BAB 2 LANDASAN TEORI Pengertian Data Deret Berkala

Save this PDF as:
 WORD  PNG  TXT  JPG

Ukuran: px
Mulai penontonan dengan halaman:

Download "BAB 2 LANDASAN TEORI Pengertian Data Deret Berkala"

Transkripsi

1 BAB 2 LANDASAN TEORI 2.1. Pengertian Data Deret Berkala Suatu deret berkala adalah himpunan observasi yang terkumpul atau hasil observasi yang mengalami peningkatan waktu. Data deret berkala adalah serangkaian nilai-nilai variabel yang disusun berdasarkan waktu. Pada analisis data deret berkala terdapat variasi musim. Variasi musim merupakan gerakan suatu deret berkala yang diklasifikasikan ke dalam periode kurang dari satu tahun seperti kwartalan, bulanan atau harian, atau gerakan periodik yang berulang. Data sebuah deret berkala dapat berupa variasi musim atau tidak memiliki variasi musim, oleh karena itu perlu dilakukan identifikasi terlebih dahulu untuk mengetahui apakah deret tersebut mempunyai variasi musim atau tidak sebelum dilakukan perhitungan. Metode paling sederhana untuk mengetahui adanya variasi musim adalah dengan melihat pola yang ada pada plot time series. Pola variasi musim dapat diklasifikasikan dalam dua bentuk yaitu spesifik dan tipical. Pola spesifik menunjukkan variasi musim dalam periode kwartalan, sedangkan pola tipical menunjukkan rata-rata variasi musim dalam sejumlah periode seperti tahunan Stasioneritas Menurut Makridakis, dkk (1993) stasioneritas mempunyai makna bahwa tidak terdapat pertumbuhan atau penurunan pada data. Dengan kata lain, fluktuasi data berada di sekitar suatu nilai rata-rata yang konstan, tidak tergantung pada waktu dan varians dari fluktuasi trsebut. Plot data deret berkala dapat digunakan untuk mengetahui suatu data telah stasioner atau belum. Kestasioneran suatu data deret berkala dapat juga diperlihatkan dengan membuat plot autokorelasi.

2 Data deret berkala dikatakan stasioner dalam rata-rata jika rata-ratanya tidak berubah dari waktu ke waktu atau data bersifat stabil. Untuk melihat apakah suatu data sudah stasioner dalam rata-rata dapat digunakan alat bantu plot time series dan ACF. Apabila suatu data deret berkala tidak stasioner berdasarkan rata-rata maka dapat diatasi dengan melakukan pembeda (differencing). Differencing merupakan pengurangan data tertentu dengan data sebelumnya. Jika differencing ordo satu masih belum menghasilkan data yang stasioner, maka dapat dilakukan differencing ordo kedua, dan seterusnya hingga diperoleh data stasioner. Menurut Makridakis, dkk (1993) notasi yang sangat bermanfaat dalam metode pembedaan adalah operator shift mundur (backward shift) yang disimbolkan dengan B dan penggunaanya adalah sebagai berikut: (1) Notasi B yang dipasangkan pada mempunyai pengaruh menggeser data satu periode ke belakang, dua penerapan B untuk akan menggeser data tersebut dua periode ke belakang, sebagai berikut: (2) Apabila suatu deret berkala tidak stasioner, maka data tersebut dapat dibuat lebih mendekati stasioner dengan melakukan pembedaan pertama dari deret data dan persamaannya adalah sebagai berikut: 1. Pembedaan pertama (3) Menggunakan operator shift mundur, persamaan (6) dapat ditulis kembali menjadi: (4) Pembedaan pertama dinyatakan oleh (1-B). Sama halnya apabila pembedaan orde kedua (yaitu pembedaan pertama dari pembedan pertama sebelumnya) harus dihitung. 2. Pembedaan orde kedua

3 Pembedaan orede kedua diberi notasi. Tujuan menghitung pembedaan adalah untuk mencapai stasioneritas, dan secara umum apabila terdapat pembedaan orde ke-d untuk mencapai stasioneritas ditulis sebagai berikut: (5) Suatu deret berkala dikatakan stasioner dalam varians, jika plot deret berkala tidak memperlihatkan adanya perubahan varians yang jelas dari waktu ke waktu (Makridakis, 1993). Begitu pula sebaliknya, jika data deret berkala menunjukkan terdapat variasi fluktuasi data pada grafik maka data tersebut termasuk dalam deret berkala yang belum stasioner atau belum dalam varians, dapat menggunakan plot time series dan plot ACF. Untuk menstasionerkan data yang belum stasioner dalam varians, dapat dilakukan dengan proses transformasi. Secara umum, untuk mencapai stasioneritas dalam varians dapat dilakukan dengan power transformation ( ) yaitu (Makridakis, 1993): (6) dengan adalah parameter transformasi dan adalah faktor penambah yang konstan. Secara umum, berikut adalah nilai dari beserta pendekatan transformasi yang digunakan (Wei, 1990):

4 Tabel 1: Transformasi Box-Cox Nilai Estimate Transformasi -1-0,5 0 0,5 1 (stasioner) 2.3. Model Fungsi Transfer Fungsi transfer merupakan salah satu metode peramalan yang digunakan pada data deret waktu yang terhubung dengan satu atau lebih deret waktu lainnya. Model fungsi transfer merupakan gabungan beberapa karakteristik dari model-model ARIMA univariat dan beberapa karakteristik analisis regresi berganda. Model fungsi transfer memiliki deret berkala input ( ), dan input-input lain yang digabungkan dalam satu kelompok yang disebut gangguan (noise), dengan simbol. Fungsi transfer digunakan untuk meramalkan nilai yang akan datang dari suatu deret output ( ) berdasarkan nilai yang lalu dari deret output tersebut dan deret-deret lain yang berhubungan, yang disebut deret input, dengan simbol. Fungsi transfer memetakan deret input ke deret output dengan merupakan deret input yang terkendali. Upaya untuk mengatasi hal ini adalah melakukan pemutihan atau white noise yaitu penghilangan seluruh pola yang diketahui sehingga yang berpengaruh hanyalah galat acak. Untuk mempertahankan hubungan fungsional fungsi transfer maka transformasi pemutihan yang dilakukan terhadap deret input haruslah dilakukan pula terhadap deret output.

5 Bentuk Dasar Model Fungsi Transfer Model fungsi transfer bivariat ditulis dalam dua bentuk umum. Bentuk pertama adalah sebagai berikut: (7) dengan: = deret output = deret input = pengaruh kombinasi dari seluruh faktor yang mempengaruhi = ( ), merupakan respons impuls dimana adalah orde fungsi transfer Menyiapkan Deret Input dan Output Di dalam menyiapkan pemodelan fungsi transfer, perlu ditransformasikan atau melakukan pembedaan deret input dan output, terutama apabila terdapat ketidakstasioneran. Transformasi yang biasanya diterapkan adalah sebagai berikut: apabila dan apabila dengan m adalah faktor penambah yang konstan. Bila = 0,5 maka transformasi akar kuadrat diterapkan. Bila = 0, maka logaritma data dihitung dan faktor penambah yang konstan ditetapkan sedemikian rupa sehingga nilai ( ) lebih besar dari nol. Terhadap deret input dan deret output, menghilangkan pengaruh musiman (deseasonalized) perlu dilakukan. Hal ini mempunyai pengaruh yang mampu menghasilkan nilai-nilai (r, s, b) yang lebih kecil daripada tanpa melakukan

6 deseasonalized. Langkah-langkah yang perlu dilakukan sebelum menyiapkan deret input dan output adalah sebagai berikut: 1. Apakah transformasi terhadap data input dan output perlu dilakukan 2. Berapa tingkat pembedaan (difference) yang seharusnya diterapkan untuk deret input dan deret output agar mereka menjadi stasioner. 3. Apakah deret input dan output perlu dihilangkan pengaruh musimannya Deret data yang telah ditransformasi dan yang telah sesuai disebut dan Pemutihan Deret Input ( ) Mengubah deret input ( ) menjadi deret output ( ) dan meyederhanakannya akan membantu mempermudah memahami sistem dari fungsi transfer. Dengan demikian suatu input yang terkendali dapat ditempatkan dan diperiksa outputnya secara berulangulang sampai sifat asli fungsi transfer jelas. Melakukan pemutihan terhadap deret input berfungsi untuk menghilangkan seluruh pola yang diketahui supaya yang tertinggal hanya model yang terkendali, white noise. Suatu keadaan deret disebut white noise dengan suatu contoh nilai-nilai diambil dengan penarikan contoh acak yang bebas dengan distribusi peluang yang tetap. Dengan contoh sebagai berikut: (8) dengan adalah operator regresi-diri (autoregressive operator), adalah operator rata-rata bergerak (moving average operator), dan adalah kesalahan acak, yaitu white noise (dalam hal ini tidak memerlukan pembedaan ( ) dalam model ARIMA, karena hal ini telah dilakukan pada saat mempersiapkan deret input dan output). Pemutihan deret dapat dilakukan dengan menyusun suku-suku pada persamaan (20), deret disusun kembali ke dalam deret, sebagai berikut (Makridakis, 1993):

7 Pemutihan Deret Output ( ) Fungsi transfer yang ditetapkan adalah memetakan ke dalam. Seperti pada persamaan (20), transformasi yang sama diterapkan terhadap hubungan fungsional tetap dipertahankan. supaya integritas Input Fungsi Transfer Output Input Fungsi Transfer Output Transformasi pada tidak diubah menjadi white noise karena deret telah diputihkan sebelumnya. Deret yang telah diputihkan diberi simbol, dengan formulasi deret sebagai berikut: Penghitungan Crosscorrelation dan Autocorelation untuk Deret yang telah diputihkan Pada pemodelan ARIMA variabel tunggal (univariate ARIMA), koefisien autocorelation merupakan statistik kunci dalam membantu menetapkan bentuk model. Pada pemodelan MARIMA variabel ganda (fungsi transfer), autocorelation memiliki peran yang kedua setelah crosscorelation. Kenyataanya, terdapat perbedaan yang sangat kecil antara crosscorelation dengan apa yang biasa disebut korelasi, karena fungsi transfer berhubungan dengan dua deret, dan yang terpisah (dalam bentuk yang telah diputihkan dan ). Peragam (covariance) antara dua variabel dan (tanpa subskrip waktu, yang ditunjukkan dengan huruf t kecil di bawah notasi keduanya) ditetapkan sebagai berikut:

8 (10) Bentuk tersebut dapat digunakan untuk menetapkan dua ragam dan. Dengan menggunakan subskrip waktu di bawah variabel X dan Y dengan memisalkan k sebagai waktu lag (lag time) atau beda waktu pada setiap pasang data, maka kita dapat menentukan peragam-silang (crosscovariance) dan sebagai berikut: (11) (12) dengan k = 0, 1, 2, 3,..., pada persamaan (22) X memberikan petunjuk pada Y berdasarkan periode k. Di dalam persamaan (23) Y memberikan petunjuk pada X berdasarkan periode k. Persamaan (22) dan (23) didefenisikan sebagai ekspektasi (yang diharapkan). Taksiran crosscorelation dihitung dengan rumus sebagai berikut: (13) dengan dan adalah rata-rata dari deret dan Y dan k = 0, 1, 2,... (14) Rumus kesalahan standar berikut berguna untuk memeriksa apakah berbeda nyata dari nol dengan membandingkan nilai dengan kesalahan standar. (Makridakis, 1993) (15) Jika terdapat k negatif, diganti dengan nilai absolutnya pada sisi kanan persamaan (26) Pendugaan Langsung Bobot Respons Impuls

9 Formula untuk memperoleh pendugaan langsung untuk masing-masing bobot respon impuls adalah: (16) dengan: = bobot respon impuls = korelasi silang antara dan = simpangan baku (standard deviation) dari deret = simpangan baku (standard deviation) dari deret (makridakis, 1993) Penetapan (r, s, b) untuk Model Fungsi Transfer Nilai b menyatakan bahwa y tidak dipengaruhi oleh nilai sampai periode t+b. Nilai s menyatakan untuk beberapa lama deret output y secara terus menerus dipengaruhi oleh nilai-nilai baru dari deret input. Nilai r menunjukkan bahwa berkaitan dengan nilainilai masa lalunya. Parameter utama dalam model fungsi transfer adalah (r, s, b), dengan r menunjukkan derajat fungsi, s menunjukkan derajat fungsi, dan b menunjukkan keterlambatan yang dicatat pada subskrip dari pada persamaan (3). (Makridakis, 1993) Berdasarkan persamaan (1), (2) dan (3) telah ditetapkan: Apabila pernyataan, dan diperluas dan koefisiennya dibandingkan, akan diperoleh hubungan sebagai berikut:

10 untuk untuk untuk untuk Secara intuitif arti (r, s, b) dapat diuraikan dengan aturan-aturan berikut. Pertama, nilai b menyatakan bahwa y tidak dipengaruhi oleh nilai sampai periode, atau dengan persamaan sebagai berikut: berikutnya, nilai s menyatakan untuk beberapa lama deret output (y) secara terusmenerus dipengaruhi oleh nilai-nilai baru dari deret input (x), dipengaruhi oleh. Nilai r menunjukkan bahwa berkaitan dengan nilai-nilai masa lalunya yaitu y dipengaruhi oleh. Tiga prinsip atau petunjuk untuk menentukan nilai yang tepat untuk (r, s, b) yaitu sebagai berikut: 1. Sampai lag waktu ke b, crosscorelation tidak akan berbeda dari nol secara signifikan. 2. Untuk s time lag selanjutnya, crosscorelation tidak akan memperlihatkan adanya pola yang jelas. 3. Untuk r time lag selanjutnya, crosscorelation akan memperlihatkan suatu pola yang jelas Penaksiran Awal Deret Gangguan ( )

11 Bobot respons impuls diukur secara langsung dan ini memungkinkan perhitungan nilai taksiran dari deret gangguan, dikarenakan: dengan g adalah nilai praktis yang dipilih Penetapan untuk Model ARIMA ( ) dari Deret Gangguan Autokorelasi, autokorelasi parsial ditetapkan dan selanjutnya nilai dan untuk autoregressive dan proses moving average, berturut-turut dipilih. Dengan cara seperti ini, fungsi dan untuk deret gangguan pada persamaan (38) diperoleh untuk mendapatkan: Analisis Autokorelasi untuk Nilai Sisa Model (r, s, b) yang Menghubungkan Deret Input dan Output Pengujian kelayakan suatu model perlu dilakukan untuk mengetahui kesesuaian model yaitu sudah memenuhi syarat white noise. Caranya adalah dengan memeriksa autokorelasi dan korelasi residualnya. Pengujian autokorelasi untuk nilai sisa menggunakan hipotesis: H 0 : Autokorelasi pada deret sisa tidak signifikan H 1 : Autokorelasi pada deret sisa signifikan Dengan statistik uji:

12 dengan: = banyak data pada gugus residual = lag terbesar yang diperhatikan (r, s, b) = parameter model fungsi transfer = autokorelasi residual untuk lag k Selanjutnya membandingkan hasilnya dengan tabel distribusi dengan taraf signifikansi, derajat bebas (merupakan nilai autoregressive dan moving average dari deret noise) dan tolak H 0 jika Analisi Korelasi Silang antara Nilai Sisa dengan Deret Ganguan yang Telah Diputihkan Pada proses perkiraan langsung bobot fungsi transfer dibuat asumsi bahwa deret input ( ) yang disesuaikan adalah bebas dari komponen noise ( ) random. Karena itu bagian penting dari proses diagnostik adalah untuk membuktikan asumsi ini. Untuk menguji kesimpulan ini secara formal, akan digunakan uji Box-Pierce sekali lagi. Pengujian crosscorelation antara nilai sisa dengan deret gangguan yang telah diputihkan menggunakan statistik uji dengan hipotesis: H 0 : Crosscorelation antara deret dan tidak signifikan H 1 : Crosscorelation antara deret dan signifikan Formula yang sesuai untuk uji keterikatan dan, adalah sebagai berikut:

13 dengan: = banyak data pada deret (x yang telah white noise) = lag maksimum = jumlah parameter AR pada model ARIMA dengan deret input ( ) s dan b adalah parameter yang diperoleh dari hasil perhitungan. Hasilnya dibandingkan dengan tabel dengan derajat bebas dengan kriteria keputusan, tolak H 0 jika Prosedur Menentukan Model Fungsi Transfer Multivariat Pemodelan fungsi transfer multi input (multivariate models) untuk deret input dan deret output memiliki beberapa tahapan. Pertama, mengidentifikasi deret input tunggal terlebih dahulu supaya mendapatkan orde model ARIMA. Setelah diperoleh model ARIMA untuk deret input tunggal dan deret output, dilakukan pemutihan terhadap deret tersebut. Selanjutnya, dilakukan perhitungan korelasi silang untuk masing-masing deret untuk menentukan nilai. Setelah estimasi bobot-bobot respon inpuls, dilanjutkan dengan mengidentifikasi bentuk model fungsi transfer dan noise gabungan. Berikut adalah tahap-tahap pemodelan fungsi transfer multi input. (Makridakis 1993) Tahap Pertama: Identifikasi Bentuk Model Input Tunggal 1) Mempersiapkan deret input dan output Mengidentifikasi kestasioneran deret input dan output dilakukan dengan melakukan transformasi atau melakukan differencing terhadap deret input dan output. Deret data input dan output yang telah stasioner disebut dan. 2) Pemutihan deret input

14 Pemutihan deret input dilakukan untuk memperoleh model yang white noise. Pemutihan deret input dengan proses ARIMA adalah: Mengubah deret input menjadi deret adalah sebagai berikut: 3) Pemutihan deret output Rumusan deret output yang telah diputihkan adalah: Suatu transformasi pemutihan yang dilakukan terhadap diterapkan juga terhadap deret supaya fungsi transfer dapat memetakan terhadap. 4) Perhitungan korelasi silang dan autokorelasi deret input dan deret output yang telah diputihkan Kovarian antara dua variabel dan adalah sebagai berikut: dan diperoleh dua ragam yaitu dan. Dengan memisalkan sebagai time lag. Kovarians silang dan didefenisikan sebagai berikut: ( ( dengan persamaan di atas didefinisikan sebagai ekspektasi. Dalam praktek, taksiran kovarianssilang dihitung dengan rumus berikut:

15 Kovarians silang kemudian diubah menjadi korelasi silang dengan membagi kovarians tersebut oleh dua standar deviasi sebagai berikut: Rumus standar error berikut berguna untuk memeriksa apakah dari nol, dengan membandingkan nilai dengan standar error. berbeda nyata Di dalam model fungsi transfer multivariat, perhitungan korelasi silang pada masing-masing input terhadap output digunakan untuk mengetahui nilai yang diidentifikasi dari plot korelasi silang. Setelah diperoleh nilai pada masingmasing input, maka dilakukan korelasi silang serentak antara nilai terhadap seluruh variabel inputnya. 5) Penaksiran langsung bobot respon impuls Bobot respon impuls ini berguna untuk menghitung deret noise. Untuk penaksiran bobot respon impuls secara langsung, rumusnya adalah sebagai berikut: dengan = nilai dari korelasi silang lag ke-k = standar deviasi dari deret output yang telah diputihkan

16 = standar deviasi dari deret input yang telah diputihkan 6) Penetapan untuk model fungsi transfer yang menghubungkan deret input dan deret output Tiga parameter kunci dalam model fungsi transfer adalah dengan menunjukkan derajat fungsi, menunjukkan derajat fungsi, dan menunjukkan keterlambatan yang dicatat pada pada persamaan berikut: Berikut ini beberapa aturan yang dapat digunakan untuk menduga nilai suatu fungsi transfer. dari a. Nilai menyatakan bahwa tidak dipengaruhi oleh sampai periode Besarnya dapat ditentukan dari lag yang pertama kali signifikan pada plot korelasi silang. Nilai ini merupakan nilai yang paling mudah ditentukan. Apabila korelasi silang diperoleh dari tetapi, maka dapat ditentukan, dengan kata lain terdapat tiga periode sebelum runtun waktu input mulai mempengaruhi runtun waktu output. b. Nilai menyatakan seberapa lama deret terus dipengaruhi, sehingga dapat dikatakan bahwa nilai adalah bilangan pada lag plot korelasi silang sebelum terjadinya pola menurun. c. Nilai menyatakan bahwa dipengaruhi oleh nilai masa lalunya, dengan ketentuan: bila ada beberapa lag plot pada korelasi silang yang terpotong. bila plot pada korelasi silang menunjukkan suatu pola eksponensial menurun. bila plot pada korelasi silang menunjukkan suatu pola eksponensial menurun dan pola sinus. 7) Penaksiran awal deret gangguan

17 Bobot respon impuls diukur secara langsung, ini memungkinkan dilakukan perhitungan nilai taksiran dari deret gangguan dengan rumusan: 8) Penetapan untuk model ARIMA dari deret gangguan Sesudah menggunakan persamaan deret gangguan, nilai-nilai dianalisis dengan cara ARIMA biasa untuk menentukan model ARIMA yang tepat sehingga diperoleh nilai dan. Dengan cara ini, fungsi dan untuk deret gangguan dapat diperoleh untuk mendapatkan persamaan berikut: Tahap Kedua: Penaksiran Parameter-parameter Model Fungsi Transfer Berikut adalah model fungsi transfer dan ARIMA untuk deret noise: Pada tahap ini, akan dilakukan penaksiran nilai-nilai,, dan. Nilai taksiran diperoleh dengan cara mensubstitusikan persamaan khusus seperti berikut: untuk untuk

18 untuk untuk Dengan pembobotan impuls, maka akan diperoleh nilai-nilai parameter yang diperlukan dengan cara mensubstitusikannya Tahap Ketiga: Uji Diagnosis Model Fungsi Transfer Tunggal Pada tahap ini diperlukan pengecekan deret gangguan dan hubungan deret dengan. Deret yang sudah diperoleh melalui tahap 1 dan 2, secara umum bentuknya adalah: Dikalikan dengan. Selanjutnya, mencari nila parameter yang diatur kembali untuk digunakan pada model peramalan Tahap Keempat: Penentuan Model Fungsi Transfer Multi Input Pemodelan fungsi transfer multi input dilakukann dengan cara memodelkan secara serentak seluruh variabel yang sudah diidentifikasi sebelumnya. Identifikasi nilai-nilai bobot respon impuls dan korelasi silang dijadikan dasar dalam pemodelan serentak yang menghasilkan fungsi transfer multi input. Langkah-langkah penentuan model fungsi transfer multi input adalah sebagai berikut: 1) Mengidentifikasi deret input dan output untuk mengetahui kestasioneran dan menentukan orde model ARIMA. 2) Menghitung estimasi parameter model ARIMA yang sesuai untuk masing-masing deret input, selanjutnya dilakukan pengujian untuk mengetahui apakah model sudah memenuhi proses white noise atau tidak memenuhi.

19 3) Mencari nilai korelasi silang untuk masing-masing deret input terhadap deret output, yang berguna untuk menghitung deret noise dan juga menentukan orde model fungsi transfer dengan mengidentifikasi plot korelasi silang. 4) Menentukan nilai pada masing-masing deret dan menghitung nilai gangguan ( ) sehingga model fungsi transfer multi input tunggal selesai. 5) Nilai masing-masing deret input yang telah diperoleh, dilakukan estimasi secara serentak. 6) Penentuan nilai gabungan fungsi transfer multi input Nilai-nilai yang telah diidentifikasi dalam model fungsi transfer input tunggal, dijumlahkan sehingga model multi input mejadi: dengan: = operator moving average orde untuk variabel ke-j = operator autoregressive orde untuk variabel ke-j = operator moving average orde = operator autoregressive orde = nilai gangguan acak

BAB 3 MODEL FUNGSI TRANSFER MULTIVARIAT

BAB 3 MODEL FUNGSI TRANSFER MULTIVARIAT BAB 3 MODEL FUNGSI TRANSFER MULTIVARIAT Model fungsi transfer multivariat merupakan gabungan dari model ARIMA univariat dan analisis regresi berganda, sehingga menjadi suatu model yang mencampurkan pendekatan

Lebih terperinci

BAB 2 LANDASAN TEORI. Ramalan pada dasarnya merupakan perkiraan mengenai terjadinya suatu yang akan

BAB 2 LANDASAN TEORI. Ramalan pada dasarnya merupakan perkiraan mengenai terjadinya suatu yang akan BAB 2 LANDASAN TEORI 2.1 Pengertian Peramalan Ramalan pada dasarnya merupakan perkiraan mengenai terjadinya suatu yang akan datang. Peramalan adalah proses untuk memperkirakan kebutuhan di masa datang

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Peramalan Peramalan digunakanan sebagai acuan pencegah yang mendasari suatu keputusan untuk yang akan datang dalam upaya meminimalis kendala atau memaksimalkan pengembangan baik

Lebih terperinci

BAB 2 LANDASAN TEORI. Peramalan adalah kegiatan memperkirakan apa yang akan terjadi pada masa yang

BAB 2 LANDASAN TEORI. Peramalan adalah kegiatan memperkirakan apa yang akan terjadi pada masa yang BAB 2 LANDASAN TEORI 2.1 Peramalan Peramalan adalah kegiatan memperkirakan apa yang akan terjadi pada masa yang akan datang. Ramalan adalah suatu situasi atau kondisi yang diperkirakan akan terjadi pada

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Manfaat Peramalan Pada dasarnya peramalan adalah merupakan suatu dugaan atau perkiraan tentang terjadinya suatu keadaan dimasa depan, tetapi dengan menggunakan metode metode tertentu

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI Pada bab ini akan dijelaskan teori-teori yang menjadi dasar dan landasan dalam penelitian sehingga membantu mempermudah pembahasan selanjutnya. Teori tersebut meliputi arti dan peranan

Lebih terperinci

SBAB III MODEL VARMAX. Pengamatan time series membentuk suatu deret data pada saat t 1, t 2,..., t n

SBAB III MODEL VARMAX. Pengamatan time series membentuk suatu deret data pada saat t 1, t 2,..., t n SBAB III MODEL VARMAX 3.1. Metode Analisis VARMAX Pengamatan time series membentuk suatu deret data pada saat t 1, t 2,..., t n dengan variabel random Z n yang dapat dipandang sebagai variabel random berdistribusi

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang BAB 1 PENDAHULUAN 1.1 Latar Belakang Berdasarkan sifatnya peramalan terbagi atas dua yaitu peramalan kualitatif dan peramalan kuantitatif. Metode kuantitatif terbagi atas dua yaitu analisis deret berkala

Lebih terperinci

Peramalan Volume Pemakaian Air di PDAM Kota Surabaya dengan Menggunakan Metode Time Series

Peramalan Volume Pemakaian Air di PDAM Kota Surabaya dengan Menggunakan Metode Time Series JURNAL SAINS DAN SENI ITS Vol. 6, No. 1, (2017) ISSN: 2337-3520 (2301-928X Print) D-157 Peramalan Volume Pemakaian Air di PDAM Kota Surabaya dengan Menggunakan Metode Time Series Moh Ali Asfihani dan Irhamah

Lebih terperinci

HALAMAN PERSETUJUAN PEMBIMBING...iii. HALAMAN PENGESAHAN...iv. HALAMAN PERSEMBAHAN... vi. KATA PENGANTAR... viii. DAFTAR ISI... x. DAFTAR TABEL...

HALAMAN PERSETUJUAN PEMBIMBING...iii. HALAMAN PENGESAHAN...iv. HALAMAN PERSEMBAHAN... vi. KATA PENGANTAR... viii. DAFTAR ISI... x. DAFTAR TABEL... HALAMAN PERSETUJUAN PEMBIMBING...iii HALAMAN PENGESAHAN...iv MOTTO... v HALAMAN PERSEMBAHAN... vi KATA PENGANTAR... viii DAFTAR ISI... x DAFTAR TABEL... xi DAFTAR GAMBAR... xii DAFTAR LAMPIRAN... xiv PERNYATAAN...

Lebih terperinci

TINJAUAN PUSTAKA. perubahan harga yang dibayar konsumen atau masyarakat dari gaji atau upah yang

TINJAUAN PUSTAKA. perubahan harga yang dibayar konsumen atau masyarakat dari gaji atau upah yang II.. TINJAUAN PUSTAKA Indeks Harga Konsumen (IHK Menurut Monga (977 indeks harga konsumen adalah ukuran statistika dari perubahan harga yang dibayar konsumen atau masyarakat dari gaji atau upah yang didapatkan.

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Peramalan 2.1.1 Pengertian Peramalan Peramalan adalah kegiatan untuk memperkirakan apa yang akan terjadi pada masa yang akan datang (Sofjan Assauri,1984). Setiap kebijakan ekonomi

Lebih terperinci

ANALISIS DERET BERKALA MULTIVARIAT DENGAN MENGGUNAKAN MODEL FUNGSI TRANSFER: STUDI KASUS CURAH HUJAN DI KOTA MALANG

ANALISIS DERET BERKALA MULTIVARIAT DENGAN MENGGUNAKAN MODEL FUNGSI TRANSFER: STUDI KASUS CURAH HUJAN DI KOTA MALANG ANALISIS DERET BERKALA MULTIVARIAT DENGAN MENGGUNAKAN MODEL FUNGSI TRANSFER: STUDI KASUS CURAH HUJAN DI KOTA MALANG Fachrul Ulum Febriansyah dan Abadyo Universitas Negeri Malang E-mail: fachrul.febrian@gmail.com

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang BAB 1 PENDAHULUAN 1.1 Latar Belakang Di Indonesia sejak tahun enam puluhan telah diterapkan Badan Meteorologi, Klimatologi, dan Geofisika di Jakarta menjadi suatu direktorat perhubungan udara. Direktorat

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Pendahuluan. Universitas Sumatera Utara

BAB 1 PENDAHULUAN. 1.1 Pendahuluan. Universitas Sumatera Utara BAB 1 PENDAHULUAN 1.1 Pendahuluan Peramalan merupakan upaya memperkirakan apa yang terjadi pada masa mendatang berdasarkan data pada masa lalu, berbasis pada metode ilmiah dan kualitatif yang dilakukan

Lebih terperinci

II. TINJAUAN PUSTAKA. Analisis ARIMA (Autoregressive Integrated Moving Average) umumnya

II. TINJAUAN PUSTAKA. Analisis ARIMA (Autoregressive Integrated Moving Average) umumnya II. TINJAUAN PUSTAKA 2.1 Stasioner Analisis ARIMA Autoregressive Integrated Moving Average umumnya mengasumsikan bahwa proses umum dari time series adalah stasioner. Tujuan proses stasioner adalah rata-rata,

Lebih terperinci

Peramalan Aset dengan Memperhatikan Dana Pihak Ketiga (DPK) dan Pembiayaan Perbankan Syariah di Indonesia dengan Metode Fungsi Transfer

Peramalan Aset dengan Memperhatikan Dana Pihak Ketiga (DPK) dan Pembiayaan Perbankan Syariah di Indonesia dengan Metode Fungsi Transfer Peramalan Aset dengan Memperhatikan Dana Pihak Ketiga (DPK) dan Pembiayaan Perbankan Syariah di Indonesia dengan Metode Fungsi Transfer 1 Faridah Yuliani dan 2 Dr. rer pol Heri Kuswanto 1,2 Jurusan Statistika

Lebih terperinci

METODE PENELITIAN. Penelitian ini dilakukan pada semester genap tahun akademik 2014/2015

METODE PENELITIAN. Penelitian ini dilakukan pada semester genap tahun akademik 2014/2015 III. METODE PENELITIAN 3.1 Waktu dan Tempat Penelitian Penelitian ini dilakukan pada semester genap tahun akademik 2014/2015 bertempat di Jurusan Matematika Fakultas Matematika dan Ilmu Pengetahuan Alam

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang BAB 1 PENDAHULUAN 1.1 Latar Belakang Peramalan merupakan studi terhadap data historis untuk menemukan hubungan, kecenderungan dan pola data yang sistematis (Makridakis, 1999). Peramalan menggunakan pendekatan

Lebih terperinci

Metode Deret Berkala Box Jenkins

Metode Deret Berkala Box Jenkins METODE BOX JENKINS Metode Deret Berkala Box Jenkins Suatu metode peramalan yang sistematis, yang tidak mengasumsikan suatu model tertentu, tetapi menganalisa deret berkala sehingga diperoleh suatu model

Lebih terperinci

PENDUGAAN DATA RUNTUT WAKTU MENGGUNAKAN METODE ARIMA

PENDUGAAN DATA RUNTUT WAKTU MENGGUNAKAN METODE ARIMA KEMENTERIAN PEKERJAAN UMUM BADAN PENELITIAN DAN PENGEMBANGAN PUSAT PENELITIAN DAN PENGEMBANGAN SUMBER DAYA AIR PENDUGAAN DATA RUNTUT WAKTU MENGGUNAKAN METODE ARIMA PENDAHULUAN Prediksi data runtut waktu.

Lebih terperinci

BAB II TINJAUAN PUSTAKA. autokovarians (ACVF) dan fungsi autokorelasi (ACF), fungsi autokorelasi parsial

BAB II TINJAUAN PUSTAKA. autokovarians (ACVF) dan fungsi autokorelasi (ACF), fungsi autokorelasi parsial BAB II TINJAUAN PUSTAKA Berikut teori-teori yang mendukung penelitian ini, yaitu konsep dasar peramalan, konsep dasar deret waktu, proses stokastik, proses stasioner, fungsi autokovarians (ACVF) dan fungsi

Lebih terperinci

BAB II LANDASAN TEORI. nonstasioneritas, Autocorrelation Function (ACF) dan Parsial Autocorrelation

BAB II LANDASAN TEORI. nonstasioneritas, Autocorrelation Function (ACF) dan Parsial Autocorrelation BAB II LANDASAN TEORI Pada Bab II akan dijelaskan pengertian-pengertian dasar yang digunakan sebagai landasan pembahasan pada bab selanjutnya yaitu peramalan data runtun waktu (time series), konsep dasar

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI 7 BAB 2 LANDASAN TEORI 2.1 Iklim Iklim ialah suatu keadaan rata-rata dari cuaca di suatu daerah dalam periode tertentu. Curah hujan ialah suatu jumlah hujan yang jatuh di suatu daerah pada kurun waktu

Lebih terperinci

LAPORAN PRAKTIKUM ANALISIS RUNTUN WAKTU. Laporan VI ARIMA Analisis Runtun Waktu Model Box Jenkins

LAPORAN PRAKTIKUM ANALISIS RUNTUN WAKTU. Laporan VI ARIMA Analisis Runtun Waktu Model Box Jenkins LAPORAN PRAKTIKUM ANALISIS RUNTUN WAKTU Kelas A Laporan VI ARIMA Analisis Runtun Waktu Model Box Jenkins No Nama Praktikan Nomor Mahasiswa Tanggal Pengumpulan 1 29 Desember 2010 Tanda Tangan Praktikan

Lebih terperinci

BAB 2 LANDASAN TEORI. datang. Kegunaan dari peramalan terlihat pada saat pengambilan keputusan.

BAB 2 LANDASAN TEORI. datang. Kegunaan dari peramalan terlihat pada saat pengambilan keputusan. BAB 2 LANDASAN TEORI 2.1 Peramalan Peramalan adalah kegiatan memperkirakan apa yang akan terjadi pada masa yang datang. Kegunaan dari peramalan terlihat pada saat pengambilan keputusan. Keputusan yang

Lebih terperinci

BAB II TINJAUAN PUSTAKA. penelitian ini, yaitu ln return, volatilitas, data runtun waktu, kestasioneran, uji

BAB II TINJAUAN PUSTAKA. penelitian ini, yaitu ln return, volatilitas, data runtun waktu, kestasioneran, uji 35 BAB II TINJAUAN PUSTAKA Pada Bab II akan dibahas konsep-konsep yang menjadi dasar dalam penelitian ini, yaitu ln return, volatilitas, data runtun waktu, kestasioneran, uji ACF, uji PACF, uji ARCH-LM,

Lebih terperinci

LULIK PRESDITA W APLIKASI MODEL ARCH- GARCH DALAM PERAMALAN TINGKAT INFLASI

LULIK PRESDITA W APLIKASI MODEL ARCH- GARCH DALAM PERAMALAN TINGKAT INFLASI LULIK PRESDITA W 1207 100 002 APLIKASI MODEL ARCH- GARCH DALAM PERAMALAN TINGKAT INFLASI 1 Pembimbing : Dra. Nuri Wahyuningsih, M.Kes BAB I PENDAHULUAN 2 LATAR BELAKANG 1. Stabilitas ekonomi dapat dilihat

Lebih terperinci

Model Autoregressive Integrated Moving Average (ARIMA) adl teknik untuk mencari pola yg paling cocok dari sekelompok data Model ARIMA dapat digunakan

Model Autoregressive Integrated Moving Average (ARIMA) adl teknik untuk mencari pola yg paling cocok dari sekelompok data Model ARIMA dapat digunakan METODE BOX JENKINS Model Autoregressive Integrated Moving Average (ARIMA) adl teknik untuk mencari pola yg paling cocok dari sekelompok data Model ARIMA dapat digunakan utk semua tipe pola data. Dapat

Lebih terperinci

HASIL DAN PEMBAHASAN. Eksplorasi Data

HASIL DAN PEMBAHASAN. Eksplorasi Data 5 korelasi diri, dan plot korelasi diri parsial serta uji Augmented Dickey- Fuller b. Identifikasi Model dengan metode Box-Jenkins c. Pemutihan deret input d. Pemutihan deret output berdasarkan hasil pemutihan

Lebih terperinci

PERAMALAN JUMLAH KUNJUNGAN WISATAWAN MANCANEGARA YANG BEKUNJUNG KE BALI MENGGUNAKAN FUNGSI TRANSFER

PERAMALAN JUMLAH KUNJUNGAN WISATAWAN MANCANEGARA YANG BEKUNJUNG KE BALI MENGGUNAKAN FUNGSI TRANSFER PERAMALAN JUMLAH KUNJUNGAN WISATAWAN MANCANEGARA YANG BEKUNJUNG KE BALI MENGGUNAKAN FUNGSI TRANSFER I Ketut Putra Adnyana 1, I Wayan Sumarjaya 2, I Komang Gde Sukarsa 3 1 Jurusan Matematika, Fakultas FMIPA

Lebih terperinci

PERAMALAN CURAH HUJAN KOTA BANDUNG MENGGUNAKAN MODEL FUNGSI TRANSFER MULTIVARIAT PADA DERET BERKALA MUSIMAN

PERAMALAN CURAH HUJAN KOTA BANDUNG MENGGUNAKAN MODEL FUNGSI TRANSFER MULTIVARIAT PADA DERET BERKALA MUSIMAN PERAMALAN CURAH HUJAN KOTA BANDUNG MENGGUNAKAN MODEL FUNGSI TRANSFER MULTIVARIAT PADA DERET BERKALA MUSIMAN Danica Dwi Prahesti, Entit Puspita, Fitriani Agustina Departemen Pendidikan Matematika FPMIPA

Lebih terperinci

PERAMALAN JUMLAH WISATAWAN DI AGROWISATA KUSUMA BATU MENGGUNAKAN METODE ANALISIS SPEKTRAL. Oleh: Niswatul Maghfiroh NRP.

PERAMALAN JUMLAH WISATAWAN DI AGROWISATA KUSUMA BATU MENGGUNAKAN METODE ANALISIS SPEKTRAL. Oleh: Niswatul Maghfiroh NRP. PERAMALAN JUMLAH WISATAWAN DI AGROWISATA KUSUMA BATU MENGGUNAKAN METODE ANALISIS SPEKTRAL Oleh: Niswatul Maghfiroh NRP. 1208100065 JURUSAN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM INSTITUT

Lebih terperinci

BAB I PENDAHULUAN. berasal dari sumber tetap yang terjadinya berdasarkan indeks waktu t secara

BAB I PENDAHULUAN. berasal dari sumber tetap yang terjadinya berdasarkan indeks waktu t secara BAB I PENDAHULUAN 1.1 Latar Belakang Masalah Time Series atau runtun waktu adalah serangkaian data pengamatan yang berasal dari sumber tetap yang terjadinya berdasarkan indeks waktu t secara berurutan

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Latar Belakang Masalah

BAB I PENDAHULUAN. 1.1 Latar Belakang Masalah BAB I PENDAHULUAN 1.1 Latar Belakang Masalah Peramalan pada dasarnya merupakan proses menyusun informasi tentang kejadian masa lampau yang berurutan untuk menduga kejadian di masa depan (Frechtling, 2001:

Lebih terperinci

JURNAL SAINS DAN SENI POMITS Vol. 2, No.2, (2013) ( X Print) D-249

JURNAL SAINS DAN SENI POMITS Vol. 2, No.2, (2013) ( X Print) D-249 JURNAL SAINS DAN SENI POMITS Vol. 2, No.2, (2013) 2337-3520 (2301-928X Print) D-249 Analisis Fungsi Transfer pada Harga Cabai Merah yang Dipengaruhi oleh Curah Hujan Di Surabaya Putri Rintan Aryasita,

Lebih terperinci

FORECASTING INDEKS HARGA SAHAM GABUNGAN (IHSG) DENGAN MENGGUNAKAN METODE ARIMA

FORECASTING INDEKS HARGA SAHAM GABUNGAN (IHSG) DENGAN MENGGUNAKAN METODE ARIMA FORECASTING INDEKS HARGA SAHAM GABUNGAN (IHSG) DENGAN MENGGUNAKAN METODE ARIMA 1) Nurul Latifa Hadi 2) Artanti Indrasetianingsih 1) S1 Program Statistika, FMIPA, Universitas PGRI Adi Buana Surabaya 2)

Lebih terperinci

PERAMALAN PENJUALAN PRODUKSI TEH BOTOL SOSRO PADA PT. SINAR SOSRO SUMATERA BAGIAN UTARA TAHUN 2014 DENGAN METODE ARIMA BOX-JENKINS

PERAMALAN PENJUALAN PRODUKSI TEH BOTOL SOSRO PADA PT. SINAR SOSRO SUMATERA BAGIAN UTARA TAHUN 2014 DENGAN METODE ARIMA BOX-JENKINS Saintia Matematika ISSN: 2337-9197 Vol. 02, No. 03 (2014), pp. 253 266. PERAMALAN PENJUALAN PRODUKSI TEH BOTOL SOSRO PADA PT. SINAR SOSRO SUMATERA BAGIAN UTARA TAHUN 2014 DENGAN METODE ARIMA BOX-JENKINS

Lebih terperinci

BAB III MODEL ARIMAX DENGAN EFEK VARIASI KALENDER

BAB III MODEL ARIMAX DENGAN EFEK VARIASI KALENDER 21 BAB III MODEL ARIMAX DENGAN EFEK VARIASI KALENDER 3.1 Model Variasi Kalender Liu (Kamil 2010: 10) menjelaskan bahwa untuk data runtun waktu yang mengandung efek variasi kalender, dituliskan pada persamaan

Lebih terperinci

III. METODE PENELITIAN

III. METODE PENELITIAN 15 III. METODE PENELITIAN 3.1. Kerangka Pemikiran Penelitian Perkembangan ekonomi dan bisnis dewasa ini semakin cepat dan pesat. Bisnis dan usaha yang semakin berkembang ini ditandai dengan semakin banyaknya

Lebih terperinci

Sedangkan model fungsi transfer bentuk kedua adalah sebagai berikut :

Sedangkan model fungsi transfer bentuk kedua adalah sebagai berikut : 1 Metode Peramalan Indeks Harga Saham Gabungan (IHSG) Nikkei 255 dengan Pendekatan Fungsi Transfer Dwi Listya Nurini, Brodjol Sutijo SU Jurusan Statistika, Fakultas Matematika dan Ilmu Pengetahuan Alam

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Peramalan (Forceasting) 2.1.1 Pengertian Peramalan Untuk memajukan suatu usaha harus memiliki pandangan ke depan yakni pada masa yang akan datang. Hal seperti ini yang harus dikaji

Lebih terperinci

Pemodelan Fungsi Transfer Multi Input

Pemodelan Fungsi Transfer Multi Input Jurnal Informatika Mulawarman Vol 4 No. Juli 9 8 Pemodelan Fungsi Transfer Multi Input M. Fathurahman *) Program Studi Statistika, FMIPA Universitas Mulawarman Jl. Barong Tongkok no.5 Kampus Unmul Gn.

Lebih terperinci

BAB III PARTIAL ADJUSTMENT MODEL (PAM) Pada dasarnya semua model regresi mengasumsikan bahwa hubungan

BAB III PARTIAL ADJUSTMENT MODEL (PAM) Pada dasarnya semua model regresi mengasumsikan bahwa hubungan BAB III PARTIAL ADJUSTMENT MODEL (PAM) 3.1 Model Distribusi Lag Pada dasarnya semua model regresi mengasumsikan bahwa hubungan antara peubah tak bebas dan peubah-peubah bebas bersifat serentak. Hal ini

Lebih terperinci

PEMODELAN FUNGSI TRANSFER UNTUK MERAMALKAN CURAH HUJAN DI KOTA SEMARANG

PEMODELAN FUNGSI TRANSFER UNTUK MERAMALKAN CURAH HUJAN DI KOTA SEMARANG PEMODELAN FUNGSI TRANSFER UNTUK MERAMALKAN CURAH HUJAN DI KOTA SEMARANG 1 Andayani Nurfaizah, 2 Rochdi Wasono, 3 Siti Hajar Rahmawati 1,2,3 Program Studi Statistika, Fakultas Matematika dan Ilmu Pengetahuan

Lebih terperinci

BAB III MODEL STATE-SPACE. dalam teori kontrol modern. Model state space dapat mengatasi keterbatasan dari

BAB III MODEL STATE-SPACE. dalam teori kontrol modern. Model state space dapat mengatasi keterbatasan dari BAB III MODEL STATE-SPACE 3.1 Representasi Model State-Space Representasi state space dari suatu sistem merupakan suatu konsep dasar dalam teori kontrol modern. Model state space dapat mengatasi keterbatasan

Lebih terperinci

PERAMALAN BANYAKNYA OBAT PARASETAMOL DAN AMOKSILIN DOSIS 500 MG YANG DIDISTRIBUSIKAN OLEH DINKES SURABAYA

PERAMALAN BANYAKNYA OBAT PARASETAMOL DAN AMOKSILIN DOSIS 500 MG YANG DIDISTRIBUSIKAN OLEH DINKES SURABAYA Seminar Hasil Tugas Akhir Jurusan Statistika Institut Teknologi Sepuluh Nopember Surabaya 2013 LOGO PERAMALAN BANYAKNYA OBAT PARASETAMOL DAN AMOKSILIN DOSIS 500 MG YANG DIDISTRIBUSIKAN OLEH DINKES SURABAYA

Lebih terperinci

ABSTRAK. Kata kunci : Data Runtun Waktu, Indeks Harga Konsumen, ARIMA, Analisis Intervensi, Fungsi Step, Peramalan. I Pendahuluan

ABSTRAK. Kata kunci : Data Runtun Waktu, Indeks Harga Konsumen, ARIMA, Analisis Intervensi, Fungsi Step, Peramalan. I Pendahuluan Analisis Model Intervensi Fungsi Step Terhadap Indeks Harga Konsumen (IHK) Zuhairini Azzahra A 1, Suyono 2, Ria Arafiyah 3 Program Studi Matematika, Fakultas Matematika dan Ilmu Pengetahuan Alam, Universitas

Lebih terperinci

BAB III METODOLOGI PENELITIAN

BAB III METODOLOGI PENELITIAN BAB III METODOLOGI PENELITIAN Mulai Studi Pendahuluan Studi Pustaka Identifikasi Masalah Perumusan Masalah Tujuan Pengumpulan Data 1. Profil Perusahaan PT. Mensa Binasukses cabang kota Padang 2. Data forecasting

Lebih terperinci

BAB IV HASIL PENELITIAN DAN PEMBAHASAN. Adapun langkah-langkah pada analisis runtun waktu dengan model ARIMA

BAB IV HASIL PENELITIAN DAN PEMBAHASAN. Adapun langkah-langkah pada analisis runtun waktu dengan model ARIMA BAB IV HASIL PENELITIAN DAN PEMBAHASAN Pada bab ini, akan dilakukan analisis dan pembahasan terhadap data runtun waktu. Adapun data yang digunakan dalam penelitian ini merupakan data sekunder, yaitu data

Lebih terperinci

BAB 1 PENDAHULUAN. Di Indonesia meteorologi diasuh dalam Badan Meteorologi dan Geofisika di Jakarta

BAB 1 PENDAHULUAN. Di Indonesia meteorologi diasuh dalam Badan Meteorologi dan Geofisika di Jakarta BAB 1 PENDAHULUAN 1.1. Latar Belakang Di Indonesia meteorologi diasuh dalam Badan Meteorologi dan Geofisika di Jakarta yang sejak tahun enam puluhan telah diterapkan menjadi suatu direktorat perhubungan

Lebih terperinci

BAB IV ANALISIS DAN PEMBAHASAN

BAB IV ANALISIS DAN PEMBAHASAN C BAB IV ANALISIS DAN PEMBAHASAN Penelitian ini mencoba meramalkan jumlah penumpang kereta api untuk masa yang akan datang berdasarkan data volume penumpang kereta api periode Januari 994-Februari 203

Lebih terperinci

VI PERAMALAN PENJUALAN AYAM BROILER DAN PERAMALAN HARGA AYAM BROILER

VI PERAMALAN PENJUALAN AYAM BROILER DAN PERAMALAN HARGA AYAM BROILER VI PERAMALAN PENJUALAN AYAM BROILER DAN PERAMALAN HARGA AYAM BROILER 6.1. Analisis Pola Data Penjualan Ayam Broiler Data penjualan ayam broiler adalah data bulanan yang diperoleh dari bulan Januari 2006

Lebih terperinci

PERAMALAN CURAH HUJAN MENGGUNAKAN METODE ANALISIS SPEKTRAL

PERAMALAN CURAH HUJAN MENGGUNAKAN METODE ANALISIS SPEKTRAL E-Jurnal Matematika Vol. 5 (4), November 2016, pp. 183-193 ISSN: 2303-1751 PERAMALAN CURAH HUJAN MENGGUNAKAN METODE ANALISIS SPEKTRAL Ni Putu Mirah Sri Wahyuni 1, I Wayan Sumarjaya 2, I Gusti Ayu Made

Lebih terperinci

BAB 2 LANDASAN TEORI. diperkirakan akan terjadi pada masa yang akan datang. Ramalan tersebut dapat

BAB 2 LANDASAN TEORI. diperkirakan akan terjadi pada masa yang akan datang. Ramalan tersebut dapat BAB 2 LANDASAN TEORI 2.1 Pengertian Peramalan Peramalan adalah kegiatan untuk memperkirakan apa yang akan terjadi dimasa yang akan datang. Sedangkan ramalan adalah suatu situasi atau kondisi yang diperkirakan

Lebih terperinci

PENERAPAN MODEL ARFIMA (AUTOREGRESSIVE FRACTIONALLY INTEGRATED MOVING AVERAGE) DALAM PERAMALAN SUKU BUNGA SERTIFIKAT BANK INDONESIA (SBI)

PENERAPAN MODEL ARFIMA (AUTOREGRESSIVE FRACTIONALLY INTEGRATED MOVING AVERAGE) DALAM PERAMALAN SUKU BUNGA SERTIFIKAT BANK INDONESIA (SBI) PENERAPAN MODEL ARFIMA (AUTOREGRESSIVE FRACTIONALLY INTEGRATED MOVING AVERAGE) DALAM PERAMALAN SUKU BUNGA SERTIFIKAT BANK INDONESIA (SBI) Liana Kusuma Ningrum dan Winita Sulandari, M.Si. Jurusan Matematika,

Lebih terperinci

II. TINJAUAN PUSTAKA. Time series merupakan serangkaian observasi terhadap suatu variabel yang

II. TINJAUAN PUSTAKA. Time series merupakan serangkaian observasi terhadap suatu variabel yang II. TINJAUAN PUSTAKA 2.1 Analisis Deret Waktu (time series) Time series merupakan serangkaian observasi terhadap suatu variabel yang diambil secara beruntun berdasarkan interval waktu yang tetap (Wei,

Lebih terperinci

PERAMALAN JUMLAH PENUMPANG PESAWAT TERBANG DOMESTIK DI BANDAR UDARA JUANDA DENGAN MENGGUNAKAN METODE FUNGSI TRANSFER MULTI INPUT

PERAMALAN JUMLAH PENUMPANG PESAWAT TERBANG DOMESTIK DI BANDAR UDARA JUANDA DENGAN MENGGUNAKAN METODE FUNGSI TRANSFER MULTI INPUT PERAMALAN JUMLAH PENUMPANG PESAWAT TERBANG LOGO DOMESTIK DI BANDAR UDARA JUANDA DENGAN MENGGUNAKAN METODE FUNGSI TRANSFER MULTI INPUT Oleh : Ary Miftakhul Huda (1309 100 061) Dosen Pembimbing : Dr.rer.pol.

Lebih terperinci

ISSN: JURNAL GAUSSIAN, Volume 5, Nomor 4, Tahun 2016, Halaman Online di:

ISSN: JURNAL GAUSSIAN, Volume 5, Nomor 4, Tahun 2016, Halaman Online di: ISSN: 2339-2541 JURNAL GAUSSIAN, Volume 5, Nomor 4, Tahun 2016, Halaman 737-745 Online di: http://ejournal-s1.undip.ac.id/index.php/gaussian PERAMALAN DAYA LISTRIK BERDASARKAN JUMLAH PELANGGAN PLN MENGGUNAKAN

Lebih terperinci

Pemodelan Konsumsi Listrik Berdasarkan Jumlah Pelanggan PLN Jawa Timur untuk Kategori Rumah Tangga R-1 Dengan Metode Fungsi Transfer single input

Pemodelan Konsumsi Listrik Berdasarkan Jumlah Pelanggan PLN Jawa Timur untuk Kategori Rumah Tangga R-1 Dengan Metode Fungsi Transfer single input Pemodelan Konsumsi Listrik Berdasarkan Jumlah Pelanggan PLN Jawa Timur untuk Kategori Rumah Tangga R-1 Dengan Metode Fungsi Transfer single input Oleh : Defi Rachmawati 1311 105 007 Dosen Pembimbing :

Lebih terperinci

PERAMALAN INDEKS HARGA KONSUMEN MENGGUNAKAN MODEL INTERVENSI FUNGSI STEP

PERAMALAN INDEKS HARGA KONSUMEN MENGGUNAKAN MODEL INTERVENSI FUNGSI STEP PERAMALAN INDEKS HARGA KONSUMEN MENGGUNAKAN MODEL INTERVENSI FUNGSI STEP SKRIPSI Disusun oleh : DITA RULIANA SARI NIM. 24010211140084 JURUSAN STATISTIKA FAKULTAS SAINS DAN MATEMATIKA UNIVERSITAS DIPONEGORO

Lebih terperinci

BAB 2 LANDASAN TEORI. Peramalan adalah kegiatan untuk memperkirakan apa yang akan terjadi di masa yang

BAB 2 LANDASAN TEORI. Peramalan adalah kegiatan untuk memperkirakan apa yang akan terjadi di masa yang BAB 2 LANDASAN TEORI 2.1 Pengertian Peramalan Peramalan adalah kegiatan untuk memperkirakan apa yang akan terjadi di masa yang akan datang datang. Sedangkan ramalan adalah suatu situasi atau kondisi yang

Lebih terperinci

ANALISIS INTERVENSI FUNGSI STEP

ANALISIS INTERVENSI FUNGSI STEP ANALISIS INTERVENSI FUNGSI STEP (Studi Kasus Pada Jumlah Pengiriman Benda Pos Ke Semarang Pada Tahun 2006 2011) SKRIPSI Diajukan Sebagai Syarat untuk Memperoleh Gelar Sarjana Sains Pada Jurusan Statistika

Lebih terperinci

Analisis Peramalan Data Produk Domestik Regional Bruto (PDRB) Sebagai Tolak Ukur Kinerja Perekonomian Provinsi Kepulauan Bangka Belitung

Analisis Peramalan Data Produk Domestik Regional Bruto (PDRB) Sebagai Tolak Ukur Kinerja Perekonomian Provinsi Kepulauan Bangka Belitung Analisis Peramalan Data Produk Domestik Regional Bruto (PDRB) Sebagai Tolak Ukur Kinerja Perekonomian Provinsi Kepulauan Bangka Belitung Desy Yuliana Dalimunthe Jurusan Ilmu Ekonomi, Fakultas Ekonomi,

Lebih terperinci

PERBANDINGAN MODEL ARCH/GARCH MODEL ARIMA DENGAN MODEL FUNGSI TRANSFER

PERBANDINGAN MODEL ARCH/GARCH MODEL ARIMA DENGAN MODEL FUNGSI TRANSFER PERBANDINGAN MODEL ARCH/GARCH MODEL ARIMA DENGAN MODEL FUNGSI TRANSFER (Studi Kasus Indeks Harga Saham Gabungan dan Harga Minyak Mentah Dunia Tahun 2013 sampai 2015) SKRIPSI Oleh: DEBY FAKHRIYANA 24010212130041

Lebih terperinci

MODEL EXPONENTIAL SMOOTHING HOLT-WINTER DAN MODEL SARIMA UNTUK PERAMALAN TINGKAT HUNIAN HOTEL DI PROPINSI DIY SKRIPSI

MODEL EXPONENTIAL SMOOTHING HOLT-WINTER DAN MODEL SARIMA UNTUK PERAMALAN TINGKAT HUNIAN HOTEL DI PROPINSI DIY SKRIPSI MODEL EXPONENTIAL SMOOTHING HOLT-WINTER DAN MODEL SARIMA UNTUK PERAMALAN TINGKAT HUNIAN HOTEL DI PROPINSI DIY SKRIPSI Diajukan Kepada Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Negeri Yogyakarta

Lebih terperinci

SKRIPSI. Disusun oleh: Firda Megawati

SKRIPSI. Disusun oleh: Firda Megawati PERAMALAN TINGGI GELOMBANG BERDASARKAN KECEPATAN ANGIN DI PERAIRAN PESISIR SEMARANG MENGGUNAKAN MODEL FUNGSI TRANSFER (Studi Kasus Bulan Januari 2014 sampai dengan Desember 2014) SKRIPSI Disusun oleh:

Lebih terperinci

PENGGUNAAN MODEL GENERALIZED AUTOREGRESSIVE CONDITIONAL HETEROSCEDASTICITY (P,Q) UNTUK PERAMALAN HARGA DAGING AYAM BROILER DI PROVINSI JAWA TIMUR

PENGGUNAAN MODEL GENERALIZED AUTOREGRESSIVE CONDITIONAL HETEROSCEDASTICITY (P,Q) UNTUK PERAMALAN HARGA DAGING AYAM BROILER DI PROVINSI JAWA TIMUR Seminar Nasional Matematika dan Aplikasinya, 21 Oktober 27 PENGGUNAAN MODEL GENERALIZED AUTOREGRESSIVE CONDITIONAL HETEROSCEDASTICITY (P,Q) UNTUK PERAMALAN HARGA DAGING AYAM BROILER DI PROVINSI JAWA TIMUR

Lebih terperinci

Model Peramalan Indeks Harga Saham Gabungan (IHSG) Nikkei 225 dengan Pendekatan Fungsi Transfer

Model Peramalan Indeks Harga Saham Gabungan (IHSG) Nikkei 225 dengan Pendekatan Fungsi Transfer Model Peramalan Indeks Harga Saham Gabungan (IHSG) Nikkei 225 dengan Pendekatan Fungsi Transfer OLEH : DWI LISTYA NURINI 1311 105 021 DOSEN PEMBIMBING : DR. BRODJOL SUTIJO SU, M.SI Bursa saham atau Pasar

Lebih terperinci

BAB III GENERALIZED SPACE TIME AUTOREGRESSIVE. Model GSTAR adalah salah satu model yang banyak digunakan untuk

BAB III GENERALIZED SPACE TIME AUTOREGRESSIVE. Model GSTAR adalah salah satu model yang banyak digunakan untuk BAB III GENERALIZED SPACE TIME AUTOREGRESSIVE 3.1 Indeks Gini Model GSTAR adalah salah satu model yang banyak digunakan untuk memodelkan dan meramalkan data deret waktu dan lokasi. Model ini merupakan

Lebih terperinci

PERBANDINGAN MODEL ARIMA DAN MODEL REGRESI DENGAN RESIDUAL ARIMA DALAM MENERANGKAN PERILAKU PELANGGAN LISTRIK DI KOTA PALOPO

PERBANDINGAN MODEL ARIMA DAN MODEL REGRESI DENGAN RESIDUAL ARIMA DALAM MENERANGKAN PERILAKU PELANGGAN LISTRIK DI KOTA PALOPO Perbandingan Model ARIMA... (Alia Lestari) PERBANDINGAN MODEL ARIMA DAN MODEL REGRESI DENGAN RESIDUAL ARIMA DALAM MENERANGKAN PERILAKU PELANGGAN LISTRIK DI KOTA PALOPO Alia Lestari Fakultas Teknik Universitas

Lebih terperinci

BAB II LANDASAN TEORI. merupakan kumpulan dari komponen-komponen yang salling berkaitan untuk

BAB II LANDASAN TEORI. merupakan kumpulan dari komponen-komponen yang salling berkaitan untuk BAB II LANDASAN TEORI 2.1 Sistem Definisi sistem dapat dibagi menjadi dua pendekatan, yaitu pendekatan secara prosedur dan pendekatan secara komponen. Berdasarkan pendekatan prosedur, sistem didefinisikan

Lebih terperinci

PENERAPAN METODE ARIMA DALAM MERAMALKAN INDEKS HARGA KONSUMEN (IHK) INDONESIA TAHUN 2013

PENERAPAN METODE ARIMA DALAM MERAMALKAN INDEKS HARGA KONSUMEN (IHK) INDONESIA TAHUN 2013 La Pimpi //Paradigma, Vol. 17 No. 2, Oktober 2013, hlm. 35-46 PENERAPAN METODE ARIMA DALAM MERAMALKAN INDEKS HARGA KONSUMEN (IHK) INDONESIA TAHUN 2013 1) La Pimpi 1 Staf Pengajar Jurusan Matematika, FMIPA,

Lebih terperinci

ESTIMASI DATA YANG HILANG DENGAN MENGGUNAKAN PROSES PENYARINGAN DALAM PEMODELAN DATA TIME SERIES

ESTIMASI DATA YANG HILANG DENGAN MENGGUNAKAN PROSES PENYARINGAN DALAM PEMODELAN DATA TIME SERIES ESTIMASI DATA YANG HILANG DENGAN MENGGUNAKAN PROSES PENYARINGAN DALAM PEMODELAN DATA TIME SERIES Rais 1 1 Jurusan Matematika FMIPA Universitas Tadulako, email: rais76_untad@yahoo.co.id Abstrak Makalah

Lebih terperinci

BAB II TINJAUAN PUSTAKA. keuntungan atau coumpouding. Dari definisi di atas dapat disimpulkan bahwa

BAB II TINJAUAN PUSTAKA. keuntungan atau coumpouding. Dari definisi di atas dapat disimpulkan bahwa BAB II TINJAUAN PUSTAKA 2.1 Pengertian Investasi Menurut Fahmi dan Hadi (2009) investasi merupakan suatu bentuk pengelolaan dana guna memberikan keuntungan dengan cara menempatkan dana tersebut pada alokasi

Lebih terperinci

Prediksi Laju Inflasi di Kota Ambon Menggunakan Metode ARIMA Box Jenkins

Prediksi Laju Inflasi di Kota Ambon Menggunakan Metode ARIMA Box Jenkins Statistika, Vol. 16 No. 2, 95 102 November 2016 Prediksi Laju Inflasi di Kota Ambon Menggunakan Metode ARIMA Box Jenkins FERRY KONDO LEMBANG Jurusan Matematika Fakultas MIPA Universitas Pattimura Ambon

Lebih terperinci

JURNAL SAINS DAN SENI POMITS Vol. 2, No.2, (2013) ( X Print) D-300

JURNAL SAINS DAN SENI POMITS Vol. 2, No.2, (2013) ( X Print) D-300 JURNAL SAINS DAN SENI POMITS Vol. 2, No.2, (203) 233-20 (230-9X Print) D-300 Pemodelan Konsumsi Listrik Berdasarkan Jumlah Pelanggan PLN Jawa Timur untuk Kategori Rumah Tangga R- dengan Metode Fungsi Transfer

Lebih terperinci

BAB 2 LANDASAN TEORI. Universitas Sumatera Utara

BAB 2 LANDASAN TEORI. Universitas Sumatera Utara BAB 2 LANDASAN TEORI 2.1 Curah Hujan Curah hujan adalah jumlah air yang jatuh di permukaan tanah datar selama periode tertentu yang diukur dengan satuan tinggi milimeter (mm) di atas permukaan horizontal.

Lebih terperinci

BAB I PENDAHULUAN. Pasar modal adalah tempat kegiatan perusahaan untuk mencari dana yang

BAB I PENDAHULUAN. Pasar modal adalah tempat kegiatan perusahaan untuk mencari dana yang BAB I PENDAHULUAN 1.1 Latar Belakang Pasar modal adalah tempat kegiatan perusahaan untuk mencari dana yang digunakan untuk membiayai kegiatan usahanya. Selain itu, pasar modal merupakan suatu usaha penghimpunan

Lebih terperinci

UNIVERSITAS NEGERI SEMARANG

UNIVERSITAS NEGERI SEMARANG PEMODELAN FUNGSI TRANSFER UNTUK MERAMALKAN TINGKAT INFLASI INDONESIA Skripsi disusun sebagai salah satu syarat untuk memperoleh gelar Sarjana Sains Program Studi Matematika oleh Evelyn Paradita 4111412013

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang BAB 1 PENDAHULUAN 1.1 Latar Belakang Salah satu indikator tingkat kesejahteraan rakyat dapat dilihat dari perkembangan angka kematian balita, dikarenakan kematian balita berkaitan erat dengan keadaan ekonomi,

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 DATA MINING Data Mining adalah analisis otomatis dari data yang berjumlah banyak atau kompleks dengan tujuan untuk menemukan pola atau kecenderungan yang penting yang biasanya

Lebih terperinci

BAB 1 PENDAHULUAN Latar Belakang

BAB 1 PENDAHULUAN Latar Belakang BAB 1 PENDAHULUAN 1.1. Latar Belakang Meramalkan sesuatu berdasarkan ilmu pengetahuan merupakan sesuatu yang dianjurkan dalam Islam, sebagaimana yang diceritakan dalam Al-qur an dalam surat Yusuf ayat

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Regresi Linier Sederhana Dalam beberapa masalah terdapat dua atau lebih variabel yang hubungannya tidak dapat dipisahkan karena perubahan nilai suatu variabel tidak selalu terjadi

Lebih terperinci

BAB 2 LANDASAN TEORI. Analisis regresi merupakan bentuk analisis hubungan antara variabel prediktor

BAB 2 LANDASAN TEORI. Analisis regresi merupakan bentuk analisis hubungan antara variabel prediktor 8 BAB 2 LANDASAN TEORI 2.1 Pengertian Analisis Regresi Analisis regresi merupakan bentuk analisis hubungan antara variabel prediktor (variabel independent) dengan variabel outcome (variabel dependen) untuk

Lebih terperinci

HASIL DAN PEMBAHASAN

HASIL DAN PEMBAHASAN 36 HASIL DAN PEMBAHASAN Deskripsi Data Penelitian ini diawali dengan melihat ketergantungan antar lokasi dan waktu. Lokasi-lokasi dalam penelitian ini saling berhubungan, hal ini ditunjukkan dengan nilai

Lebih terperinci

ISSN: JURNAL GAUSSIAN, Volume 4, Nomor 3, Tahun 2015, Halaman Online di:

ISSN: JURNAL GAUSSIAN, Volume 4, Nomor 3, Tahun 2015, Halaman Online di: ISSN: 2339-2541 JURNAL GAUSSIAN, Volume 4, Nomor 3, Tahun 2015, Halaman 705-714 Online di: http://ejournal-s1.undip.ac.id/index.php/gaussian PENDEKATAN MODEL FUNGSI TRANSFER MULTI INPUT UNTUK ANALISIS

Lebih terperinci

PERAMALAN HASIL PRODUKSI ALUMINIUM BATANGAN PADA PT INALUM DENGAN METODE ARIMA

PERAMALAN HASIL PRODUKSI ALUMINIUM BATANGAN PADA PT INALUM DENGAN METODE ARIMA Saintia Matematika Vol. 1, No. 1 (2013), pp. 1 10. PERAMALAN HASIL PRODUKSI ALUMINIUM BATANGAN PADA PT INALUM DENGAN METODE ARIMA Lukas Panjaitan, Gim Tarigan, Pengarapen Bangun Abstrak. Dalama makalah

Lebih terperinci

Pemodelan ARIMA Non- Musim Musi am

Pemodelan ARIMA Non- Musim Musi am Pemodelan ARIMA Non- Musimam ARIMA ARIMA(Auto Regresif Integrated Moving Average) merupakan suatu metode analisis runtun waktu(time series) ARIMA(p,d,q) Dengan AR : p =orde dari proses autoreggresif I

Lebih terperinci

BAB I PENDAHULUAN. Peramalan keadaan pada suatu waktu merupakan hal penting. Hal itu

BAB I PENDAHULUAN. Peramalan keadaan pada suatu waktu merupakan hal penting. Hal itu BAB I PENDAHULUAN 1.1 Latar Belakang Masalah Peramalan keadaan pada suatu waktu merupakan hal penting. Hal itu dikarenakan peramalan dapat digunakan sebagai rujukan dalam menentukan tindakan yang akan

Lebih terperinci

Oleh : Dwi Listya Nurina Dosen Pembimbing : Dr. Irhamah, S.Si, M.Si

Oleh : Dwi Listya Nurina Dosen Pembimbing : Dr. Irhamah, S.Si, M.Si Oleh : Dwi Listya Nurina 1311105022 Dosen Pembimbing : Dr. Irhamah, S.Si, M.Si Air Bersih BUMN Penyediaan air bersih untuk masyarakat mempunyai peranan yang sangat penting dalam meningkatkan kesehatan

Lebih terperinci

BAB III METODE PENELITIAN

BAB III METODE PENELITIAN BAB III METODE PENELITIAN 3.1 Variabel Penelitian Penelitian ini menggunakan satu definisi variabel operasional yaitu ratarata temperatur bumi periode tahun 1880 sampai dengan tahun 2012. 3.2 Jenis dan

Lebih terperinci

PERAMALAN SAHAM JAKARTA ISLAMIC INDEX MENGGUNAKAN METODE ARIMA BULAN MEI-JULI 2010

PERAMALAN SAHAM JAKARTA ISLAMIC INDEX MENGGUNAKAN METODE ARIMA BULAN MEI-JULI 2010 Statistika, Vol., No., Mei PERAMALAN SAHAM JAKARTA ISLAMIC INDEX MENGGUNAKAN METODE ARIMA BULAN MEI-JULI Reksa Nila Anityaloka, Atika Nurani Ambarwati Program Studi S Statistika Universitas Muhammadiyah

Lebih terperinci

PREDIKSI HARGA SAHAM PT. BRI, Tbk. MENGGUNAKAN METODE ARIMA (Autoregressive Integrated Moving Average)

PREDIKSI HARGA SAHAM PT. BRI, Tbk. MENGGUNAKAN METODE ARIMA (Autoregressive Integrated Moving Average) PREDIKSI HARGA SAHAM PT. BRI, MENGGUNAKAN METODE ARIMA (Autoregressive Integrated Moving Average) Greis S. Lilipaly ), Djoni Hatidja ), John S. Kekenusa ) ) Program Studi Matematika FMIPA UNSRAT Manado

Lebih terperinci

Prosiding Statistika ISSN:

Prosiding Statistika ISSN: Prosiding Statistika ISSN: 2460-6456 Pemodelan Autoregressive Integrated Moving Average (ARIMA) dan Feedforwar Neural Network (FFNN) dengan Algoritma Backpropagation untuk Meramalkan Harga Open Emas Dunia

Lebih terperinci

BAB III ANALISIS SPEKTRAL PADA RUNTUN WAKTU MODEL ARIMA. Analisis spektral adalah metode yang menggambarkan kecendrungan osilasi

BAB III ANALISIS SPEKTRAL PADA RUNTUN WAKTU MODEL ARIMA. Analisis spektral adalah metode yang menggambarkan kecendrungan osilasi BAB III ANALISIS SPEKTRAL PADA RUNTUN WAKTU MODEL ARIMA Analisis spektral adalah metode yang menggambarkan kecendrungan osilasi atau getaran dari sebuah data pada frekuensi tertentu. Analisis spektral

Lebih terperinci

BAB III METODE PEMULUSAN EKSPONENSIAL HOLT-WINTER DAN METODE DEKOMPOSISI KLASIK

BAB III METODE PEMULUSAN EKSPONENSIAL HOLT-WINTER DAN METODE DEKOMPOSISI KLASIK BAB III METODE PEMULUSAN EKSPONENSIAL HOLT-WINTER DAN METODE DEKOMPOSISI KLASIK 3.1 Metode Pemulusan Eksponensial Holt-Winter Metode rata-rata bergerak dan pemulusan Eksponensial dapat digunakan untuk

Lebih terperinci

PERAMALAN NILAI EKSPOR DI PROPINSI SUMATERA UTARA DENGAN METODE ARIMA BOX-JENKINS

PERAMALAN NILAI EKSPOR DI PROPINSI SUMATERA UTARA DENGAN METODE ARIMA BOX-JENKINS Saintia Matematika Vol. 1, No. 6 (2013), pp. 579 589. PERAMALAN NILAI EKSPOR DI PROPINSI SUMATERA UTARA DENGAN METODE ARIMA BOX-JENKINS Raisa Ruslan, Agus Salim Harahap, Pasukat Sembiring Abstrak. Dalam

Lebih terperinci

BAB III PEMBAHARUAN PERAMALAN. Pada bab ini akan dibahas tentang proses pembaharuan peramalan.

BAB III PEMBAHARUAN PERAMALAN. Pada bab ini akan dibahas tentang proses pembaharuan peramalan. BAB III PEMBAHARUAN PERAMALAN Pada bab ini akan dibahas tentang proses pembaharuan peramalan. Sebelum dilakukan proses pembaharuan peramalan, terlebih dahulu dilakukan proses peramalan dan uji kestabilitasan

Lebih terperinci

Bab IV. Pembahasan dan Hasil Penelitian

Bab IV. Pembahasan dan Hasil Penelitian Bab IV Pembahasan dan Hasil Penelitian IV.1 Statistika Deskriptif Pada bab ini akan dibahas mengenai statistik deskriptif dari variabel yang digunakan yaitu IHSG di BEI selama periode 1 April 2011 sampai

Lebih terperinci