BAB 2 LANDASAN TEORI

Save this PDF as:
 WORD  PNG  TXT  JPG

Ukuran: px
Mulai penontonan dengan halaman:

Download "BAB 2 LANDASAN TEORI"

Transkripsi

1 1 BAB 2 LANDASAN TEORI Bab ini membahas tentang teori penunjang dan penelitian sebelumnya yang berhubungan dengan metode ARIMA box jenkins untuk meramalkan kebutuhan bahan baku Peramalan Peramalan atau forecasting adalah perhitungan yang akurat dalam menentukan sesuatu yang akan datang dengan menggunakan data-data masa lalu (Sumayang, 2003). Menurut pendapat (Render & Heizer, 2001) adalah sebuah ilmu peramalan peristiwa masa depan dengan menggunakan beberapa bentuk model matematis. Peramalan adalah memprediksikan sesuatu yang bakalan terjadi ( Subagyo, 2002). Dari pengertian peramalan menurut para ahli, maka dapat diartikan bahwa peramalan adalah memprediksikan yang ada dimasa depan dengan menggunakan data dari masa lalu. Menurut (Heizer & Render, 2001) ada tiga jenis peramalan yaitu : 1. Economic forecast Untuk mengetahui keadaan ekonomi dengan memprediksikan dan perencanaan tingkat inflasi dan ketersediaan dana yang dibutuhkan. 2. Technological forecast Mengamati kemajuan teknologi agar dapat meluncurkan produk baru yang dapat berguna dan menarik. 3. Demand Forecast Adalah peramalan permintaan untuk produk atau jasa pada perusahaan.

2 7 Menurut (Hanke & Wichers, 2005) Dalam melakukan peramalan terdapat beberapa langkah-langkah yang harus dilakukan : 1. Mengidentifikasi Masalah Dan Mengumpulkan Data Pada tahap ini, akan dicari masalah-masalah yang memiliki hubungan penjualan. Setelah itu dilakukan pengumpulan data dan tahap identifikasi. 2. Pemilihan Data Dan Manipulasi pada Data yang telah dikumpulkan akan diseleksi dengan benar supaya mendapatkan data yang benar-benar relevan. Kemudian data akan dimanipulasi agar sesuai dengan kebutuhan dalam pembuatan model peramalan. 3. Pembuatan Model Setelah itu Data yang telah dimanipulasi akan diaplikasikan ke dalam model peramalan. 4. Implementasi Model Model peramalan yang sesuai akan diimplementasikan langsung terhadap data penjualan, sehingga didapatkan hasil peramalan yang benar-benar sesuai dengan kebutuhan. 5. Evaluasi Peramalan Penjualan Pada tahap ini, akan dilakukan perbandingan antara peramalan yang telah dibuat dengan kondisi aktual penjualan sebenarnya. Sehingga dapat mengetahui kesalahankesalahan yang terjadi pada saat implementasi dan memperbaikinya agar dapat menemukan model peramalan yang lebih bagus. Menurut (Kandananond, 2012) peramalan permintaan sangat penting dalam meningkatkan efisiensi sistem rantai pasokan. Karena setiap pihak dalam rantai pasokan akan memproses pesanan dalam menanggapi sinyal permintaan, akurasi perkiraan permintaan secara signifikan akan meningkatkan penjadwalan produksi, perencanaan kapasitas, perencanaan kebutuhan material dan manajemen persediaan. Menurut (Taylor, 2003) hubungan antara forecasting dengan horizon waktu terbagi menjadi 3 kategori : 1. Short Range Forecast Sebagai penjadwalan kegiatan harian suatu perusahaan bisnis. Seperti perkiraan permintaan dan kebutuhan harian.

3 8 2. Medium Rnge Forecast Diperlukan untuk rencana produksi tahunan untuk menentukan kebutuhan masa depan seperti pembelian bahan baku, mesin dan peralatan ditahun berikutnya. 3. Long Range Forecast Digunakan untuk peramalan yang lebih dari setahun dalam merencanakan produk baru, membangun fasilitas dan menjamin pembiayaan jangka panjang. Menurut (Uminigsih, 2012) berdasarkan sifatnya, forecasting dibedakan menjadi 2 jenis yaitu: 1. Metode Kualitatif Adalah metode yang memperkirakan atau memprediksikan sesuatu berdasarkan pengalaman dan pendapat pribadi. 2. Metode Kuantitatif Adalah metode yang memperkirakan atau memprediksikan sesuatu berdasarkan pengalaman dan pendapat pribadi. Menurut (Stepvhanie, 2012) metode kuantitatif sendiri terbagi menjadi dua jenis, yaitu metode derek berkala (time series) Dan metode kausal. 1. Metode Kausal Metode peramalan kausal mengembangkan bentuk suatu model sebab-akibat antara permintaan yang diramalkan dengan variabel-variabel yang memiliki hubungan. 2. Metode Derek Berkala Metode derek berkala menggunakan analisa suatu pola hubungan antar variabelvariabel yang diperkirakan dengan variabel waktu Metode Deret Berkala Metode deret berkala (time series) adalah metode peramalaan yang memprediksikan nilai-nilai di masa depan dengan menggunakan data histori. Metode Peramalan derek waktu terdiri dari : 1. Metode Exponential Smoothing Metode exponential smoothing adalah suatu metode peramalan derek berkala yang menerapkan pembobotan menurun secara exponential terhadap data histori.

4 9 2. Metode ARIMA box-jenkins Metode auto integrated moving average (ARIMA) yang sering juga disebut metode time series Box Jenkins. Metode ini sangat sesuai dalam meramalkan peramalan jangka pendek, sedangkan untuk peramalan jangka panjang ketepatannya kurang baik. Biasanya akan berbentuk mendatar atau konstan pada periode yang cukup panjang. Metode ARIMA sendiri merupakan metode yang hanya menggunakan variabel dependen dan mengabaikan variabel independen sewaktu melakukan peramalan. 3. Metode Trend (Linear Regression) Metode trend (Linear Regression) adalah metode peramalan rata-rata perubahan dalam jangka panjang dengan menggunakan kuadrat terkecil yang membentuk trend garis lurus untuk persamaan matematis Klasifikasi Model ARIMA Model ARIMA dibagi menjadi tiga bagian yaitu : 1. Autoregressive Model (AR) Bentuk umum model ini adalah (Santoso, 2009) : (2.1) Y t Y t-1, Y t-2, Y t-n p = nilai AR yang di prediksi =nilai lampau series yang bersangkutan ; nilai lag dari time series. =koefisien e t = residual; error yang menjelaskan efek dari variabel yang tidak dijelaskan oleh model 2. Moving Average (MA) Bentuk umum model ini adalah (Santoso, 2009): Y t = nilai MA yang di prediksi (2.2)

5 10 1,2,q e t 3. ARIMA Bentuk umum model ini adalah (Santoso, 2009): = konstanta; koefisien atau bobot (weight) = residual; error yang menjelaskan efek dari variabel yang tidak dijelaskan oleh model. (2.3) Y t Y t-1, Y t-2 e t-1, e t-2 = nilai series yang stasioner = nilai lampau series yang bersangkutan = variabel bebas yang merupakan lag dari residual,δ 1, δ q, 1, p = koefisien model 2.4. ACF dan PACF ACF (Autocorrelation Function) Koefisien autokorelasi adalah derajat hubungan antara Y t dan Y t-k. Menurut (Makridakis, et al. 1998) dengan persamaan = Koefisen autokeralsi lag ke k, dimana k = 0,1,β,,k = Data aktual pada orde ke t = Nilai rata-rata (mean) = Data aktual pada orde t dengan time lag k (2.4)

6 PACF (Partial Autocorrelation Function) Fungsi Autokorelasi parsial digunakan untuk mengukur tingkat keeratan dan. Apabila pengaruh dari selisih waktu pada lag 1,β,γ,,k-1 dianggap terpisah. Nilai koefisien autokorelasi parsial dapat dihitung dengan persamaan berikut: (2.5) = Data aktual pada orde ke t = Parameter autoregressive pada lag k = Data aktual pada orde t dengan time lag k = Kesalahan ramalan 2.5. Tahapan Metode ARIMA Langkah-langkah tahapan metode ARIMA adalah : 1. Memeriksa kestasioneran data 2. Identifikasi 3. Estimasi 4. Diagnosis 5. Peramalan Berikut diagram tahapan metode ARIMA dapat dilihat pada gambar 2.1 :

7 12 Memeriksa kestasioneran data Identifikasi model ARIMA Estimasi parameter dari model yang dipilih Uji diagnostik model tersebut Lakukan peramalan dengan model tersebut Gambar 2.1.Diagram Tahapan-Tahapan Pada Model ARIMA Konstan (Stasioner) Yang terpenting dalam peramalan ARIMA adalah data yang konstan / stasioner. Peramalan dapat dilakukan apabila kodisi data sudah konstan. Menurut (Makridakis, et al. 1998) stasioner adalah fluktuasi data yang rata-rata dan variansi dari fluktuasi tersebut relatif konstan dari satu periode ke periode selanjutnya Rata-rata (Mean) Rata-rata (Mean) adalah nilai yang mewakili sekelompok data. Nilai ini diperoleh dengan menjumlahkan seluruh data, kemudian menbagi dengan jumlah individu. (β.6) = Rata-rata Y = Nilai pada data N = Jumlah keseluruhan data

8 Varians Varians adalah ukuran disperse yang menggunakan selisih antara semua nilai data dengan rata-rata hitung. Dimana: = Varians = Rata-rata Y = Nilai pada data N = Jumlah keseluruhan data (2.7) Data Konstan dan Data Non-Konstan Dalam Mean Menurut (Makridakis, et al. 1998) nilai autokorelasi pada data konstan akan turun sampai nol sesudah lag kedua atau ketiga, sedangkan untuk data yang non-konstan, nilai autokorelasi akan berbeda secara signifikan dari nol untuk beberapa periode waktu. Suatu deret data yang tidak konstan dalam mean harus diubah menjadi data konstan dengan melakukan pembedaan. Yang dimaksud Pembedaan adalah menghitung perubahan atau selisih nilai observasi. Notasi yang sangat bermanfaat adalah operator backward shift. Pembedaan ordo pertama dari data aktual dapat dinyatakan sebagai berikut : B = Yt-Yt -1 (2.8) Dimana: B = Pembeda ordo pertama Y t = Nilai Y pada order ke t Y t-1 = Nilai Y pada order ke t-1 Pembedaan ordo kedua dapat dinyatakan sebagai berikut : B = (1-B) 2 Y t (2.9) Dimana: B = Pembeda ordo kedua

9 Data Konstan dan Data Non-Konstan Dalam Varians Suatu time series dikatakan konstan dalam varians apabila mempunyai struktur data yang berfluktuasi tetap atau konstan dari waktu ke waktu. (Box & Cox 1964) mengembangkan suatu prosedur transformasi data sehingga bisa mengatasi ketidak konstan data dalam varians. Dimana data yang konstan dalam varians nilai lambda = 1 pada box cox plot. Jika lambda tidak sama dengan dengan 1, maka data akan ditransformasi sesuai lambda di tabel 2.1: Tabel 2.1. Bentuk Transformasi lambda transformation 1/ 1/ ln Identifikasi Pada proses ini ialah menentukan nilai p, d, dan q di mana p ialah jumlah proses autoregressive (AR), d merupakan jumlah Pembedaan agar suatu data time series bisa konstan, dan q ialah jumlah proses moving average (MA). Berdasarkan plot data aktual dapat diketahui apakah data sudah konstan. Jika belum konstan maka data harus di konstankan terlebih dahulu. Menentukan kombinasi model ARIMA yang mungkin. Dari plot autokorelasi tentukan nilai AR (p), dan nilai MA (q) dari autokorelasi parsial. Model AR dan MA dari suatu time series dapat di identifikasi dengan melihat pola grafik ACF (Autocorrelation Function) dan PACF (Partial Autocorrelation Function). Dapat dilihat pada tabel 2.2. Tabel 2.2.Pola ACF dan PACF Model Pola ACF Pola PACF AR (p) Menurun secara Menurun drastis pada lag eksponensial/bertahap tertentu

10 15 Tabel 2.2.Pola ACF dan PACF (Lanjutan) Model Pola ACF Pola PACF MA (q) Menurun drastis pada lag Menurun secara tertentu eksponensial/bertahap ARMA (p,q) Menurun secara Menurun secara eksponensial/bertahap eksponensial/bertahap Estimasi Setelah berhasil mendapatkan p,d,q, selanjutnya adalah memperkirakan parameter dari model untuk diuji agar mendapatkan model terbaik. Untuk itu dilakukan pemeriksaan terhadap : Residu Model yang telah diperkirakan akan memperlihatkan perbedaan residu antara nilainilai data time series dan nilai-nilai estimasi dari model yang sangat kecil. Residu dapat diperoleh dari persamaan berikut : = Kesalahan peramalan = Nilai Y pada order ke t = Nilai peramalan (2.10) Pemeriksaan Kesalahan Standar Residu Nilai (Standar Error) dari adalah : = Koefisen autokorelasi lag ke k, dimana k = 0,1,β,,k = Banyaknya data (2.11)

11 16 batas interval: Suatu derek akan bersifat acak apabila koefisien korelasinya berada dalam (2.12) Diagnosis Setelah model ditentukan, kemudian kita cek apakah model cocok dengan data dan memenuhi persyaratan model peramalan yang baik. Jika estimasi residualnya white noise maka model cocok, namun jika tidak maka harus dilakukan pengecekan kembali. Model dikatakan memadai jika asumsi dari error memenuhi proses white noise dan berdistribusi normal Ljung-Box Untuk memeriksa apakah autokorelasi nilai-nilai sisa (residu) berpola acak (bersifat white noise), digunakan ljung-box adapun persamaannnya : (2.13) = Hasil perhitungan ljung-box / chi-square = Jumlah lag autokorelasi residu = N d -SD = Jumlah keseluruhan data = Ordo pembedaan bukan musiman = Ordo pembedaan musiman = Jumlah periode per musim = Koefisen autokoeralsi lag ke k, dimana k = 0,1,β,,k

12 Peramalan Menurut (Linda, 2013) Setelah parameter-parameter model ARIMA telah di diagnostik, maka selanjutnya adalah menggunakan model tersebut untuk peramalan. Sebagai contoh, pertama-tama ditetapkan model ARIMA (1,1,1) dengan persamaan regresi biasa : (2.14) didepannya : Untuk meramalkan satu periode kedepannya, maka dapat ditambahkan (2.15) Untuk meramalkan h periode kedepannya yaitu maka : (2.16) Pada kenyataannya hasil peramalan tidak pernah akurat 100 persen benar. Oleh karena itu diperlukan suatu metode untuk menghitung tingkat kesalahan (error) dalam suatu peramalan.semakin kecil kesalahan yang didapatkan, maka semakin baik peramalan tersebut. Berikut ini beberapa cara untuk menghitung tingkat kesalahan dari peramalan: 1. Rata-rata kuadrat kesalahan (Mean Squared Error / MSE) MSE adalah metode penghitung kesalahan peramalan dengan cara mengkuadratkan masih-masih kesalahan kemudian dijumlahkan dan dibagi dengan jumlah data / periode. Rumus MSE adalah sebagai berikut: (2.17) = Data aktual = Data hasil ramalan N = Jumlah data

13 18 2. Akar rata-rata kuadrat kesalahan (Root Mean Squared Error / RMSE) RMSE adalah akar kuadrat rata-rata kuadrat kesalahan. Rumus RMSE adalah sebagai berikut: (2.18) = Data aktual = Data hasil ramalan N = Jumlah data 3. Rata-rata presentase kesalahan mutlak (Mean Absolute Percent Error / MAPE) MAPE adalah metode perhitungan kesalahan yang dihitung dengan mencari presentase kesalahan dari setiap periode peramalan kemudian membaginya dengan jumlah data / periode yang digunakan. Rumus MAPE adalah sebagai berikut: = Data aktual (2.19) = Data hasil ramalan N = Jumlah data 2.6. SAS SAS (Statistical Analysis System) adalah software komputer yang digunakan untuk analisis statistika yang dikembangkan oleh perusahaan SAS Institute. Perangkat lunak ini digunakan dalam massive data processing, reporting, analisis stastistika, pembuatan grafik statistika dan lain-lain. Bahasa pemograman SAS termasuk bahasa pemograman generasi keempat, yakni program yang siap digunakan untuk manipulasi data, penyimpanan dan pengambilan informasi, statistik deskriptif dan penulisan laporan.

14 Penelitian Terdahulu Beberapa penelitian telah dilakukan untuk meramalkan data penjualan. Salah satunya adalah penelitian yang dilakukan oleh (Stepvhanie, 2012) melakukan peramalan penjualan produk susu bayi dengan metode grey system theory dan neural network. Penelitian ini melakukan perbandingan antara metode tradisional dengan metode grey system theory. Dan medapatkan hasil bahwa metode grey system theory lebih baik dari metode tradisional karena memiliki nilai mean absolute percentage error terkecil dari metode tradisional. Penelitian yang dilakukan oleh (Warsini, 2011). Melakukan perbandingan metode pemulusan (smoothing) eksponensial dan arima (box-jenkins) sebagai metode peramalan Indek Harga Saham Gabungan (IHSG). Penelitian ini dilakukan untuk mengetahui metode mana yang lebih tepat digunakan pada indek harga saham gabungan. Dan didapatkan hasil bahwa model yang tepat adalah arima karena memiliki nilai mean absolute percentage error yang lebih kecil yakni bernilai 0,0063 sedangkan model eksponensial bernilai 0,0070. Penelitian yang dilakukan oleh (Sembiring, 2010). Yang melakukan penelitian tentang peramalan curah hujan bulanan di kota medan dengan metode box-jenkins. Hasil dari penelitian ini menunjukkan bahwa model ARIMA memiliki kemampuan yang sangat akurat dalam memprediksi curah hujan. Penelitian selanjutnya yang dilakukan oleh (Simanjuntak, 2014) membahas prediksi jumlah permintaan barang musiman menggunakan metode holt-winters. Penelitian ini dilakukan untuk dapat menganalisis dengan metode holt-winters untuk menentukan variabel mana yang signifikan mengengaruhi variabel dependen. Selain itu juga dapat digunakan dalam meramalkan data musiman. dengan konstanta parameter (α) = 0.γ5, ( ) = 0.15, dan ( ) = 0,47. Selanjutnya penelitian yang dilakukan oleh (Bauer.J, 2014). Penelitian ini memperlihatkan bagaimana cara menggunakan PROC GMAP pada map creation di dalam SAS base dan cara pembuatan hasilnya ke dalam JSON metadata. Ringkasan penelitian terdahulu dapat dilihat pada tabel 2.3.

15 20 Tabel 2.3. Penelitian Terdahulu Nama Peneliti Metode Keterangan grey backpropagation neural network memiliki kelebihan meramalkan data acak yang Metode grey memiliki range yang tidak terlalu Linda Stepvhanie backpropagation jauh. Sedangkan kelebihan dari (2012) neural network metode neural network adalah lebih cocok untuk meramalkan data acak yang memiliki fluktuasi data yang tidak begitu stabil. Metode ARIMA memiliki keakuratan dalam meramalkan data dalam jangka pendek dibandingkan dengan metode smoothing. Namun metode arima memiliki kelemahan dalam Metode Warsini meramalkan data dalam jangka smoothing dan (2012) yang cukup panjang. Hasil yang ARIMA didapatkan akan bersifat datar. Sedangkan pada metode smoothing dalam meramalankan dalam jangka panjang didapatkan hasil yang lebih bagus daripada metode ARIMA. Peramalan dengan Metode ARIMA memiliki kemampuan yang sangat akurat dalam Jumita Hari Yanti memprediksi curah hujan dalam BR.Sembiring Metode ARIMA jangka pendek. Tetapi tidak (2010) begitu akurat apabila dilakukan untuk jangka yang cukup panjang.

16 21 Tabel 2.3. Penelitian Terdahulu (Lanjutan) Nama Peneliti Metode Keterangan Metode Holt-Winters yang digunakan dalam meramalkan harga barang musiman dengan Lia Hartati Simanjuntak konstanta parameter (α) = 0.γ5, Metode Holt- (2014) ( ) = 0.15, dan ( ) = 0,47 Winters menghasilkan tingkat akurasi prediksi sebesar 95,74% dan dengan nilai error rata-rata sebesar 4.26%.

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI Pada bab ini akan dijelaskan teori-teori yang menjadi dasar dan landasan dalam penelitian sehingga membantu mempermudah pembahasan selanjutnya. Teori tersebut meliputi arti dan peranan

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Peramalan Peramalan digunakanan sebagai acuan pencegah yang mendasari suatu keputusan untuk yang akan datang dalam upaya meminimalis kendala atau memaksimalkan pengembangan baik

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Peramalan 2.1.1 Pengertian Peramalan Peramalan adalah kegiatan untuk memperkirakan apa yang akan terjadi pada masa yang akan datang (Sofjan Assauri,1984). Setiap kebijakan ekonomi

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI 7 BAB 2 LANDASAN TEORI 2.1 Iklim Iklim ialah suatu keadaan rata-rata dari cuaca di suatu daerah dalam periode tertentu. Curah hujan ialah suatu jumlah hujan yang jatuh di suatu daerah pada kurun waktu

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang BAB 1 PENDAHULUAN 1.1 Latar Belakang Peramalan merupakan studi terhadap data historis untuk menemukan hubungan, kecenderungan dan pola data yang sistematis (Makridakis, 1999). Peramalan menggunakan pendekatan

Lebih terperinci

TINJAUAN PUSTAKA. perubahan harga yang dibayar konsumen atau masyarakat dari gaji atau upah yang

TINJAUAN PUSTAKA. perubahan harga yang dibayar konsumen atau masyarakat dari gaji atau upah yang II.. TINJAUAN PUSTAKA Indeks Harga Konsumen (IHK Menurut Monga (977 indeks harga konsumen adalah ukuran statistika dari perubahan harga yang dibayar konsumen atau masyarakat dari gaji atau upah yang didapatkan.

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang BAB 1 PENDAHULUAN 1.1 Latar Belakang Di Indonesia sejak tahun enam puluhan telah diterapkan Badan Meteorologi, Klimatologi, dan Geofisika di Jakarta menjadi suatu direktorat perhubungan udara. Direktorat

Lebih terperinci

BAB 1 PENDAHULUAN Latar Belakang

BAB 1 PENDAHULUAN Latar Belakang 1 BAB 1 PENDAHULUAN Bab ini membahas tentang latar belakang, rumusan masalah, batasan masalah, tujuan penelitian, manfaat penelitian, metodologi penelitian, serta sistematika penulisan. 1.1. Latar Belakang

Lebih terperinci

FORECASTING INDEKS HARGA SAHAM GABUNGAN (IHSG) DENGAN MENGGUNAKAN METODE ARIMA

FORECASTING INDEKS HARGA SAHAM GABUNGAN (IHSG) DENGAN MENGGUNAKAN METODE ARIMA FORECASTING INDEKS HARGA SAHAM GABUNGAN (IHSG) DENGAN MENGGUNAKAN METODE ARIMA 1) Nurul Latifa Hadi 2) Artanti Indrasetianingsih 1) S1 Program Statistika, FMIPA, Universitas PGRI Adi Buana Surabaya 2)

Lebih terperinci

METODE PENELITIAN. Penelitian ini dilakukan pada semester genap tahun akademik 2014/2015

METODE PENELITIAN. Penelitian ini dilakukan pada semester genap tahun akademik 2014/2015 III. METODE PENELITIAN 3.1 Waktu dan Tempat Penelitian Penelitian ini dilakukan pada semester genap tahun akademik 2014/2015 bertempat di Jurusan Matematika Fakultas Matematika dan Ilmu Pengetahuan Alam

Lebih terperinci

Model Autoregressive Integrated Moving Average (ARIMA) adl teknik untuk mencari pola yg paling cocok dari sekelompok data Model ARIMA dapat digunakan

Model Autoregressive Integrated Moving Average (ARIMA) adl teknik untuk mencari pola yg paling cocok dari sekelompok data Model ARIMA dapat digunakan METODE BOX JENKINS Model Autoregressive Integrated Moving Average (ARIMA) adl teknik untuk mencari pola yg paling cocok dari sekelompok data Model ARIMA dapat digunakan utk semua tipe pola data. Dapat

Lebih terperinci

DAFTAR ISI. BAB I PENDAHULUAN Latar Belakang Masalah Rumusan Masalah Batasan Masalah Tujuan Penelitian...

DAFTAR ISI. BAB I PENDAHULUAN Latar Belakang Masalah Rumusan Masalah Batasan Masalah Tujuan Penelitian... DAFTAR ISI HALAMAN JUDUL... i HALAMAN PENGESAHAN... ii HALAMAN PERNYATAAN... iii NASKAH SOAL TUGAS AKHIR... iv HALAMAN PERSEMBAHAN... v INTISARI... vi KATA PENGANTAR... vii UCAPAN TERIMA KASIH... viii

Lebih terperinci

PENDUGAAN DATA RUNTUT WAKTU MENGGUNAKAN METODE ARIMA

PENDUGAAN DATA RUNTUT WAKTU MENGGUNAKAN METODE ARIMA KEMENTERIAN PEKERJAAN UMUM BADAN PENELITIAN DAN PENGEMBANGAN PUSAT PENELITIAN DAN PENGEMBANGAN SUMBER DAYA AIR PENDUGAAN DATA RUNTUT WAKTU MENGGUNAKAN METODE ARIMA PENDAHULUAN Prediksi data runtut waktu.

Lebih terperinci

Bab IV. Pembahasan dan Hasil Penelitian

Bab IV. Pembahasan dan Hasil Penelitian Bab IV Pembahasan dan Hasil Penelitian IV.1 Statistika Deskriptif Pada bab ini akan dibahas mengenai statistik deskriptif dari variabel yang digunakan yaitu IHSG di BEI selama periode 1 April 2011 sampai

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Pendahuluan. Universitas Sumatera Utara

BAB 1 PENDAHULUAN. 1.1 Pendahuluan. Universitas Sumatera Utara BAB 1 PENDAHULUAN 1.1 Pendahuluan Peramalan merupakan upaya memperkirakan apa yang terjadi pada masa mendatang berdasarkan data pada masa lalu, berbasis pada metode ilmiah dan kualitatif yang dilakukan

Lebih terperinci

PERAMALAN PENJUALAN PRODUKSI TEH BOTOL SOSRO PADA PT. SINAR SOSRO SUMATERA BAGIAN UTARA TAHUN 2014 DENGAN METODE ARIMA BOX-JENKINS

PERAMALAN PENJUALAN PRODUKSI TEH BOTOL SOSRO PADA PT. SINAR SOSRO SUMATERA BAGIAN UTARA TAHUN 2014 DENGAN METODE ARIMA BOX-JENKINS Saintia Matematika ISSN: 2337-9197 Vol. 02, No. 03 (2014), pp. 253 266. PERAMALAN PENJUALAN PRODUKSI TEH BOTOL SOSRO PADA PT. SINAR SOSRO SUMATERA BAGIAN UTARA TAHUN 2014 DENGAN METODE ARIMA BOX-JENKINS

Lebih terperinci

II. TINJAUAN PUSTAKA. Analisis ARIMA (Autoregressive Integrated Moving Average) umumnya

II. TINJAUAN PUSTAKA. Analisis ARIMA (Autoregressive Integrated Moving Average) umumnya II. TINJAUAN PUSTAKA 2.1 Stasioner Analisis ARIMA Autoregressive Integrated Moving Average umumnya mengasumsikan bahwa proses umum dari time series adalah stasioner. Tujuan proses stasioner adalah rata-rata,

Lebih terperinci

BAB 2 LANDASAN TEORI. datang. Kegunaan dari peramalan terlihat pada saat pengambilan keputusan.

BAB 2 LANDASAN TEORI. datang. Kegunaan dari peramalan terlihat pada saat pengambilan keputusan. BAB 2 LANDASAN TEORI 2.1 Peramalan Peramalan adalah kegiatan memperkirakan apa yang akan terjadi pada masa yang datang. Kegunaan dari peramalan terlihat pada saat pengambilan keputusan. Keputusan yang

Lebih terperinci

III. METODE PENELITIAN

III. METODE PENELITIAN 15 III. METODE PENELITIAN 3.1. Kerangka Pemikiran Penelitian Perkembangan ekonomi dan bisnis dewasa ini semakin cepat dan pesat. Bisnis dan usaha yang semakin berkembang ini ditandai dengan semakin banyaknya

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1. Peramalan Peramalan (forecasting) merupakan upaya memperkirakan apa yang terjadi pada masa yang akan datang. Pada hakekatnya peramalan hanya merupakan suatu perkiraan (guess),

Lebih terperinci

LAPORAN PRAKTIKUM ANALISIS RUNTUN WAKTU. Laporan VI ARIMA Analisis Runtun Waktu Model Box Jenkins

LAPORAN PRAKTIKUM ANALISIS RUNTUN WAKTU. Laporan VI ARIMA Analisis Runtun Waktu Model Box Jenkins LAPORAN PRAKTIKUM ANALISIS RUNTUN WAKTU Kelas A Laporan VI ARIMA Analisis Runtun Waktu Model Box Jenkins No Nama Praktikan Nomor Mahasiswa Tanggal Pengumpulan 1 29 Desember 2010 Tanda Tangan Praktikan

Lebih terperinci

BAB 2 LANDASAN TEORI. diperkirakan akan terjadi pada masa yang akan datang. Ramalan tersebut dapat

BAB 2 LANDASAN TEORI. diperkirakan akan terjadi pada masa yang akan datang. Ramalan tersebut dapat BAB 2 LANDASAN TEORI 2.1 Pengertian Peramalan Peramalan adalah kegiatan untuk memperkirakan apa yang akan terjadi dimasa yang akan datang. Sedangkan ramalan adalah suatu situasi atau kondisi yang diperkirakan

Lebih terperinci

BAB 2. Peramalan adalah kegiatan memperkirakan apa yang akan terjadi pada masa yang

BAB 2. Peramalan adalah kegiatan memperkirakan apa yang akan terjadi pada masa yang BAB 2 LANDASAN TEORI 2.1 Peramalan Peramalan adalah kegiatan memperkirakan apa yang akan terjadi pada masa yang akan datang. Ramalan adalah sesuatu kegiatan situasi atau kondisi yang diperkirakan akan

Lebih terperinci

PERAMALAN KUNJUNGAN WISATA DENGAN PENDEKATAN MODEL SARIMA (STUDI KASUS : KUSUMA AGROWISATA)

PERAMALAN KUNJUNGAN WISATA DENGAN PENDEKATAN MODEL SARIMA (STUDI KASUS : KUSUMA AGROWISATA) PERAMALAN KUNJUNGAN WISATA DENGAN PENDEKATAN MODEL SARIMA (STUDI KASUS : KUSUMA AGROWISATA) Oleh : Nofinda Lestari 1208 100 039 JURUSAN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM INSTITUT

Lebih terperinci

Prediksi Laju Inflasi di Kota Ambon Menggunakan Metode ARIMA Box Jenkins

Prediksi Laju Inflasi di Kota Ambon Menggunakan Metode ARIMA Box Jenkins Statistika, Vol. 16 No. 2, 95 102 November 2016 Prediksi Laju Inflasi di Kota Ambon Menggunakan Metode ARIMA Box Jenkins FERRY KONDO LEMBANG Jurusan Matematika Fakultas MIPA Universitas Pattimura Ambon

Lebih terperinci

BAB 2 LANDASAN TEORI. Peramalan adalah kegiatan untuk memperkirakan apa yang akan terjadi di masa yang

BAB 2 LANDASAN TEORI. Peramalan adalah kegiatan untuk memperkirakan apa yang akan terjadi di masa yang BAB 2 LANDASAN TEORI 2.1 Pengertian Peramalan Peramalan adalah kegiatan untuk memperkirakan apa yang akan terjadi di masa yang akan datang datang. Sedangkan ramalan adalah suatu situasi atau kondisi yang

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Latar Belakang Masalah

BAB I PENDAHULUAN. 1.1 Latar Belakang Masalah BAB I PENDAHULUAN 1.1 Latar Belakang Masalah Peramalan pada dasarnya merupakan proses menyusun informasi tentang kejadian masa lampau yang berurutan untuk menduga kejadian di masa depan (Frechtling, 2001:

Lebih terperinci

BAB IV HASIL PENELITIAN DAN PEMBAHASAN. Adapun langkah-langkah pada analisis runtun waktu dengan model ARIMA

BAB IV HASIL PENELITIAN DAN PEMBAHASAN. Adapun langkah-langkah pada analisis runtun waktu dengan model ARIMA BAB IV HASIL PENELITIAN DAN PEMBAHASAN Pada bab ini, akan dilakukan analisis dan pembahasan terhadap data runtun waktu. Adapun data yang digunakan dalam penelitian ini merupakan data sekunder, yaitu data

Lebih terperinci

Analisis Peramalan Data Produk Domestik Regional Bruto (PDRB) Sebagai Tolak Ukur Kinerja Perekonomian Provinsi Kepulauan Bangka Belitung

Analisis Peramalan Data Produk Domestik Regional Bruto (PDRB) Sebagai Tolak Ukur Kinerja Perekonomian Provinsi Kepulauan Bangka Belitung Analisis Peramalan Data Produk Domestik Regional Bruto (PDRB) Sebagai Tolak Ukur Kinerja Perekonomian Provinsi Kepulauan Bangka Belitung Desy Yuliana Dalimunthe Jurusan Ilmu Ekonomi, Fakultas Ekonomi,

Lebih terperinci

III. METODE PENELITIAN

III. METODE PENELITIAN 38 III. METODE PENELITIAN A. Konsep Dasar dan Batasan Operasional Konsep dasar dan definisi opresional mencakup pengertian yang dipergunakan untuk mendapatkan dan menganalisis data sesuai dengan tujuan

Lebih terperinci

EFEKTIVITAS METODE BOX-JENKINS DAN EXPONENTIAL SMOOTHING UNTUK MERAMALKAN RETRIBUSI PENGUJIAN KENDARAAN BERMOTOR DISHUB KLATEN

EFEKTIVITAS METODE BOX-JENKINS DAN EXPONENTIAL SMOOTHING UNTUK MERAMALKAN RETRIBUSI PENGUJIAN KENDARAAN BERMOTOR DISHUB KLATEN EFEKTIVITAS METODE BOX-JENKINS DAN EXPONENTIAL SMOOTHING UNTUK MERAMALKAN RETRIBUSI PENGUJIAN KENDARAAN BERMOTOR DISHUB KLATEN Puji Rahayu 1), Rohmah Nur Istiqomah 2), Eminugroho Ratna Sari 3) 1)2)3) Matematika

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Konsep Peramalan Peramalan ( forecasting) merupakan alat bantu yang penting dalam perencanaan yang efektif dan efisien khususnya dalam bidang ekonomi. Dalam organisasi modern

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang BAB 1 PENDAHULUAN 1.1 Latar Belakang Salah satu indikator tingkat kesejahteraan rakyat dapat dilihat dari perkembangan angka kematian balita, dikarenakan kematian balita berkaitan erat dengan keadaan ekonomi,

Lebih terperinci

BAB 2 TINJAUAN TEORITIS. yang akan datang. Ramalan adalah situasi dan kondisi yang diperkirakan akan terjadi

BAB 2 TINJAUAN TEORITIS. yang akan datang. Ramalan adalah situasi dan kondisi yang diperkirakan akan terjadi BAB 2 TINJAUAN TEORITIS 2.1 Pengertian Peramalan Peramalan adalah kegiatan untuk memperkirakan apa yang akan terjadi pada masa yang akan datang. Ramalan adalah situasi dan kondisi yang diperkirakan akan

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Pengertian Peramalan Peramalan (forecasting) adalah kegiatan memperkirakan atau memprediksi apa yang akan terjadi pada masa yang akan datang dengan waktu yang relatif lama. Sedangkan

Lebih terperinci

BAB II TINJAUAN PUSTAKA. autokovarians (ACVF) dan fungsi autokorelasi (ACF), fungsi autokorelasi parsial

BAB II TINJAUAN PUSTAKA. autokovarians (ACVF) dan fungsi autokorelasi (ACF), fungsi autokorelasi parsial BAB II TINJAUAN PUSTAKA Berikut teori-teori yang mendukung penelitian ini, yaitu konsep dasar peramalan, konsep dasar deret waktu, proses stokastik, proses stasioner, fungsi autokovarians (ACVF) dan fungsi

Lebih terperinci

HALAMAN PERSETUJUAN PEMBIMBING...iii. HALAMAN PENGESAHAN...iv. HALAMAN PERSEMBAHAN... vi. KATA PENGANTAR... viii. DAFTAR ISI... x. DAFTAR TABEL...

HALAMAN PERSETUJUAN PEMBIMBING...iii. HALAMAN PENGESAHAN...iv. HALAMAN PERSEMBAHAN... vi. KATA PENGANTAR... viii. DAFTAR ISI... x. DAFTAR TABEL... HALAMAN PERSETUJUAN PEMBIMBING...iii HALAMAN PENGESAHAN...iv MOTTO... v HALAMAN PERSEMBAHAN... vi KATA PENGANTAR... viii DAFTAR ISI... x DAFTAR TABEL... xi DAFTAR GAMBAR... xii DAFTAR LAMPIRAN... xiv PERNYATAAN...

Lebih terperinci

Perbandingan Metode Fuzzy Time Series Cheng dan Metode Box-Jenkins untuk Memprediksi IHSG

Perbandingan Metode Fuzzy Time Series Cheng dan Metode Box-Jenkins untuk Memprediksi IHSG JURNAL SAINS DAN SENI POMITS Vol. 3, No. 2, (2014) ISSN: 2337-3539 (2301-9271 Print) A-34 Perbandingan Metode Fuzzy Time Series Cheng dan Metode Box-Jenkins untuk Memprediksi IHSG Mey Lista Tauryawati

Lebih terperinci

PEMODELAN DATA TIME SERIES DENGAN METODE BOX-JENKINS

PEMODELAN DATA TIME SERIES DENGAN METODE BOX-JENKINS PEMODELAN DATA TIME SERIES DENGAN METODE BOX-JENKINS Rais 1 1 Jurusan Matematika Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Tadulako, email: rais76_untad@yahoo.co.id Abstrak Metode Box-Jenkins

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Manfaat Peramalan Pada dasarnya peramalan adalah merupakan suatu dugaan atau perkiraan tentang terjadinya suatu keadaan dimasa depan, tetapi dengan menggunakan metode metode tertentu

Lebih terperinci

Peramalan Volume Pemakaian Air di PDAM Kota Surabaya dengan Menggunakan Metode Time Series

Peramalan Volume Pemakaian Air di PDAM Kota Surabaya dengan Menggunakan Metode Time Series JURNAL SAINS DAN SENI ITS Vol. 6, No. 1, (2017) ISSN: 2337-3520 (2301-928X Print) D-157 Peramalan Volume Pemakaian Air di PDAM Kota Surabaya dengan Menggunakan Metode Time Series Moh Ali Asfihani dan Irhamah

Lebih terperinci

PENERAPAN MODEL ARIMA UNTUK MEMPREDIKSI HARGA SAHAM PT. TELKOM Tbk. APPLICATION OF ARIMA TO FORECASTING STOCK PRICE OF PT. TELOKM Tbk.

PENERAPAN MODEL ARIMA UNTUK MEMPREDIKSI HARGA SAHAM PT. TELKOM Tbk. APPLICATION OF ARIMA TO FORECASTING STOCK PRICE OF PT. TELOKM Tbk. PENERAPAN MODEL ARIMA UNTUK MEMPREDIKSI HARGA SAHAM PT. TELKOM Tbk. Djoni Hatidja ) ) Program Studi Matematika FMIPA Universitas Sam Ratulangi, Manado 955 email: dhatidja@yahoo.com ABSTRAK Penelitian ini

Lebih terperinci

PERAMALAN SAHAM JAKARTA ISLAMIC INDEX MENGGUNAKAN METODE ARIMA BULAN MEI-JULI 2010

PERAMALAN SAHAM JAKARTA ISLAMIC INDEX MENGGUNAKAN METODE ARIMA BULAN MEI-JULI 2010 Statistika, Vol., No., Mei PERAMALAN SAHAM JAKARTA ISLAMIC INDEX MENGGUNAKAN METODE ARIMA BULAN MEI-JULI Reksa Nila Anityaloka, Atika Nurani Ambarwati Program Studi S Statistika Universitas Muhammadiyah

Lebih terperinci

PREDIKSI HARGA SAHAM PT. BRI, Tbk. MENGGUNAKAN METODE ARIMA (Autoregressive Integrated Moving Average)

PREDIKSI HARGA SAHAM PT. BRI, Tbk. MENGGUNAKAN METODE ARIMA (Autoregressive Integrated Moving Average) PREDIKSI HARGA SAHAM PT. BRI, MENGGUNAKAN METODE ARIMA (Autoregressive Integrated Moving Average) Greis S. Lilipaly ), Djoni Hatidja ), John S. Kekenusa ) ) Program Studi Matematika FMIPA UNSRAT Manado

Lebih terperinci

BAB 2 LANDASAN TEORI Pengertian Data Deret Berkala

BAB 2 LANDASAN TEORI Pengertian Data Deret Berkala BAB 2 LANDASAN TEORI 2.1. Pengertian Data Deret Berkala Suatu deret berkala adalah himpunan observasi yang terkumpul atau hasil observasi yang mengalami peningkatan waktu. Data deret berkala adalah serangkaian

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 DATA MINING Data Mining adalah analisis otomatis dari data yang berjumlah banyak atau kompleks dengan tujuan untuk menemukan pola atau kecenderungan yang penting yang biasanya

Lebih terperinci

PENGGUNAAN MODEL GENERALIZED AUTOREGRESSIVE CONDITIONAL HETEROSCEDASTICITY (P,Q) UNTUK PERAMALAN HARGA DAGING AYAM BROILER DI PROVINSI JAWA TIMUR

PENGGUNAAN MODEL GENERALIZED AUTOREGRESSIVE CONDITIONAL HETEROSCEDASTICITY (P,Q) UNTUK PERAMALAN HARGA DAGING AYAM BROILER DI PROVINSI JAWA TIMUR Seminar Nasional Matematika dan Aplikasinya, 21 Oktober 27 PENGGUNAAN MODEL GENERALIZED AUTOREGRESSIVE CONDITIONAL HETEROSCEDASTICITY (P,Q) UNTUK PERAMALAN HARGA DAGING AYAM BROILER DI PROVINSI JAWA TIMUR

Lebih terperinci

Analisys Time Series Terhadap Penjualan Ban Luar Sepeda Motor di Toko Putra Jaya Motor Bangkalan

Analisys Time Series Terhadap Penjualan Ban Luar Sepeda Motor di Toko Putra Jaya Motor Bangkalan SEMINAR PROPOSAL TUGAS AKHIR Analisys Time Series Terhadap Penjualan Ban Luar Sepeda Motor di Toko Putra Jaya Motor Bangkalan OLEH: NAMA : MULAZIMATUS SYAFA AH NRP : 13.11.030.021 DOSEN PEmbimbing: Dr.

Lebih terperinci

METODE KUANTITATIF, MENGGUNAKAN BERBAGAI MODEL MATEMATIS YANG MENGGUNAKAN DATA HISTORIES DAN ATAU VARIABLE-VARIABEL KAUSAL UNTUK MERAMALKAN

METODE KUANTITATIF, MENGGUNAKAN BERBAGAI MODEL MATEMATIS YANG MENGGUNAKAN DATA HISTORIES DAN ATAU VARIABLE-VARIABEL KAUSAL UNTUK MERAMALKAN METODE KUANTITATIF, MENGGUNAKAN BERBAGAI MODEL MATEMATIS YANG MENGGUNAKAN DATA HISTORIES DAN ATAU VARIABLE-VARIABEL KAUSAL UNTUK MERAMALKAN Peramalan kuantitatif hanya dapat digunakan apabila terdapat

Lebih terperinci

MODEL EXPONENTIAL SMOOTHING HOLT-WINTER DAN MODEL SARIMA UNTUK PERAMALAN TINGKAT HUNIAN HOTEL DI PROPINSI DIY SKRIPSI

MODEL EXPONENTIAL SMOOTHING HOLT-WINTER DAN MODEL SARIMA UNTUK PERAMALAN TINGKAT HUNIAN HOTEL DI PROPINSI DIY SKRIPSI MODEL EXPONENTIAL SMOOTHING HOLT-WINTER DAN MODEL SARIMA UNTUK PERAMALAN TINGKAT HUNIAN HOTEL DI PROPINSI DIY SKRIPSI Diajukan Kepada Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Negeri Yogyakarta

Lebih terperinci

BAB 2 LANDASAN TEORI. Peramalan adalah kegiatan memperkirakan apa yang akan terjadi pada masa yang

BAB 2 LANDASAN TEORI. Peramalan adalah kegiatan memperkirakan apa yang akan terjadi pada masa yang BAB 2 LANDASAN TEORI 2.1 Peramalan Peramalan adalah kegiatan memperkirakan apa yang akan terjadi pada masa yang akan datang. Ramalan adalah suatu situasi atau kondisi yang diperkirakan akan terjadi pada

Lebih terperinci

PERAMALAN JUMLAH PENUMPANG BANDARA I GUSTI NGURAH RAI DENGAN MENGGUNAKAN METODE AUTOREGRESSIVE INTEGRATED MOVING AVERAGE (ARIMA)

PERAMALAN JUMLAH PENUMPANG BANDARA I GUSTI NGURAH RAI DENGAN MENGGUNAKAN METODE AUTOREGRESSIVE INTEGRATED MOVING AVERAGE (ARIMA) M-11 2) PERAMALAN JUMLAH PENUMPANG BANDARA I GUSTI NGURAH RAI DENGAN MENGGUNAKAN METODE AUTOREGRESSIVE INTEGRATED MOVING AVERAGE (ARIMA) Naili Farkhatul Jannah 1), Muhammad Bahtiar Isna Fuady 2), Sefri

Lebih terperinci

BAB 2 LANDASAN TEORI. Ramalan pada dasarnya merupakan perkiraan mengenai terjadinya suatu yang akan

BAB 2 LANDASAN TEORI. Ramalan pada dasarnya merupakan perkiraan mengenai terjadinya suatu yang akan BAB 2 LANDASAN TEORI 2.1 Pengertian Peramalan Ramalan pada dasarnya merupakan perkiraan mengenai terjadinya suatu yang akan datang. Peramalan adalah proses untuk memperkirakan kebutuhan di masa datang

Lebih terperinci

PEMODELAN ARIMA DALAM PERAMALAN PENUMPANG KERETA API PADA DAERAH OPERASI (DAOP) IX JEMBER

PEMODELAN ARIMA DALAM PERAMALAN PENUMPANG KERETA API PADA DAERAH OPERASI (DAOP) IX JEMBER PKMT-2-13-1 PEMODELAN ARIMA DALAM PERAMALAN PENUMPANG KERETA API PADA DAERAH OPERASI (DAOP) IX JEMBER Umi Rosyiidah, Diah Taukhida K, Dwi Sitharini Jurusan Matematika, Universitas Jember, Jember ABSTRAK

Lebih terperinci

VI PERAMALAN PENJUALAN AYAM BROILER DAN PERAMALAN HARGA AYAM BROILER

VI PERAMALAN PENJUALAN AYAM BROILER DAN PERAMALAN HARGA AYAM BROILER VI PERAMALAN PENJUALAN AYAM BROILER DAN PERAMALAN HARGA AYAM BROILER 6.1. Analisis Pola Data Penjualan Ayam Broiler Data penjualan ayam broiler adalah data bulanan yang diperoleh dari bulan Januari 2006

Lebih terperinci

Metode Deret Berkala Box Jenkins

Metode Deret Berkala Box Jenkins METODE BOX JENKINS Metode Deret Berkala Box Jenkins Suatu metode peramalan yang sistematis, yang tidak mengasumsikan suatu model tertentu, tetapi menganalisa deret berkala sehingga diperoleh suatu model

Lebih terperinci

BAB 3 MODEL FUNGSI TRANSFER MULTIVARIAT

BAB 3 MODEL FUNGSI TRANSFER MULTIVARIAT BAB 3 MODEL FUNGSI TRANSFER MULTIVARIAT Model fungsi transfer multivariat merupakan gabungan dari model ARIMA univariat dan analisis regresi berganda, sehingga menjadi suatu model yang mencampurkan pendekatan

Lebih terperinci

Peramalan Deret Waktu Menggunakan S-Curve dan Quadratic Trend Model

Peramalan Deret Waktu Menggunakan S-Curve dan Quadratic Trend Model Konferensi Nasional Sistem & Informatika 2015 STMIK STIKOM Bali, 9 10 Oktober 2015 Peramalan Deret Waktu Menggunakan S-Curve dan Quadratic Trend Model Ni Kadek Sukerti STMIK STIKOM Bali Jl. Raya Puputan

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang BAB 1 PENDAHULUAN 1.1 Latar Belakang Berdasarkan sifatnya peramalan terbagi atas dua yaitu peramalan kualitatif dan peramalan kuantitatif. Metode kuantitatif terbagi atas dua yaitu analisis deret berkala

Lebih terperinci

BAB 2 LANDASAN TEORI. Produksi jagung merupakan hasil bercocok tanam, dimana dilakukan penanaman bibit

BAB 2 LANDASAN TEORI. Produksi jagung merupakan hasil bercocok tanam, dimana dilakukan penanaman bibit BAB 2 LANDASAN TEORI 2.1 Pengertian Produksi Produksi jagung merupakan hasil bercocok tanam, dimana dilakukan penanaman bibit tanaman pada lahan yang telah disediakan, pemupukan dan perawatan sehingga

Lebih terperinci

Prediksi Harga Saham dengan ARIMA

Prediksi Harga Saham dengan ARIMA Prediksi Harga Saham dengan ARIMA Peramalan harga saham merupakan sesuatu yang ditunggu-tunggu oleh para investor. Munculnya model prediksi yang baru yang bisa meramalkan harga saham secara tepat merupakan

Lebih terperinci

BAB 2 TINJAUAN TEORITIS

BAB 2 TINJAUAN TEORITIS BAB 2 TINJAUAN TEORITIS 2.1. Peramalan 2.1.1. Pengertian dan Kegunaan Peramalan Peramalan (forecasting) menurut Sofjan Assauri (1984) adalah kegiatan memperkirakan apa yang akan terjadi pada masa yang

Lebih terperinci

ARIMA and Forecasting

ARIMA and Forecasting ARIMA and Forecasting We have learned linear models and their characteristics, like: AR(p), MA(q), ARMA(p,q) and ARIMA (p,d,q). The important thing that we have to know in developing the models are determining

Lebih terperinci

PENERAPAN MODEL ARFIMA (AUTOREGRESSIVE FRACTIONALLY INTEGRATED MOVING AVERAGE) DALAM PERAMALAN SUKU BUNGA SERTIFIKAT BANK INDONESIA (SBI)

PENERAPAN MODEL ARFIMA (AUTOREGRESSIVE FRACTIONALLY INTEGRATED MOVING AVERAGE) DALAM PERAMALAN SUKU BUNGA SERTIFIKAT BANK INDONESIA (SBI) PENERAPAN MODEL ARFIMA (AUTOREGRESSIVE FRACTIONALLY INTEGRATED MOVING AVERAGE) DALAM PERAMALAN SUKU BUNGA SERTIFIKAT BANK INDONESIA (SBI) Liana Kusuma Ningrum dan Winita Sulandari, M.Si. Jurusan Matematika,

Lebih terperinci

Peramalan Penjualan Pipa di PT X

Peramalan Penjualan Pipa di PT X Elviani, et al. / Peramalan Penjualan Pipa di PT X / Jurnal Titra, Vol.. 2, No. 2, Juni 2014, pp. 55-60 Peramalan Penjualan Pipa di PT X Cicely Elviani 1, Siana Halim 1 Abstract: In this thesis we modeled

Lebih terperinci

PERAMALAN INDEKS HARGA KONSUMEN MENGGUNAKAN MODEL INTERVENSI FUNGSI STEP

PERAMALAN INDEKS HARGA KONSUMEN MENGGUNAKAN MODEL INTERVENSI FUNGSI STEP PERAMALAN INDEKS HARGA KONSUMEN MENGGUNAKAN MODEL INTERVENSI FUNGSI STEP SKRIPSI Disusun oleh : DITA RULIANA SARI NIM. 24010211140084 JURUSAN STATISTIKA FAKULTAS SAINS DAN MATEMATIKA UNIVERSITAS DIPONEGORO

Lebih terperinci

PERBANDINGAN MODEL PADA DATA DERET WAKTU PEMAKAIAN LISTRIK JANGKA PENDEK YANG MENGANDUNG POLA MUSIMAN GANDA ABSTRAK

PERBANDINGAN MODEL PADA DATA DERET WAKTU PEMAKAIAN LISTRIK JANGKA PENDEK YANG MENGANDUNG POLA MUSIMAN GANDA ABSTRAK PERBANDINGAN MODEL PADA DATA DERET WAKTU PEMAKAIAN LISTRIK JANGKA PENDEK YANG MENGANDUNG POLA MUSIMAN GANDA Gumgum Darmawan 1), Suhartono 2) 1) Staf Pengajar Jurusan Statistika FMIPA UNPAD 2) Staf Pengajar

Lebih terperinci

Peramalan Permintaan Paving Blok dengan Metode ARIMA

Peramalan Permintaan Paving Blok dengan Metode ARIMA Konferensi Nasional Sistem & Informatika 2015 STMIK STIKOM Bali, 9 10 Oktober 2015 Peramalan Permintaan Paving Blok dengan Metode ARIMA Adin Nofiyanto 1,Radityo Adi Nugroho 2, Dwi Kartini 3 1,2,3 Program

Lebih terperinci

PERAMALAN INDEKS HARGA KONSUMEN DAN INFLASI INDONESIA DENGAN METODE ARIMA BOX-JENKINS

PERAMALAN INDEKS HARGA KONSUMEN DAN INFLASI INDONESIA DENGAN METODE ARIMA BOX-JENKINS PERAMALAN INDEKS HARGA KONSUMEN DAN INFLASI INDONESIA DENGAN METODE ARIMA BOX-JENKINS Oleh : Agustini Tripena ABSTRACT In this paper, forecasting the consumer price index data and inflation. The method

Lebih terperinci

MODEL AUTOREGRESSIVE (AR) ATAU MODEL UNIVARIATE

MODEL AUTOREGRESSIVE (AR) ATAU MODEL UNIVARIATE MODEL AUTOREGRESSIVE (AR) ATAU MODEL UNIVARIATE Data yang digunakan adalah data M2Trend.wf1 (buku rujukan pertama, bab-8). Model analisisnya adalah Xt = M2 diregresikan dengan t = waktu. Model yang akan

Lebih terperinci

BAB III METODOLOGI PENELITIAN

BAB III METODOLOGI PENELITIAN BAB III METODOLOGI PENELITIAN Mulai Studi Pendahuluan Studi Pustaka Identifikasi Masalah Perumusan Masalah Tujuan Pengumpulan Data 1. Profil Perusahaan PT. Mensa Binasukses cabang kota Padang 2. Data forecasting

Lebih terperinci

BAB IV ANALISIS DAN PEMBAHASAN

BAB IV ANALISIS DAN PEMBAHASAN C BAB IV ANALISIS DAN PEMBAHASAN Penelitian ini mencoba meramalkan jumlah penumpang kereta api untuk masa yang akan datang berdasarkan data volume penumpang kereta api periode Januari 994-Februari 203

Lebih terperinci

Pemodelan Konsumsi Listrik Berdasarkan Jumlah Pelanggan PLN Jawa Timur untuk Kategori Rumah Tangga R-1 Dengan Metode Fungsi Transfer single input

Pemodelan Konsumsi Listrik Berdasarkan Jumlah Pelanggan PLN Jawa Timur untuk Kategori Rumah Tangga R-1 Dengan Metode Fungsi Transfer single input Pemodelan Konsumsi Listrik Berdasarkan Jumlah Pelanggan PLN Jawa Timur untuk Kategori Rumah Tangga R-1 Dengan Metode Fungsi Transfer single input Oleh : Defi Rachmawati 1311 105 007 Dosen Pembimbing :

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Peramalan (Forceasting) 2.1.1 Pengertian Peramalan Untuk memajukan suatu usaha harus memiliki pandangan ke depan yakni pada masa yang akan datang. Hal seperti ini yang harus dikaji

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI 10 BAB 2 LANDASAN TEORI 2.1 Pengertian Peramalan Peramalan (forecasting) adalah kegiatan mengestimasi apa yang akan terjadi pada masa yang akan datang. Peramalan diperlukan karena adanya kesenjaan waktu

Lebih terperinci

PERAMALAN STOK BARANG UNTUK MEMBANTU PENGAMBILAN KEPUTUSAN PEMBELIAN BARANG PADA TOKO BANGUNAN XYZ DENGAN METODE ARIMA

PERAMALAN STOK BARANG UNTUK MEMBANTU PENGAMBILAN KEPUTUSAN PEMBELIAN BARANG PADA TOKO BANGUNAN XYZ DENGAN METODE ARIMA PERAMALAN STOK BARANG UNTUK MEMBANTU PENGAMBILAN KEPUTUSAN PEMBELIAN BARANG PADA TOKO BANGUNAN XYZ DENGAN METODE ARIMA Tanti Octavia 1), Yulia 2), Lydia 3) 1) Program Studi Teknik Industri, Universitas

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1. Uji Kecukupan Sampel Dalam melakukan penelitian terhadap populasi yang sangat besar, kita perlu melakukan suatu penarikan sampel. Hal ini dikarenakan tidak selamanya kita dapat

Lebih terperinci

GARIS-GARIS BESAR PROGRAM PENGAJARAN PROGRAM STUDI: S1 SISTEM INFORMASI Semester : Genap

GARIS-GARIS BESAR PROGRAM PENGAJARAN PROGRAM STUDI: S1 SISTEM INFORMASI Semester : Genap GARIS-GARIS BESAR PROGRAM PENGAJARAN PROGRAM STUDI: S1 SISTEM INFORMASI Semester : Genap Berlaku mulai: Genap/2010 MATA KULIAH : TEKNIK PERAMALAN KODE MATA KULIAH/ SKS : 410103096 / 3 SKS MATA KULIAH PRASYARAT

Lebih terperinci

MODEL TERBAIK ARIMA DAN WINTER PADA PERAMALAN DATA SAHAM BANK

MODEL TERBAIK ARIMA DAN WINTER PADA PERAMALAN DATA SAHAM BANK MODEL TERBAIK ARIMA DAN WINTER PADA PERAMALAN DATA SAHAM BANK Moh. Yamin Darsyah 1, Muhammad Saifudin Nur 2 1,2 Progam Studi Statistika Fakultas Matematika Dan Ilmu Pengetahuan Alam Universitas Muhammadiyah

Lebih terperinci

4 BAB IV HASIL PEMBAHASAN DAN EVALUASI. lebih dikenal dengan metode Box-Jenkins adalah sebagai berikut :

4 BAB IV HASIL PEMBAHASAN DAN EVALUASI. lebih dikenal dengan metode Box-Jenkins adalah sebagai berikut : 4 BAB IV HASIL PEMBAHASAN DAN EVALUASI Pada bab ini, akan dilakukan analisis dan pembahasan terhadap data runtut waktu. Data yang digunakan dalam penelitian ini merupakan data sekunder, yaitu data harga

Lebih terperinci

VERIFIKASI MODEL ARIMA MUSIMAN MENGGUNAKAN PETA KENDALI MOVING RANGE

VERIFIKASI MODEL ARIMA MUSIMAN MENGGUNAKAN PETA KENDALI MOVING RANGE VERIFIKASI MODEL ARIMA MUSIMAN MENGGUNAKAN PETA KENDALI MOVING RANGE (Studi Kasus : Kecepatan Rata-rata Angin di Badan Meteorologi Klimatologi dan Geofisika Stasiun Meteorologi Maritim Semarang) SKRIPSI

Lebih terperinci

Pembahasan Materi #7

Pembahasan Materi #7 1 EMA402 Manajemen Rantai Pasokan Pembahasan 2 Pengertian Moving Average Alasan Tujuan Jenis Validitas Taksonomi Metode Kualitatif Metode Kuantitatif Time Series Metode Peramalan Permintaan Weighted Woving

Lebih terperinci

PERBANDINGAN PERAMALAN MENGGUNAKAN METODE EXPONENTIAL SMOOTHING HOLT-WINTERS DAN ARIMA

PERBANDINGAN PERAMALAN MENGGUNAKAN METODE EXPONENTIAL SMOOTHING HOLT-WINTERS DAN ARIMA UJM 6 (1) (2017) UNNES Journal of Mathematics http://journal.unnes.ac.id/sju/index.php/ujm PERBANDINGAN PERAMALAN MENGGUNAKAN METODE EXPONENTIAL SMOOTHING HOLT-WINTERS DAN ARIMA Tias Safitri, Nurkaromah

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1. PengertianPeramalan Peramalan adalah kegiatan untuk memperkirakan apa yang akan terjadi pada masa yang akan datang. Dalam usaha mengetahui atau melihat perkembangan di masa depan,

Lebih terperinci

ESTIMASI DATA YANG HILANG DENGAN MENGGUNAKAN PROSES PENYARINGAN DALAM PEMODELAN DATA TIME SERIES

ESTIMASI DATA YANG HILANG DENGAN MENGGUNAKAN PROSES PENYARINGAN DALAM PEMODELAN DATA TIME SERIES ESTIMASI DATA YANG HILANG DENGAN MENGGUNAKAN PROSES PENYARINGAN DALAM PEMODELAN DATA TIME SERIES Rais 1 1 Jurusan Matematika FMIPA Universitas Tadulako, email: rais76_untad@yahoo.co.id Abstrak Makalah

Lebih terperinci

Team project 2017 Dony Pratidana S. Hum Bima Agus Setyawan S. IIP

Team project 2017 Dony Pratidana S. Hum Bima Agus Setyawan S. IIP Hak cipta dan penggunaan kembali: Lisensi ini mengizinkan setiap orang untuk menggubah, memperbaiki, dan membuat ciptaan turunan bukan untuk kepentingan komersial, selama anda mencantumkan nama penulis

Lebih terperinci

BAB II TINJAUAN PUSTAKA. penelitian ini, yaitu ln return, volatilitas, data runtun waktu, kestasioneran, uji

BAB II TINJAUAN PUSTAKA. penelitian ini, yaitu ln return, volatilitas, data runtun waktu, kestasioneran, uji 35 BAB II TINJAUAN PUSTAKA Pada Bab II akan dibahas konsep-konsep yang menjadi dasar dalam penelitian ini, yaitu ln return, volatilitas, data runtun waktu, kestasioneran, uji ACF, uji PACF, uji ARCH-LM,

Lebih terperinci

Artikel Ilmiah. Peneliti : Auditya Gianina Bernadine Amaheka ( ) Michael Bezaleel Wenas, S.Kom., M.Cs.

Artikel Ilmiah. Peneliti : Auditya Gianina Bernadine Amaheka ( ) Michael Bezaleel Wenas, S.Kom., M.Cs. Analisis Peramalan Penerimaan Pajak Kendaraan Bermotor dengan Metode Autoregressive Integrated Moving Average (ARIMA) (Studi Kasus : Dinas Pendapatan dan Pengelolaan Aset Daerah Provinsi Jawa Tengah) Artikel

Lebih terperinci

BAB 2 LANDASAN TEORI. Universitas Sumatera Utara

BAB 2 LANDASAN TEORI. Universitas Sumatera Utara BAB 2 LANDASAN TEORI 2.1 Curah Hujan Curah hujan adalah jumlah air yang jatuh di permukaan tanah datar selama periode tertentu yang diukur dengan satuan tinggi milimeter (mm) di atas permukaan horizontal.

Lebih terperinci

LULIK PRESDITA W APLIKASI MODEL ARCH- GARCH DALAM PERAMALAN TINGKAT INFLASI

LULIK PRESDITA W APLIKASI MODEL ARCH- GARCH DALAM PERAMALAN TINGKAT INFLASI LULIK PRESDITA W 1207 100 002 APLIKASI MODEL ARCH- GARCH DALAM PERAMALAN TINGKAT INFLASI 1 Pembimbing : Dra. Nuri Wahyuningsih, M.Kes BAB I PENDAHULUAN 2 LATAR BELAKANG 1. Stabilitas ekonomi dapat dilihat

Lebih terperinci

BAB 2 LANDASAN TEORITIS

BAB 2 LANDASAN TEORITIS BAB 2 LANDASAN TEORITIS 2.1 Pengertian Peramalan Peramalan (forecasting) adalah kegiatan memperkirakan atau memprediksikan apa yang akan terjadi pada masa yang akan datang dengan waktu yang relative lama.

Lebih terperinci

Prediksi Jumlah Penumpang Kapal Laut di Pelabuhan Laut Manado Menggunakan Model ARMA

Prediksi Jumlah Penumpang Kapal Laut di Pelabuhan Laut Manado Menggunakan Model ARMA Prediksi Jumlah Penumpang Kapal Laut di Pelabuhan Laut Manado Menggunakan Model ARMA Jeine Tando 1, Hanny Komalig 2, Nelson Nainggolan 3* 1,2,3 Program Studi Matematika, Fakultas Matematika dan Ilmu Pengetahuan

Lebih terperinci

III KERANGKA PEMIKIRAN

III KERANGKA PEMIKIRAN 3.1. Kerangka Pemikiran Teoritis 3.1.1. Konsep Permintaan III KERANGKA PEMIKIRAN Permintaan adalah banyaknya jumlah barang yang diminta pada suatu pasar tertentu dengan tingkat harga tertentu pada tingkat

Lebih terperinci

The 4 th Univesity Research Coloquium 2016 PERBANDINGAN MODEL ARIMA DAN WINTER PADA PERAMALAN DATA SAHAM BANK

The 4 th Univesity Research Coloquium 2016 PERBANDINGAN MODEL ARIMA DAN WINTER PADA PERAMALAN DATA SAHAM BANK PERBANDINGAN MODEL ARIMA DAN WINTER PADA PERAMALAN DATA SAHAM BANK Moh. Yamin Darsyah 1, Muhammad Saifudin Nur 2 1,2 Progam Studi Statistika Fakultas Matematika Dan Ilmu Pengetahuan Alam Universitas Muhammadiyah

Lebih terperinci

Pemodelan ARIMA Non- Musim Musi am

Pemodelan ARIMA Non- Musim Musi am Pemodelan ARIMA Non- Musimam ARIMA ARIMA(Auto Regresif Integrated Moving Average) merupakan suatu metode analisis runtun waktu(time series) ARIMA(p,d,q) Dengan AR : p =orde dari proses autoreggresif I

Lebih terperinci

Analisis Time Series Pada Penjualan Shampoo Zwitsal daerah Jakarta dan Jawa Barat di PT. Sara Lee Indonesia. Oleh : Pomi Kartin Yunus

Analisis Time Series Pada Penjualan Shampoo Zwitsal daerah Jakarta dan Jawa Barat di PT. Sara Lee Indonesia. Oleh : Pomi Kartin Yunus Analisis Time Series Pada Penjualan Shampoo Zwitsal daerah Jakarta dan Jawa Barat di PT. Sara Lee Indonesia Oleh : Pomi Kartin Yunus 1306030040 Latar Belakang Industri manufaktur yang berkembang pesat

Lebih terperinci

BAB 2 TINJAUAN TEORITIS

BAB 2 TINJAUAN TEORITIS BAB 2 TINJAUAN TEORITIS 2.1 Pengertian Peramalan Peramalan adalah kegiatan meramalkan atau memprediksi apa yang akan terjadi dimasa yang akan datang dengan waktu tenggang (lead time) yang relative lama,

Lebih terperinci

Peramalam Jumlah Penumpang Yang Berangkat Melalui Bandar Udara Temindung Samarinda Tahun 2012 Dengan Metode ARIMA BOX-JENKINS

Peramalam Jumlah Penumpang Yang Berangkat Melalui Bandar Udara Temindung Samarinda Tahun 2012 Dengan Metode ARIMA BOX-JENKINS Jurnal EKSPONENSIAL Volume 3, Nomor, Mei 2 ISSN 8-7829 Peramalam Jumlah Penumpang Yang Berangkat Melalui Bandar Udara Temindung Samarinda Tahun 2 Dengan Metode ARIMA BOX-JENKINS Forecasting The Number

Lebih terperinci

BAB II LANDASAN TEORI. nonstasioneritas, Autocorrelation Function (ACF) dan Parsial Autocorrelation

BAB II LANDASAN TEORI. nonstasioneritas, Autocorrelation Function (ACF) dan Parsial Autocorrelation BAB II LANDASAN TEORI Pada Bab II akan dijelaskan pengertian-pengertian dasar yang digunakan sebagai landasan pembahasan pada bab selanjutnya yaitu peramalan data runtun waktu (time series), konsep dasar

Lebih terperinci

PERBANDINGAN MODEL ARIMA DAN MODEL REGRESI DENGAN RESIDUAL ARIMA DALAM MENERANGKAN PERILAKU PELANGGAN LISTRIK DI KOTA PALOPO

PERBANDINGAN MODEL ARIMA DAN MODEL REGRESI DENGAN RESIDUAL ARIMA DALAM MENERANGKAN PERILAKU PELANGGAN LISTRIK DI KOTA PALOPO Perbandingan Model ARIMA... (Alia Lestari) PERBANDINGAN MODEL ARIMA DAN MODEL REGRESI DENGAN RESIDUAL ARIMA DALAM MENERANGKAN PERILAKU PELANGGAN LISTRIK DI KOTA PALOPO Alia Lestari Fakultas Teknik Universitas

Lebih terperinci