Bab IV. Pembahasan dan Hasil Penelitian

Save this PDF as:
 WORD  PNG  TXT  JPG

Ukuran: px
Mulai penontonan dengan halaman:

Download "Bab IV. Pembahasan dan Hasil Penelitian"

Transkripsi

1 Bab IV Pembahasan dan Hasil Penelitian IV.1 Statistika Deskriptif Pada bab ini akan dibahas mengenai statistik deskriptif dari variabel yang digunakan yaitu IHSG di BEI selama periode 1 April 2011 sampai dengan 30 Maret Pada periode tersebut terdapat sebanyak 248 hari perdagangan saham. Pada tabel 4.1 di bawah ini dapat lihat hasil statistika deskriptif IHSG selama periode pengamatan : Tabel 4.1 Statistika Deskriptif IHSG Periode 1 April Maret 2012 Descriptive Statistics N Minimum Maximum Mean Std. Deviation IHSG Valid N (listwise) 248 Selama periode pengamatan (lampiran 1), nilai IHSG yang tertinggi yaitu sebesar terjadi pada tanggal 1 Agustus 2011 dan nilai IHSG yang terendah yaitu sebesar pada tanggal 4 Oktober Selama periode pengamatan ada kecenderungan membentuk pola trend berubah-ubah dapat dikatakan perekonomian cenderung tidak stabil. Pada periode pengamatan data IHSG memiliki standar deviasi sebesar dan mean sebesar sehingga nilai indeks IHSG memiliki variasi dari nilai rata-ratanya yang cukup tinggi. Hal ini berarti menunjukkan bahwa data tersebut tidak stasioner karena nilai rata-rata dan variannya cenderung berubahubah dari periode ke periode.

2 IV.2 Analisis Data Analisis data yang digunakan pada penelitian ini yaitu menggunakan metode ARIMA. Sebelum dilakukan perhitungan dengan menggunakan metode ARIMA, penelitian ini melakukan serangkaian uji-uji seperti uji kestasioneran data, proses differencing, dan pengujian correlogram untuk menentukan koefisien autoregresi. IV.2.1 Uji Pola Data Uji pola data merupakan menganalisis pola pergerakan data saham per periode (harian, mingguan, bulan, atau tahun). Pola data menggambarkan karakteristik data dalam suatu periode. Berikut ini merupakan grafik pergerakan harian IHSG selama periode pengamatan penelitian: Gambar 4.1 Data Harian IHSG Periode 1 April Maret 2012 Sumber : IDX Daily Statistics, diolah

3 Pada gambar 4.1 terlihat data pergerakan harian IHSG periode mulai 1 April Maret 2012 menunjukan terjadi pola trend berubah-ubah dan memiliki variansi yang cukup tinggi. Oleh karena itu, dapat dikatakan bahwa data pada periode penelitian menunjukkan data yang tidak stasioner. Data yang tidak stasioner perlu dilakukan proses differencing agar data menjadi data yang bersifat stasioner, yaitu data yang nilai rata-rata dan variansinya relatif konstan dalam suatu periode. IV.2.2 Kestasioneran Data Menurut Aritonang (2002:105), kestasioneran dapat diperiksa dengan analisis otokorelasi dan otokorelasi parsial. Data yang dianalisis dalam ARIMA merupakan data yang bersifat stationer. Pada data time series dilakukan pengelompokkan pola data dengan menggunakan time lag (selisih waktu) selama 1 hari (time lag lainnya misalnya 2 hari, 3 hari, sampai dengan 36 hari) dalam analisis otokorelasi terhadap data tersebut. Berdasarkan pengujian tiap otokorelasi maka dapat didentifikasi pola datanya. Penentuan lag biasanya ditetapkan dua musim atau secara umum sebanyak 20 periode (DeLurgio, 1998 dalam Aritonang, 2002). Analisis dilakukan dengan menggunakan beberapa time lag dan koefisien otokorelasi yang diuji. Berikut ini merupakan hasil perhitungan fungsi otokorelasi dengan jumlah lag 20 dengan menggunakan program SPSS 20.0 dapat dilihat pada tabel sebagai berikut:

4 Tabel 4.2 Perhitungan Fungsi Otokorelasi Berdasarkan tabel 4.2 terlihat angka otokorelasi, pada lag 1 sampai 11 yang mempunyai nilai di atas 0.5. Hal ini mengarah pada adanya otokorelasi pada variabel IHSG. Berikut ini merupakan grafik fungsi otokorelasi adalah sebagai berikut:

5 Gambar 4.2 Grafik Fungsi Otokorelasi Berdasarkan gambar 4.2 autokorelasi terlihat bahwa grafik autokorelasi berbeda secara signifikan dari nol dan mengecil secara perlahan membentuk garis lurus. Hal ini menunjukkan bahwa data belum stasioner terhadap mean. Untuk itu, sebelum diproses lebih jauh dengan ARIMA, maka perlu dilakukan proses differencing. Selain pengamatan grafik dan hasil perhitungan fungsi otokorelasi, pemeriksaan kestasioneran data juga dapat dilakukan berdasarkan hasil perhitungan dan pengujian correlogram fungsi otokorelasi parsial. Berikut ini merupakan hasil perhitungan fungsi otokorelasi adalah sebagai berikut:

6 Tabel 4.3 Perhitungan Fungsi Otokorelasi Parsial Berdasarkan tabel 4.3, perhitungan autokorelasi parsial terlihat bahwa nilai autokorelasi parsial mendekati nol setelah lag pertama yaitu sebesar Hal ini menunjukan bahwa data belum stasioner. Pemeriksaan kestasioneran data juga dapat dilihat berdasarkan grafik fungsi otokorelasi parsial. Berikut ini merupakan grafik fungsi otokorelasi parsial adalah sebagai berikut:

7 Gambar 4.3 Grafik Fungsi Otokorelasi Parsial Berdasarkan gambar 4.3, grafik autokorelasi parsial terlihat bahwa grafik autokorelasi parsial mendekati nol setelah lag pertama. Hal ini menunjukan bahwa data belum stasioner. Dari analisis grafik autokorelasi dan autokorelasi parsial atau dengan teknik correlogram menunjukan bahwa data bersifat tidak stationer, sedangkan metode ARIMA memerlukan data yang bersifat stasioner. IV.2.3 Proses Differencing (Pembedaan) Dalam menggunakan metode ARIMA memerlukan data yang bersifat stasioner. Berdasarkan gambar 4.2 dan gambar 4.3 menunjukan data IHSG tidak stasioner. Data IHSG yang tidak stasioner harus dilakukan transformasi agar data menjadi bersifat stasioner dengan melakukan proses differencing. Proses differencing yaitu data yang asli (Y t ) diganti dengan perbedaan pertama data asli tersebut atau dapat dirumuskan sebagai berikut (Aritonang, 2002:107): d(1) = Y t Y t-1

8 Hasil proses pembedaan (differencing) ini dapat digambarkan dalam bentuk grafik sebagai berikut: Gambar 4.4 Data Differencing IHSG Sumber: Data diolah Pada grafik 4.4 di atas data IHSG telah dilakukan proses differencing sebesar 1. Dari grafik sequence di atas terlihat bahwa grafik tidak menunjukkan tren atau musiman dan bergerak di sekitar rata-rata. Dengan demikian, dapat dikatakan bahwa data tersebut sudah stasioner terhadap mean dan varians. Data IHSG yang sudah dilakukan proses dilakukan proses differencing sebesar 1 digunakan kembali untuk membuat correlogram (Dyt). Berikut ini merupakan hasil perhitungan fungsi otokorelasi dan fungsi otokorelasi parsial dari data yang sudah stasioner serta grafik correlogram-nya.

9 Tabel 4.4 Perhitungan Fungsi Otokorelasi setelah differencing Berdasarkan tabel 4.4 dapat dilihat koefisien otokorelasi secara statistik dengan menggunakan taraf signifikan α = 5% dan jumlah observasi (n = 247) dengan batas intervalnya yaitu 0 ± 1,96 / ( atau 0 ± 0,125 yang melewati batas interval, yaitu pada lag 4 secara statistik sebesar , lag 7 sebesar 0.198, dan lag Dengan demikian koefisien autokorelasi yang melebihi batas interval, atau berbeda secara nyata dengan nol, dapat dikatakan berdasarkan analisis correlogram data IHSG harian dalam periode penelitian dengan

10 differencing = 1 data sudah stasioner. Berikut ini hasil grafik fungsi otokorelasi setelah differencing adalah sebagai berikut: Gambar 4.5 Grafik Fungsi Otokorelasi setelah Differencing Berdasarkan gambar 4.5 terlihat grafik fungsi otokorelasi setelah diffrerencing, koefisien otokorelasi untuk beberapa lag tidak berbeda signifikan dari nol atau berbeda dari nol untuk beberapa lag didepan maka dapat dikatakan bahwa data bersifat stasioner. Serta dengan menggunakan taraf signifikan α = 5% dan jumlah observasi (n = 247) maka batas intervalnya yaitu 0 ± 1,96 / ( atau 0 ± 0,125. Dengan demikian koefisien yang melebihi batas interval yaitu lag 4, lag, 7, dan lag 17. Kestasioneran data juga dapat dilihat berdasarkan perhitungan dan grafik fungsi otokorelaso parsial. Berikut ini merupakan hasil perhitungan fungsi otokorelasi parsial setelah differencing adala sebagai berikut:

11 Tabel 4.5 Perhitungan Fungsi Otokorelasi Parsial setelah differencing Berdasarkan tabel 4.5 dapat dilihat koefisien otokorelasi parsial secara statistik dengan menggunakan taraf signifikan α = 5% dan jumlah observasi (n = 247) dengan batas intervalnya yaitu 0 ± 1,96 / ( atau 0 ± 0,125 terjadi pada lag 4 sebesar -0,175, pada lag 7 secara statistik sebesar dan pada lag 17 sebesar Dengan demikian koefisien autokorelasi yang melebihi batas interval, atau berbeda secara nyata dengan nol dapat dikatakan data IHSG harian dalam periode penelitian setelah melakukan proses differencing = 1 data sudah

12 stasioner. Berikut ini hasil grafik fungsi otokorelasi parsial setelah differencing adalah sebagai berikut: Gambar 4.6 Grafik Fungsi Otokorelasi Parsial setelah differencing Berdasarkan gambar di atas terlihat beberapa koefisien yang signifikan. Dengan menggunakan taraf signifikan α = 5% dan jumlah observasi (n = 247) maka batas intervalnya yaitu 0 ± 1,96 / ( atau 0 ± 0,125. Dengan demikian koefisien autokorelasi yang melebihi batas interval, atau berbeda secara nyata dengan nol yaitu pada lag 4, lag 7, dan lag 17, dapat dikatakan berdasarkan analisis correlogram data IHSG harian dalam periode penelitian dengan differencing = 1 data sudah stasioner.

13 IV.2.4 Penentuan Nilai p, d, dan q dalam ARIMA Pada bagian sebelumnya telah dilakukan penentuan nilai d (differencing) sebesar 1. Proses differencing dilakukan karena data awal yang sebelumnya tidak stasioner sehingga dilakukan proses pembedaan sebesar 1 agar data menjadi stasioner. Dalam menentukan nilai p dan q dapat ditentukan berdasarkan dari pola fungsi autokorelasi dan otokorelasi parsial (Mulyono, 2000). Dari grafik 4.5 dan grafik 4.6 dapat dilihat koefisien otokorelasi menuju secara bertahap atau gelombang dan otokorelasi parsial menurun secara bertahap / bergelombang maka dapat di identifikasikan bahwa proses tersebut merupakan proses ARIMA (p,d,0). Menurut Hadi (2012:92) Jika proses uji pola data, didapatkan bahwa differencing 1 dan data sudah stasioner maka langkah selanjutnya adalah melakukan estimasi model untuk peramalan harga saham. Model yang digunakan adalah ARIMA (p,d,q) di mana : p d q = ordo dari model AR, = differencing yang dilakukan agar data stasioner, = ordo dari MA. Pada penelitian ini, dapat diidentifikasi bahwa: p = 17, terlihat berdasarkan grafik 4.5 grafik autokorelasi untuk data differencing 1, ada satu koefisien yang signifikan, yaitu pada lag 17 q = 1, proses differencing yang dilakukan agar data menjadi stasioner adalah differencing 1

14 q = 17, terlihat berdasarkan grafik 4.6 grafik autokorelasi parsial untuk data differencing 1, ada satu koefisien yang signifikan, yaitu pada lag 17. Berdasarkan identifikasi data tersebut, dapat dilakukan pendugaan terhadap model prediksi, yaitu ARIMA (17,1,0), ARIMA (0,1,17), ARIMA (17,1,17) dan Expert Modeler. Expert Modeler merupakan pilihan secara automatically model yang di pilih dari menu forecasting SPSS Berdasarkan Expert Modeler terpilih model Expert Modeler ARIMA (0,1,17). Sebelum dilakukan peramalan atau prediksi maka dilakukan prose diagnostic checking terlebih dahulu untuk menentukan model telah dispesifikasi secara benar. IV.2.5 Diagnostic Checking Setelah pembentukan model ARIMA diperoleh untuk prediksi IHSG mendatang, maka dilakukan tahap diagnostic checking, yaitu memerika atau menguji apakah model telah dispesifikasi secara benar atau apakah telah dipilih p, d, dan q dengan benar. Ada beberapa cara untuk memeriksa model ARIMA, yaitu sebagai berikut: 1. Pengukuran Residual Pengukuran residual dilakukan untuk menentukan apakah Model ARIMA dispesifikasi dengan benar. Jika model ARIMA dispesikasi benar, kesalahannya harus random atau antar-eror tidak berhubungan, sehingga fungsi otokorelasi dari kesalahan tidak berbeda dengan nol. Jika tidak demikian, spesifikasi model yang lain perlu diduga dan diperiksa (Mulyono, 2000:132). Berdasarkan model ARIMA tersebut, dilakukan pengukuran terhadap model prediksi, yaitu ARIMA (17,1,0), ARIMA (0,1,17), ARIMA (17,1,17) dan Expert Modeler ARIMA (0,1,17).

15 A. Model ARIMA (17,1,0) Model ARIMA (17,1,0) yang telah dilakukan pengukuran residual dengan gambar ACF residual dan PACF residual adalah sebagai berikut: Gambar 4.7 Grafik ACF dan PACF Residual ARIMA (17,1,0) Pada gambar 4.7 menunjukan bahwa kedua grafik mempunyai kesamaan, yakni tidak ada satupun bar yang melampaui garis batas; atau dapat dikatakan bahwa residu dari model ARIMA (17,1,0) bersifat random atau antar-error tidak berhubungan. Dengan demikian, dapat disimpulkan model ARIMA (17,1,0) sudah dispesifikasi dengan benar.

16 B. Model ARIMA (0,1,17) Model ARIMA (0,1,17) yang telah dilakukan pengukuran residual dengan gambar ACF residual dan PACF residual adalah sebagai berikut: Gambar 4.8 Grafik ACF dan PACF Residual ARIMA (0,1,17) Pada gambar 4.8 menunjukan bahwa kedua grafik mempunyai kesamaan, yakni tidak ada satupun bar yang melampaui garis batas; atau dapat dikatakan bahwa residu dari model ARIMA (0,1,17) bersifat random atau antar-error tidak berhubungan. Dengan demikian, dapat disimpulkan model ARIMA (0,1,17) sudah dispesifikasi dengan benar.

17 C. Model ARIMA (17,1,17) Model ARIMA (17,1,17) yang telah dilakukan pengukuran residual dengan gambar ACF residual dan PACF residual adalah sebagai berikut: Gambar 4.9 Grafik ACF dan PACF Residual ARIMA (17,1,17) Pada gambar 4.9 menunjukan bahwa kedua grafik mempunyai kesamaan, yakni tidak ada satupun bar yang melampaui garis batas; atau dapat dikatakan bahwa residu dari model ARIMA (17,1,17) bersifat random atau antar-error tidak berhubungan. Dengan demikian, dapat disimpulkan model ARIMA (17,1,17) sudah dispesifikasi dengan benar.

18 D. Expert Modeler ARIMA (0,1,17) Expert Modeler ARIMA (0,1,17) yang telah dilakukan pengukuran residual dengan gambar ACF residual dan PACF residual adalah sebagai berikut: Gambar 4.10 Grafik ACF dan PACF Residual Expert Modeler ARIMA (0,1,17) Pada gambar 4.10 menunjukan bahwa kedua grafik mempunyai kesamaan, yakni ada satu bar yang melampaui garis batas tetapi dapat dikatakan dikatakan bahwa residu dari model ARIMA (0,1,17) bersifat random atau antar-error tidak berhubungan karena jumlah lag yang signifikan tidak melebihi dua. Dengan demikian, dapat disimpulkan model ARIMA (0,1,17) sudah dispesifikasi dengan benar.

19 2. Modifted Box-Pierce (Ljung-Box) Q Statistic Modifted Box-Pierce (Ljung-Box) Q Statistic digunakan untuk menguji apakah apakah fungsi autokorelasi kesalahan semuanya tidak berbeda dari nol. Jika statistik Q lebih kecil dari nilai kritis chi-square (lampiran 4.2), maka semua koefisien autokorelasi dianggap tidak berbeda dari nol atau model telah dispesifikasi dengan benar (mulyono, 2000:132). Berdasarkan hasil diagnostic checking dari pengukuran residual semua model sudah dispesifikasi dengan benar maka dilakukan pengujian Modifted Box-Pierce (Ljung-Box) Q Statistic. Hasil pengukuran Modifted Box-Pierce (Ljung-Box) Q Statistic beerdasarkan hasil SPSS 20.0 pada model ARIMA (17,1,0), ARIMA (0,1,17), ARIMA (17,1,17), dan Expert Modeler ARIMA (0,1,17) adalah sebagai berikut: A. Model ARIMA (17,1,0) Model ARIMA (17,1,0) yang telah dilakukan pengukuran Modifted Box- Pierce (Ljung-Box) Q Statistic adalah sebagai berikut: Tabel 4.6 Modifted Box-Pierce (Ljung-Box) ARIMA (17,1,0) Pada Tabel 4.6 menunjukan nilai statistik Ljung-Box sebesar yang diartikan jika dibandingkan dengan nilai distribusi chi-square (X²) dengan df sebesar 1 pada α = 5 %, yaitu (lampiran 2). Dengan demikian, dapat disimpulkan nilai statistik Hitung Ljung-Box sebesar > dari nilai

20 distribusi chi-square tabel sebesar , bahwa model ARIMA (17,1,0) tidak dapat dispesifikasi dengan benar. B. Model ARIMA (0,1,17) Model ARIMA (0,1,17) yang telah dilakukan pengukuran Modifted Box- Pierce (Ljung-Box) Q Statistic adalah sebagai berikut: Tabel 4.7 Modifted Box-Pierce (Ljung-Box) ARIMA (0,1,17) Pada Tabel 4.7 menunjukan nilai statistik Ljung-Box sebesar yang diartikan jika dibandingkan dengan nilai distribusi chi-square (X²) dengan df sebesar 1 pada α = 5 %, yaitu (lampiran 2). Dengan demikian, dapat disimpulkan nilai statistik Hitung Ljung-Box sebesar < dari nilai distribusi chi-square tabel sebesar , bahwa model ARIMA (0,1,17) dapat dispesifikasi dengan benar. C. Model ARIMA (17,1,17) Model ARIMA (17,1,17) yang telah dilakukan pengukuran Modifted Box- Pierce (Ljung-Box) Q Statistic adalah sebagai berikut: Tabel 4.8 Modifted Box-Pierce (Ljung-Box) ARIMA (17,1,17)

21 Pada Tabel 4.8 menunjukan nilai statistik Ljung-Box sebesar 0 yang diartikan jika dibandingkan dengan nilai distribusi chi-square (X²) dengan df sebesar 0 pada α = 5 %, yaitu 0. Dengan demikian, dapat disimpulkan bahwa model ARIMA (17,1,17) dapat dispesifikasi dengan benar karena nilainya sama dengan 0. D. Expert Modeler ARIMA (0,1,17) Expert Modeler ARIMA (0,1,17) yang telah dilakukan pengukuran Modifted Box-Pierce (Ljung-Box) Q Statistic adalah sebagai berikut: Tabel 4.9 Modifted Box-Pierce (Ljung-Box) EM ARIMA (0,1,17) Pada Tabel 4.9 menunjukan nilai statistik Ljung-Box sebesar yang diartikan jika dibandingkan dengan nilai distribusi chi-square (X²) dengan df sebesar 1 pada α = 5 %, yaitu (lampiran 2). Dengan demikian, dapat disimpulkan nilai statistik Hitung Ljung-Box sebesar < dari nilai distribusi chi-square tabel sebesar , bahwa Expert Modeler ARIMA (0,1,17) dapat dispesifikasi dengan benar. 3. Mean Square Error (MSE) Jika terdapat banyak spesifikasi model yang lolos dalam diagnostic checking, maka yang dipilih adalah model yang memberikan MSE terkecil. MSE yang lebih kecil menunjukkan bahwa model lebih cocok dengan data. Jika MSE diantara model-model itu tidak menunjjukkan perbedaan menonjol, semua model

22 terpilih dipertahankan dan seleksi didasarkan pada hasil ex post forecasts (Muyono, 2000:133). Berdasarkan diagnostic checking sebelumnya menggunakan Modifted Box- Pierce (Ljung-Box) Q Statistic model ARIMA yang tidak dapat dispesifikasi dengan benar yaitu, model ARIMA (17,1,0). Dengan demikian, dapat disimpulkan model ARIMA yang dilakukan pengukuran MSE terkecil, yaitu model ARIMA (0,1,17), model ARIMA (17,1,17), dan Expert Modeler (0,1,7) sebagai berikut: A. Model ARIMA (0,1,17) Model ARIMA (0,1,17) yang telah dilakukan pengukuran MSE adalah sebagai berikut: Tabel 4.10 Tabel Goodness of Fit dari model ARIMA (0,1,17) Berdasarkan tabel 4.10 didapatkan bahwa Nilai kesalahan RMSE = , MAPE = dan MAE = Serta, nilai kecocokan model dengan data adalah sebesar R 2 = artinya bahwa 91% model sudah sesuai dengan data yang sebenarnya.

23 B. Model ARIMA (17,1,17) Model ARIMA (17,1,17) yang telah dilakukan pengukuran MSE adalah sebagai berikut: Tabel 4.11 Tabel Goodness of Fit dari model ARIMA (17,1,17) Berdasarkan tabel 4.11 didapatkan bahwa Nilai kesalahan RMSE = , MAPE = dan MAE = Serta, nilai kecocokan model dengan data adalah sebesar R 2 = artinya bahwa 92.3% model sudah sesuai dengan data yang sebenarnya. C. Expert Modeler ARIMA (0,1,17) Model ARIMA (0,1,17) yang telah dilakukan pengukuran MSE adalah sebagai berikut: Tabel 4.12 Tabel Goodness of Fit dari Expert Modeler ARIMA (0,1,17)

24 Berdasarkan tabel 4.12 didapatkan bahwa Nilai kesalahan RMSE = , MAPE = dan MAE = Serta, nilai kecocokan model dengan data adalah sebesar R 2 = 0.87 artinya bahwa 92.3% model sudah sesuai dengan data yang sebenarnya. IV.2.6 Peramalan Peramalan atau prediksi dilakukan dengan menggunakan model yang terbaik dari hasil diagnostic checking. Berdasarkan hasil diagnostic checking dari pengukuran residual menunjukan semua model ARIMA telah dispesifikasi dengan benar karena residu dari semua model ARIMA bersifat random atau antarerror tidak berhubungan. Sedangkan, berdasarkan diagnostic checking menggunakan Modifted Box-Pierce (Ljung-Box) Q Statistic model ARIMA yang tidak dapat dispesifikasi dengan benar yaitu, model ARIMA (17,1,0). Serta menggunakan pengukuran MSE, diantara model-model ARIMA tidak menunjukkan perbedaan menonjol maka semua model terpilih dipertahankan dan diseleksi didasar hasil permalan. Dengan demikian, dapat disimpulkan model yang terbaik ARIMA yang lolos diagnostic checking atau telah dispesifikasi dengan benar, yaitu model ARIMA (0,1,17), model ARIMA (17,1,17), dan Expert Modeler (0,1,7). Jika model terbaik telah ditetapkan, model tersebut dapat dilakukan peramalan atau prediksi IHSG pada harian mendatang. Model ARIMA dan Hasil prediksi IHSG pada harian mendatang yang telah dispesifikasi dengan benar adalah sebagai berikut:

25 A. Model ARIMA (0,1,17) Berdasarkan pembentukan model prediksi ARIMA (0,1,17), didapatkan hasil prediksi IHSG mendatang dan grafik adalah sebagai berikut: Model Description Model Type Model ID IHSG Model_1 ARIMA(0,1,17) Hasil Prediksi: Tabel 4.13 Hasil Prediksi IHSG Periode Mendatang ARIMA (0,1,17) Berdasarkan hasil analisa model ARIMA (0,1,17) maka didapatkan hasil prediksi IHSG periode harian mendatang selama 7 hari ke depan seperti pada tabel Gambar 4.11 Grafik Prediksi IHSG Periode Harian Mendatang ARIMA (0,1,17)

26 Pada gambar 4.11 menunjukkan bahwa fit value dalam data penelitian hampir mendekati dengan data sebenarnya dan terlihat bahwa kurvanya hampir berimpit dengan kurva data sebenarnya. Serta, hasil perdiksi IHSG periode harian mendatang selama 7 hari ke depan menunjukkan tren yang berubah pada pada prediksi ke-249 sampai dengan prediksi ke-255. B. Model ARIMA (17,1,17) Berdasarkan pembentukan model prediksi ARIMA (17,1,17), didapatkan hasil prediksi IHSG mendatang dan grafik adalah sebagai berikut: Model Description Model Type Model ID IHSG Model_1 ARIMA(17,1,17) Hasil Prediksi: Tabel 4.14 Hasil Prediksi IHSG Periode Harian Mendatang ARIMA (17,1,17) Berdasarkan hasil analisa model ARIMA (17,1,17) maka didapatkan hasil prediksi IHSG periode harian mendatang selama 7 hari ke depan seperti pada tabel 4.14.

27 Gambar 4.12 Grafik Prediksi IHSG Periode Harian Mendatang ARIMA (17,1,17) Pada gambar 4.12 menunjukkan bahwa fit value dalam data penelitian hampir mendekati dengan data sebenarnya dan terlihat bahwa kurvanya hampir berimpit dengan kurva data sebenarnya. Serta, hasil perdiksi IHSG periode harian mendatang selama 7 hari ke depan menunjukkan tren yang berubah pada pada prediksi ke-249 sampai dengan prediksi ke-255. C. Expert Modeler Dalam SPSS 20.0 terdapat satu pilihan dalam memodelkan data time series, yaitu menggunakan metode expert model. Pembentukan model prediksi ARIMA dilakukan secara automatically model akan dipilikan hasil prediksi IHSG mendatang dan grafik adalah sebagai berikut: Model Description Model Type Model ID IHSG Model_1 EM ARIMA(0,1,17) Hasil Prediksi:

28 Tabel 4.15 Hasil Prediksi IHSG Periode Mendatang Expert Modeler (0,1,17) Berdasarkan hasil analisa model ARIMA (17,1,17) maka didapatkan hasil prediksi IHSG periode harian mendatang selama 7 hari ke depan seperti pada tabel Gambar 4.13 Grafik Prediksi IHSG Periode Harian Mendatang Expert Modeler (0,1,17) Pada Gambar 4.13 menunjukkan bahwa fit value dalam data penelitian hampir mendekati dengan data sebenarnya dan terlihat bahwa kurvanya hampir berimpit dengan kurva data sebenarnya. Serta, hasil perdiksi IHSG periode harian mendatang selama 7 hari ke depan menunjukkan tren yang menaik pada pada prediksi ke-249 sampai dengan prediksi ke-255.

29 IV.2.7 Pengukuran Kesalahan Peramalan Dalam suatu peramalan harus dilakukan pengukuran kesalahan yang disebabkan oleh suatu teknik peramalan tertentu. Semua model prediksi memiliki perbedaan nilai sebenarnya (actual) dengan nilai peramalan yang biasa disebut sebagai residual. Menurut Arsyad (2001:58) terdapat beberapa teknik untuk menghitung kesalahan atau residual dari setiap tahap peramalan: 1. Mean Absolute Deviation (MAD) atau simpangan absolut rata-rata 2. Mean Squared Error (MSE) atau kesalahan rata-rata kuadrat 3. Mean Absolute Percentage Error (MAPE) atau persentase kesalahan absolute rata-rata 4. Mean Percentage Error (MPE) atau persentase kesalahan rata-rata Ada empat cara untuk mengukur akurasi dari hasil peramalan. Dalam mengukur akurasi hasil peramalan dilakukan dengan cara membandingkan hasil prediksi dengan data yang sebenarnya. Berikut ini hasil perhitungan pengukuran kesalahan Peramalan model ARIMA, adalah sebgai berikut:

30 A. Model ARIMA (0,1,17) Tabel 4.16 Perhitungan Evaluasi Hasil Prediksi ARIMA (0,1,17) t IHSG (Yt) Ramalan (Y) Error (Et) I Et I Et² I Et I / Yt % Et/Yt % 02/04/ , ,96 50,11 50, ,41 1,20 1,20 03/04/ , ,07 143,38 143, ,25 3,37 3,37 04/04/ , ,02 39,01 39, ,94 0,94 0,94 05/04/ , ,91 70,47 70, ,46 1,69 1,69 06/04/ , ,27 55,80 55, ,53 1,34 1,34 09/04/ , ,55 57,25 57, ,10 1,38 1,38 10/04/ , ,41 26,60 26,60 707,72 0,64 0,64 Jumlah 29151,81 442,62 442, ,41 10,58 10,58 n Mean 4164,54 63,23 63, ,34 1,51 1,51 MAD MAE MSE MAPE MPE Sumber: Data diolah Berdasarkan tabel 4.16 terlihat bahwa MAD menunjukkan bahwa setiap prediksi terdeviasi secara rata-rata sebesar 63.23, MSE sebesar , dan MAPE sebesar 1,51 %. Nilai MPE sebesar % menunjukkan bahwa model tersebut tidak bias karena nilainya mendekati nol, maka perhitungan dari teknik tidak terlalu tinggi atau terlalu rendah dalam meramalkan IHSG yang mendatang.

31 B. Model ARIMA (17,1,17) Tabel 4.17 Perhitungan Evaluasi Hasil Prediksi ARIMA (17,1,17) t IHSG (Yt) Ramala n (Y) Error (Et) I Et I Et² I Et I / Yt % Et/Yt % 02/04/ , ,86 67,21 67, ,45 1,61 1,61 03/04/ , ,59 159,85 159, ,30 3,76 3,76 04/04/ , ,64 49,40 49, ,46 1,19 1,19 05/04/ , ,98 89,39 89, ,93 2,15 2,15 06/04/ , ,57 77,49 77, ,32 1,87 1,87 09/04/ , ,08 60,72 60, ,16 1,46 1,46 10/04/ , ,13 6,879 6,88 47,32 0,17 0,17 jumlah 29151,81 510,95 510, ,94 12,21 12,21 n Mean 4164,54 72,99 72, ,42 1,74 1,74 MAD MAE MSE MAPE MPE Sumber: Data diolah Berdasarkan tabel 4.17 terlihat bahwa MAD menunjukkan bahwa setiap prediksi terdeviasi secara rata-rata sebesar 72.99, MSE sebesar , dan MAPE sebesar 1.74 %. Nilai MPE sebesar 1.74 % menunjukkan bahwa model tersebut tidak bias karena nilainya mendekati nol, maka perhitungan dari teknik tidak terlalu tinggi atau terlalu rendah dalam meramalkan IHSG yang mendatang.

32 C. Expert Modeler Tabel 4.18 Perhitungan Evaluasi Hasil Prediksi Expert Modeler (0,1,17) t IHSG (Yt) Ramalan (Y) Error (Et) I Et I Et² I Et I / Yt % Et/Yt % 02/04/ , ,21 39,86 39, ,66 0,96 0,96 03/04/ , ,72 125,72 125, ,02 2,96 2,96 04/04/ , ,83 12,21 12,21 148,99 0,30 0,30 05/04/ , ,55 34,82 34, ,78 0,84 0,84 06/04/ , ,36 18,71 18,71 350,03 0,45 0,45 09/04/ , ,24 21,56 21,56 465,01 0,52 0,52 10/04/ , ,23-3,21 3,21 10,33 0,08-0,08 jumlah 29151,81 249,67 256, ,81 6,09 5,94 n Mean 4164,54 35,67 36, ,40 0,87 0,85 MAD MAE MSE MAPE MPE Sumber: Data diolah Berdasarkan tabel 4.18 terlihat bahwa MAD menunjukkan bahwa setiap prediksi terdeviasi secara rata-rata sebesar 35.67, MSE sebesar , dan MAPE sebesar 0.87 %. Nilai MPE sebesar 0.85 % menunjukkan bahwa model tersebut tidak bias karena nilainya mendekati nol, maka perhitungan dari teknik tidak terlalu tinggi atau terlalu rendah dalam meramalkan IHSG yang mendatang. IV.2.8 Pemilihan Model Terbaik Model prediksi ARIMA (p,d,q) akan memberikan hasil peramalan yang berbeda-beda maka harus dipilih salah satu model yang terbaik, yaitu model yang menunjukkan tingkat akurasi yang baik. Ada beberapa kriteria untuk pemilihan model terbaik, yaitu dengan menggunakan data sebenarnya dengan nilai peramalannya (forecasting-nya) di mana perbedaan ini disebut dengan residual (Hadi, 2012:92).

33 Dalam penelitian ini telah dilakukan beberapa model prediksi ARIMA. Hasil model prediksi didapatkan nilai penyimpangan hasil prediksi dengan nilai data sesungguhnya. Berikut ini kriteria penyimpangan antara prediksi dan data asli adalah sebagai berikut: Tabel 4.19 Ukuran Kebaikan Model ARIMA Model MAD MAE MSE MAPE MPE ARIMA (0.1,17) ARIMA (17,1,17) EM ARIMA (0,1,17) Sumber: Data diolah Berdasarkan tabel 4.19 Dapat dilihat bahwa dari ketiga model ARIMA, ada satu nilai model ARIMA yang memberikan nilai penyimpangan terkecil yaitu model Expert Modeler ARIMA (0,1,17) sebesar MAD , MAE , MSE , MAPE 0.870, dan MPE maka model Expert Modeler ARIMA (0,1,17) merupakan model yang terbaik untuk melakukan prediksi IHSG pada harian yang mendatang. IV.3 Pengujian Hipotesis Pendekatan Autokorelasi Dasar pengambilan keputusan: Ho : rk = 0, ada lag (nilai IHSG terdahulu) tertentu, yaitu Y t-1, Y t-2,, Y t-n berpengaruh tidak signifikan positif dalam meramal Yt (nilai IHSG periode harian pada waktu t)

34 H1 : rk = 0, ada lag (nilai IHSG terdahulu) tertentu, yaitu Y t-1, Y t-2,, Y t-n berpengaruh signifikan positif dalam meramal Yt (nilai IHSG periode harian pada waktu t) Hasil keputusan: Berdasarkan pengujian correlogram ada tiga koefisien otokorelasi dan otokorelasi parsial yang signifikan dalam pembentukan model ARIMA yaitu pada lag 4 (nilai 4 hari sebelumnya), lag 7 (nilai 7 hari sebelumnya) lag 17 (nilai 17 hari sebelumnya). Dengan menggunakan α = 5 % maka batas intervalnya adalah 0 ± 0,124. Dari tabel 4.4 terlihat koefisien otokorelasi pada lag 4, lag 7, dan lag 17 secara statistik berbeda dari nol atau melebihi confidence limit, yaitu rk lag 4 = , rk lag 7 = dan rk lag 17 = dan dari tabel 4.5 terlihat koefisien otokorelasi parsial pada lag 4, lag 7, dan lag 17 secara statitik berbeda dari nol atau melebihi confidence limit, yaitu rk lag 4 = , rk lag 7 = dan rk lag 17 = Berdasarkan koefisien otokorelasi parsial pada lag 4, lag 7, dan lag 17 secara statistik berbeda dari nol atau melebihi confidence limit dapat digunakan untuk menjawab hipotesis yang diajukan karena nilai IHSG terdahulu yaitu pada pada lag 4, lag 7, dan lag 17 berpengaruh signifikan dalam peramalan model ARIMA. Sedangkan nilai terdahulu selain pada lag 4, lag 7, dan lag 17 tidak mempunyai pengaruh yang signifikan terhadap prediksi IHSG yang mendatang dengan model ARIMA. Berikut ini merupakan lebih jelas pengujian hipotesisnya adalah sebagai berikut:

35 IHSG pada waktu 4 hari sebelum t (Y t-4 ) mempunyai nilai koefisien otokorelasi parsial melebihi confidence limit (rk = -0,175 < -0,125), berarti IHSG Y t-17 mempunyai pengaruh yang signifikan dalam prediksi Y t. IHSG pada waktu 7 hari sebelum t (Y t-7 ) mempunyai nilai koefisien otokorelasi parsial melebihi confidence limit (rk = > 0,125), berarti IHSG Y t-17 mempunyai pengaruh yang signifikan dalam prediksi Y t IHSG pada waktu 17 hari sebelum t (Y t-17 ) mempunyai nilai koefisien otokorelasi parsial melebihi confidence limit (rk = -0,234 < -0,125), berarti IHSG Y t-17 mempunyai pengaruh yang signifikan dalam prediksi Y t IHSG pada waktu selain Y t-4, Y t-7, dan Y t-17 mempunyai nilai koefisien otokorelasi parsial didalam interval confidence limit (0 ± 0,125) berarti IHSG Y t- 17 mempunyai pengaruh yang tidak signifikan dalam prediksi Y t Jadi dapat disimpulkan bahwa ada nilai IHSG yang terdahulu yang berpengaruh signifikan terhadap prediksi menggunakan metode ARIMA yaitu pada saat Y t-4, Y t-7, dan Y t-17 sedangkan nilai IHSG terdahulu lainnya tidak berpengaruh secara signifikan dalam prediksi nilai Yt (IHSG periode harian pada waktu t) Pendekatan Regresi Linier Sederhana Korelasi Hasil penelitian mengunakan hasil SPSS 20.0 dapat ditunjukan pada tabel 4.20 adalah sebagai berikut:

36 Tabel 4.20 Correlations Hasil tabel 4.20 menunjukkan hubungan hasil prediksi menggunakan metode ARIMA terhadap IHSG pada harian mendatang sebesar Angka ini menunjukkan hubungan korelasi yang rendah antara hasil prediksi menggunakan metode ARIMA dengan hasil IHSG pada harian Mendatang. Sig (1-tailed) = 0,000 menunjukkan hubungan yang signifikan karena 0,000, dimana 0,05 merupakan taraf signifikannya. Koefisien Determinasi (R 2 ) Hasil penelitian mengunakan hasil SPSS 20.0 dapat ditunjukan pada tabel 4.21 adalah sebagai berikut:

37 Tabel 4.21 Koefisien Determinasi Berdasarkan tabel 4.21 model summary menunjukkan bahwa R Square sebesar berarti pengaruh hasil prediksi dengan menggunakan ARIMA hanya 12% ( x 100%) sedangkan 88 % (100%-12%) oleh Faktor lainnya. Standar Error of Estimate (SEE) yang ditunjukan pada tabel diatas sebsar dalam arti semakin kecil nilai SEE makan model regresi semakin tepat dalam memprediksi nilai IHSG pada harian Mendatang Uji Signifikansi Simultan (Uji Statistik F) Hasil penelitian mengunakan hasil SPSS 20.0 dapat ditunjukan pada tabel 4.22 adalah sebagai berikut: Tabel 4.22 Uji Statistik F

38 Hipotesis Ho : b 1 = 0, Analisis prediksi IHSG dengan menggunakan metode ARIMA tidak berpengaruh signifikan terhadap IHSG pada harian mendatang di BEI Ha : b 1 0, Analisis prediksi IHSG dengan menggunakan metode ARIMA berpengaruh signifikan terhadap IHSG periode harian mendatang di BEI Dasar pengambilan keputusan: Bila F hitung > F tabel, maka Ho dinyatakan ditolak Kriteria untuk mengetahui signifikansi atau tidaknya pengeruh tersebut yaitu: p > 0,05 dinyatakan tidak signifikan Berdasarkan tabel 4.22 dari Uji ANOVA atau F test menunjukkan hasil uji signifikan ANOVA menunjukkan bahwa F hitung (34.304) > F Tabel (3,84) maka Ho ditolak (ha diterima) serta dengan nilai Sig. sebesar Jika dibandingkan dengan α = 0.05, nilai sig (0.000 < 0.05). Artinya Ho ditolak (Ha diterima). Dengan demikian, hal ini menunjukkan Analisis prediksi IHSG dengan menggunakan metode ARIMA berpengaruh signifikan terhadap IHSG periode harian mendatang di BEI. Uji Signifikansi Parameter Individual (Uji Statistik t) Hasil penelitian mengunakan hasil SPSS 20.0 dapat ditunjukan pada tabel 4.23 adalah sebagai berikut:

39 Tabel 4.23 Uji Statistik t Hipotesis Ho : b 1 = 0, Analisis prediksi IHSG dengan menggunakan metode ARIMA tidak berpengaruh signifikan terhadap IHSG pada harian mendatang di BEI Ha : b 1 0, Analisis prediksi IHSG dengan menggunakan metode ARIMA berpengaruh signifikan terhadap IHSG periode harian mendatang di BEI Dasar pengambilan keputusan: Jika t 0 > t α atau t 0 < -t α, maka H 0 ditolak (H a diterima), artinya Analisis prediksi IHSG dengan menggunakan metode ARIMA berpengaruh signifikan terhadap IHSG periode harian mendatang di BEI. Jika -t α t 0 t α, maka H 0 diterima (H a ditolak), artinya Analisis prediksi IHSG dengan menggunakan metode ARIMA tidak berpengaruh signifikan terhadap IHSG pada harian mendatang di BEI. Berdasarkan tabel 4.22 Hasil uji t menunjukkan hasil uji signifikan menunjukkan bahwa t hitung (5.857) > t tabel (1.65) maka Ho ditolak (ha diterima) serta dengan nilai Sig. sebesar Jika dibandingkan dengan α = 0.05, nilai sig (0.000 < 0.05). Artinya Ho ditolak (Ha diterima). Dengan demikian, hal ini menunjukkan

40 Analisis prediksi IHSG dengan menggunakan metode ARIMA berpengaruh signifikan terhadap IHSG periode harian mendatang di BEI. Persamaan Regresi Sederhana Y = a + bx Y = x a = konstanta dari koefisien sebesar , menyatakan bahwa jika prediksi IHSG tidak menggunakan metode ARIMA maka transaksi di BEI tetap berjalan sebesar b = angka koefisien regresi hasil prediksi menggunakan metode ARIMA sebesar 0.057, yang mempunyai arti setiap satu nilai prediksi yang dihasilkan ARIMA maka transaksi IHSG pada harian mendatang akan naik sebesar IV.4 Hasil Penelitian Setelah dilakukan pengujian hipotesis dengan SPSS 20.0 hasil analisis dapat disimpulkan sebagai berikut : 1. Hasil analisis teknikal prediksi IHSG dengan menggunakan ARIMA berdasarkan tabel 4.18 dihasilkan model prediksi yang terbaik adalah Expert Modeler ARIMA (0,1,17) dengan MAD 35.67, MAE 36.59, MSE , MAPE 0.87, dan MPE 0.85 atau dapat dikatakan model Expert Modeler ARIMA (0,1,17) model terbaik digunakan untuk memprediksi IHSG 7 harian mendatang. 2. Berdasarkan pengujian autokorelasi, dapat dilihat ada nilai IHSG terdahulu berpengaruh terhadap peramalan nilai IHSG menggunakan

41 metode ARIMA yaitu pada saat Y t-4, Y t-7, dan Y t-17 sedangkan nilai IHSG terdahulu lainnya tidak berpengaruh secara signifikan dalam peramalan nilai Yt (IHSG periode harian pada waktu t). 3. Hasil model Expert Modeler ARIMA (0,1,17) dalam memprediksi nilai IHSG selama 7 harian mendatang terbukti akurat dengan tingkat kesalahan peramalan rata-rata dengan sebesar 0.87% dari MAPE yang dapat dilihat pada tabel Berdasarkan pengujian regresi sederhana, pengaruh hasil prediksi harga saham dengan metode ARIMA berpengaruh signifikan terhadap IHSG periode harian mendatang di BEI dengan nilai konstanta dari koefisien sebesar , yang mempunyai arti jika prediksi IHSG tidak menggunakan metode ARIMA maka transaksi di BEI tetap berjalan sebesar dan angka koefisien regresi sebesar 0.057, yang mempunyai arti setiap satu nilai prediksi yang dihasilkan ARIMA maka transaksi IHSG pada harian mendatang akan naik sebesar IV.5 Implikasi Menurut pada penelitian Sadeq (2008) yang melakukan peramalan IHSG dengan metode ARIMA untuk periode 2 Januari 2006 sampai dengan 28 Desember Hasil penelitian menunjukkan bahwa metode ARIMA terbukti akurat dengan tingkat persentase kesalahan absolute rata-rata peramalan sebesar 4.13%. Dan dibandingkan dengan hasil penelitian ini pada periode 1 April 2011 sampai dengan 30 Maret 2011 tingkat persentase kesalahan absolute rata-rata peramalan sebesar 0.87 %. Dengan demikian hasil penelitian ini lebih akurat dibandingkan dengan penelitian Sadeq (2008) dan penelitian ini mendukung dari

42 hasil Sadeq (2008) dan Yani (2004) yang menyebutkan bahwa metode ARIMA dapat digunakan untuk meramal IHSG jangka pendek. Perbedaan nilai tingkat persentase kesalahan absolute rata-rata disebabkan perbedaan antara tingkat fluktuasi nilai IHSG antara periode penelitian. Pada periode peneltiaian yang dilakukan Sadeq terjadi fluktuasi yang berubah-ubah sedangkan fluktuasi nilai IHSG yang diteliti penelitian terjadi fluktuasi nilai IHSG yang tajam pada bulan oktober 2011.

BAB IV HASIL PENELITIAN DAN PEMBAHASAN. Adapun langkah-langkah pada analisis runtun waktu dengan model ARIMA

BAB IV HASIL PENELITIAN DAN PEMBAHASAN. Adapun langkah-langkah pada analisis runtun waktu dengan model ARIMA BAB IV HASIL PENELITIAN DAN PEMBAHASAN Pada bab ini, akan dilakukan analisis dan pembahasan terhadap data runtun waktu. Adapun data yang digunakan dalam penelitian ini merupakan data sekunder, yaitu data

Lebih terperinci

Prediksi Harga Saham dengan ARIMA

Prediksi Harga Saham dengan ARIMA Prediksi Harga Saham dengan ARIMA Peramalan harga saham merupakan sesuatu yang ditunggu-tunggu oleh para investor. Munculnya model prediksi yang baru yang bisa meramalkan harga saham secara tepat merupakan

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI Pada bab ini akan dijelaskan teori-teori yang menjadi dasar dan landasan dalam penelitian sehingga membantu mempermudah pembahasan selanjutnya. Teori tersebut meliputi arti dan peranan

Lebih terperinci

4 BAB IV HASIL PEMBAHASAN DAN EVALUASI. lebih dikenal dengan metode Box-Jenkins adalah sebagai berikut :

4 BAB IV HASIL PEMBAHASAN DAN EVALUASI. lebih dikenal dengan metode Box-Jenkins adalah sebagai berikut : 4 BAB IV HASIL PEMBAHASAN DAN EVALUASI Pada bab ini, akan dilakukan analisis dan pembahasan terhadap data runtut waktu. Data yang digunakan dalam penelitian ini merupakan data sekunder, yaitu data harga

Lebih terperinci

Bab V SIMPULAN DAN SARAN

Bab V SIMPULAN DAN SARAN Bab V SIMPULAN DAN SARAN V.1 Ringkasan Penelitian ini dilakukan untuk menguji prediksi menggunakan metode ARIMA. Data yang digunakan dalam penelitian adalah data IHSG penutupan harian IHSG mulai periode

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Defenisi Peramalan Peramalan adalah suatu kegiatan dalam memperkirakan atau kegiatan yang meliputi pembuatan perencanaan di masa yang akan datang dengan menggunakan data masa lalu

Lebih terperinci

FORECASTING INDEKS HARGA SAHAM GABUNGAN (IHSG) DENGAN MENGGUNAKAN METODE ARIMA

FORECASTING INDEKS HARGA SAHAM GABUNGAN (IHSG) DENGAN MENGGUNAKAN METODE ARIMA FORECASTING INDEKS HARGA SAHAM GABUNGAN (IHSG) DENGAN MENGGUNAKAN METODE ARIMA 1) Nurul Latifa Hadi 2) Artanti Indrasetianingsih 1) S1 Program Statistika, FMIPA, Universitas PGRI Adi Buana Surabaya 2)

Lebih terperinci

METODE PENELITIAN. Penelitian ini dilakukan pada semester genap tahun akademik 2014/2015

METODE PENELITIAN. Penelitian ini dilakukan pada semester genap tahun akademik 2014/2015 III. METODE PENELITIAN 3.1 Waktu dan Tempat Penelitian Penelitian ini dilakukan pada semester genap tahun akademik 2014/2015 bertempat di Jurusan Matematika Fakultas Matematika dan Ilmu Pengetahuan Alam

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI 1 BAB 2 LANDASAN TEORI Bab ini membahas tentang teori penunjang dan penelitian sebelumnya yang berhubungan dengan metode ARIMA box jenkins untuk meramalkan kebutuhan bahan baku. 2.1. Peramalan Peramalan

Lebih terperinci

III. METODE PENELITIAN

III. METODE PENELITIAN 15 III. METODE PENELITIAN 3.1. Kerangka Pemikiran Penelitian Perkembangan ekonomi dan bisnis dewasa ini semakin cepat dan pesat. Bisnis dan usaha yang semakin berkembang ini ditandai dengan semakin banyaknya

Lebih terperinci

BAB II LANDASAN TEORI DAN PENGEMBANGAN HIPOTESIS

BAB II LANDASAN TEORI DAN PENGEMBANGAN HIPOTESIS BAB II LANDASAN TEORI DAN PENGEMBANGAN HIPOTESIS II.1 Landasan Teori II.1.1 Indeks Harga Saham Gabungan (IHSG) IHSG di BEI meliputi pergerakan-pergerakan harga untuk saham biasa dan saham preferen. IHSG

Lebih terperinci

PREDIKSI HARGA SAHAM PT. BRI, Tbk. MENGGUNAKAN METODE ARIMA (Autoregressive Integrated Moving Average)

PREDIKSI HARGA SAHAM PT. BRI, Tbk. MENGGUNAKAN METODE ARIMA (Autoregressive Integrated Moving Average) PREDIKSI HARGA SAHAM PT. BRI, MENGGUNAKAN METODE ARIMA (Autoregressive Integrated Moving Average) Greis S. Lilipaly ), Djoni Hatidja ), John S. Kekenusa ) ) Program Studi Matematika FMIPA UNSRAT Manado

Lebih terperinci

TINJAUAN PUSTAKA. perubahan harga yang dibayar konsumen atau masyarakat dari gaji atau upah yang

TINJAUAN PUSTAKA. perubahan harga yang dibayar konsumen atau masyarakat dari gaji atau upah yang II.. TINJAUAN PUSTAKA Indeks Harga Konsumen (IHK Menurut Monga (977 indeks harga konsumen adalah ukuran statistika dari perubahan harga yang dibayar konsumen atau masyarakat dari gaji atau upah yang didapatkan.

Lebih terperinci

BAB 4 PEMBAHASAN HASIL PENELITIAN

BAB 4 PEMBAHASAN HASIL PENELITIAN BAB 4 PEMBAHASAN HASIL PENELITIAN 41 Hasil Uji Statistik 411 Statistik Deskriptif Pada bagian ini akan dibahas mengenai hasil pengolahan data statistik deskriptif dari variabel-variabel yang diteliti Langkah

Lebih terperinci

BAB IV HASIL PENELITIAN DAN PEMBAHASAN. Textile dan Otomotif yang terdaftar di BEI periode tahun

BAB IV HASIL PENELITIAN DAN PEMBAHASAN. Textile dan Otomotif yang terdaftar di BEI periode tahun BAB IV HASIL PENELITIAN DAN PEMBAHASAN A. Hasil Analisa Penelitian ini menggunakan data skunder berupa laporan keuangan audit yang diperoleh dari website resmi Bursa Efek Indonesia (BEI) yaitu www.idx.co.id.

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI 7 BAB 2 LANDASAN TEORI 2.1 Iklim Iklim ialah suatu keadaan rata-rata dari cuaca di suatu daerah dalam periode tertentu. Curah hujan ialah suatu jumlah hujan yang jatuh di suatu daerah pada kurun waktu

Lebih terperinci

BAB III METODE PENELITIAN

BAB III METODE PENELITIAN BAB III METODE PENELITIAN 3.1 Variabel ARIMA menggunakan variabel dependen harga saham LQ45 dan variabel independen harga saham LQ45 periode sebelumnya, sedangkan ARCH/GARCH menggunakan variabel dependen

Lebih terperinci

LAPORAN PRAKTIKUM ANALISIS RUNTUN WAKTU. Laporan VI ARIMA Analisis Runtun Waktu Model Box Jenkins

LAPORAN PRAKTIKUM ANALISIS RUNTUN WAKTU. Laporan VI ARIMA Analisis Runtun Waktu Model Box Jenkins LAPORAN PRAKTIKUM ANALISIS RUNTUN WAKTU Kelas A Laporan VI ARIMA Analisis Runtun Waktu Model Box Jenkins No Nama Praktikan Nomor Mahasiswa Tanggal Pengumpulan 1 29 Desember 2010 Tanda Tangan Praktikan

Lebih terperinci

Model Autoregressive Integrated Moving Average (ARIMA) adl teknik untuk mencari pola yg paling cocok dari sekelompok data Model ARIMA dapat digunakan

Model Autoregressive Integrated Moving Average (ARIMA) adl teknik untuk mencari pola yg paling cocok dari sekelompok data Model ARIMA dapat digunakan METODE BOX JENKINS Model Autoregressive Integrated Moving Average (ARIMA) adl teknik untuk mencari pola yg paling cocok dari sekelompok data Model ARIMA dapat digunakan utk semua tipe pola data. Dapat

Lebih terperinci

BAB III METODE PENELITIAN

BAB III METODE PENELITIAN BAB III METODE PENELITIAN 3.1 Variabel Penelitian Penelitian ini menggunakan satu definisi variabel operasional yaitu ratarata temperatur bumi periode tahun 1880 sampai dengan tahun 2012. 3.2 Jenis dan

Lebih terperinci

II. TINJAUAN PUSTAKA. Analisis ARIMA (Autoregressive Integrated Moving Average) umumnya

II. TINJAUAN PUSTAKA. Analisis ARIMA (Autoregressive Integrated Moving Average) umumnya II. TINJAUAN PUSTAKA 2.1 Stasioner Analisis ARIMA Autoregressive Integrated Moving Average umumnya mengasumsikan bahwa proses umum dari time series adalah stasioner. Tujuan proses stasioner adalah rata-rata,

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Peramalan 2.1.1 Pengertian Peramalan Peramalan adalah kegiatan untuk memperkirakan apa yang akan terjadi pada masa yang akan datang (Sofjan Assauri,1984). Setiap kebijakan ekonomi

Lebih terperinci

PENGGUNAAN MODEL GENERALIZED AUTOREGRESSIVE CONDITIONAL HETEROSCEDASTICITY (P,Q) UNTUK PERAMALAN HARGA DAGING AYAM BROILER DI PROVINSI JAWA TIMUR

PENGGUNAAN MODEL GENERALIZED AUTOREGRESSIVE CONDITIONAL HETEROSCEDASTICITY (P,Q) UNTUK PERAMALAN HARGA DAGING AYAM BROILER DI PROVINSI JAWA TIMUR Seminar Nasional Matematika dan Aplikasinya, 21 Oktober 27 PENGGUNAAN MODEL GENERALIZED AUTOREGRESSIVE CONDITIONAL HETEROSCEDASTICITY (P,Q) UNTUK PERAMALAN HARGA DAGING AYAM BROILER DI PROVINSI JAWA TIMUR

Lebih terperinci

PENDUGAAN DATA RUNTUT WAKTU MENGGUNAKAN METODE ARIMA

PENDUGAAN DATA RUNTUT WAKTU MENGGUNAKAN METODE ARIMA KEMENTERIAN PEKERJAAN UMUM BADAN PENELITIAN DAN PENGEMBANGAN PUSAT PENELITIAN DAN PENGEMBANGAN SUMBER DAYA AIR PENDUGAAN DATA RUNTUT WAKTU MENGGUNAKAN METODE ARIMA PENDAHULUAN Prediksi data runtut waktu.

Lebih terperinci

PERAMALAN JUMLAH PENUMPANG BANDARA I GUSTI NGURAH RAI DENGAN MENGGUNAKAN METODE AUTOREGRESSIVE INTEGRATED MOVING AVERAGE (ARIMA)

PERAMALAN JUMLAH PENUMPANG BANDARA I GUSTI NGURAH RAI DENGAN MENGGUNAKAN METODE AUTOREGRESSIVE INTEGRATED MOVING AVERAGE (ARIMA) M-11 2) PERAMALAN JUMLAH PENUMPANG BANDARA I GUSTI NGURAH RAI DENGAN MENGGUNAKAN METODE AUTOREGRESSIVE INTEGRATED MOVING AVERAGE (ARIMA) Naili Farkhatul Jannah 1), Muhammad Bahtiar Isna Fuady 2), Sefri

Lebih terperinci

PERAMALAN PERMINTAAN PRODUK SARUNG TANGAN GOLF MENGGUNAKAN METODE AUTOREGRESSIVE INTEGRATED MOVING AVERAGE (ARIMA) DI PT. ADI SATRIA ABADI ABSTRAK

PERAMALAN PERMINTAAN PRODUK SARUNG TANGAN GOLF MENGGUNAKAN METODE AUTOREGRESSIVE INTEGRATED MOVING AVERAGE (ARIMA) DI PT. ADI SATRIA ABADI ABSTRAK PERAMALAN PERMINTAAN PRODUK SARUNG TANGAN GOLF MENGGUNAKAN METODE AUTOREGRESSIVE INTEGRATED MOVING AVERAGE (ARIMA) DI PT. ADI SATRIA ABADI Trio Yonathan Teja Kusuma 1, Sandra Praharani Nur Asmoro 2 1,2)

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Peramalan Peramalan digunakanan sebagai acuan pencegah yang mendasari suatu keputusan untuk yang akan datang dalam upaya meminimalis kendala atau memaksimalkan pengembangan baik

Lebih terperinci

BAB IV HASIL ANALISIS DAN PEMBAHASAN. membuat kesimpulan yang berlaku untuk umum.

BAB IV HASIL ANALISIS DAN PEMBAHASAN. membuat kesimpulan yang berlaku untuk umum. A. Uji Statistik Deskriptif BAB IV HASIL ANALISIS DAN PEMBAHASAN Statistik deskriptif adalah statistik yang berfungsi untuk mendeskripsikan atau memberi gambaran terhadap objek yang diteliti melalui data

Lebih terperinci

BAB IV ANALISIS HASIL DAN PEMBAHASAN

BAB IV ANALISIS HASIL DAN PEMBAHASAN BAB IV ANALISIS HASIL DAN PEMBAHASAN Penelitian ini dilakukan pada perusahaan yang terdaftar di Bursa Efek Indonesia pada tahun 2010-2012. Tujuan dari penelitian ini adalah untuk menguji pengaruh Size

Lebih terperinci

SBAB III MODEL VARMAX. Pengamatan time series membentuk suatu deret data pada saat t 1, t 2,..., t n

SBAB III MODEL VARMAX. Pengamatan time series membentuk suatu deret data pada saat t 1, t 2,..., t n SBAB III MODEL VARMAX 3.1. Metode Analisis VARMAX Pengamatan time series membentuk suatu deret data pada saat t 1, t 2,..., t n dengan variabel random Z n yang dapat dipandang sebagai variabel random berdistribusi

Lebih terperinci

BAB IV HASIL PENELITIAN. Penelitian ini menganalisis pengaruh ukuran perusahaan, free cash flow dan

BAB IV HASIL PENELITIAN. Penelitian ini menganalisis pengaruh ukuran perusahaan, free cash flow dan BAB IV HASIL PENELITIAN 4.1.Gambaran Umum Sampel Penelitian ini menganalisis pengaruh ukuran perusahaan, free cash flow dan leverage terhadap risiko saham pada perusahaan manufakur yang terdaftar dalam

Lebih terperinci

MODEL TERBAIK ARIMA DAN WINTER PADA PERAMALAN DATA SAHAM BANK

MODEL TERBAIK ARIMA DAN WINTER PADA PERAMALAN DATA SAHAM BANK MODEL TERBAIK ARIMA DAN WINTER PADA PERAMALAN DATA SAHAM BANK Moh. Yamin Darsyah 1, Muhammad Saifudin Nur 2 1,2 Progam Studi Statistika Fakultas Matematika Dan Ilmu Pengetahuan Alam Universitas Muhammadiyah

Lebih terperinci

BAB IV HASIL ANALISIS DAN PEMBAHASAN. membuat kesimpulan yang berlaku untuk umum.

BAB IV HASIL ANALISIS DAN PEMBAHASAN. membuat kesimpulan yang berlaku untuk umum. BAB IV HASIL ANALISIS DAN PEMBAHASAN A. Uji Statistik Deskriptif Statistik deskriptif adalah statistik yang berfungsi untuk mendeskripsikan atau member gambaran terhadap objek yang diteliti melalui data

Lebih terperinci

The 4 th Univesity Research Coloquium 2016 PERBANDINGAN MODEL ARIMA DAN WINTER PADA PERAMALAN DATA SAHAM BANK

The 4 th Univesity Research Coloquium 2016 PERBANDINGAN MODEL ARIMA DAN WINTER PADA PERAMALAN DATA SAHAM BANK PERBANDINGAN MODEL ARIMA DAN WINTER PADA PERAMALAN DATA SAHAM BANK Moh. Yamin Darsyah 1, Muhammad Saifudin Nur 2 1,2 Progam Studi Statistika Fakultas Matematika Dan Ilmu Pengetahuan Alam Universitas Muhammadiyah

Lebih terperinci

BAB IV ANALISIS HASIL PEMBAHASAN

BAB IV ANALISIS HASIL PEMBAHASAN BAB IV ANALISIS HASIL PEMBAHASAN 4.1 Analisis Profil Responden 4.1.1 Statistik Deskriptif Statistik deskriptif digunakan untuk melihat gambaran secara umum data yang telah dikumpulkan dalam penelitian

Lebih terperinci

BAB IV ANALISIS HASIL DAN PEMBAHASAN

BAB IV ANALISIS HASIL DAN PEMBAHASAN BAB IV ANALISIS HASIL DAN PEMBAHASAN A. Deskripsi Data Hasil Penelitian Statistik deskriptif digunakan untuk melihat gambaran secara umum data yang telah dikumpulkan dalam penelitian ini. Berikut hasil

Lebih terperinci

BAB IV HASIL DAN PEMBAHASAN

BAB IV HASIL DAN PEMBAHASAN 52 BAB IV HASIL DAN PEMBAHASAN A. Hasil Uji Analisis Hipotesis dalam penelitian ini diuji dengan menggunakan model regresi berganda. Tujuannya adalah untuk memperoleh gambaran yang menyeluruh mengenai

Lebih terperinci

BAB IV HASIL DAN PEMBAHASAN. dengan cara mendeskripsikan atau menggambarkan data yang telah terkumpul

BAB IV HASIL DAN PEMBAHASAN. dengan cara mendeskripsikan atau menggambarkan data yang telah terkumpul BAB IV HASIL DAN PEMBAHASAN IV.1 Statistik Deskriptif Statistik deskriptif merupakan statistik yang digunakan untuk menganalisa data dengan cara mendeskripsikan atau menggambarkan data yang telah terkumpul

Lebih terperinci

PERAMALAN PENJUALAN PRODUKSI TEH BOTOL SOSRO PADA PT. SINAR SOSRO SUMATERA BAGIAN UTARA TAHUN 2014 DENGAN METODE ARIMA BOX-JENKINS

PERAMALAN PENJUALAN PRODUKSI TEH BOTOL SOSRO PADA PT. SINAR SOSRO SUMATERA BAGIAN UTARA TAHUN 2014 DENGAN METODE ARIMA BOX-JENKINS Saintia Matematika ISSN: 2337-9197 Vol. 02, No. 03 (2014), pp. 253 266. PERAMALAN PENJUALAN PRODUKSI TEH BOTOL SOSRO PADA PT. SINAR SOSRO SUMATERA BAGIAN UTARA TAHUN 2014 DENGAN METODE ARIMA BOX-JENKINS

Lebih terperinci

BAB IV HASIL DAN PEMBAHASAN. Jumlah Uang Beredar (JUB) dalam arti luas (M 2 ) dan BI Rate dari tahun

BAB IV HASIL DAN PEMBAHASAN. Jumlah Uang Beredar (JUB) dalam arti luas (M 2 ) dan BI Rate dari tahun BAB IV HASIL DAN PEMBAHASAN 4.1. Gambaran Umum Dalam penelitian ini, yang menjadi objek penelitian adalah inflasi, Jumlah Uang Beredar (JUB) dalam arti luas (M 2 ) dan BI Rate dari tahun 2010 sampai tahun

Lebih terperinci

PEMODELAN ARIMA DALAM PERAMALAN PENUMPANG KERETA API PADA DAERAH OPERASI (DAOP) IX JEMBER

PEMODELAN ARIMA DALAM PERAMALAN PENUMPANG KERETA API PADA DAERAH OPERASI (DAOP) IX JEMBER PKMT-2-13-1 PEMODELAN ARIMA DALAM PERAMALAN PENUMPANG KERETA API PADA DAERAH OPERASI (DAOP) IX JEMBER Umi Rosyiidah, Diah Taukhida K, Dwi Sitharini Jurusan Matematika, Universitas Jember, Jember ABSTRAK

Lebih terperinci

BAB IV ANALISIS HASIL DAN PEMBAHASAN

BAB IV ANALISIS HASIL DAN PEMBAHASAN BAB IV ANALISIS HASIL DAN PEMBAHASAN A. Analisis Hasil 1. Statistik Deskriptif Statistik deskriptif menggambarkan tentang ringkasan data data penelitian seperti jumlah data yang diolah, nilai minimum,

Lebih terperinci

BAB II LANDASAN TEORI. Peramalan adalah proses perkiraan (pengukuran) besarnya atau jumlah

BAB II LANDASAN TEORI. Peramalan adalah proses perkiraan (pengukuran) besarnya atau jumlah BAB II LANDASAN TEORI 2.1 Peramalan 2.1.1 Definisi dan Tujuan Peramalan Peramalan adalah proses perkiraan (pengukuran) besarnya atau jumlah sesuatu pada waktu yang akan datang berdasarkan data pada masa

Lebih terperinci

Biaya operasional terendah adalah dialami oleh PT. Centrin Online Tbk (CENT), dan tertinggi di alami oleh Mitra Adi Perkasa Tbk (MAPI

Biaya operasional terendah adalah dialami oleh PT. Centrin Online Tbk (CENT), dan tertinggi di alami oleh Mitra Adi Perkasa Tbk (MAPI BAB IV HASIL DAN PEMBAHASAN A. Statistik Deskriptif Dengan statistik deskriptif memberikan informasi tentang karakteristik sampel yang digunakan secara lebih rinci. Informasi yang dapat diperoleh dari

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Pendahuluan. Universitas Sumatera Utara

BAB 1 PENDAHULUAN. 1.1 Pendahuluan. Universitas Sumatera Utara BAB 1 PENDAHULUAN 1.1 Pendahuluan Peramalan merupakan upaya memperkirakan apa yang terjadi pada masa mendatang berdasarkan data pada masa lalu, berbasis pada metode ilmiah dan kualitatif yang dilakukan

Lebih terperinci

BAB IV HASIL DAN PEMBAHASAN. deskripsi suatu data yang dilihat dari nilai rata-rata (mean), standar deviasi,

BAB IV HASIL DAN PEMBAHASAN. deskripsi suatu data yang dilihat dari nilai rata-rata (mean), standar deviasi, BAB IV HASIL DAN PEMBAHASAN A. Hasil Analisis 1. Analisis Statistik Deskriptif Statistik deskriptif berfungsi untuk memberikan gambaran atau deskripsi suatu data yang dilihat dari nilai rata-rata (mean),

Lebih terperinci

BAB 4 ANALISIS DAN PEMBAHASAN

BAB 4 ANALISIS DAN PEMBAHASAN BAB 4 ANALISIS DAN PEMBAHASAN Pada bab sebelumnya telah dijelaskan mengenai populasi dan proses pengumpulan data untuk kepentingan analisis data penelitian. Penelitian dilakukan dengan cara pengumpulan

Lebih terperinci

BAB IV ANALISIS HASIL DAN PEMBAHASAN

BAB IV ANALISIS HASIL DAN PEMBAHASAN BAB IV ANALISIS HASIL DAN PEMBAHASAN A. Statistik Deskriptif Berdasarkan nilai pada masing-masing variabel dapat diketahui nilai penelitian seperti nilai minimum, maksimum, mean dan standard deviasi dari

Lebih terperinci

BAB III METODE PENELITIAN. 3.1 Unit Analisis dan Ruang Lingkup Penelitian. yang berupa data deret waktu harga saham, yaitu data harian harga saham

BAB III METODE PENELITIAN. 3.1 Unit Analisis dan Ruang Lingkup Penelitian. yang berupa data deret waktu harga saham, yaitu data harian harga saham 32 BAB III METODE PENELITIAN 3.1 Unit Analisis dan Ruang Lingkup Penelitian 3.1.1. Objek Penelitian Objek sampel data dalam penelitian ini menggunakan data sekunder yang berupa data deret waktu harga saham,

Lebih terperinci

Metode Variasi Kalender untuk Meramalkan Banyaknya Penumpang Kereta Api

Metode Variasi Kalender untuk Meramalkan Banyaknya Penumpang Kereta Api Metode Variasi Kalender untuk Meramalkan Banyaknya Penumpang Kereta Api Efek Variasi Kalender dengan Pendekatan Regresi Time Series Nur Ajizah 1, Resa Septiani Pontoh 2, Toni Toharudin 3 Mahasiswa Program

Lebih terperinci

BAB IV ANALISIS HASIL DAN PEMBAHASAN

BAB IV ANALISIS HASIL DAN PEMBAHASAN 41 BAB IV ANALISIS HASIL DAN PEMBAHASAN A. Hasil Pengumpulan Data Dalam bab ini, penulis akan menerangkan mengenai hasil penelitian yang akan dilakukan penulis terhadap data sekunder yaitu berupa komponen-komponen

Lebih terperinci

BAB IV HASIL PENELITIAN

BAB IV HASIL PENELITIAN BAB IV HASIL PENELITIAN A. Deskripsi Data 1. Analisis Deskripsi Inflasi Tabel 4.1 Statistik Deskriptif Inflasi Descriptive Statistics N Minimum Maximum Mean Std. Deviation Inflasi 36 3.35 8.79 6.5892 1.44501

Lebih terperinci

BAB II TINJAUAN PUSTAKA. keuntungan atau coumpouding. Dari definisi di atas dapat disimpulkan bahwa

BAB II TINJAUAN PUSTAKA. keuntungan atau coumpouding. Dari definisi di atas dapat disimpulkan bahwa BAB II TINJAUAN PUSTAKA 2.1 Pengertian Investasi Menurut Fahmi dan Hadi (2009) investasi merupakan suatu bentuk pengelolaan dana guna memberikan keuntungan dengan cara menempatkan dana tersebut pada alokasi

Lebih terperinci

BAB IV ANALISIS HASIL DAN PEMBAHASAN

BAB IV ANALISIS HASIL DAN PEMBAHASAN 51 BAB IV ANALISIS HASIL DAN PEMBAHASAN Dalam bab ini akan disajikan hasil penelitian yang dilakukan terhadap data sekunder yaitu berupa komponen-komponen laporan keuangan yang diperoleh dari perusahaan

Lebih terperinci

BAB IV ANALISIS HASIL DAN PEMBAHASAN

BAB IV ANALISIS HASIL DAN PEMBAHASAN BAB IV ANALISIS HASIL DAN PEMBAHASAN A. Statistik Deskriptif Pada deskripsi variabel penelitian akan dijelaskan nilai minimum, maksimum, rata-rata dan standard deviasi pada masing-masing variabel penelitian,

Lebih terperinci

BAB IV ANALISIS HASIL DAN PEMBAHASAN

BAB IV ANALISIS HASIL DAN PEMBAHASAN 40 BAB IV ANALISIS HASIL DAN PEMBAHASAN A. Statistik Deskriptif Statistik Deskriptif menjelaskan karakteristik dari masing-masing variabel yang terdapat dalam penelitian, baik variabel dependen maupun

Lebih terperinci

BAB IV ANALISA DAN PEMBAHASAN

BAB IV ANALISA DAN PEMBAHASAN BAB IV ANALISA DAN PEMBAHASAN A. Statistik Deskriptif. Statistik deskriptif adalah ilmu statistik yang mempelajari cara-cara pengumpulan, penyusunan dan penyajian data suatu penilaian. Tujuannya adalah

Lebih terperinci

BAB IV ANALISIS HASIL DAN PEMBAHASAN

BAB IV ANALISIS HASIL DAN PEMBAHASAN BAB IV ANALISIS HASIL DAN PEMBAHASAN A. Analisis Hasil Setelah melalui beberapa tahap kegiatan penelitian, dalam bab IV ini diuraikan analisis hasil penelitian dan pembahasan hasil penelitian. Analisis

Lebih terperinci

BAB 3 METODE PENELITIAN

BAB 3 METODE PENELITIAN BAB 3 METODE PENELITIAN 3. Desain Penelitian Tabel 3. Desain Penelitian Tujuan Penelitian Desain Penelitian Jenis dan Metode Penelitian Unit Time T Asosiatif/ Survey PT Tirta Tama Longitudinal Bahagia

Lebih terperinci

BAB IV ANALISIS DAN PEMBAHASAN

BAB IV ANALISIS DAN PEMBAHASAN C BAB IV ANALISIS DAN PEMBAHASAN Penelitian ini mencoba meramalkan jumlah penumpang kereta api untuk masa yang akan datang berdasarkan data volume penumpang kereta api periode Januari 994-Februari 203

Lebih terperinci

BAB IV ANALISA DAN PEMBAHASAN. Statistik Deskriptif menjelaskan karakteristik dari masing-masing

BAB IV ANALISA DAN PEMBAHASAN. Statistik Deskriptif menjelaskan karakteristik dari masing-masing BAB IV ANALISA DAN PEMBAHASAN A. Statistik Deskriptif Statistik Deskriptif menjelaskan karakteristik dari masing-masing variabel yang terdapat dalam penelitian, baik variabel dependen maupun variabel independent

Lebih terperinci

BAB IV ANALISIS HASIL DAN PEMBAHASAN

BAB IV ANALISIS HASIL DAN PEMBAHASAN 48 BAB IV ANALISIS HASIL DAN PEMBAHASAN A. Analisis Dividen Per Share, ROE dan Harga Saham Perusahaan Data dividen per share, ROE dan harga saham perusahaan untuk tahun,, dan dapat dilihat pada peragaan

Lebih terperinci

METODE PENELITIAN. A. Variabel Penelitian dan Definisi Operasional. Dalam penelitian ini variabel terikat (dependent variabel) yang digunakan adalah

METODE PENELITIAN. A. Variabel Penelitian dan Definisi Operasional. Dalam penelitian ini variabel terikat (dependent variabel) yang digunakan adalah III. METODE PENELITIAN A. Variabel Penelitian dan Definisi Operasional 1. Variabel Penelitian Dalam penelitian ini variabel terikat (dependent variabel) yang digunakan adalah nilai tukar rupiah, sedangkan

Lebih terperinci

BAB III METODOLOGI PENELITIAN

BAB III METODOLOGI PENELITIAN BAB III METODOLOGI PENELITIAN Mulai Studi Pendahuluan Studi Pustaka Identifikasi Masalah Perumusan Masalah Tujuan Pengumpulan Data 1. Profil Perusahaan PT. Mensa Binasukses cabang kota Padang 2. Data forecasting

Lebih terperinci

BAB IV HASIL DAN PEMBAHASAN. saham pada perusahaan food and beverages di BEI periode Pengambilan. Tabel 4.1. Kriteria Sampel Penelitian

BAB IV HASIL DAN PEMBAHASAN. saham pada perusahaan food and beverages di BEI periode Pengambilan. Tabel 4.1. Kriteria Sampel Penelitian BAB IV HASIL DAN PEMBAHASAN 4.1. Deskriptif Obyek Penelitian Deskripsi obyek dalam penelitian ini menjelaskan mengenai hasil perolehan sampel dan data tentang likuiditas, solvabilitas, dan profitabilitas

Lebih terperinci

BAB IV HASIL DAN PEMBAHASAN. digunakan untuk mengetahui deskripsi suatu data, analisis ini digunakan

BAB IV HASIL DAN PEMBAHASAN. digunakan untuk mengetahui deskripsi suatu data, analisis ini digunakan BAB IV HASIL DAN PEMBAHASAN A. Analisis Statistik Deskriptif Statistik deskriptif digunakan untuk melihat gambaran secara umum data yang telah dikumpulkan dalam penelitian ini. Analisis statistik deskriptif

Lebih terperinci

BAB IV ANALISIS HASIL DAN PEMBAHASAN

BAB IV ANALISIS HASIL DAN PEMBAHASAN BAB IV ANALISIS HASIL DAN PEMBAHASAN 4.1 Statistik Deskriptif Pembuatan statistik deskriptif untuk sampel tersebut dibantu dengan menggunakan program komputer Statisical Package for Sosial Science atau

Lebih terperinci

BAB IV ANALISIS DAN PEMBAHASAN

BAB IV ANALISIS DAN PEMBAHASAN BAB IV ANALISIS DAN PEMBAHASAN Berdasarkan data yang telah berhasil dikumpulkan, serta permasalahan dan hipotesis yang telah ditetapkan pada bab bab sebelumnya, maka penulis akan membahas variabel variabel

Lebih terperinci

BAB IV ANALISIS HASIL DAN PEMBAHASAN

BAB IV ANALISIS HASIL DAN PEMBAHASAN BAB IV ANALISIS HASIL DAN PEMBAHASAN A. Analisis Data Penelitian ini bertujuan untuk melihat pengaruh pendapatan margin pembiayaan murabahah dan pendapatan bagi hasil pembiayaan mudharabah terhadap NPM

Lebih terperinci

BAB IV ANALISIS HASIL DAN PEMBAHASAN

BAB IV ANALISIS HASIL DAN PEMBAHASAN 61 BAB IV ANALISIS HASIL DAN PEMBAHASAN A. Statistik Deskriptif Statistik deskripsi menjelaskan karakteristik dari masing-masing variabel yang terdapat dalam penelitian, baik variabel dependen maupun independen

Lebih terperinci

BAB IV ANALISIS HASIL DAN PEMBAHASAN

BAB IV ANALISIS HASIL DAN PEMBAHASAN 37 BAB IV ANALISIS HASIL DAN PEMBAHASAN A. Statistik Deskriptif Variabel yang digunakan dalam penelitian ini adalah Laba Bersih dan Arus Kas Operasi sebagai variabel independen (X) dan Dividen Kas sebagai

Lebih terperinci

BAB IV ANALISIS DAN PEMBAHASAN

BAB IV ANALISIS DAN PEMBAHASAN BAB IV ANALISIS DAN PEMBAHASAN A. Deskriptif Data Penelitian ini bertujuan untuk menganalisis pengaruh Tingkat Inflasi, Kurs Rupiah dan Harga Emas Dunia terhadap Harga Saham Sektor Pertambangan di Bursa

Lebih terperinci

Pemodelan ARIMA Non- Musim Musi am

Pemodelan ARIMA Non- Musim Musi am Pemodelan ARIMA Non- Musimam ARIMA ARIMA(Auto Regresif Integrated Moving Average) merupakan suatu metode analisis runtun waktu(time series) ARIMA(p,d,q) Dengan AR : p =orde dari proses autoreggresif I

Lebih terperinci

Metode Deret Berkala Box Jenkins

Metode Deret Berkala Box Jenkins METODE BOX JENKINS Metode Deret Berkala Box Jenkins Suatu metode peramalan yang sistematis, yang tidak mengasumsikan suatu model tertentu, tetapi menganalisa deret berkala sehingga diperoleh suatu model

Lebih terperinci

BAB 4 ANALISIS DAN BAHASAN

BAB 4 ANALISIS DAN BAHASAN BAB 4 ANALISIS DAN BAHASAN Penelitian ini bertujuan untuk mengetahui pengaruh inflasi di Indonesia, suku bunga SBI (Sertifikat Bank Indonesia), dan kurs rupiah terhadap dolar Amerika terhadap Indeks Harga

Lebih terperinci

III. METODOLOGI PENELITIAN. dan verifikatif. Metode deskriptif adalah studi untuk menentukan fakta dengan

III. METODOLOGI PENELITIAN. dan verifikatif. Metode deskriptif adalah studi untuk menentukan fakta dengan 28 III. METODOLOGI PENELITIAN 3.1. Desain Penelitian Metode yang digunakan dalam penelitian ini adalah penelitian analisis deskriptif dan verifikatif. Metode deskriptif adalah studi untuk menentukan fakta

Lebih terperinci

BAB IV HASIL PENGUJIAN. Analisis Deskriptif Variabel Variabel Penelitian

BAB IV HASIL PENGUJIAN. Analisis Deskriptif Variabel Variabel Penelitian BAB IV HASIL PENGUJIAN IV.1 Analisis Deskriptif Variabel Variabel Penelitian Dari data yang telah dikumpulkan, didapat hasil perhitungan sebagai berikut : 1) Beta saham Beta merupakan suatu pengukur volatilitas

Lebih terperinci

PENERAPAN MODEL ARFIMA (AUTOREGRESSIVE FRACTIONALLY INTEGRATED MOVING AVERAGE) DALAM PERAMALAN SUKU BUNGA SERTIFIKAT BANK INDONESIA (SBI)

PENERAPAN MODEL ARFIMA (AUTOREGRESSIVE FRACTIONALLY INTEGRATED MOVING AVERAGE) DALAM PERAMALAN SUKU BUNGA SERTIFIKAT BANK INDONESIA (SBI) PENERAPAN MODEL ARFIMA (AUTOREGRESSIVE FRACTIONALLY INTEGRATED MOVING AVERAGE) DALAM PERAMALAN SUKU BUNGA SERTIFIKAT BANK INDONESIA (SBI) Liana Kusuma Ningrum dan Winita Sulandari, M.Si. Jurusan Matematika,

Lebih terperinci

BAB IV. Tabel 4.1. dan Pendapatan Bagi Hasil. Descriptive Statistics. Pembiayaan_Mudharabah E6 4.59E E E9

BAB IV. Tabel 4.1. dan Pendapatan Bagi Hasil. Descriptive Statistics. Pembiayaan_Mudharabah E6 4.59E E E9 BAB IV ANALISIS HASIL DAN PEMBAHASAN A. Analisis Hasil 1. Uji Statistik Deskriptif Statistika deskriptif digunakan untuk melihat gambaran secara umum data yang sudah dikumpulkan dalam penelitian ini. Berikut

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Pengertian Peramalan Peramalan (forecasting) adalah kegiatan memperkirakan atau memprediksi apa yang akan terjadi pada masa yang akan datang dengan waktu yang relatif lama. Sedangkan

Lebih terperinci

BAB 4 ANALISIS DAN BAHASAN

BAB 4 ANALISIS DAN BAHASAN BAB 4 ANALISIS DAN BAHASAN 4.1 Deskripsi Data Penelitian Setelah melalui berbagai tahapan penelitian yang telah direncanakan oleh peneliti di bagian awal, penelitian ini menghasilkan berbagai hal yang

Lebih terperinci

BAB IV HASIL PENELITIAN DAN PEMBAHASAN. terdaftar di Bursa Efek Indonesia periode tahun Pengambilan sampel

BAB IV HASIL PENELITIAN DAN PEMBAHASAN. terdaftar di Bursa Efek Indonesia periode tahun Pengambilan sampel BAB IV HASIL PENELITIAN DAN PEMBAHASAN 4.1 Sampel Penelitian Populasi yang diambil dalam penelitian ini adalah perusahan LQ-45 yang terdaftar di Bursa Efek Indonesia periode tahun 2011-2015. Pengambilan

Lebih terperinci

PERAMALAN KUNJUNGAN WISATA DENGAN PENDEKATAN MODEL SARIMA (STUDI KASUS : KUSUMA AGROWISATA)

PERAMALAN KUNJUNGAN WISATA DENGAN PENDEKATAN MODEL SARIMA (STUDI KASUS : KUSUMA AGROWISATA) PERAMALAN KUNJUNGAN WISATA DENGAN PENDEKATAN MODEL SARIMA (STUDI KASUS : KUSUMA AGROWISATA) Oleh : Nofinda Lestari 1208 100 039 JURUSAN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM INSTITUT

Lebih terperinci

JURNAL TEKNIK POMITS Vol. 1, No. 1, (2013) I. PENDAHULUAN II. METODOLOGI

JURNAL TEKNIK POMITS Vol. 1, No. 1, (2013) I. PENDAHULUAN II. METODOLOGI JURNAL TEKNIK POMITS Vol. 1, No. 1, (2013) 1-6 1 Implementasi Metode Time Series Arima Berbasis Java Desktop Application untuk Memperkirakan Jumlah Permintaan Busana Muslim Anak di Perusahaan Habibah Busana

Lebih terperinci

BAB IV ANALISIS HASIL DAN PEMBAHASAN. Tabel 4.1

BAB IV ANALISIS HASIL DAN PEMBAHASAN. Tabel 4.1 BAB IV ANALISIS HASIL DAN PEMBAHASAN A. Deskripsi Data Hasil Penelitian Statistik deskriptif digunakan untuk melihat gambaran secara umum data yang telah dikumpulkan dalam penelitian ini. Berikut hasil

Lebih terperinci

BAB IV ANALISIS HASIL DAN PEMBAHASAN

BAB IV ANALISIS HASIL DAN PEMBAHASAN 34 BAB IV ANALISIS HASIL DAN PEMBAHASAN A. Analisis Statistik Deskriptif Statistik deskriptif berkaitan dengan pengumpulan dan peringkat data yang menggambarkan karakteristik sampel yang digunakan dalam

Lebih terperinci

BAB 2 LANDASAN TEORI. disebut dengan bermacam-macam istilah: variabel penjelas, variabel

BAB 2 LANDASAN TEORI. disebut dengan bermacam-macam istilah: variabel penjelas, variabel 8 BAB 2 LANDASAN TEORI 2.1 Pengertian Regresi Regresi dalam statistika adalah salah satu metode untuk menentukan tingkat pengaruh suatu variabel terhadap variabel yang lain. Variabel yang pertama disebut

Lebih terperinci

Analisis Peramalan Data Produk Domestik Regional Bruto (PDRB) Sebagai Tolak Ukur Kinerja Perekonomian Provinsi Kepulauan Bangka Belitung

Analisis Peramalan Data Produk Domestik Regional Bruto (PDRB) Sebagai Tolak Ukur Kinerja Perekonomian Provinsi Kepulauan Bangka Belitung Analisis Peramalan Data Produk Domestik Regional Bruto (PDRB) Sebagai Tolak Ukur Kinerja Perekonomian Provinsi Kepulauan Bangka Belitung Desy Yuliana Dalimunthe Jurusan Ilmu Ekonomi, Fakultas Ekonomi,

Lebih terperinci

BAB IV HASIL DAN PEMBAHASAN

BAB IV HASIL DAN PEMBAHASAN BAB IV HASIL DAN PEMBAHASAN A. Gambaran Umum Hasil Penelitian Penelitian ini dilakukan pada perusahaan yang telah go public dan terdaftar di Bursa Efek Indonesia periode 2010-2013. Pengolahan data dalam

Lebih terperinci

BAB IV ANALISIS HASIL DAN PEMBAHASAN

BAB IV ANALISIS HASIL DAN PEMBAHASAN BAB IV ANALISIS HASIL DAN PEMBAHASAN A. Analisis Hasil 1. Statistik Deskriptif Variabel-variabel yang digunakan dalam penelitian ini terdiri dari pendapatan premi, klaim, hasil investasi, dan laba. Statistik

Lebih terperinci

BAB IV HASIL PENELITIAN. (ISSI). Dimana ISSI adalah indeks yang diterbitkan oleh Bapepam-LK dan

BAB IV HASIL PENELITIAN. (ISSI). Dimana ISSI adalah indeks yang diterbitkan oleh Bapepam-LK dan BAB IV HASIL PENELITIAN A. Deskripsi Data Penelitian ini menggunakan objek Indeks Saham Syariah Indonesia (ISSI). Dimana ISSI adalah indeks yang diterbitkan oleh Bapepam-LK dan Dewan Syariah Nasional Majelis

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Konsep Peramalan Peramalan ( forecasting) merupakan alat bantu yang penting dalam perencanaan yang efektif dan efisien khususnya dalam bidang ekonomi. Dalam organisasi modern

Lebih terperinci

PERAMALAN BANYAKNYA OBAT PARASETAMOL DAN AMOKSILIN DOSIS 500 MG YANG DIDISTRIBUSIKAN OLEH DINKES SURABAYA

PERAMALAN BANYAKNYA OBAT PARASETAMOL DAN AMOKSILIN DOSIS 500 MG YANG DIDISTRIBUSIKAN OLEH DINKES SURABAYA Seminar Hasil Tugas Akhir Jurusan Statistika Institut Teknologi Sepuluh Nopember Surabaya 2013 LOGO PERAMALAN BANYAKNYA OBAT PARASETAMOL DAN AMOKSILIN DOSIS 500 MG YANG DIDISTRIBUSIKAN OLEH DINKES SURABAYA

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang BAB 1 PENDAHULUAN 1.1 Latar Belakang Di Indonesia sejak tahun enam puluhan telah diterapkan Badan Meteorologi, Klimatologi, dan Geofisika di Jakarta menjadi suatu direktorat perhubungan udara. Direktorat

Lebih terperinci

BAB IV ANALISIS HASIL DAN PEMBAHASAN

BAB IV ANALISIS HASIL DAN PEMBAHASAN 51 BAB IV ANALISIS HASIL DAN PEMBAHASAN A. Data Penelitian Objek dalam penelitian ini adalah semua klasifikasi dan mempublikasikan Laporan Keuangan bulanan di Dinas Pengelolaan Keuangan dan Asset Daerah

Lebih terperinci

BAB IV ANALISIS HASIL DAN PEMBAHASAN

BAB IV ANALISIS HASIL DAN PEMBAHASAN BAB IV ANALISIS HASIL DAN PEMBAHASAN Dalam bab ini penulis akan menerangkan mengenai hasil penelitian yang telah dilakukan atas data sekunder yaitu berupa komponen-komponen laporan keuangan yang diperoleh

Lebih terperinci

BAB IV ANALISIS HASIL DAN PEMBAHASAN

BAB IV ANALISIS HASIL DAN PEMBAHASAN 34 BAB IV ANALISIS HASIL DAN PEMBAHASAN A. Analisis Statistik Deskriptif Analisis data yang dilakukan dalam bab ini pada dasarnya dapat dikelompokkan menjadi dua bagian. Bagian pertama merupakan analisis

Lebih terperinci

Peramalan Permintaan Paving Blok dengan Metode ARIMA

Peramalan Permintaan Paving Blok dengan Metode ARIMA Konferensi Nasional Sistem & Informatika 2015 STMIK STIKOM Bali, 9 10 Oktober 2015 Peramalan Permintaan Paving Blok dengan Metode ARIMA Adin Nofiyanto 1,Radityo Adi Nugroho 2, Dwi Kartini 3 1,2,3 Program

Lebih terperinci

Peramalan Kecepatan Angin Di Kota Pekanbaru Menggunakan Metode Box-Jenkins

Peramalan Kecepatan Angin Di Kota Pekanbaru Menggunakan Metode Box-Jenkins Peramalan Kecepatan Angin Di Kota Pekanbaru Menggunakan Metode Box-Jenkins Ari Pani Desvina 1, Melina Anggriani 2,2 Jurusan Matematika, Fakultas Sains dan Teknologi, UIN Sultan Syarif Kasim Riau Jl. HR.

Lebih terperinci

BAB IV HASIL PENELITIAN DAN PEMBAHASAN

BAB IV HASIL PENELITIAN DAN PEMBAHASAN 47 BAB IV HASIL PENELITIAN DAN PEMBAHASAN A. Deskripsi Unit Analisis Data 1. Data Hasil Penelitian Pada bagian ini akan dibahas mengenai proses pengolahan data untuk menguji hipotesis yang telah dibuat

Lebih terperinci