BAB II TINJAUAN PUSTAKA

Ukuran: px
Mulai penontonan dengan halaman:

Download "BAB II TINJAUAN PUSTAKA"

Transkripsi

1 BAB II TINJAUAN PUSTAKA 2.1 Aeroponik Aeroponik adalah metode budidaya tanaman dimana akar tanaman menggantung di udara serta memperoleh unsur hara dan air dari larutan nutrisi yang disemprotkan ke akar tanaman (Suhardiyanto, 2009). Sistem aeroponik terkait dengan oksigenasi dari tiap butiran kabut halus larutan hara sehingga respirasi akar lancar dan menghasilkan banyak energi. Sistem aeroponik terkait erat dengan parameter lingkungan di sekitar sistem dan di dalam greenhouse. Parameter yang menunjang pertumbuhan tanaman dalam sistem aeroponik adalah suhu, radiasi matahari, curah hujan, kelembaban, elevasi, air, angin dan oksigen (Lingga, 2009). Aeroponik digunakan untuk budidaya sayuran daun seperti bayam, caisin, kailan, kangkung, pakchoy, selada dan sebagainya. Larutan nutrisi disemprotkan dalam bentuk kabut ke akar tanaman yang berada dalam chamber dengan durasi tertentu. Chamber merupakan lingkungan tertutup tempat tumbuhnya akar (Suhardiyanto, 2009). Sistem ini meliputi sprayer nozzles untuk menyemprotkan larutan nutrisi, pompa yang dilengkapi dengan timer, chamber, styrofoam, dan pipa. Aeroponik tidak memerlukan media tanam namun tanaman perlu ditopang agar dapat tumbuh dengan tegak. Biasanya helaian styrofoam yang telah dilubangi digunakan untuk menempatkan pangkal batang tanaman. Helaian styrofoam ini diletakkan di bagian atas chamber, memisahkan kanopi dengan akar tanaman. Pada skala komersial, beberapa chamber umtuk aeroponik dirangkai membentuk suatu jaringan sistem aeroponik (Prastowo et al., 2007). Nutrisi yang diberikan pada sistem aeroponik yaitu dari unsur makro (N, P, K, Mg, Ca,, S) maupun mikro (Mn, Mo, Cu, Fe, B, Zn) (Gunawan, 2010). Tanaman yang memiliki berat biomassa melebihi kapasitas yang dapat ditopang oleh Styrofoam, yaitu 3 kg/m 2 maka diperlukan kawat atau tali penahan kanopi tanaman agar helaian Styrofoam tidak melengkung dan patah. Debit aliran larutan nutrisi yang diperlukan untuk sistem aeroponik hanya memerlukan 1.5 ml/menit. Pada sistem aeroponik juga diperlukan pengecekan terhadap nozzle secara berkala untuk menjamin kelancaran perngabutan larutan nutrisi ini karena jika tidak dilakukan pengecekan maka nozzle sering tersumbat oleh kotoran atau partikel dalam nutrisi (Suhardiyanto, 2009). Sumber: Gambar 1 Skema Sistem Aeroponik 3

2 2.2 Suhu Suhu lingkungan merupakan salah satu faktor yang berpengaruh terhadap pertumbuhan tanaman dan berperan penting mengetahui apakah kegiatan budidaya berjalan optimal atau belum. Menurut Harjadi (2008) Suhu lingkungan berpengaruh terhadap proses fisik dan kimiawi tanaman dan selanjutnya akan mengendalikan proses biologi dalam tanaman. Pengendalian suhu sangat penting dilakukan dalam budidaya aeroponik di dalam greenhouse karena suhu yang tidak sesuai dengan kondisi lingkungan akan merusak tanaman. Suhu terlalu dingin akan membekukan dan suhu terlalu tinggi dapat mematikan tanaman sebagai akibat koagulasi protein. Terhentinya pertumbuhan pada suhu tinggi merupakan suatu gambaran dari suatu keseimbangan metabolik yang terganggu. Suhu optimum untuk pertumbuhan akar umumnya lebih rendah daripada suhu untuk pertumbuhan taruk yaitu 25 o C- 28 o C. Respon laju pertumbuhan tanaman terhadap satu kisaran suhu yang luas (konstan) dibagi menjadi dua bagian yaitu kisaran suhu minimum dan maksimum, dimana pertumbuhan tanaman dapat dipertahankan dengan anggapan bahwa suhu merupakan faktor pembatas pertumbuhan. Suhu berkorelasi positif dengan radiasi matahari. Tinggi rendahnya suhu disekitar tanaman ditentukan oleh intensitas radiasi matahari, kerapatan tanaman, distribusi cahaya dalam tajuk tanaman serta kandungan lengas tanah. Suhu akan mempengaruhi beberapa proses fisiologis yaitu bukaan stomata, laju transpirasi, laju penyerapan air dan nutrisi, fotosintesis, dan respirasi. 2.3 Rumah Tanaman Pengertian greenhouse di daerah tropis didefinisikan sebagai rumah tanaman berfungsi sebagai bangunan perlindungan tanaman baik pada budidaya tanaman dengan media tanah maupun dengan sistem hidroponik (Suhardiyanto, 2009). Menurut Nelson (1978) greenhouse didefinisikan sebagai suatu bangunan yang memiliki struktur atap dan dinding yang bersifat tembus cahaya. Cahaya yang dibutuhkan oleh tanaman dapat masuk ke dalam rumah tanaman sehingga tanaman terhindar dari kondisi yang tidak menguntungkan. Selain itu, dengan pemakaian greenhouse maka suhu, kelembaban, cahaya, dan keperluan tanaman yang lain dapat diatur sehingga tanaman dapat ditanami sepanjang tahun. Didalam rumah tanaman, parameter lingkungan yang berpengaruh terhadap pertumbuhan tanaman yaitu cahaya matahari, suhu udara, kelembaban udara, pasokan nutrisi, kecepatan angin, dan konsentrasi karbondioksida dapat dikendalikan dengan mudah. Penggunaan rumah tanaman memungkinkan dilakukannya modifikasi lingkungan yang tidak sesuai bagi pertumbuhan tanaman menjadi lebih mendekati kondisi optimum bagi pertumbuhan tanaman (Suhardiyanto, 2009). Di kawasan yang beriklim tropika basah, rumah tanaman berfungsi sebagai bangunan perlindungan tanaman baik pada budidaya tanaman dengan media tanah maupun dengan sistem hidroponik. Di Indonesia, konsep rumah tanaman dengan umbrella effect lebih sesuai. Rumah tanaman lebih ditujukan untuk melindungi tanaman dari hujan, angin dan hama. Selain itu rumah tanaman dibangun untuk mengurangi intensitas radiasi matahari yang berlebihan, mengurangi penguapan air dari daun dan media, serta memudahkan perawatan tanaman (Suhardiyanto, 2009). 4

3 Gambar 2. Standar Peak Greenhouse (Suhardiyanto, 2009) 2.4 Karakteristik dan kecepatan aliran penyemprotan nozzle Nozzle berfungsi untuk menyemprotkan fluida cair dari pompa injeksi ke dalam silinder dengan tekanan tertentu untuk mengatomisasi fluida cair secara merata. Konstruksi Nozzle secara umum dapat dilihat pada Gambar 3. Gambar 3. Nozzle Nilai Koefisien kapasitas untuk nozzle dengan menggunakan tap sudut dapat dilihat pada Tabel 1 berlaku untuk daerah kerja: D = Diameter tabung (mm), 50 mm D 500 mm = rasio diameter, Re = Reynolds Number 10 5 Re

4 Tabel 1. Koefisien debit untuk nozzle Β C Β C Β C Β C 0,30 0, ,44 0, ,58 0, ,72 0, ,32 0, ,46 0, ,60 0, ,74 0, ,34 0, ,48 0, ,62 0, ,76 0, ,36 0, ,50 0, ,64 0, ,78 0,909 2 Sumber.: SNI 0140:2007 0,38 0, ,52 0, ,66 0, ,80 0,900 8 Nozzle memiliki tap sudut sehingga persamaan untuk menghitung nilai debit penyemprotan nozzle sebagai 0,40 berikut :0, ,54 0, ,68 0, ,42 0, ,56 0, (1) 0,70 0,936 8 Dimana : Q = debit (m 3 /min) C = koefisien debit E = Koefisien kecepatan = ( 1-β 4 ) -1/2 a = Luas penampang peralatan pembatasan ( m 2 ) = (π/4)d 2 d = diameter leher peralatan pembatasan (m) g = percepatan gravitasi = 9.81 m/detik 2 h = beda ketinggian (m) Selain menggunakan persamaan (1), perhitungan debit nozzle dapat dilakukan dengan metode volume yang dinyatakan dalam persamaan 2:... (2) Dimana : Q = debit ( m 3 / min) v = volume air yang dimasukkan ke dalam bak selama t detik (m 3 ) t = waktu yang dibutuhkan untuk memasukkan air sejumlah V m 3 (s) Perhitungan kecepatan aliran penyemprotan dengan menggunakan persamaan 3:.. (3) Dimana : Q = debit ( m 3 / s ) V = Kecepatan Aliran (m/s) A = Luas penampang Nozzle (m 2 ) Kecepatan aliran penyemprotan pada setiap nozzle di sepanjang pipa PE akan mempengaruhi efisiiensi penyemprotan. Efisiensi penyemprotan meliputi keseragaman penyebaran penyemprotan larutan nutrisi di dalam chamber aeroponik dan kehilangan air. Jika nilai keseragaman penyebaran rendah atau kehilangan air besar, maka efisiensi penyemprotan menjadi rendah (christianses, 1942 di dalam Jensen 1983). 6

5 2.5 Pindah Panas Peristiwa pindah panas didefinisikan sebagai berpindahnya energi dari satu daerah ke daerah lain sebagai akibat dari beda suhu dari daerah-daerah tersebut (Kreith, 1994). Pindah panas dapat terjadi secara konduksi, konveksi, dan radiasi Konduksi Konduksi adalah peristiwa aliran panas yang terjadi dari daerah dengan suhu tinggi ke suhu rendah di dalam suatu medium atau antara medium-medium yang berlainan yang bersinggungan secara langsung (Kreith, 1994). Besaran perpindahan panas konduksi tergantung dari nilai konduktivitas panas suatu bahan. Menurut Holman (1994), jika suatu bahan terdapat gradien suhu maka terjadi perpindahan energi atau panas dari bagian yang bersuhu tinggi ke yang lebih rendah. Besarnya laju aliran panas dengan cara konduksi suatu bahan dinyatakan dalam :.... ( 4 ) Konveksi Dimana : Qcond : Laju Perpindahan Panas (W) k : Konduktivitas termal bahan (W/m.K) A : Luas penampang benda yang tegak lurus aliran panas (m 2 ) dt : Perubahan Suhu dari T1 ke T2 dx : Ketebalan dinding (m) Konveksi adalah proses perpindahan energi kerja gabungan dari konduksi panas, penyinggungan energi dan gerakan mencampur. Perpindahan kalor konveksi tergantung pada viskositas fluida disamping ketergantungannya pada sifat-sifat termal fluida tersebut (konduktivitas termal kalor spesifik, densitas). Hal ini disebabkan viskositas mempengaruhi profil kecepatan, oleh karena itu akan mempengaruhi laju perpindahan energi di daerah dinding (Holman, 1994). Menurut Kreith (1994) perpindahan panas konveksi berdasarkan cara menggerakkan alirannya diklasifikasikan menjadi dua cara yaitu, konveksi alami dan konveksi paksa. Bila gerakan mencampur berlangsung semata-mata sebagai akibat dari perbedaan kerapatan yang disebabkan oleh gradien suhu, tanpa ada sumber gerakan dari luar maka disebut konveksi bebas (natural convection). Sedangkan apabila gerakan mencampur disebabkan oleh suatu alat dari luar disebut konveksi paksa (forced convection). Laju perpindahan panas konveksi dinyatakan dalam persamaan berikut : QConv = ha ( Ts Tf)... (5) Dimana : Qconv : Laju Perpindahan panas (W) h : Koefisien perpindahan panas konveksi (W/m 2.K) Ts : Suhu permukaan (K) Tf : Suhu fluida (K) kalor lokal. Dalam aliran pipa, koefisien perpindahan kalor konveksi biasanya didefinisikan sebagai fluks Q = h (Tp - Tb).. ( 6 ) 7

6 Dimana : Tp = Suhu dinding ( 0 C) Tb = Suhu limbak ( 0 C) Suhu limbak adalah suhu fluida yang dirata-ratakan energinya di seluruh penampang pipa. suhu limbak sering disebut suhu mangkuk pencampur ( mixing cup ) karena suhu itulah yang akan dicapai suatu fluida kalau ditempatkan di dalam ruang pencampur dan dibiarkan mencapai kesetimbangan (Holman, 1994). Tabel 2. Ikhtisar persamaan-persamaan yang digunakan dalam perpindahan panas konveksi paksa di dalam saluran Sistem Persamaan Pipa panjang (L/D >20) Aliran laminar (Re<2100) Nu = 1.86 (RePrD/L) 0.33 (μb/ μs) (7) Pemanasan cairan μb/ μs = 0.36 Pendinginan cairan μb/ μs = 0.2 Pipa pendek - Aliran laminar Pipa panjang - Nu = RePrD/(4L)ln(1-(2.6(Pr (RePrD/L) 0.5 ))) (8) Nu = 0.023Re 0.8 Pr (9) Aliran turbulen Pipa pendek - Nu = 0.023(1+(D/L)0.7)Re 0.8 Pr (10) Aliran turbulen Sumber :.Kreith (2004) 2.6 Aliran larutan nutrisi dalam pipa Aliran dapat diklasifikasikan dalam banyak cara seperti turbulen, laminar, nyata, ideal, mampu balik, tak mampu balik, steady, tak steady, seragam, tak seragam, rotasional, tak rotasional (Streeter, 1996). Apabila kecepatan suatu fluida yang mengalir dalam sebuah pipa melampui harga kritik tertentu (bergantung pada sifat-sifat fluida dan pada radius pipa), maka sifat aliran menjadi sangat rumit. Di dalam lapisan sangat tipis sekali yang bersebelahan dengan dinding pipa, disebut lapisan batas, alirannya masih laminar. Di luar lapisan batas, gerak fluida sangat tidak teratur. Di dalam fluida timbul arus pusar setempat yang memperbesar tahanan terhadap aliran. Aliran ini disebut aliran yang turbulen (bergejolak) (Zermansky, 1962) Menurut Zermansky, percobaan menunjukkan bahwa ada kombinasi empat faktor yang menentukan suatu aliran fluida melalui pipa bersifat laminar atau turbulen. Kombinasi faktor ini dikenal sebagai bilangan Reynold, NR dan didefinisikan sebagai : NR = ρvd / η.... (11) Dimana ρ = rapat massa fluida (kg/m 3 ) v = kecepatan aliran (m/s) D = diameter pipa (m) 8

7 Η = viskositas dinamik (kg/m.s) Bilangan Reynold merupakan besaran yang tidak berdimensi dan besar nilainya adalah sama dalam setiap satuan tertentu. Apabila bilangan reynold lebih kecil dari 2000 maka aliran akan laminar, dan bahwa lebih dari 3000 maka aliran akan turbulen. Dalam daerah transisi antara 2000 dan 3000, aliran tidak stabil dan dapat berubah dari laminar menjadi turbulen atau sebaliknya. Pada saat fluida mengalir dalam sebuah pipa, maka akan terjadi penurunan tekanan di dalam pipa akibat shear force pada dinding pipa. aliran pipa horizontal dan vertikal berbeda penurunan tekanannya. Besarnya penurunan tekanan dihitung berdasarkan hukum kekekalan energy dimana: Ep +Ek = konstan P ρ V + ρ g h = 2 konstan Pada aliran pipa horizontal, maka besarnya penurunan tekanan yang terjadi antara kedua ujung pipa adalah : P + ½ ρv 2 + z = constant P1 + ½ ρv12 + z1 = P2 + ½ ρv22 + z2 P1 P2 = ½ ρv22 - ½ ρv12 + z2 - z1 Bila z2 = z1 maka: P1 P2 = ½ ρv22 - ½ ρv12... ( 12 ) Sedangkan untuk kasus pipa vertikal, penurunan tekanan adalah sebesar : P + ½ ρv 2 + z = constant P1 + ½ ρv12 + z1 = P2 + ½ ρv22 + z2 P1 P2 = ½ ρv22 - ½ ρv12 + z2 - z1 ( 13 ) Persamaan penurunan tekanan aliran laminar sebagai berikut : ( 14 ) Di mana : = Perbedaan tekanan pada 2 titik pengukuran yang berbeda (Pa) = Panjang pipa pengukuran tekanan (m) D = Diameter pipa (m) = Densitas Fluida (kg/m 3 ) V = Kecepatan aliran fluida ( m/s) Re = Bilangan Reynold ( 2100) Sedangkan persamaan penurunan tekanan pada aliran turbulen sebagai berikut : ( 15 ) 9

8 Dimana : = Perbedaan tekanan pada 2 titik pengukuran yang berbeda (Pa) λ = Pipe Friction Coefficient = Panjang pipa pengukuran tekanan (m) D = Diameter pipa (m) = Densitas Fluida (kg/m 3 ) V = Kecepatan aliran fluida ( m/s) 2.7 Dasar-dasar simulasi Simulasi adalah usaha menginterpretasikan model-model matematika dari suatu proses atau fenomena fisik dengan menggunakan komputer dalam rangka memberikan gambaran situasi nyata dengan sebagian besar rinciannya (Syamsa, 2003). Dengan simulasi atau bekerja dengan model diharapkan: 1. Dapat meramalkan hasil atau keluaran 2. Lebih memahami model fisik dan matematik dari fenomena dan proses 3. Bereksperimen dengan model 4. Melakukan pengujian dengan model 5. Menggunakan model untuk tujuan penelitian dan pelatihan Menurut syamsa (2003), simulasi proses dapat dikategorikan menjadi dua kategori berdasarkan kondisinya yaitu simulasi pada keadaan tunak dan simulasi dalam keadaan dinamis. Simulasi keadaan tunak biasanya terdiri dari sejumlah persamaan aljabar yang diselesaikan secara iterasi, misalnya untuk menghitung kalkulasi panas dan keseimbangan dari suatu proses dibawah kondisi keadaan tunak yang berubah-ubah. Program simulasi keadaan tunak umum digunakan dalam proses industri sedangkan pada simulasi keadaan dinamis kondisi transien dari perubahan proses juga diperhitungkan. Simulasi ini dilakukan dengan menyelesaikan persamaan-persamaan diferensial nonlinier berjumlah besar dalam waktu nyata dengan tujuan untuk menggambarkan keseimbangan dinamik bahan dan energi dari proses yang disimulasikan. Laju akumulasi masa dan energi dihitung secara kontinyu dan diintegrasikan sepanjang interval waktu yang relatif kecil, yaitu untuk menghasilkan proses tiruan dari tangga dinamik yang realistik seperti suhu, tekanan dan komposisi bahan. 2.8 Computational Fluid Dynamics ( CFD) Computational merupakan segala sesuatu yang berhubungan dengan matematika dan metode numeric atau komputasi sedangkan fluid Dynamics merupakan dinamika dari segala sesuatu yang mengalir. Secara definisi, CFD adalah ilmu yang mempelajari cara memprediksi aliran fluida, perpindahan panas, reaksi kimia, dan fenomena lainnya dengan menyelesaikan persamaan-persamaan matematika (Tuakia, 2008). CFD memprediksi aliran berdasarkan model matematika, metode numerik (teknik solusi dan diskritisasi), dan tools perangkat lunak (solvers, tools pre- dan postprocessing). Pada umumnya terdapat tiga tahapan proses simulasi CFD, yaitu: preprocessing, solving, dan postprocessing. Preprocessing merupakan tahapan awal dalam membangun dan menganalisis sebuah model CFD. Menurut Versteeg dan Malalasekera (1995) terdapat langkah-langkah yang dilakukan dalam preprocessing, yaitu : a. Membentuk geometri (computational domain) dua dimensi atau tiga dimensi 10

9 b. Membentuk geometri menjadi sejumlah bagian yang lebih kecil (grid). Grid merupakan bagian yang akan dicari solusinya karena tingkat keakuratan hasil CFD didasarkan pada jumlah grid yang dibentuk. Bila jumlah grid lebih banyak maka hasil komputasi lebih akurat tetapi proses komputasi menjadi lebih lama sehingga dibutuhkan perangkat computer yang lebih baik. Sebaliknya, bila jumlah grid lebih sedikit maka hasil komputasi kurang akurat tetapi proses komputasi berjalan dengan cepat c. Mendefinisikan fenomena fenomena yang terjadi (fisik dan kimia) karena dibutuhkan dalam pemodelan d. Mendefinisikan karakteristik fluida e. Mendefinisikan kondisi batas (boundary condition) pada model geometri Solving merupakan tahapan seluruh kondisi preprocessing terpenuhi karena akan dilakukan perhitungan kondisi-kondisi yang diterapkan pada saat preprocessing. Menurut Versteeg dan Malalasekera (1995) terdapat tiga teknik solusi teknik numeric dalam mencari solusi CFD, antara lain difference, finite element, dan spectral method. Perbedaan yang mendasari teknik solusi di atas adalah pada proses memperkirakan diskritasi aliran tersebut. Pencarian solusi yang sering digunakan saat ini adalah finite volume yang merupakan perkembangan dari finite difference. Finite volume didasarkan pada algoritma numeric dimana dilakukan pembangunan persamaan berdasarkan integrasi variabelvariabel secara keseluruhan. Tahapan-tahapan yang dilakukan dalam mencari solusi pada CFD meliputi : a. Memperkirakan variabel aliran yang tidak diketahui menngunakan fungsi sederhana b. Diskritasi hasil prakiraan tersebut dengan mensubstitusi ke dalam persamaan aliran fluida tersebut dan memanipulasinya secara matematis c. Membuat solusi dengan persamaan aljabar Postprocessing merupakan tahapan terakhir dalam analisis CFD untuk mengorganisasi dan menginterpretasi data hasil analisis fluida. Hasil analisis didasarkan pada visualisai warna yang meliputi : a. Hasil dari geometri dan grid yang telah dibentuk b. Plot berdasarkan vektor c. Plot berdasarkan kontur d. Plot berdasarkan permukaan (dua dimensi atau tiga dimensi) Visualisasi solusi ini bertujuan untuk mempermudah pemahaman solusi yang dihasilkan dari CFD. Dalam proses ini dilengkapi dengan melakukan animasi dari solusi yang didapat. 2.9 Validasi Tujuan dilakukan validasi adalah untuk membandingkan antara hasil simulasi terhadap hasil pengukuran dan perhitungan menggunakan Computational Fluid Dynamic (CFD). Untuk menguji keakuratan hasil pengukuran dan hasil simulasi dapat dilakukan perhitungan nilai error. Besarnya error dalam validasi dihitung menggunakan persamaan sebagai berikut:. (16) Dimana : p = Suhu udara hasil simulasi ( o C) u = Suhu udara hasil pengukuran ( o C) 11

10 Analisis regresi juga perlu digunakan untuk memprediksi seberapa jauh perubahan nilai antara suhu pada saat simulasi dan suhu pada saat pengukuran sehingga kelayakan penggunakan simulasi CFD dapat diketahui. Sebelum analisis regresi digunakan maka diperlukan uji linearitas dan keberartian. Regresi didasarkan pada hubungan fungsional ataupun kausal satu variabel independen atau peubah bebas bersumbu X dengan satu variabel dependen atau peubah tak bebas bersumbu Y. Persamaan umum regresi linier sederhana adalah : y = a + bx... (17) Dimana a menyatakan intersep atau perpotongan dengan sumbu tegak dan b adalah kemiringan atau gradiennya sedangkan y digunakan untuk membedakan antara nilai ramalan (simulasi) yang dihasilkan garis regresi dan nilai pengamatan y yang sesungguhnya untuk nilai x tertentu. Korelasi yaitu hubungan antara peubah X dan peubah Y ditunjukkan dengan nilai r. Korelasi antara kedua peubah semakin menurun secara numerik dengan semakin menjauhnya titik-titik dari suatu garis lurus (Walpole, 1993) 12

II. TINJAUAN PUSTAKA Nutrient Film Technique (NFT) 2.2. Greenhouse

II. TINJAUAN PUSTAKA Nutrient Film Technique (NFT) 2.2. Greenhouse II. TINJAUAN PUSTAKA 2.1. Nutrient Film Technique (NFT) Nutrient film technique (NFT) merupakan salah satu tipe spesial dalam hidroponik yang dikembangkan pertama kali oleh Dr. A.J Cooper di Glasshouse

Lebih terperinci

II. TINJAUAN PUSTAKA

II. TINJAUAN PUSTAKA II. TINJAUAN PUSTAKA A. RUMAH TANAMAN Rumah tanaman atau greenhouse di kawasan tropika basah berfungsi sebagai bangunan perlindungan tanaman baik pada budidaya tanaman dengan media tanam maupun dengan

Lebih terperinci

KESERAGAMAN SUHU UDARA DAN LARUTAN NUTRISI PADA BERBAGAI JARAK ANTAR NOZZLE UNTUK AEROPONIC CHAMBER SKRIPSI AULIA RIZQI NUR ABIDI F

KESERAGAMAN SUHU UDARA DAN LARUTAN NUTRISI PADA BERBAGAI JARAK ANTAR NOZZLE UNTUK AEROPONIC CHAMBER SKRIPSI AULIA RIZQI NUR ABIDI F KESERAGAMAN SUHU UDARA DAN LARUTAN NUTRISI PADA BERBAGAI JARAK ANTAR NOZZLE UNTUK AEROPONIC CHAMBER SKRIPSI AULIA RIZQI NUR ABIDI F14080048 FAKULTAS TEKNOLOGI PERTANIAN INSTITUT PERTANIAN BOGOR BOGOR 2012

Lebih terperinci

TINJAUAN PUSTAKA. 2.1 Iklim Mikro Rumah Tanaman Daerah Tropika Basah

TINJAUAN PUSTAKA. 2.1 Iklim Mikro Rumah Tanaman Daerah Tropika Basah II. TINJAUAN PUSTAKA 2.1 Iklim Mikro Rumah Tanaman Daerah Tropika Basah Iklim merupakan salah satu faktor yang mempengaruhi perancangan bangunan. Sebuah bangunan seharusnya dapat mengurangi pengaruh iklim

Lebih terperinci

BAB III METODE PENELITIAN

BAB III METODE PENELITIAN BAB III METODE PENELITIAN 3.1 Waktu dan Lokasi Penelitian Penelitian ini dilakukan di dalam rumah tanaman di Laboratorium Lapangan Leuwikopo dan Laboratorium Lingkungan Biosistem, Departemen Teknik Mesin

Lebih terperinci

IV. HASIL DAN PEMBAHASAN

IV. HASIL DAN PEMBAHASAN IV. HASIL DAN PEMBAHASAN A. RADIASI MATAHARI DAN SH DARA DI DALAM RMAH TANAMAN Radiasi matahari mempunyai nilai fluktuatif setiap waktu, tetapi akan meningkat dan mencapai nilai maksimumnya pada siang

Lebih terperinci

TINJAUAN PUSTAKA. A. Hidroponik Substrat

TINJAUAN PUSTAKA. A. Hidroponik Substrat II. TINJAUAN PUSTAKA A. Hidroponik Substrat Sistem hidroponik substrat merupakan metode budidaya tanaman dimana akar tanaman tumbuh pada media porus selain tanah yang dialiri larutan nutrisi sehingga memungkinkan

Lebih terperinci

IV. HASIL DAN PEMBAHASAN

IV. HASIL DAN PEMBAHASAN IV. HASIL DAN PEMBAHASAN 4.1. Suhu Udara Hasil pengukuran suhu udara di dalam rumah tanaman pada beberapa titik dapat dilihat pada Gambar 6. Grafik suhu udara di dalam rumah tanaman menyerupai bentuk parabola

Lebih terperinci

BAB II TEORI ALIRAN PANAS 7 BAB II TEORI ALIRAN PANAS. benda. Panas akan mengalir dari benda yang bertemperatur tinggi ke benda yang

BAB II TEORI ALIRAN PANAS 7 BAB II TEORI ALIRAN PANAS. benda. Panas akan mengalir dari benda yang bertemperatur tinggi ke benda yang BAB II TEORI ALIRAN PANAS 7 BAB II TEORI ALIRAN PANAS 2.1 Konsep Dasar Perpindahan Panas Perpindahan panas dapat terjadi karena adanya beda temperatur antara dua bagian benda. Panas akan mengalir dari

Lebih terperinci

II. TINJAUAN PUSTAKA

II. TINJAUAN PUSTAKA II. TINJAUAN PUSTAKA A. Kolektor Surya Pelat Datar Duffie dan Beckman (2006) menjelaskan bahwa kolektor surya adalah jenis penukar panas yang mengubah energi radiasi matahari menjadi panas. Kolektor surya

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1. Dasar Dasar Perpindahan Kalor Perpindahan kalor terjadi karena adanya perbedaan suhu, kalor akan mengalir dari tempat yang suhunya tinggi ke tempat suhu rendah. Perpindahan

Lebih terperinci

METODOLOGI PENELITIAN. Waktu dan Tempat Penelitian. Alat dan Bahan Penelitian. Prosedur Penelitian

METODOLOGI PENELITIAN. Waktu dan Tempat Penelitian. Alat dan Bahan Penelitian. Prosedur Penelitian METODOLOGI PENELITIAN Waktu dan Tempat Penelitian Penelitian ini telah dilaksanakan dari bulan Januari hingga November 2011, yang bertempat di Laboratorium Sumber Daya Air, Departemen Teknik Sipil dan

Lebih terperinci

BAB IV ANALISA DAN PERHITUNGAN

BAB IV ANALISA DAN PERHITUNGAN BAB IV ANALISA DAN PERHITUNGAN 4.1. Hot Water Heater Pemanasan bahan bakar dibagi menjadi dua cara, pemanasan yang di ambil dari Sistem pendinginan mesin yaitu radiator, panasnya di ambil dari saluran

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA Pompa adalah suatu alat yang digunakan untuk memindahkan suatu cairan dari suatu tempat ke tempat lain dengan cara menaikkan tekanan cairan tersebut. Kenaikan tekanan cairan tersebut

Lebih terperinci

II TINJAUAN PUSTAKA 2.1 Rumah Tanaman

II TINJAUAN PUSTAKA 2.1 Rumah Tanaman II TINJAUAN PUSTAKA 2.1 Rumah Tanaman Rumah tanaman merupakan suatu tempat tanaman untuk tumbuh dan berkembang dengan kondisi lingkungan mikro yang telah diatur agar mendekati kondisi yang optimum. Khusunya

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA Pompa adalah mesin yang mengkonversikan energi mekanik menjadi energi tekanan. Menurut beberapa literatur terdapat beberapa jenis pompa, namun yang akan dibahas dalam perancangan

Lebih terperinci

BAB II DASAR TEORI. ke tempat yang lain dikarenakan adanya perbedaan suhu di tempat-tempat

BAB II DASAR TEORI. ke tempat yang lain dikarenakan adanya perbedaan suhu di tempat-tempat BAB II DASAR TEORI 2.. Perpindahan Panas Perpindahan panas adalah proses berpindahnya energi dari suatu tempat ke tempat yang lain dikarenakan adanya perbedaan suhu di tempat-tempat tersebut. Perpindahan

Lebih terperinci

REYNOLDS NUMBER K E L O M P O K 4

REYNOLDS NUMBER K E L O M P O K 4 REYNOLDS NUMBER K E L O M P O K 4 P A R A M I T A V E G A A. T R I S N A W A T I Y U L I N D R A E K A D E F I A N A M U F T I R I Z K A F A D I L L A H S I T I R U K A Y A H FAKULTAS PERIKANAN DAN ILMU

Lebih terperinci

1.1 Latar Belakang dan Identifikasi Masalah

1.1 Latar Belakang dan Identifikasi Masalah BAB I PENDAHULUAN Seiring dengan pertumbuhan kebutuhan dan intensifikasi penggunaan air, masalah kualitas air menjadi faktor yang penting dalam pengembangan sumberdaya air di berbagai belahan bumi. Walaupun

Lebih terperinci

Rumus bilangan Reynolds umumnya diberikan sebagai berikut:

Rumus bilangan Reynolds umumnya diberikan sebagai berikut: Dalam mekanika fluida, bilangan Reynolds adalah rasio antara gaya inersia (vsρ) terhadap gaya viskos (μ/l) yang mengkuantifikasikan hubungan kedua gaya tersebut dengan suatu kondisi aliran tertentu. Bilangan

Lebih terperinci

BAB I PENDAHULUAN I.1.

BAB I PENDAHULUAN I.1. BAB I PENDAHULUAN I.1. Latar Belakang Penggunaan energi surya dalam berbagai bidang telah lama dikembangkan di dunia. Berbagai teknologi terkait pemanfaatan energi surya mulai diterapkan pada berbagai

Lebih terperinci

FORMULASI PENGETAHUAN PROSES MELALUI SIMULASI ALIRAN FLUIDA TIGA DIMENSI

FORMULASI PENGETAHUAN PROSES MELALUI SIMULASI ALIRAN FLUIDA TIGA DIMENSI BAB VI FORMULASI PENGETAHUAN PROSES MELALUI SIMULASI ALIRAN FLUIDA TIGA DIMENSI VI.1 Pendahuluan Sebelumnya telah dibahas pengetahuan mengenai konversi reaksi sintesis urea dengan faktor-faktor yang mempengaruhinya.

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Proses Perpindahan Kalor Perpindahan panas adalah ilmu untuk memprediksi perpindahan energi yang terjadi karena adanya perbedaan suhu diantara benda atau material. Perpindahan

Lebih terperinci

METODOLOGI PENELITIAN

METODOLOGI PENELITIAN III. METODOLOGI PENELITIAN A. Tempat dan Waktu Penelitian Penelitian ini dilakukan di laboratorium Energi dan Elektrifikasi Pertanian serta di dalam rumah tanaman yang berada di laboratorium Lapangan Leuwikopo,

Lebih terperinci

Pendinginan Terbatas. di Dalam Rumah Tanaman

Pendinginan Terbatas. di Dalam Rumah Tanaman di Dalam Rumah Tanaman Pengendalian lingkungan dapat meliputi beberapa parameter lingkungan, seperti cahaya, suhu, kelembaban, konsentrasi CO,, dan sebagainya. Untuk kondisi di kawasan yang beriklim tropika

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1. PENGERINGAN Pengeringan adalah proses pengurangan kelebihan air yang (kelembaban) sederhana untuk mencapai standar spesifikasi kandungan kelembaban dari suatu bahan. Pengeringan

Lebih terperinci

HASIL DAN PEMBAHASAN

HASIL DAN PEMBAHASAN 25 HASIL DAN PEMBAHASAN Profil Iklim Mikro Rumah Tanaman Tipe Standard Peak Selama 24 jam Struktur rumah tanaman berinteraksi dengan parameter lingkungan di sekitarnya menghasilkan iklim mikro yang khas.

Lebih terperinci

Panas berpindah dari objek yang bersuhu lebih tinggi ke objek lain yang bersuhu lebih rendah Driving force perbedaan suhu Laju perpindahan = Driving

Panas berpindah dari objek yang bersuhu lebih tinggi ke objek lain yang bersuhu lebih rendah Driving force perbedaan suhu Laju perpindahan = Driving PERPINDAHAN PANAS Panas berpindah dari objek yang bersuhu lebih tinggi ke objek lain yang bersuhu lebih rendah Driving force perbedaan suhu Laju perpindahan = Driving force/resistensi Proses bisa steady

Lebih terperinci

BAB II KAJIAN PUSTAKA DAN DASAR TEORI

BAB II KAJIAN PUSTAKA DAN DASAR TEORI BAB II KAJIAN PUSTAKA DAN DASAR TEORI 2.1 Kajian Pustaka Ristiyanto (2003) menyelidiki tentang visualisasi aliran dan penurunan tekanan setiap pola aliran dalam perbedaan variasi kecepatan cairan dan kecepatan

Lebih terperinci

SIMULASI SEBARAN SUHU PADA CHAMBER AEROPONIK DENGAN MENGGUNAKAN COMPUTATIONAL FLUID DYNAMICS (CFD) SKRIPSI DERRY RISKAWATI F

SIMULASI SEBARAN SUHU PADA CHAMBER AEROPONIK DENGAN MENGGUNAKAN COMPUTATIONAL FLUID DYNAMICS (CFD) SKRIPSI DERRY RISKAWATI F SIMULASI SEBARAN SUHU PADA CHAMBER AEROPONIK DENGAN MENGGUNAKAN COMPUTATIONAL FLUID DYNAMICS (CFD) SKRIPSI DERRY RISKAWATI F14080081 FAKULTAS TEKNOLOGI PERTANIAN INSTITUT PERTANIAN BOGOR BOGOR 2012 SIMULATION

Lebih terperinci

INVESTIGASI KARAKTERISTIK PERPINDAHAN PANAS PADA DESAIN HELICAL BAFFLE PENUKAR PANAS TIPE SHELL AND TUBE BERBASIS COMPUTATIONAL FLUID DYNAMICS (CFD)

INVESTIGASI KARAKTERISTIK PERPINDAHAN PANAS PADA DESAIN HELICAL BAFFLE PENUKAR PANAS TIPE SHELL AND TUBE BERBASIS COMPUTATIONAL FLUID DYNAMICS (CFD) INVESTIGASI KARAKTERISTIK PERPINDAHAN PANAS PADA DESAIN HELICAL BAFFLE PENUKAR PANAS TIPE SHELL AND TUBE BERBASIS COMPUTATIONAL FLUID DYNAMICS (CFD) Mirza Quanta Ahady Husainiy 2408100023 Dosen Pembimbing

Lebih terperinci

1. BAB I PENDAHULUAN Latar Belakang

1. BAB I PENDAHULUAN Latar Belakang 1. BAB I PENDAHULUAN 1.1. Latar Belakang Sistem merupakan sekumpulan obyek yang saling berinteraksi dan memiliki keterkaitan antara satu obyek dengan obyek lainnya. Dalam proses perkembangan ilmu pengetahuan,

Lebih terperinci

BAB III PEMODELAN DENGAN METODE VOLUME HINGGA

BAB III PEMODELAN DENGAN METODE VOLUME HINGGA A III PEMODELAN DENGAN METODE VOLUME HINGGA 3.1 Teori Dasar Metode Volume Hingga Computational fluid dnamic atau CFD merupakan ilmu ang mempelajari tentang analisa aliran fluida, perpindahan panas dan

Lebih terperinci

METODE BEDA HINGGA DALAM PENENTUAN DISTRIBUSI TEKANAN, ENTALPI DAN TEMPERATUR RESERVOIR PANAS BUMI FASA TUNGGAL

METODE BEDA HINGGA DALAM PENENTUAN DISTRIBUSI TEKANAN, ENTALPI DAN TEMPERATUR RESERVOIR PANAS BUMI FASA TUNGGAL METODE BEDA HINGGA DALAM PENENTUAN DISTRIBUSI TEKANAN, ENTALPI DAN TEMPERATUR RESERVOIR PANAS BUMI FASA TUNGGAL TUGAS AKHIR Diajukan untuk melengkapi persyaratan dalam menyelesaikan tahap sarjana pada

Lebih terperinci

BAB IV PENGOLAHAN DATA

BAB IV PENGOLAHAN DATA BAB IV PENGOLAHAN DATA 4.1 Penentuan Data Uncertainty Dalam setiap penelitian, pengambilan data merupakan hal yang penting. Namun yang namanya kesalahan pengambilan data selalu ada. Kesalahan tersebut

Lebih terperinci

IV. HASIL DAN PEMBAHASAN

IV. HASIL DAN PEMBAHASAN IV. HASIL DAN PEMBAHASAN A. Simulasi Distribusi Suhu Kolektor Surya 1. Domain 3 Dimensi Kolektor Surya Bentuk geometri 3 dimensi kolektor surya diperoleh dari proses pembentukan ruang kolektor menggunakan

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA BAB 2 TINJAUAN PUSTAKA 2.1 Umum Perpindahan panas adalah perpindahan energi yang terjadi pada benda atau material yang bersuhu tinggi ke benda atau material yang bersuhu rendah, hingga tercapainya kesetimbangan

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Hukum Kekekalan Massa Hukum kekekalan massa atau dikenal juga sebagai hukum Lomonosov- Lavoiser adalah suatu hukum yang menyatakan massa dari suatu sistem tertutup akan konstan

Lebih terperinci

III. METODOLOGI PENELITIAN

III. METODOLOGI PENELITIAN III. METODOLOGI PENELITIAN 3.1 Tempat dan Waktu Rumah tanaman yang digunakan terletak di Laboratorium Lapangan Siswadhi Soepardjo Leuwikopo, Departemen Teknik Mesin dan Biosistem, Fakultas Teknologi Pertanian,

Lebih terperinci

II. TINJAUAN PUSTAKA. Hidroponik adalah istilah yang digunakan untuk menjelaskan tentang cara

II. TINJAUAN PUSTAKA. Hidroponik adalah istilah yang digunakan untuk menjelaskan tentang cara II. TINJAUAN PUSTAKA 2.1 Sistem Hidroponik Hidroponik adalah istilah yang digunakan untuk menjelaskan tentang cara bercocok tanam tanpa menggunakan tanah sebagai media tanam (soilless culture). Media tanam

Lebih terperinci

Perpindahan Panas Konveksi. Perpindahan panas konveksi bebas pada plat tegak, datar, dimiringkan,silinder dan bola

Perpindahan Panas Konveksi. Perpindahan panas konveksi bebas pada plat tegak, datar, dimiringkan,silinder dan bola Perpindahan Panas Konveksi Perpindahan panas konveksi bebas pada plat tegak, datar, dimiringkan,silinder dan bola Pengantar KONDUKSI PERPINDAHAN PANAS KONVEKSI RADIASI Perpindahan Panas Konveksi Konveksi

Lebih terperinci

II. TINJAUAN PUSTAKA Rumah Tanaman (Greenhouse)

II. TINJAUAN PUSTAKA Rumah Tanaman (Greenhouse) II. TINJAUAN PUSTAKA 2.1. Rumah Tanaman (Greenhouse) Menurut Nelson (1978) dalam Suhardiyanto (2009) mendefinisikan rumah tanaman sebagai suatu bangunan untuk budidaya tanaman yang memiliki struktur atap

Lebih terperinci

BAB IV KAJIAN CFD PADA PROSES ALIRAN FLUIDA

BAB IV KAJIAN CFD PADA PROSES ALIRAN FLUIDA BAB IV KAJIAN CFD PADA PROSES ALIRAN FLUIDA IV. KAJIAN CFD PADA PROSES ALIRAN FLUIDA 4.1. Penelitian Sebelumna Computational Fluid Dnamics (CFD) merupakan program computer perangkat lunak untuk memprediksi

Lebih terperinci

MAKALAH KOMPUTASI NUMERIK

MAKALAH KOMPUTASI NUMERIK MAKALAH KOMPUTASI NUMERIK ANALISA ALIRAN FLUIDA DALAM PIPA SIRKULAR DAN PIPA SPIRAL UNTUK INSTALASI SALURAN AIR DI RUMAH DENGAN SOFTWARE CFD Oleh : MARIO RADITYO PRARTONO 1306481972 DEPARTEMEN TEKNIK MESIN

Lebih terperinci

STAF LAB. ILMU TANAMAN

STAF LAB. ILMU TANAMAN STAF LAB. ILMU TANAMAN Suhu Suhu merupakan faktor lingkungan yang berpengaruh terhadap pertumbuhan dan perkembangan tanaman Suhu berkorelasi positif dengan radiasi mata hari Suhu: tanah maupun udara disekitar

Lebih terperinci

BAB IV PRINSIP-PRINSIP KONVEKSI

BAB IV PRINSIP-PRINSIP KONVEKSI BAB IV PRINSIP-PRINSIP KONVEKSI Aliran Viscous Berdasarkan gambar 1 dan, aitu aliran fluida pada pelat rata, gaa viscous dijelaskan dengan tegangan geser τ diantara lapisan fluida dengan rumus: du τ µ

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA. 2.1 Proses Perpindahan Panas Konveksi Alamiah dalam Peralatan Pengeringan

BAB 2 TINJAUAN PUSTAKA. 2.1 Proses Perpindahan Panas Konveksi Alamiah dalam Peralatan Pengeringan 134 BAB 2 TINJAUAN PUSTAKA 2.1 Proses Perpindahan Panas Konveksi Alamiah dalam Peralatan Pengeringan Prinsip dasar proses pengeringan adalah terjadinya pengurangan kadar air atau penguapan kadar air oleh

Lebih terperinci

Pemodelan Distribusi Suhu pada Tanur Carbolite STF 15/180/301 dengan Metode Elemen Hingga

Pemodelan Distribusi Suhu pada Tanur Carbolite STF 15/180/301 dengan Metode Elemen Hingga Pemodelan Distribusi Suhu pada Tanur Carbolite STF 15/180/301 dengan Metode Elemen Hingga Wafha Fardiah 1), Joko Sampurno 1), Irfana Diah Faryuni 1), Apriansyah 1) 1) Program Studi Fisika Fakultas Matematika

Lebih terperinci

steady/tunak ( 0 ) tidak dipengaruhi waktu unsteady/tidak tunak ( 0) dipengaruhi waktu

steady/tunak ( 0 ) tidak dipengaruhi waktu unsteady/tidak tunak ( 0) dipengaruhi waktu Konduksi Tunak-Tak Tunak, Persamaan Fourier, Konduktivitas Termal, Sistem Konduksi-Konveksi dan Koefisien Perpindahan Kalor Menyeluruh Marina, 006773263, Kelompok Kalor dapat berpindah dari satu tempat

Lebih terperinci

BAB II TINJAUAN PUSTAKA. Sebagai bintang yang paling dekat dari planet biru Bumi, yaitu hanya berjarak sekitar

BAB II TINJAUAN PUSTAKA. Sebagai bintang yang paling dekat dari planet biru Bumi, yaitu hanya berjarak sekitar BAB NJAUAN PUSAKA Sebagai bintang yang paling dekat dari planet biru Bumi, yaitu hanya berjarak sekitar 150.000.000 km, sangatlah alami jika hanya pancaran energi matahari yang mempengaruhi dinamika atmosfer

Lebih terperinci

IV. HASIL DAN PEMBAHASAN

IV. HASIL DAN PEMBAHASAN IV. HASIL DAN PEMBAHASAN 4.1 RANCANGAN OBSTACLE Pola kecepatan dan jenis aliran di dalam reaktor kolom gelembung sangat berpengaruh terhadap laju reaksi pembentukan biodiesel. Kecepatan aliran yang tinggi

Lebih terperinci

II. TINJAUAN PUSTAKA

II. TINJAUAN PUSTAKA II. TINJAUAN PUSTAKA A. Definisi Fluida Aliran fluida atau zat cair (termasuk uap air dan gas) dibedakan dari benda padat karena kemampuannya untuk mengalir. Fluida lebih mudah mengalir karena ikatan molekul

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Latar Belakang

BAB I PENDAHULUAN. 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Perkembangan teknologi yang begitu pesat dewasa ini sangat mempengaruhi jumlah ketersediaan sumber-sumber energi yang tidak dapat diperbaharui yang ada di permukaan

Lebih terperinci

Satuan Operasi dan Proses TIP FTP UB

Satuan Operasi dan Proses TIP FTP UB Satuan Operasi dan Proses TIP FTP UB Pasteurisasi susu, jus, dan lain sebagainya. Pendinginan buah dan sayuran Pembekuan daging Sterilisasi pada makanan kaleng Evaporasi Destilasi Pengeringan Dan lain

Lebih terperinci

BAB 9. PENGKONDISIAN UDARA

BAB 9. PENGKONDISIAN UDARA BAB 9. PENGKONDISIAN UDARA Tujuan Instruksional Khusus Mmahasiswa mampu melakukan perhitungan dan analisis pengkondisian udara. Cakupan dari pokok bahasan ini adalah prinsip pengkondisian udara, penggunaan

Lebih terperinci

BAB I PENDAHULUAN. Tabel 1.1 Besaran dan peningkatan rata-rata konsumsi bahan bakar dunia (IEA, 2014)

BAB I PENDAHULUAN. Tabel 1.1 Besaran dan peningkatan rata-rata konsumsi bahan bakar dunia (IEA, 2014) BAB I PENDAHULUAN 1.1 Latar Belakang Di era modern, teknologi mengalami perkembangan yang sangat pesat. Hal ini akan mempengaruhi pada jumlah konsumsi bahan bakar. Permintaan konsumsi bahan bakar ini akan

Lebih terperinci

BAB III ANALISA KONDISI FLUIDA DAN PROSEDUR SIMULASI

BAB III ANALISA KONDISI FLUIDA DAN PROSEDUR SIMULASI BAB III ANALISA KONDISI FLUIDA DAN PROSEDUR SIMULASI 3.1 KONDISI ALIRAN FLUIDA Sebelum melakukan simulasi, didefinisikan terlebih dahulu kondisi aliran yang akan dipergunakan. Asumsi dasar yang dipakai

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI Dalam bab ini dibahas tentang dasar-dasar teori yang digunakan untuk mengetahui kecepatan perambatan panas pada proses pasteurisasi pengalengan susu. Dasar-dasar teori tersebut meliputi

Lebih terperinci

Simulasi Perpindahan Panas pada Lapisan Tengah Pelat Menggunakan Metode Elemen Hingga

Simulasi Perpindahan Panas pada Lapisan Tengah Pelat Menggunakan Metode Elemen Hingga JURNAL SAINS DAN SENI ITS Vol. 4, No.2, (2015) 2337-3520 (2301-928X Print) A-13 Simulasi Perpindahan Panas pada Lapisan Tengah Pelat Menggunakan Metode Elemen Hingga Vimala Rachmawati dan Kamiran Jurusan

Lebih terperinci

MODUL KULIAH : MEKANIKA FLUIDA DAN HIROLIKA

MODUL KULIAH : MEKANIKA FLUIDA DAN HIROLIKA MODUL KULIAH : MEKANIKA FLUIDA DAN SKS : 3 HIROLIKA Oleh : Acep Hidayat,ST,MT. Jurusan Teknik Perencanaan Fakultas Teknik Perencanaan dan Desain Universitas Mercu Buana Jakarta 2011 MODUL 12 HUKUM KONTINUITAS

Lebih terperinci

ANALISIS CASING TURBIN KAPLAN MENGGUNAKAN SOFTWARE COMPUTATIONAL FLUID DYNAMICS/CFD FLUENT

ANALISIS CASING TURBIN KAPLAN MENGGUNAKAN SOFTWARE COMPUTATIONAL FLUID DYNAMICS/CFD FLUENT ANALISIS CASING TURBIN KAPLAN MENGGUNAKAN SOFTWARE COMPUTATIONAL FLUID DYNAMICS/CFD FLUENT 6.2.16 Ridwan Arief Subekti, Anjar Susatyo, Jon Kanidi Puslit Tenaga Listrik dan Mekatronik LIPI Komplek LIPI,

Lebih terperinci

Lampiran 1. Perhitungan kebutuhan panas

Lampiran 1. Perhitungan kebutuhan panas LAMPIRAN 49 Lampiran 1. Perhitungan kebutuhan panas 1. Jumlah Air yang Harus Diuapkan = = = 180 = 72.4 Air yang harus diuapkan (w v ) = 180 72.4 = 107.6 kg Laju penguapan (Ẇ v ) = 107.6 / (32 x 3600) =

Lebih terperinci

HIDRODINAMIKA BAB I PENDAHULUAN

HIDRODINAMIKA BAB I PENDAHULUAN BAB I PENDAHULUAN 1.1 Latar Belakang Kinematika adalah tinjauan gerak partikel zat cair tanpa memperhatikan gaya yang menyebabkan gerak tersebut. Kinematika mempelajari kecepatan disetiap titik dalam medan

Lebih terperinci

Bab 4 Perancangan dan Pembuatan Pembakar (Burner) Gasifikasi

Bab 4 Perancangan dan Pembuatan Pembakar (Burner) Gasifikasi Bab 4 Perancangan dan Pembuatan Pembakar (Burner) Gasifikasi 4.1 Pertimbangan Awal Pembakar (burner) adalah alat yang digunakan untuk membakar gas hasil gasifikasi. Di dalam pembakar (burner), gas dicampur

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1. Perpindahan panas Perpindahan panas adalah perpindahan energi karena adanya perbedaan temperatur. Ada tiga bentuk mekanisme perpindahan panas yang diketahui, yaitu konduksi,

Lebih terperinci

SIMULASI ALIRAN FLUIDA PADA POMPA HIDRAM DENGAN VARIASI PANJANG PIPA PEMASUKAN DAN VARIASI TINGGI TABUNG UDARA MENGGUNAKAN CFD

SIMULASI ALIRAN FLUIDA PADA POMPA HIDRAM DENGAN VARIASI PANJANG PIPA PEMASUKAN DAN VARIASI TINGGI TABUNG UDARA MENGGUNAKAN CFD SIMULASI ALIRAN FLUIDA PADA POMPA HIDRAM DENGAN VARIASI PANJANG PIPA PEMASUKAN DAN VARIASI TINGGI TABUNG UDARA MENGGUNAKAN CFD SKRIPSI Skripsi Yang Diajukan Untuk Melengkapi Syarat Memperoleh Gelar Sarjana

Lebih terperinci

BAB II Dasar Teori BAB II DASAR TEORI

BAB II Dasar Teori BAB II DASAR TEORI II DSR TEORI 2. Termoelektrik Fenomena termoelektrik pertama kali ditemukan tahun 82 oleh ilmuwan Jerman, Thomas Johann Seebeck. Ia menghubungkan tembaga dan besi dalam sebuah rangkaian. Di antara kedua

Lebih terperinci

Sidang Tugas Akhir - Juli 2013

Sidang Tugas Akhir - Juli 2013 Sidang Tugas Akhir - Juli 2013 STUDI PERBANDINGAN PERPINDAHAN PANAS MENGGUNAKAN METODE BEDA HINGGA DAN CRANK-NICHOLSON COMPARATIVE STUDY OF HEAT TRANSFER USING FINITE DIFFERENCE AND CRANK-NICHOLSON METHOD

Lebih terperinci

PEMBAHASAN. Budidaya Bayam Secara Hidroponik

PEMBAHASAN. Budidaya Bayam Secara Hidroponik 38 PEMBAHASAN Budidaya Bayam Secara Hidroponik Budidaya bayam secara hidroponik yang dilakukan Kebun Parung dibedakan menjadi dua tahap, yaitu penyemaian dan pembesaran bayam. Sistem hidroponik yang digunakan

Lebih terperinci

BAB II TINJAUAN PUSTAKA Tinjauan tentang aplikasi sistem pengabutan air di iklim kering

BAB II TINJAUAN PUSTAKA Tinjauan tentang aplikasi sistem pengabutan air di iklim kering 15 BAB II TINJAUAN PUSTAKA 2.1. Tinjauan Pustaka 2.1.1. Tinjauan tentang aplikasi sistem pengabutan air di iklim kering Sebuah penelitian dilakukan oleh Pearlmutter dkk (1996) untuk mengembangkan model

Lebih terperinci

IV. PEMBAHASAN A. Distribusi Suhu dan Pola Aliran Udara Hasil Simulasi CFD

IV. PEMBAHASAN A. Distribusi Suhu dan Pola Aliran Udara Hasil Simulasi CFD IV. PEMBAHASAN A. Distribusi Suhu dan Pola Aliran Udara Hasil Simulasi CFD Simulasi distribusi pola aliran udara dan suhu dilakukan pada saat ayam produksi sehingga dalam simulasi terdapat inisialisasi

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1. Perpindahan Panas Perpindahan kalor (heat transfer) ialah ilmu untuk meramalkan perpindahan energi yang terjadi karena adanya perbedaan suhu di antara benda atau material.

Lebih terperinci

BAB IV PENGUMPULAN DAN PERHITUNGAN DATA

BAB IV PENGUMPULAN DAN PERHITUNGAN DATA 50 BAB IV PENGUMPULAN DAN PERHITUNGAN DATA 4.1 Menentukan Titik Suhu Pada Instalasi Water Chiller. Menentukan titik suhu pada instalasi water chiller bertujuan untuk mendapatkan kapasitas suhu air dingin

Lebih terperinci

DAFTAR NOTASI. A : sebuah konstanta, pada Persamaan (5.1)

DAFTAR NOTASI. A : sebuah konstanta, pada Persamaan (5.1) DAFTAR NOTASI A : sebuah konstanta, pada Persamaan (5.1) a c a m1 / 3 a m /k s B : Koefisien-koefisien yang membentuk elemen matrik tridiagonal dan dapat diselesaikan dengan metode eliminasi Gauss : amplitudo

Lebih terperinci

METODOLOGI PENELITIAN

METODOLOGI PENELITIAN METODOLOGI PENELITIAN Tempat dan Waktu Penelitian Penelitian ini dilaksanakan pada musim kemarau yaitu bulan Mei sampai Juli 2007 berlokasi di Laboratorium Lapangan Bagian Ternak Perah, Departemen Ilmu

Lebih terperinci

FLUIDA. Standar Kompetensi : 8. Menerapkan konsep dan prinsip pada mekanika klasik sistem kontinu (benda tegar dan fluida) dalam penyelesaian masalah.

FLUIDA. Standar Kompetensi : 8. Menerapkan konsep dan prinsip pada mekanika klasik sistem kontinu (benda tegar dan fluida) dalam penyelesaian masalah. Nama :... Kelas :... FLUIDA Standar Kompetensi : 8. Menerapkan konsep dan prinsip pada mekanika klasik sistem kontinu (benda tegar dan fluida) dalam penyelesaian masalah. Kompetensi dasar : 8.. Menganalisis

Lebih terperinci

LAPORAN PRAKTIKUM TEKNIK KIMIA IV DINAMIKA PROSES PADA SISTEM PENGOSONGAN TANGKI. Disusun Oleh : Zeffa Aprilasani NIM :

LAPORAN PRAKTIKUM TEKNIK KIMIA IV DINAMIKA PROSES PADA SISTEM PENGOSONGAN TANGKI. Disusun Oleh : Zeffa Aprilasani NIM : LAPORAN PRAKTIKUM TEKNIK KIMIA IV DINAMIKA PROSES PADA SISTEM PENGOSONGAN TANGKI Disusun Oleh : Zeffa Aprilasani NIM : 2008430039 Fakultas Teknik Kimia Universitas Muhammadiyah Jakarta 2011 PENGOSONGAN

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI 10 BAB II LANDASAN TEORI 2.1 PSIKROMETRI Psikrometri adalah ilmu yang mengkaji mengenai sifat-sifat campuran udara dan uap air yang memiliki peranan penting dalam menentukan sistem pengkondisian udara.

Lebih terperinci

IRVAN DARMAWAN X

IRVAN DARMAWAN X OPTIMASI DESAIN PEMBAGI ALIRAN UDARA DAN ANALISIS ALIRAN UDARA MELALUI PEMBAGI ALIRAN UDARA SERTA INTEGRASI KEDALAM SISTEM INTEGRATED CIRCULAR HOVERCRAFT PROTO X-1 SKRIPSI Oleh IRVAN DARMAWAN 04 04 02

Lebih terperinci

oleh : Ahmad Nurdian Syah NRP Dosen Pembimbing : Vivien Suphandani Djanali, S.T., ME., Ph.D

oleh : Ahmad Nurdian Syah NRP Dosen Pembimbing : Vivien Suphandani Djanali, S.T., ME., Ph.D STUDI NUMERIK PENGARUH VARIASI REYNOLDS NUMBER DAN RICHARDSON NUMBER PADA KARAKTERISTIK ALIRAN FLUIDA MELEWATI SILINDER TUNGGAL YANG DIPANASKAN (HEATED CYLINDER) oleh : Ahmad Nurdian Syah NRP. 2112105028

Lebih terperinci

BAB 3 METODOLOGI PENELITIAN

BAB 3 METODOLOGI PENELITIAN BAB 3 METODOLOGI PENELITIAN 3.1 Diagram Alir Penelitian Berikut adalah diagram alir penelitian konduksi pada arah radial dari pembangkit energy berbentuk silinder. Gambar 3.1 diagram alir penelitian konduksi

Lebih terperinci

HASIL DAN PEMBAHASAN

HASIL DAN PEMBAHASAN IV. HASIL DAN PEMBAHASAN Lingkungan mikro di dalam rumah tanaman khususnya di daerah tropika asah perlu mendapat perhatian khusus, mengingat iri iklim tropika asah dengan suhu udara yang relatif panas,

Lebih terperinci

IV. HASIL DAN PEMBAHASAN

IV. HASIL DAN PEMBAHASAN IV. HASIL DAN PEMBAHASAN A. Karakteristik Termal Kayu Meranti (Shorea Leprosula Miq.) Karakteristik termal menunjukkan pengaruh perlakuan suhu pada bahan (Welty,1950). Dengan mengetahui karakteristik termal

Lebih terperinci

SIMULASI ALIRAN FLUIDA PADA POMPA HIDRAM DENGAN TINGGI AIR JATUH 2.3 M DENGAN MENGGUNAKAN PERANGKAT LUNAK CFD

SIMULASI ALIRAN FLUIDA PADA POMPA HIDRAM DENGAN TINGGI AIR JATUH 2.3 M DENGAN MENGGUNAKAN PERANGKAT LUNAK CFD SIMULASI ALIRAN FLUIDA PADA POMPA HIDRAM DENGAN TINGGI AIR JATUH 2.3 M DENGAN MENGGUNAKAN PERANGKAT LUNAK CFD Herto Mariseide Marbun 1, Mulfi Hazwi 2 1,2 Departemen Teknik Mesin, Universitas Sumatera Utara,

Lebih terperinci

BAB II DASAR TEORI 2.1 Pasteurisasi 2.2 Sistem Pasteurisasi HTST dan Pemanfaatan Panas Kondensor

BAB II DASAR TEORI 2.1 Pasteurisasi 2.2 Sistem Pasteurisasi HTST dan Pemanfaatan Panas Kondensor BAB II DASAR TEORI 2.1 Pasteurisasi Pasteurisasi ialah proses pemanasan bahan makanan, biasanya berbentuk cairan dengan temperatur dan waktu tertentu dan kemudian langsung didinginkan secepatnya. Proses

Lebih terperinci

STUDI NUMERIK PENGARUH GEOMETRI DAN DESAIN DIFFUSER UNTUK PENINGKATAN KINERJA DAWT (DIFFUSER AUGMENTED WIND TURBINE)

STUDI NUMERIK PENGARUH GEOMETRI DAN DESAIN DIFFUSER UNTUK PENINGKATAN KINERJA DAWT (DIFFUSER AUGMENTED WIND TURBINE) STUDI NUMERIK PENGARUH GEOMETRI DAN DESAIN DIFFUSER UNTUK PENINGKATAN KINERJA DAWT (DIFFUSER AUGMENTED WIND TURBINE) Adhana Tito 2411106007 Dosen Pembimbing : Dr.Gunawan Nugroho, S.T,M.T. NIPN. 1977 11272002

Lebih terperinci

SIMULASI NUMERIK UJI EKSPERIMENTAL PROFIL ALIRAN SALURAN MULTI BELOKAN DENGAN VARIASI SUDU PENGARAH

SIMULASI NUMERIK UJI EKSPERIMENTAL PROFIL ALIRAN SALURAN MULTI BELOKAN DENGAN VARIASI SUDU PENGARAH SIMULASI NUMERIK UJI EKSPERIMENTAL PROFIL ALIRAN SALURAN MULTI BELOKAN DENGAN VARIASI SUDU PENGARAH Syukran 1* dan Muh. Haiyum 2 1,2 Jurusan Teknik Mesin Politeknik Negeri Lhokseumawe Jl. Banda Aceh-Medan

Lebih terperinci

WATER TO WATER HEAT EXCHANGER BENCH BAB I PENDAHULUAN. 1.1 Tujuan Pengujian

WATER TO WATER HEAT EXCHANGER BENCH BAB I PENDAHULUAN. 1.1 Tujuan Pengujian 1.1 Tujuan Pengujian WATER TO WATER HEAT EXCHANGER BENCH BAB I PENDAHULUAN a) Mempelajari formulasi dasar dari heat exchanger sederhana. b) Perhitungan keseimbangan panas pada heat exchanger. c) Pengukuran

Lebih terperinci

Ciri dari fluida adalah 1. Mengalir dari tempat tinggi ke tempat yang lebih rendah

Ciri dari fluida adalah 1. Mengalir dari tempat tinggi ke tempat yang lebih rendah Fluida adalah zat aliar, atau dengan kata lain zat yang dapat mengalir. Ilmu yang mempelajari tentang fluida adalah mekanika fluida. Fluida ada 2 macam : cairan dan gas. Ciri dari fluida adalah 1. Mengalir

Lebih terperinci

DAFTAR ISI. KATA PENGANTAR... i. ABSTRAK... iv. DAFTAR ISI... vi. DAFTAR GAMBAR... xi. DAFTAR GRAFIK...xiii. DAFTAR TABEL... xv. NOMENCLATURE...

DAFTAR ISI. KATA PENGANTAR... i. ABSTRAK... iv. DAFTAR ISI... vi. DAFTAR GAMBAR... xi. DAFTAR GRAFIK...xiii. DAFTAR TABEL... xv. NOMENCLATURE... JUDUL LEMBAR PENGESAHAN KATA PENGANTAR... i ABSTRAK... iv... vi DAFTAR GAMBAR... xi DAFTAR GRAFIK...xiii DAFTAR TABEL... xv NOMENCLATURE... xvi BAB 1 PENDAHULUAN 1.1. Latar Belakang... 1 1.2. Perumusan

Lebih terperinci

BAB III HASIL DAN PEMBAHASAN. analitik dengan metode variabel terpisah. Selanjutnya penyelesaian analitik dari

BAB III HASIL DAN PEMBAHASAN. analitik dengan metode variabel terpisah. Selanjutnya penyelesaian analitik dari BAB III HASIL DAN PEMBAHASAN Pada bab ini akan dibahas penurunan model persamaan panas dimensi satu. Setelah itu akan ditentukan penyelesaian persamaan panas dimensi satu secara analitik dengan metode

Lebih terperinci

ANALISA PERPINDAHAN KALOR PADA KONDENSOR PT. KRAKATAU DAYA LISTRIK

ANALISA PERPINDAHAN KALOR PADA KONDENSOR PT. KRAKATAU DAYA LISTRIK ANALISA PERPINDAHAN KALOR PADA KONDENSOR PT. KRAKATAU DAYA LISTRIK Diajukan untuk memenuhi salah satu persyaratan menyelesaikan Program Strata Satu (S1) pada program Studi Teknik Mesin Oleh N a m a : CHOLID

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1. Perpindahan Panas Perpindahan kalor adalah ilmu yang mempelajari berpindahnya suatu energi (berupa kalor) dari suatu sistem ke sistem lain karena adanya perbedaan temperatur.

Lebih terperinci

BAB II DASAR TEORI. 2.1 Definisi Fluida

BAB II DASAR TEORI. 2.1 Definisi Fluida BAB II DASAR TEORI 2.1 Definisi Fluida Fluida dapat didefinisikan sebagai zat yang berubah bentuk secara kontinu bila terkena tegangan geser. Fluida mempunyai molekul yang terpisah jauh, gaya antarmolekul

Lebih terperinci

METODOLOGI PENELITIAN

METODOLOGI PENELITIAN III. METODOLOGI PENELITIAN A. Waktu dan Tempat Kegiatan penelitian dilaksanakan mulai bulan Februari 2012 sampai dengan Juni 2012 di Lab. Surya Departemen Teknik Mesin dan Biosistem, Fakultas Teknologi

Lebih terperinci

NASKAH PUBLIKASI ANALISA PERPINDAHAN PANAS TERHADAP RECTANGULAR DUCT DENGAN TEBAL m MENGGUNAKAN ANSYS 12 SP1 DAN PERHITUNGAN METODE NUMERIK

NASKAH PUBLIKASI ANALISA PERPINDAHAN PANAS TERHADAP RECTANGULAR DUCT DENGAN TEBAL m MENGGUNAKAN ANSYS 12 SP1 DAN PERHITUNGAN METODE NUMERIK NASKAH PUBLIKASI ANALISA PERPINDAHAN PANAS TERHADAP RECTANGULAR DUCT DENGAN TEBAL 0.075 m MENGGUNAKAN ANSYS 12 SP1 DAN PERHITUNGAN METODE NUMERIK Disusun Sebagai Syarat Untuk Mencapai Gelar Sarjana Teknik

Lebih terperinci

Pemodelan Matematika dan Metode Numerik

Pemodelan Matematika dan Metode Numerik Bab 3 Pemodelan Matematika dan Metode Numerik 3.1 Model Keadaan Tunak Model keadaan tunak hanya tergantung pada jarak saja. Oleh karena itu, distribusi temperatur gas sepanjang pipa sebagai fungsi dari

Lebih terperinci

III PEMBAHASAN. (3.3) disubstitusikan ke dalam sistem koordinat silinder yang ditinjau pada persamaan (2.4), maka diperoleh

III PEMBAHASAN. (3.3) disubstitusikan ke dalam sistem koordinat silinder yang ditinjau pada persamaan (2.4), maka diperoleh III PEMBAHASAN Pada bagian ini akan dibahas penggunaan metode perturbasi homotopi untuk menyelesaikan suatu masalah taklinear. Metode ini digunakan untuk menyelesaikan model Sisko dalam masalah aliran

Lebih terperinci

Konduksi Mantap 2-D. Shinta Rosalia Dewi

Konduksi Mantap 2-D. Shinta Rosalia Dewi Konduksi Mantap 2-D Shinta Rosalia Dewi SILABUS Pendahuluan (Mekanisme perpindahan panas, konduksi, konveksi, radiasi) Pengenalan Konduksi (Hukum Fourier) Pengenalan Konduksi (Resistensi ermal) Konduksi

Lebih terperinci

HASIL DAN PEMBAHASAN

HASIL DAN PEMBAHASAN 27 HASIL DAN PEMBAHASAN Titik Fokus Letak Pemasakan Titik fokus pemasakan pada oven surya berdasarkan model yang dibuat merupakan suatu bidang. Pada posisi oven surya tegak lurus dengan sinar surya, lokasi

Lebih terperinci