.ac.id/ 2
Eksperimen Hasil Kejadian KONSEP PROBABILITAS
KONSEP PROBABILITAS Sebelumnya, telah dipelajari statistika deskriptif yang fokus untuk menyimpulkan data yang telah dikumpulkan pada waktu sebelumnya. Pada bab ini, akan dibahas tentang aspek lain dari
Probabilitas. Oleh Azimmatul Ihwah
Probabilitas Oleh Azimmatul Ihwah Teori Probabilitas Life is full of uncertainty Dimana terkadang kita tidak tahu apa yang akan terjadi semenit kemudian. Namun suatu kejadian dapat diperkirakan lebih sering
SOAL-SOAL LATIHAN PELUANG UJIAN NASIONAL
. UN 0 SOAL-SOAL LATIHAN PELUANG UJIAN NASIONAL Peserta didik memiliki kemampuan memahami konsep pada topik peluang suatu kejadian. Peserta didik memilki kemampuan mengaplikan konsep kalkulus dalam masalah
SUMBER BELAJAR PENUNJANG PLPG 2016 MATA PELAJARAN/PAKET KEAHLIAN MATEMATIKA BAB I PELUANG
SUMBER BELAJAR PENUNJANG PLPG 2016 MATA PELAJARAN/PAKET KEAHLIAN MATEMATIKA BAB I PELUANG Dr. Djadir, M.Pd. Dr. Ilham Minggi, M.Si Ja faruddin,s.pd.,m.pd. Ahmad Zaki, S.Si.,M.Si Sahlan Sidjara, S.Si.,M.Si
Peluang Aturan Perkalian, Permutasi, dan Kombinasi dalam Pemecahan Masalah Ruang Sampel Suatu Percobaan Peluang Suatu Kejadian dan Penafsirannya
2 Aturan Perkalian, Permutasi, dan Kombinasi dalam ; Pemecahan Masalah Ruang Sampel Suatu Percobaan ; Suatu Kejadian dan Penafsirannya ; Pada era demokrasi saat ini untuk menduduki suatu jabatan tertentu
CONTOH BAHAN AJAR PENDEKATAN INDUKTIF-DEDUKTIF
CONTOH BAHAN AJAR PENDEKATAN INDUKTIF-DEDUKTIF 1 2 ATURAN PERKALIAN LEMBAR KERJA SISWA KE-1 Perhatikan soal yang berkaitan dengan perjalanan berikut ini. Pak Zidan dengan mobilnya akan bepergian dari kota
Peluang dan Kejadian (Event) Bahan Kuliah II2092 Probabilitas dan Statistik Oleh: Rinaldi Munir Sekolah Teknik Elektro dan Informatika ITB
Peluang dan Kejadian (Event) Bahan Kuliah II2092 Probabilitas dan Statistik Oleh: Rinaldi Munir Sekolah Teknik Elektro dan Informatika ITB 1 Kejadian (event) Kejadian adalah himpunan bagian (subset) dari
, n(a) banyaknya kejadian A dan n(s) banyaknya ruang sampel
Peluang Suatu Kejadian a) Kisaran nilai peluang : 0 P( b) P( =, banyaknya kejadian A dan banyaknya ruang sampel c) Peluang komplemen suatu kejadian : P(A c ) = P( d) Peluang gabungan dari dua kejadian
Probabilitas = Peluang
1. Pendahuluan Probabilitas = Peluang Percobaan : proses yang menghasilkan data Ruang Contoh (S) : himpunan yang memuat semua kemungkinan hasil percobaan Kejadian = Event : himpunan bagian dari ruang contoh
KATA PENGANTAR. Salatiga, Juni Penulis. iii
KATA PENGANTAR Teori Probabilitas sangatlah penting dalam memberikan dasar pada Statistika dan Statistika Matematika. Di samping itu, teori probabilitas juga memberikan dasar-dasar dalam pembelajaran tentang
STATISTIK INDUSTRI 1. Agustina Eunike, ST., MT., MBA
STATISTIK INDUSTRI 1 Agustina Eunike, ST., MT., MBA Probabilitas PELUANG Eksperimen Aktivitas / pengukuran / observasi suatu fenomena yang bervariasi outputnya Ruang Sampel / Sample Space Semua output
STATISTIK PERTEMUAN III
STATISTIK PERTEMUAN III OUTLINE PERTEMUAN III BAGIAN II Probabilitas dan Teori Keputusan Konsep-Konsep Dasar Probabilitas Distribusi Probabilitas Diskrit Pengertian Probabilitas dan Manfaat Probabilitas
Tujuan Pembelajaran. mutually exclusive
Tujuan embelajaran Memahami dan menggunakan analisis kombinatorial untuk kejadian kompleks: permutasi dan kombinasi Mendefinisikan terminologi-terminologi penting dalam probabilitas dan menjelaskan bagaimana
Peluang. Bab. Di unduh dari : Bukupaket.com. Frekuensi Relatif Titik Sampel Percobaan Kejadian Titik Sampel Ruang Sampel
Bab Peluang A. KOMPETENSI DASAR DAN PENGALAMAN BELAJAR Kompetensi Dasar Setelah mengikuti pembelajaran peluang siswa mampu: 1. Memiliki motivasi internal, kemampuan bekerjasama, konsisten, sikap disiplin,
PELUANG. Permutasi dengan beberapa elemen yang sama: Dari n obyek terdapat n
PELUANG Bab 11 1. Faktorial Faktorial adalah perkalian bilangan asli berurutan Hasil perkalian dari n bilangan asli pertama yang terurut dikatakan sebagai n faktorial (n!) n! n( n 1)( n 2)...3.2.1 5! =
Misalkan terdapat eksperimen. S disebut ruang sampel, adalah himpunan semua kemungkinan hasil dari eksperimen.
Peluang Peluang dan Kejadian Peluang Bersyarat Peubah Acak dan Nilai Harapan Kovarian dan Korelasi 1.1 PELUANG DAN KEJADIAN Misalkan terdapat eksperimen. S disebut ruang sampel, adalah himpunan semua kemungkinan
Suplemen Kuliah STATISTIKA. Prodi Sistem Informasi (SI 3) STIKOM AMBON Pokok Bahasan Sub Pok Bahasan Referensi Waktu
Suplemen Kuliah STATISTIKA Pertemuan 5 Prodi Sistem Informasi (SI 3) STIKOM AMBON Pokok Bahasan Sub Pok Bahasan Referensi Waktu Konsep Peluang 1. Ruang Contoh dan Kejadian Walpole E. Ronald. (Probabbility
Aksioma Peluang. Bab Ruang Contoh
Bab 2 Aksioma Peluang 2.1 Ruang Contoh Dalam suatu percobaan, kita tidak tahu dengan pasti apa hasil yang akan terjadi. Misalnya pada percobaan membeli lampu pijar, kita tidak tahu dengan pasti, apakah
PELUANG. n cara yang berbeda. Contoh 1: Ali mempunyai 2 celana dan 3 baju yang berbeda. Berapa stelan celana dan baju berbeda yang dipunyai Ali?
-1- PELUANG 1. KAIDAH PENCACAHAN 1.1 Aturan Pengisian Tempat Jika beberapa peristiwa dapat terjadi dengan n1, n2, n3,... cara yang berbeda, maka keseluruhan peristiwa itu dapat terjadi dengan n n......
BAB 3 Teori Probabilitas
BAB 3 Teori Probabilitas A. HIMPUNAN a. Penulisan Hipunan Cara Pendaftaran Cara Pencirian 1) A = {a,i,u,e,o} 1) A = {X: x huruf vokal } 2) B = {1,2,3,4,5} menghasilkan data diskrit 2) B = {X: 1 x 2} menghasilkan
PENGANTAR MODEL PROBABILITAS
PENGANTAR MODEL PROBABILITAS (PMP, Minggu 1-7) Sri Haryatmi Kartiko Universitas Gadjah Mada Juni 2014 Outline 1 Minggu 1:HIMPUNAN Operasi Himpunan Sifat-Sifat Operasi Himpunan 2 Minggu 2:COUNTING TECHNIQUE
RENCANA PELAKSANAAN PEMBELAJARAN 01 Kode : RPP 01
RENCANA PELAKSANAAN PEMBELAJARAN 01 Kode : RPP 01 Nama Sekolah Kelas Semester Mata Pelajaran Materi Pokok Sub Materi Pokok Jumlah Jam pelajaran Pertemuan ke : SMP PGRI 2 Denpasar : IX : I : Matematika
Beberapa Hukum Peluang. Bahan Kuliah II2092 Probabilitas dan Statistik Oleh: Rinaldi Munir Sekolah Teknik Elektro dan Informatika ITB
Beberapa Hukum Peluang Bahan Kuliah II2092 Probabilitas dan Statistik Oleh: Rinaldi Munir Sekolah Teknik Elektro dan Informatika ITB 1 Suatu kejadian dapat merupakan gabungan atau irisan dari dua atau
Pembahasan Contoh Soal PELUANG
Pembahasan Contoh Soal PELUANG 1. Nomor rumah yang dimaksud terdiri atas dua angka. Ini berarti ada dua tempat yang harus diisi, yaitu PULUHAN dan SATUAN. Karena nomor rumah harus ganjil, maka tempat Satuan
Materi W12c P E L U A N G. Kelas X, Semester 2. B. Peluang Kejadian Majemuk. 3. Kejadian Majemuk saling Bebas Bersyarat.
Materi W12c P E L U A N G Kelas X, Semester 2 B. Peluang Kejadian Majemuk 3. Kejadian Majemuk saling Bebas Bersyarat www.yudarwi.com B. Peluang Kejadian Majemuk 3. Kejadian Majemuk Saling Bebas Bersyarat
KONSEP DASAR PROBABILITAS DAN DISTRIBUSI PROBABILITAS LELY RIAWATI, ST, MT.
KONSEP DASAR PROBABILITAS DAN DISTRIBUSI PROBABILITAS LELY RIAWATI, ST, MT. EKSPERIMEN suatu percobaan yang dapat diulang-ulang dengan kondisi yang sama CONTOH : Eksperimen : melempar dadu 1 kali Hasilnya
Bab 9. Peluang Diskrit
Bab 9. Peluang Diskrit Topik Definisi Peluang Diskrit Sifat Peluang Diskrit Probabilitas terbatas Konsep Teori Himpunan pada Peluang Diskrit Probabilitas Kejadian Majemuk A B dan A B DuaKejadianSalingLepas
Learning Outcomes Ruang Contoh Kejadian Aksioma Peluang Latihan. Aksioma Peluang. Julio Adisantoso. 16 Pebruari 2014
16 Pebruari 2014 Learning Outcome Mahasiswa dapat memahami ruang contoh, kejadian, dan koleksi Mahasiswa dapat melakukan operasi himpunan kejadian Mahasiswa dapat memahami aksioma peluang Mahasiswa dapat
Nilai Probabilitas berkisar antara 0 dan 1.
ROBBILITS Tujuan belajar : 1. Mengerti konsep probalitas 2. Mengerti hukum-hukum probabilita 3. Mengerti konsep mutually exclusif dan non exclusive, serta konsep bebas dan tak bebas 4. Memahami permutasi
PELUANG KEJADIAN. Macam-macam permutasi 1. Permutasi n unsur dari n unsur n. P n. 2. Permutasi dengan beberapa unsur yang sama
PELUANG KEJADIAN A. Aturan Perkalian/Pengisian Tempat Jika kejadian pertama dapat terjadi dalam a cara berbeda, kejadian kedua dapat terjadi dalam b cara berbeda, kejadian ketiga dapat terjadi dalam c
April 20, Tujuan Pembelajaran
pril 20, 2011 1 Tujuan embelajaran Memahami dan menggunakan analisis kombinatorial untuk kejadian kompleks: permutasi dan kombinasi Mendefinisikan terminologi-terminologi penting dalam probabilitas dan
Bab 11 PELUANG. Contoh : 5! = = 120
PELUANG Bab 11 1. Faktorial Faktorial adalah perkalian bilangan asli berurutan Hasil perkalian dari n bilangan asli pertama yang terurut dikatakan sebagai n faktorial (n!) n! n( n 1)( n 2)...3.2.1 5! =
MATERI BAB I RUANG SAMPEL DAN KEJADIAN. A. Pendahuluan Dari jaman dulu sampai sekarang orang sering berhadapan dengan peluang.
MATERI BAB I RUANG SAMPEL DAN KEJADIAN Pendahuluan Ruang Sampel Kejadian Dua Kejadian Yang Saling Lepas Operasi Kejadian BAB II MENGHITUNG TITIK SAMPEL Prinsip Perkalian/ Aturan Dasar Notasi Faktorial
Learning Outcomes Peluang Bersyarat Latihan-1 Hukum Penggandaan Hukum Total Peluang Latihan-2. Peluang Bersyarat. Julio Adisantoso.
2 Maret 2014 Learning Outcome Mahasiswa dapat memahami kejadian dan peluang bersyarat Mahasiswa dapat memahami hukum penggandaan Mahasiswa dapat memahami hukum total peluang Mahasiswa dapat memiliki dasar
BAB 2 LANDASAN TEORI
BAB 2 LANDASAN TEORI 2.1 Teori Probabilitas (Peluang) Probabilitas adalah suatu nilai untuk mengukur tingkat kemungkinan terjadinya suatu peristiwa (event) akan terjadi di masa mendatang yang hasilnya
Kompetens n i s : Mahasiswa mam a pu p menjel enj a el s a ka k n gejala ekonomi dengan meng guna k n a konsep probabil i i l t i as
Kompetensi: Mahasiswa mampu menjelaskan gejala ekonomi dengan menggunakan konsep probabilitas Hal. 9- Penelitian itu Penuh Kemungkinan (tdk pasti) Mengubah Saya tidak yakin Menjadi Saya yakin akan sukses
PS-02 HUKUM-HUKUM PROBABILITAS. Nur Hayati, S.ST, MT Yogyakarta, Februari 2016
PS-02 HUKUM-HUKUM PROBABILITAS Nur Hayati, S.ST, MT Yogyakarta, Februari 2016 Ruang Sampel Kejadian Hukum Probabilitas Pokok Bahasan Ruang Sampel Pengertian Ruang Sampel dan Titik Sampel Ruang Sampel adalah
BAHAN AJAR STATISTIKA DASAR Matematika STKIP Tuanku Tambusai Bangkinang 1 PELUANG
Pertemuan 2. BAHAN AJAR STATISTIKA DASAR Matematika STKIP Tuanku Tambusai Bangkinang 1.3 Menghitung titik sampel 1 PELUANG Teorema 1.1 (Kaedah pencacahan) Bila suatu operasi dapat dilakukan dengan n 1
Bab 1 PENGANTAR PELUANG
Bab 1 PENGANTAR PELUANG PENDAHULUAN Misalkan sebuah peristiwa A dapat terjadi sebanyak n kali diantara N peristiwa yang saling ekslusif dan masing-masing terjadi dengan kesempatan yang sama, maka peluang
