ASAL USUL SAPI MADURA BERDASARKAN PENANDA DNA MITOKONDRIA

Ukuran: px
Mulai penontonan dengan halaman:

Download "ASAL USUL SAPI MADURA BERDASARKAN PENANDA DNA MITOKONDRIA"

Transkripsi

1 1 ASAL USUL SAPI MADURA BERDASARKAN PENANDA DNA MITOKONDRIA NIRMALA FITRIA FIRDHAUSI SEKOLAH PASCASARJANA INSTITUT PERTANIAN BOGOR BOGOR 2010

2 2 PERNYATAAN MENGENAI TESIS DAN SUMBER INFORMASI Dengan ini saya menyatakan bahwa tesis Asal Usul Sapi Madura Berdasarkan Penanda DNA Mitokondria adalah karya saya dengan arahan dari komisi pembimbing dan belum diajukan dalam bentuk apa pun kepada perguruan tinggi manapun. Sumber informasi yang berasal atau dikutip dari karya yang diterbitkan maupun tidak diterbitkan dari penulis lain telah disebutkan dalam teks dan dicantumkan dalam Daftar Pustaka di bagian akhir thesis ini. Bogor, Agustus 2010 Nirmala Fitria Firdhausi NIM G

3 3 ABSTRACT NIRMALA FITRIA FIRDHAUSI. The Origin of Madura Cattle Based on Mitochondrial DNA. Supervised by ACHMAD FARAJALLAH and RR. DYAH PERWITASARI Madura cattle was one of native cattle from Indonesia. The origin of madura cattle had not known clearly. Many reports said that madura cattle came from the crosses of Bos javanicus (banteng), Bos taurus and Bos indicus. To understand the maternal inheritance in madura cattle, we analyzed the nucleotide sequence of Cyt b gen, trna Thr and Pro, also Dloop region from mitochondrial genom. The reconstruction of phylogenetic tree using Neighbour Joining Method based on Kimura 2 Parameter showed that madura cattle grouped into two types, that are B. javanicus type and B. indicus type. This research result supported many authors that there were a mixing of the maternal origin of madura cattle. Further investigation is needed to determine the origin madura cattle based on paternal liniages and mitochondrial diversity. This conservation investigation is needed to improve quality of madura cattle. Keyword: madura cattle, mitochondrial DNA, phylogenetic

4 4 RINGKASAN NIRMALA FITRIA FIRDHAUSI. Asal Usul Sapi Madura Berdasarkan Penanda DNA Mitokondria. Dibimbing oleh ACHMAD FARAJALLAH dan RR DYAH PERWITASARI. Sapi madura adalah salah satu jenis sapi lokal Indonesia. Proses persilangan hingga diperoleh sapi madura selama ini tidak tercatat dengan baik dan masih terdapat perbedaan pada beberapa data hasil penelitian. Sapi madura diperkirakan berasal dari persilangan antara B. indicus dengan B. javanicus. Ada pula yang menyatakan bahwa sapi madura merupakan hasil persilangan antara pejantan B. indicus dengan betina campuran B. javanicus atau B. taurus. Penelusuran sejarah persilangan dan kekerabatan sapi madura dapat dilakukan dengan menganalisis variasi genom mitokondria (mtdna). Setiap individu yang memiliki indukan yang sama akan memiliki tipe mtdna yang sama. Hal ini disebabkan karena mtdna diturunkan melalui garis maternal. Tujuan dari penelitian ini adalah untuk mengetahui kejelasan asal usul sapi madura berdasarkan garis keturunan maternal dengan menggunakan penanda mtdna Cyt b, trna Thr, trna Pro, dan Dloop. Penelitian ini diharapkan dapat memberi informasi genetik dan asal-usul sapi madura, sehingga dapat digunakan untuk membantu peningkatan program pemuliaan dan konservasi sapi madura. Sampel darah sapi madura yang digunakan berasal dari beberapa desa di Kabupaten Sampang dan Bangkalan. Sampel diekstraksi menggunakan metode yang dikembangkan oleh Sambrook et al. (1989) dengan sedikit modifikasi. Amplifikasi dilakukan dengan metode Polymerase Chain Reaction (PCR). Proses visualisasi yang dilakukan menggunakan tehnik elektroforesis gel poliakrilamid (PAGE 6%) dan dilanjutkan dengan pewarnaan sensitif perak menurut Tegelstrom (1986). Proses perunutan menggunakan metode Dideoxi Terminator dengan dntp berlabel (big dye terminator). Analisa data meliputi penghitungan komposisi nukleotida, laju subtitusi, jarak genetik dan rekonstruksi pohon filogeni. Penghitungan jarak genetik dilakukan berdasarkan model subtitusi Kimura 2 Parameter. Rekonstruksi pohon filogeni menggunakan metode Neighbour Joining (NJ) dengan boostrap 1000 kali. Hasil runutan nukleotida yang didapatkan dari sampel sapi madura setelah disejajarkan, terbagi menjadi 203 bp gen Cyt b, 70 bp gen trna Thr, 66 bp trna Pro. Pada daerah Dloop terdapat hasil yang bervariasi yaitu 373 bp untuk sampel madura 14 dan 26, 374 bp untuk madura 38, 534 bp untuk sampel madura 41 dan 29, 512 bp untuk madura 32. Variasi panjang runutan pada Dloop disebabkan karena adanya ruas berulang. Ruas berulang hanya ditemukan pada sapi madura sampel 29, 32, dan 41. Hasil rekonstruksi pohon filogeni baik dengan menggunakan ruas mtdna yang stabil (Cyt b dan trna) maupun yang memiliki laju mutasi tinggi (Dloop) menunjukkan sampel sapi madura terbagi menjadi dua kelompok dalam cabang yang berbeda. Sapi madura I terlihat berkelompok dalam satu cabang dengan B. indicus dan sapi madura tipe II berkelompok dengan B. javanicus. Percampuran pada asal nenek moyang sapi madura kemungkinan disebabkan karena kecilnya tingkat keberhasilan persilangan antara B. javanicus dengan B. indicus. Kecilnya tingkat keberhasilan persilangan kemungkinan disebabkan karena perbedaan

5 5 bentuk kromosom Y diantara keduanya. Bos indicus memiliki bentuk kromosom akrosentris sedangkan B. javanicus memiliki bentuk kromosom metasentris. Perbedaan bentuk kromosom mengakibatkan gangguan pada proses spermatogenesis, sehingga terkadang F1 jantan yang dihasilkan keduanya bersifat steril. Persilangan antara banteng dan B. indicus diperkirakan terjadi sejak masuknya kebudayaan hindu yang dibawa oleh bangsa india ke Indonesia. Awal masuknya bangsa india ke Indonesia terjadi sekitar 1800 tahun yang lalu dengan membawa sapi-sapi dari jenis B. indicus. Sapi-sapi jenis B. indicus ini kemudian disilangkan dengan banteng yang masih banyak dijumpai sebelum penggundulan hutan sekitar 150 tahun yang lalu di Pulau Madura. Kata kunci: sapi madura, DNA mitokondria, filogenetik

6 6 Hak Cipta milik IPB, tahun 2010 Hak Cipta dilindungi Undang-Undang Dilarang mengutip sebagian atau seluruh karya tulis ini tanpa mencantumkan atau menyebutkan sumbernya. Pengutipan hanya untuk kepentingan pendidikan, penelitian, penulisan karya ilmiah, penyusunan laporan, penulisan kritik, atau tinjuan suatu masalah; dan pengutipan tersebut tidak merugikan kepentingan yang wajar IPB Dilarang mengumumkan dan memperbanyak sebagian atau seluruh Karya tulis dalam bentuk apa pun tanpa izin IPB

7 7 ASAL USUL SAPI MADURA BERDASARKAN PENANDA DNA MITOKONDRIA NIRMALA FITRIA FIRDHAUSI Tesis Sebagai salah satu syarat untuk memperoleh gelar Magister Sains pada Program Studi Bio Sains Hewan SEKOLAH PASCASARJANA INSTITUT PERTANIAN BOGOR BOGOR 2010

8 8 Judul Nama NRP : Asal usul Sapi Madura Berdasarkan Penanda DNA Mitokondria : Nirmala Fitria Firdhausi : G Disetujui Oleh Komisi Pembimbing Dr. Ir. Achmad Farajallah, M.Si. Anggota Dr. Ir. RR. Dyah Perwitasari, M.Sc. Anggota Ketua Program Studi Biosains Hewan Dekan Sekolah Pascasarjana Dr. Bambang Suryobroto Prof. Dr. Ir. Khairil A. Notodiputro, M.S. Tanggal Ujian: 9 Agustus 2010 Tanggal Lulus:

9 Penguji Luar Komisi pada Ujian Tesis: Prof. Dr. Ir. Cece Sumantri, M.Agr.Sc.

10 9 PRAKATA Puji dan syukur penulis panjatkan kepada Allah SWT atas segala karunia Nya sehingga karya ilmiah ini berhasil diselesaikan. Tema yang dipilih dalam penelitian yang dilaksanakan sejak bulan Agustus 2009 ini ialah mengenai Asal Usul Sapi Madura Berdasarkan Penanda DNA Mitokondria. Terimakasih penulis ucapkan kepada Bapak Dr. Ir. Achmad Farajallah, M.Si dan Ibu Dr. Ir. Dyah Perwitasari, M.Sc selaku pembimbing yang telah banyak memberikan saran. Selain itu, penulis mengucapkan terikasih kepada Loka Penelitian Sapi Potong Grati Pasuruan yang telah memberikan banyak informasi dan bantuan. Ungkapan terimakasih tak lupa penulis ucapkan kepada ayahanda, ibunda, suami, dan kakak atas segala doa, kasih sayang dan dukungannya. Penulis juga mengucapkan terimakasih kepada seluruh pihak yang telah membantu hingga terselesaikannya karya ilmiah ini. Semoga karya ilmiah ini bermanfaat. Bogor, Agustus 2010 Nirmala Fitria Firdhausi

11 10 RIWAYAT HIDUP Penulis dilahirkan di Jember pada tanggal 25 Juni 1985 dari ayah Suwodjo dan ibu Maryamin Nisak. Penulis merupakan putri bungsu dari tiga bersaudara. Penulis menikah dengan saudara Bahtiar Yusuf Habibi pada tahun Tahun 2003 penulis lulus dari SMA Negeri 1 Lumajang dan pada tahun yang sama lulus seleksi masuk Universitas Jember melalui jalur SPMB. Penulis memilih jurusan Biologi Fakultas Matematika dan Ilmu Pengetahuan Alam. Selama mengikuti perkuliahan, penulis menjadi asisten untuk mata kuliah Biologi Dasar pada semester ganjil tahun ajaran 2006/2007 dan 2007/2008, serta mata kuliah Ekologi pada tahun 2007/2008. Pada tahun 2005 penulis menjadi pemakalah pada Seminar Hasil Karya Inovatif dan Penelitian Mahasiswa Kombi Jurusan Biologi. Penulis lulus dari program sarjana pada tahun Tahun 2008 penulis melanjutkan pendidikan pascasarjana di Institut Pertanian Bogor. Penulis memilih mayor Biosains Hewan Departemen Biologi, FMIPA IPB.

12 DAFTAR ISI DAFTAR ISI... DAFTAR TABEL... DAFTAR GAMBAR... DAFTAR LAMPIRAN... Halaman PENDAHULUAN Latar Belakang... 1 Tujuan Penelitian... 2 Manfaat Penelitian... 2 TINJAUAN PUSTAKA Sejarah Domestikasi dan Persebaran Sapi... 3 Persilangan (Hibridisasi) Sapi... 4 Tipe-tipe Sapi di Indonesia... 5 DNA Mitokondria... 8 BAHAN DAN METODE Tempat dan Waktu Penelitian Koleksi Darah Isolasi DNA Total Amplifikasi mtdna Perunutan DNA Analisis Data HASIL Produk Amplifikasi dan Perunutan Mutasi Nukleotida dan Analisis Filogeni Berdasarkan Ruas Cyt b Mutasi Nukleotida dan Analisis Filogeni Berdasarkan Ruas Dloop Mutasi nukleotida pada Ruas trna PEMBAHASAN Produk Perunutan dan Mutasi Nukleotida Analisis Filogeni KESIMPULAN SARAN DAFTAR PUSTAKA xi xii xiii xiv

13 DAFTAR TABEL Halaman 1 Komposisi basa (%) untuk mesing-masing sampel sapi madura Jumlah basa sama dan basa berbeda pada keempat ruas mtdna Nilai jarak genetik (di bawah diagonal) dan nilai perbandingan kejadian transisi dengan tranversi (di atas diagonal) berdasarkan ruas Cyt b Nilai jarak genetik (di bawah diagonal) dan nilai perbandingan kejadian transisi dengan tranversi (di atas diagonal) berdasarkan ruas Dloop... 18

14 DAFTAR GAMBAR Halaman 1 Penampilan sapi bali dan banteng di Taman Nasional Alas Purwo Morfologi sapi madura Struktur mtdna pada mamalia Ursus thibetanus (beruang hitam) Pola pita DNA mitokondria hasil amplifikasi dalam PAGE 6% dan produk hasil perunutan Hasil rekonstruksi pohon filogeni berdasarkan runutan basa dan asam amino dari gen Cyt b menggunakan metode NJ dengan boostrap 1000x Sebagian ruas berulang sepanjang 22 nt pada Dloop Letak ruas berulang (tandem repeat) dan TAS (terminated associated sequence) pada wilayah Dloop mitokondria sapi madura Hasil rekonstruksi pohon filogeni berdasarkan ruas Dloop dengan menggunakan metode NJ boostrap 1000x Perbandingan runutan basa nukleotida trna Thr Perbandingan runutan basa nukleotida trna Pro... 20

15 DAFTAR LAMPIRAN Halaman 1 Peta Lokasi Pengambilan Sampel Hasil penjajaran DNA ruas Cyt b,trna Thr, trna Pro dan Dloop genom mitokondria sapi Madura dengan data GenBank... 34

16 1 PENDAHULUAN Latar Belakang Ternak sapi merupakan hewan hasil domestikasi yang memiliki peranan penting bagi kehidupan manusia. Domestikasi sapi diperkirakan dimulai sejak 4000 hingga 5000 tahun yang lalu dari Bos prigimineus (MacHugh 1997; Mannen et al. 1998). Sapi hasil domestikasi B. prigimineus ada dua jenis, yaitu Bos taurus dan Bos indicus. Kedua keturunan jenis sapi tersebut berkembang hingga saat ini. Jenis sapi lain yang berkembang sebagai hewan ternak adalah Bos javanicus. Bos javanicus merupakan salah satu jenis sapi asli Indonesia yang berbeda dengan B. taurus maupun B. indicus (Nijman et al. 2003; Uggla 2008). Bos javanicus sebagai sapi asli Indonesia didomestikasi menjadi sapi bali yang kemudian tersebar di seluruh wilayah Indonesia. Selain sapi bali, beberapa sapi lokal yang berkembang di Indonesia antara lain sapi aceh, sapi pesisir, dan sapi madura. Sapi aceh dan sapi pesisir berasal dari keturunan B. indicus yang tersebar di wilayah Provinsi Aceh dan Sumatera bagian barat. Sapi madura memiliki persebaran yang terbatas di sekitar Pulau Madura dan Pulau Jawa bagian timur. Asal domestikasi sapi madura hingga saat ini belum jelas (Williamson & Payne 1965; Uggla 2008; Kusdiantoro 2009). Sapi madura memiliki ciri-ciri morfologi yang hampir mirip dengan sapi bali. Kulit sapi madura berwarna coklat kemerahan dengan sedikit motif warna putih pada bagian pantat dan kaki. Beberapa karakter sapi madura memiliki kemiripan dengan B. indicus, antara lain lebih tahan terhadap kondisi cuaca panas, tahan terhadap kondisi makanan yang terbatas, memiliki kualitas daging yang baik, dan lebih resisten terhadap parasit (Payne & Hodges 1997). Proses persilangan sapi hingga diperoleh sapi madura selama ini tidak tercatat dengan baik dan masih terdapat perbedaan pada beberapa data hasil penelitian. Sapi madura diperkirakan berasal dari persilangan antara B. indicus dengan B. javanicus (Wiliamson & Payne 1965). Ada pula yang menyatakan bahwa sapi madura merupakan hasil persilangan antara pejantan B. indicus dengan betina campuran B. javanicus atau B. taurus. Asumsi sapi madura berasal dari B. taurus disebabkan karena beberapa jenis B. taurus juga memiliki warna yang sama dengan sapi madura yaitu merah kecoklatan (Maksum 1993).

17 2 Penelitian kusdiantoro (2009) berdasarkan SRY menemukan beberapa sampel sapi madura merupakan keturunan dari B. taurus. Namikawa (1981) menduga bahwa terdapat percampuran pada sapi madura berdasarkan adanya hemoglobin beta x (Hb-β X ). Munculnya Hb-β X pada darah sapi madura diperkirakan berasal dari B. javanicus. Hemoglobin β X tidak pernah dilaporkan muncul pada B. indicus maupun B. taurus. Penelusuran sejarah persilangan dan kekerabatan sapi madura dapat dilakukan dengan menganalisis variasi genom mitokondria (mtdna). Setiap individu yang memiliki indukan yang sama akan memiliki tipe mtdna yang sama. Hal ini disebabkan mtdna diturunkan melalui garis maternal. Kelebihan lain dari mtdna adalah bersifat haploid (single copy) dan tidak mengalami rekombinasi (Tapio & Grigaliunaite 2002). Tujuan Tujuan penelitian ini adalah untuk mengetahui kejelasan asal usul sapi madura berdasarkan garis keturunan maternal dengan menggunakan penanda mtdna Cyt b, trnathr, trna Pro, dan Dloop. Manfaat Penelitian ini diharapkan dapat memberi informasi genetik dan asal usul sapi madura. Sehingga dapat digunakan untuk membantu strategi peningkatan program pemuliaan dan konservasi sapi madura. Upaya konservasi sapi madura masih diperlukan guna memperkaya aset plasma nutfah nasional.

18 3 TINJAUAN PUSTAKA Sejarah Domestikasi dan Persebaran Sapi Sapi domestik termasuk dalam ordo Artiodactyla (Ungulata) dan merupakan salah satu famili dari Bovidae. Sapi domestik merupakan hewan yang paling berkembang dan dominan dalam familinya. Kerabat mereka yang paling dekat antara lain sapi liar (banteng, gaur dan kouprey), yak, bison Amerika dan Eropa, dan Kerbau (Fries & Ruvinsky 1999; Matthee & Davis 2001). Proses domestikasi berlangsung sejalan dengan mulai berkembangnya kebudayaan manusia. Sapi didomestikasi untuk membantu kehidupan manusia baik digunakan sebagai bahan pangan ataupun diambil tenaganya (Loftus et al. 1993). Sapi domestik yang berkembang saat ini merupakan hasil domestikasi dari B. prigimineus yang diperkirakan mulai didomestikasi sejak 5000 hingga 4000 tahun yang lalu (Mannen et al. 1998). Terdapat tiga sub spesies dari B. prigimineus yang diperkirakan merupakan asal dari sapi domestik yaitu B. prigimineus subsp prigimineus yang wilayah persebarannya di Eropa, B. prigimineus subsp namadicus yang persebarannya di Asia dan B. prigimineus subsp ophistonomous yang memiliki persebaran di wilayah Afrika bagian utara (MacHugh et al. 1997). Bos prigimineus diperkirakan telah punah sejak 2000 tahun yang lalu (Bollongino 1997). Sapi domestik hasil domestikasi B. prigimineus terbagi menjadi dua yaitu sapi tanpa punuk (humpless) dan sapi yang berpunuk (humped). Sapi yang tidak berpunuk tergolong dalam B. taurus. Sapi yang berpunuk disebut juga dengan zebu (B. indicus). Fungsi punuk pada B. indicus belum diketahui secara pasti. Dilihat dari komposisi penyusunnya yaitu otot dan lemak, diperkirakan punuk ini berfungsi sebagai penyimpan air (McHugh 1997). Keturunan kedua jenis sapi B. taurus dan B. indicus berkembang menjadi hewan ternak hingga saat ini. Jenis sapi lain yang berkembang sebagai hewan ternak adalah B. javanicus (banteng) yang memiliki sejarah domestikasi yang berbeda dari B. taurus maupun B. indicus. Bos javanicus merupakan sapi asli Indonesia yang saat ini didomestikasi menjadi sapi bali (Nijman et al. 2003).

19 4 Bos indicus sebagian besar tersebar di wilayah Asia bagian selatan dan Afrika. Awal masuknya B. indicus ke wilayah Asia diperkirakan dibawa oleh pengembara Verdic Aryan dari daerah Irak ke India sekitar 2200 SM hingga 1500 SM melalui jalur utara. Persebaran B. indicus kemudian berlanjut ke arah selatan menuju Srilangka dan ke arah timur menuju ke Birma, Thailand, Vietnam, Laos, Kamboja dan Malaysia (Wiliamson & Payne 1965). B. indicus diperkirakan masuk ke Indonesia bersama dengan masuknya kebudayaan Hindu (Payne & Wilson 1999) Persebaran B. taurus sebagian besar di wilayah Eropa dan Afrika Barat. Awal masuknya B. taurus ke wilayah Asia dibawa oleh bangsa nomaden menuju ke Asia Tengah kemudian ke arah selatan dan tenggara menuju ke India. Bos taurus dibawa menuju ke arah timur yaitu Cina oleh pengembara Ural Altaic sekitar 2500 SM. Persebaran B. taurus dilanjutkan menuju ke Birma, Thailand, Vietnam, Kamboja, dan Laos. Sapi-sapi tersebut kemudian diimpor ke wilayah selatan yaitu Malaysia dan Indonesia (Wiliamson & Payne 1965; MacHugh 1997). Persilangan (Hibridisasi) pada Sapi Proses persilangan pada sapi dapat terjadi secara langsung (spontan) ataupun diatur oleh manusia. Proses persilangan pada sapi dilakukan untuk mendapatkan tipe-tipe baru yang lebih baik sesuai dengan kebutuhan manusia. Proses persilangan dilakukan dengan jalan mengawinkan beberapa tipe sapi yang tidak memiliki hubungan keluarga. Berbagai macam faktor dapat mempengaruhi kesuksesan dari proses persilangan diantaranya adalah kompatibilitas kromosom (Cassell 2007). Proses persilangan umumnya membutuhkan jumlah kromosom yang sama. Bos taurus, B. indicus dan B. javanicus memiliki jumlah kromosom yang sama yaitu 2n=60, sehingga persilangan diantara ketiganya dapat menghasilkan keturunan. Anggota bovinae lain yang memiliki jumlah kromosom 2n=60 adalah yak (B. grunnies), Bison amerika (Bison bison), dan Bison eropa (Bison bonasus). Persilangan antara anggota Bos dengan Bison masih bisa dilakukan meskipun menghasilkan F1 jantan yang steril (Lenstra & Bradley 1999).

20 5 Persilangan antara B. taurus dan B. indicus banyak dilakukan untuk mendapatkan tipe sapi baru yang unggul. Beberapa contoh hasil persilangan antara B. indicus dan B. taurus adalah sapi batangas, burmese, brangus, dan brahmousin. Persilangan antara B. javanicus dengan B. indicus sedikit mengalami hambatan dan terkadang menghasilkan F1 jantan yang steril. Hal ini diperkirakan karena adanya perbedaan bentuk kromosom Y. Perbedaan bentuk kromosom mengakibatkan gangguan pada proses spermatogenesis (Rollinson 1984; Lightner 2008). Kromosom X pada anggota Bos dan Bison memiliki bentuk yang sama yaitu submetasentris. Hal ini yang menyebabkan betina hasil persilangan diantara Bos maupaun antara Bos dengan Bison menghasilkan F1 betina yang fertil (Lightner 2008). Tipe-tipe Sapi di Indonesia Sapi domestik di Indonesia sebagian besar berasal dari B. indicus. Tidak ada data khusus yang menunjukkan awal masuknya B. indicus ke Indonesia. Bos indicus diperkirakan masuk bersamaan dengan masuknya kebudayaan Hindu sekitar 1500 tahun yang lalu (Payne & Wilson 1999) Sapi lokal indonesia yang termasuk dalam keturunan B. indicus antara lain sapi aceh dan sapi pesisir (Uggla 2008; Kusdiantoro et al. 2009). Selain itu terdapat pula sapi bali dan sapi madura yang merupakan keturunan B. javanicus. Sapi-sapi lokal tersebut banyak berfungsi sebagai ternak potong dan ternak pekerja (Rouse 1972; Nijman 2003). Sapi bali merupakan sapi domestik yang memiliki sejarah domestikasi yang berbeda dengan sapi-sapi yang lain. Sapi bali didomestikasi langsung dari banteng liar (B. javanicus). Domestikasi banteng telah dimulai sejak 3500 tahun yang lalu (Nijman et al. 2003; Kusdiantoro et al. 2009). Sapi bali dipertahankan keasliannya di Pulau Bali. Persebaran sapi bali sangat luas dibandingkan dengan jenis sapi lokal lainnya. Sapi bali tersebar diseluruh wilayah Indonesia, terutama Jawa, Sulawesi, Lombok, dan Pulau Timor (Vietmeyer 1983). Karakter fisik dari sapi bali antara lain warna kulit coklat kemerahan pada betina, sedangkan pada jantan terkadang berwarna hitam hingga kemerahan. Pada kaki belakang hingga ke pinggang dan perut, dan pada bagian kaki dekat kuku

21 6 hingga ke lutut terdapat area berwarna putih. Pada telinga dan moncongnya tumbuh rambut berwarna putih (Rollinson 1984; Payne & Hodges 1997). Gambar 1 Penampilan sapi bali (atas) (Handiwirawan et al. 2003) dan B. javanicus di Taman Nasional Alas Purwo, Jawa Timur (bawah). Sapi pesisir merupakan keturunan dari B. indicus yang tersebar di wilayah Sumatera bagian selatan. Sapi pesisir memiliki ciri-ciri morfologi bertubuh kecil, warna badan coklat tua kehitaman, memiliki punuk, tanduk, dan gelambir. Sapi pesisir sudah menempati wilayah Kabupaten Painan (Pesisir Selatan) Padang sebelum tahun 1810 dan sudah beradaptasi dengan lingkungan lahan semak dan pesisir. Sapi lokal keturunan B. indicus lain yang terdapat di wilayah Sumatera adalah sapi aceh. Sapi aceh memiliki persebaran terbatas hanya di wilayah Provinsi Aceh dan sekitarnya (Aryogi et al. 2007). Sapi madura merupakan salah satu bangsa sapi lokal Indonesia yang telah terseleksi secara alamiah dan dipertahankan keasliannya di Pulau Madura. Ciriciri morfologi sapi madura antara lain memiliki tanduk yang lebih kecil daripada sapi bali. Jantan dan betina memiliki warna yang sama yaitu coklat kemerahan. Hampir sama dengan sapi bali, pada sapi madura juga memiliki wilayah berwarna putih pada pantat dan agak putih pada bagian lutut hingga kuku. Pada sapi madura

22 7 warna putih ini tidak nampak terlalu jelas dibandingkan dengan sapi bali. Pada jantan tubuh bagian depan lebih teguh daripada tubuh bagian belakang. Memiliki berat sekitar 350 kg dengan tinggi sekitar 118 cm (Rouse 1972). Sapi madura memiliki persebaran terbatas di Pulau Madura, beberapa pulau kecil disekitar Pulau Madura, dan Jawa Timur. Pulau Madura merupakan salah satu pulau kecil di sebelah utara Jawa Timur yang memiliki luas sekitar 4497 km 2. Di Pulau Madura tidak terdapat padang rumput ataupun makanan ternak yang mencukupi, akan tetapi di wilayah tersebut terdapat kurang lebih ekor sapi madura. Sapi-sapi madura tersebut beradaptasi dengan kondisi lingkungan yang sangat minim makanan dan kondisi lingkungan yang panas dan kering. Mereka mampu bertahan hidup walaupun peternak-peternak hanya memberikan makan daun-daun kering. Kondisi ini menyebabkan sapi madura hanya menghasilkan sedikit susu untuk anak sapi mereka dan berkembang sangat lambat (Maksum 1993; Payne & Hodges 1997). Gambar 2 Penampilan sapi madura.

23 8 Mutu sapi lokal yang ada di Indonesia masih dibawah standar. Keberadaan sapi-sapi lokal dinilai kurang memenuhi kebutuhan daging ataupun susu. Hal ini menyebabkan pemerintah mengimpor sapi-sapi jenis lain dari luar wilayah Indonesia. Sapi domestik impor yang dikembangkan di Indonesia berasal dari keturunan B. indicus, B. taurus atau persilangan keduanya. Beberapa jenis sapi impor tersebut adalah sapi ongole, peranakan ongole, brahman, simental, brangus, limousin, santa getrudis, red danis dan lain-lain (Aryogi et al. 2007). DNA Mitokondria Analisis genetika molekular telah diaplikasikan dalam penelitian hewan domestikasi sejak mulai digunakannya penanda Allozyme pada tahun 1960 sampai Penelitian dengan menggunakan runutan DNA dapat digunakan untuk membantu memahami proses kejadian dalam domestikasi. Hal yang dapat diamati dengan menggunakan metode analisis DNA antara lain proses evolusi, keragaman genetik dan persebaran hasil domestikasi (Astuti 2004). Berbagai macam penanda bisa digunakan untuk memahami proses tersebut, antara lain DNA mitokondria, DNA inti, dan juga kromosom Y (Bradley 1996). Analisis genetik secara molekuler dapat dilakukan dengan lebih cepat dan akurat dengan berkembangnya tekhnologi DNA. Hal ini disebabkan karena DNA sebagai unit keturunan terkecil mempunyai sekuen yang spesifik untuk setiap spesies pada satu atau beberapa lokasi didalam kromosom. Sekuen DNA tertentu hanya dapat ditemukan pada spesies tertentu. DNA pada organisme tingkat tinggi terdapat didalam inti sel dan mitokondria (Tapio & Grigaliunaite 2003). DNA mitokondria memiliki molekul tersendiri dengan ukuran kecil yang susunannya berbeda dengan DNA inti. DNA mitokondria merupakan DNA utas ganda yang pada umumnya berbentuk sirkuler mempunyai ukuran sekitar pasang basa. DNA mitokondria terdiri DNA utas berat (heavy strand) dan DNA utas ringan (light strand). Berdasarkan jenis gennya, genom mitokondria dibagi menjadi 2 bagian yaitu daerah penyandi (coding region) dan daerah bukan penyandi (non coding region). Daerah penyandi terdiri dari 37 gen yaitu 13 gen penyandi protein, 2 gen penyandi rrna dan 22 gen penyandi trna (Gambar 3) (Lemire 2005).

24 9 Gambar 3 Struktur mtdna pada mamalia Ursus thibetanus (beruang hitam) (Hou et al. 2006) Bagian-bagian dari genom mitokondria memiliki laju evolusi yang berbedabeda, sehingga menjadi faktor penting yang menentukan penggunaan penanda DNA dalam studi sistematika dan biogeografi. Gen yang berevolusi lambat dapat dijadikan dasar penelusuran evolusi atau filogeni antar spesies. Sedangkan gen yang evolusi cepat digunakan untuk perbandingan galur-galur baru (Roderick 1996). Penelitian mengenai kekerabatan (filogeni) dan filogeografi dapat dilakukan dengan menganalisa mtdna. Dimana mtdna digunakan sebagai penanda untuk penelusuran pewarisan secara maternal. Kelebihan mtdna antara lain bersifat haploid, tidak ada rekombinasi, dan memiliki jumlah copi yang banyak (Tapio & Grigaliunaite 2002).

25 10 BAHAN DAN METODE Waktu dan Tempat Penelitian Penelitian dilaksanakan pada bulan Agustus hingga Desember 2009 bertempat di Laboratorium Bagian Fungsi Hayati dan Perilaku Hewan Departemen Biologi Institut Pertanian Bogor, Bogor. Koleksi Darah Sampel darah sapi madura yang digunakan adalah sampel darah yang diawetkan dalam alkohol absolut koleksi Laboratorium Fungsi Hayati dan Perilaku Hewan Departemen Biologi FMIPA IPB. Sampel darah yang digunakan berasal dari desa Polagan (sampel no.14), Tadan Tengah (sampel no. 13), desa Golbung (sampel no. 26, 29,30, dan 32), Paterongan (sampel no. 3 dan 7) dan desa Komis (sampel no. 38, 40, dan 41) yang berada di wilayah Kabupaten Sampang, desa Anjun (sampel no 43 dan 49), Serabi Timur (sampel no. 51 dan 52) dan Patereman (sampel no. 54) yang berada di Kabupaten Bangkalan, Pulau Madura (Lampiran 1). Isolasi DNA Total Sampel diekstraksi secara manual dengan menggunakan metode Sambrook et al. (1989) dengan sedikit modifikasi. Sampel darah diambil 300 µl dimasukkan kedalam tube 1.5 ml. Sel-sel darah dibersihkan dari alkohol dengan menambahkan destilate water (DW) steril 1 ml. Sampel darah kemudian divorteks dan disentrifugasi 5000 rpm selama 10 menit. Proses pencucian dilakukan sebanyak dua kali. Selanjutnya sel-sel darah disuspensikan dalam buffer lisis STE (NaCl 1M, Tris HCL 10-1 M, EDTA 10-2 M, ph 8.0) sampai volume 300 µl. Sel-sel darah kemudian dilisis dengan menggunakan Protease K 0,05 mg/ml dan Sodium Dodesil Sulfat 1% sebanyak 40 µl. Sampel darah yang dilisiskan diinkubasi pada suhu 55ºC selama 2 jam sambil diputar pelan dengan mesin tilting. Molekul DNA dipisahkan dari bahan organik lain dengan menggunakan metode fenol-klorofomisoamil alkohol. Sel-sel darah yang telah dilisis ditambahkan CIAA (Clorofom:Isoamilalkohol = 24:1) 400 µl, NaCl 5M 40 µl dan fenol 400 µl kemudian dikocok perlahan dengan tilting. Sampel kemudiaan disentrifuse 10000

26 11 rpm selama 10 menit. Bagian atas sampel yang berwarna bening diambil dan dipindahkan dalam tube 1.5 ml. Molekul-molekul DNA yang mengendap dicuci menggunakan alkohol 70% sebanyak 800 µl kemudian disentrifugasi selama 10 menit. Proses pencucian menggunakan alkohol dilakukan sebanyak dua kali. Alkohol yang tersisa diuapkan dalam wadah vakum. Molekul-molekul DNA disuspensikan dalam bufer TE (Tris-HCl 10-1 M EDTA 10-2 M ph 8.0) 60µl dan disimpan dalam freezer hingga dikerjakan lebih lanjut. Amplifikasi mtdna Amplifikasi genom mitokondria menggunakan pasangan primer koleksi Dr Ir Achmad Farajallah, M.Si, yaitu AF22 (forward) 5 GCGTACGCAAT CTTACGATCA-3 dan AF23 (reverse) 5 ATGCAGTTAAGTCCAGCTAC-3. Primer AF22 menempel pada basa ke dan primer AF23 menempel pada basa ke B. indicus (no akses AF492350). Ukuran mtdna yang diharapkan dari proses amplifikasi ini adalah sebesar 1120 bp. Pasangan primer AF22 dan AF23 mengapit ruas tengah hingga akhir Cyt b, trna Pro, trna Thr dan juga bagian awal hingga tengah Dloop. Proses amplifikasi dilakukan secara in vitro menggunakan tehnik PCR (Polymerase Chain Reaction). Komposisi 25µl reaksi PCR adalah sampel DNA 2 µl ( ng), RBC Bioscience taq polymerase 1,25 unit beserta sistem bufernya, dntp 10 nmol sebanyak 1 µl, MgCl 2 2µl, primer AF22 dan AF23 masing-masing sebanyak 1µl, dan DW steril. Seluruh bahan dicampur menjadi satu ke dalam tube PCR kemudian disentrifuse 3000 rpm selama 30 detik. Bahan yang telah disentrifuse dimasukkan kedalam mesin Thermal Cycler TAKARA MP4 untuk dilanjutkan proses amplifikasi. Kondisi PCR yang digunakan untuk proses amplifikasi mtdna adalah tahap denturasi awal pada suhu 94 0 C selama 3 menit, tahap denaturasi pada suhu 94 0 C selama 45 detik, tahap penempelan primer (annealing) pada suhu 58 0 C selama 30 detik, dan tahap polimerasi (extension) pada suhu 72 0 C selama 1 menit yang diulang selama 30 siklus. Reaksi PCR diakhiri dengan polimerasi (final extension) pada suhu 72 0 C selama 5 menit. Visualisasi produk PCR dilakukan menggunakan tehnik elektroferesis gel poliakrilamid (PAGE) 6% dalam bufer 1xTBE (Tris-HCl 10 mm, asam borat 1 M,

27 12 EDTA 0.1 mm). Elektroforesis dijalankan pada kondisi 200 mv selama 50 menit. Proses dilanjutkan dengan pewarnaan sensitif perak (Tegelstrom 1986) dengan sedikit modifikasi. Perunutan DNA Produk amplifikasi yang menunjukkan pita tunggal kemudian dimurnikan dan dijadikan cetakan dalam reaksi PCR untuk perunutan nukleotida. Primer yang digunakan dalam proses PCR sama dengan primer yang digunakan untuk amplifikasi. Reaksi PCR dilakukan dengan menggunakan metode Dideoxi Terminator dengan dntp berlabel (big dye terminator). Perunutan nukleotida menggunakan mesin ABI Prism 3700-Avant Genetic Analyzer. Analisis Data Runutan nukleotida yang diperoleh kemudian diedit dengan menggunakan program bioedit versi Urutan DNA yang telah diedit disejajarkan menggunakan Clustal W Vs 1.8 yang masuk dalam program MEGA 4.0 (Tamura et al. 2007) dengan beberapa urutan DNA dari kelompok Bovidae yang dipublikasikan dalam GenBank ( Data yang diambil sebagai pembanding yaitu B. javanicus 1 no. akses FJ556566, B. javanicus 2 no. akses EU878389, B. javanicus 3 no. akses EF693809, B. taurus 1 no. akses EU177815, B. taurus 2 (Friesian Holstein) no. akses DQ124416, B. taurus 3 (Beef Cattle) no. akses DQ124402, B. indicus no. akses AF492350, dan Bubalus bubalus no. akses AY Analisis yang dilakukan meliputi penghitungan komposisi nukleotida, laju subtitusi, jarak genetik berdasarkan ruas Cyt b dan Dloop. Proses analisis dilakukan menggunakan program MEGA versi 4.0 (Kumar et al. 2007). Perhitungan nilai jarak genetik dilakukan berdasarkan model subtitusi Kimura-2- parameter (K2P). Rekonstruksi pohon filogeni berdasarkan ruas Cyt b dan Dloop dilakukan berdasarkan semua nukleotida yang bersifat parsimoni. Rekonstruksi ketiganya dilakukan menggunakan metode Neighbour Joining (NJ) dengan boostrap 1000 kali.

28 13 HASIL Produk Amplifikasi dan Perunutan Pada sampel yang teramplifikasi dihasilkan pita tunggal berukuran sekitar bp. Sampel yang berhasil dirunutkan adalah beberapa sampel dari Kabupaten Sampang (Gambar 4a). Hasil runutan nukleotida sampel sapi madura terbagi menjadi 203 bp gen Cyt b, 70 bp gen trna Thr, 66 bp trna Pro. Pada daerah Dloop terdapat hasil yang bervariasi yaitu 577 bp untuk sampel madura 14 dan 26, 578 bp untuk madura 38, 755 bp untuk sampel madura 41 dan 29, 624 bp untuk sampel 32 (Gambar 4b). Pada proses penjajaran dengan spesies pembanding, ruas Dloop yang digunakan adalah sepanjang 373 bp untuk sampel sapi madura 14 dan 26, 374 bp untuk madura 38, 534 bp untuk sampel 41 dan 29, 405 bp untuk sampel 32. Hal ini disebabkan karena spesies pembanding yang digunakan yaitu B. javanicus (AF693809) hanya memiliki panjang 552 bp. Rata-rata komposisi basa pada sampel sapi madura terdiri atas 26.7% basa T, 23.8% basa C, 36.3% basa A dan 13.1% basa G. Komposisi basa terbanyak pada sampel sapi madura adalah A dan T yaitu sebesar 63.05% sedangkan G dan C sebesar 36.95% (Tabel 1). Runutan basa dari keempat ruas terbagi menjadi basa yang sama (conserve) dan basa berbeda (variable). Basa yang berbeda terdiri dari dua jenis yaitu basa parsimoni dan basa tunggal (singleton) (Tabel 2). Basa yang bersifat parsimoni selanjutnya digunakan dalam analisis filogeni. Tabel 1 Komposisi basa (%) untuk masing-masing sampel sapi madura Sampel Sapi % Basa T C A G Madura Madura Madura Madura Madura Madura

29 14 M bp 500 bp (a) AF2 AF2 Cyt b 203 bp trna Thr 70 bp trna Pro 66 bp Dloop bp (b) Gambar 4 (a) Pola pita DNA mitokondria hasil amplifikasi dalam PAGE 6%. Sampel berurutan adalah marker DNA 100 bp (M), Madura 14, Madura 26, Madura 29, Madura 32, Madura 38, dan Madura 41. (b) Produk hasil perunutan Tabel 2 Jumlah basa sama dan basa berbeda pada keempat ruas mtdna Fragmen Basa sama Basa berbeda Parsimoni Tunggal Cyt b trna Thr trna Pro Dloop Mutasi Nukleotida dan Analisis Filogeni Berdasarkan Ruas Cyt B Pohon filogeni dengan menggunakan urutan basa maupun asam amino Cyt b menunjukkan topologi yang sama. Sapi madura terbagi menjadi dua kelompok. Sapi madura tipe I berkelompok dalam satu cabang dengan B. indicus dengan nilai boostrap 98% untuk pohon filogeni berdasarkan asam amino (Gambar 5a) dan 96% untuk pohon filogeni berdasarkan urutan basa (Gambar 5b). Sapi madura tipe I dan B. indicus memiliki urutan nukleotida yang sama pada ruas Cyt b. Sapi madura tipe II berkelompok dengan B. javanicus dengan nilai boostrap 63% untuk pohon filogeni berdasarkan asam amino (Gambar 5a) dan 70% untuk pohon

30 15 filogeni berdasarkan urutan nukleotida (Gambar 5b). Pengelompokan antara sapi madura tipe II dengan B. javanicus didukung dengan nilai jarak genetik sebesar berdasarkan model Kimura 2 Parameter (Tabel 3). Kecilnya nilai jarak genetik menunjukkan tingkat kekerabatan yang dekat antara sapi madura tipe I dengan B. indicus dan sapi madura tipe II dengan B. javanicus. Kedua kelompok sapi madura ini dibedakan oleh 18 titik mutasi. Jarak genetik terbesar ditemukan antara Bubalus bubalus dengan B. indicus dan sapi madura tipe I yaitu Jarak terbesar diantara anggota Bos ditemukan antara B. taurus 1, B. taurus BC, dan B. taurus FH dengan sapi madura 29 sebesar berdasarkan model Kimura 2 Parameter (Tabel 3). Tabel 3 Nilai jarak genetik (di bawah diagonal) dan nilai perbandingan kejadian transisi dengan tranversi (di atas diagonal) berdasarkan ruas Cyt b dengan menggunakan metode Kimura 2 Parameter (K2P) /3 27/3 24/3 24/3 27/0 27/0 27/3 27/3 27/3 25/3 25/3 24/ /0 0/0 0/0 16/3 16/3 7/0 7/0 7/0 21/1 21/2 22/ /0 7/0 11/3 11/3 0/0 0/0 0/0 16/2 16/2 17/ /0 16/3 16/3 7/0 7/0 7/0 21/2 21/2 22/ /3 16/3 7/0 7/0 7/0 21/2 21/2 22/ /0 11/3 11/3 11/3 9/3 9/3 10/ /3 11/3 11/3 9/3 9/3 10/ /0 0/0 16/2 16/2 17/ /0 16/2 16/2 17/ /2 16/2 17/ /0 1/ / Keterangan: (1) Bubalus bubalus, (2) B. taurus 1, (3) B. indicus, (4) B. taurus BC, (5) B. taurus FH, (6) B. javanicus 1, (7) B. javanicus 2, (8) Madura 14, (9) Madura 26, (10) Madura 38, (11) Madura 32, (12) Madura 41, (13) Madura 29.

31 16 A Madura_26 Madura_14 Madura_38 Bos indicus B Tipe I Bos taurus1 Bos taurus BC Bos taurus FH 89 Bos javanicus1 Bos javanicus2 97 Madura_29 Madura_41 Madura_ Tipe II Bubalus bubalus 0,05 Gambar 5 Hasil rekonstruksi pohon filogeni berdasarkan runutan nukleotida (A) dan asam amino (B) dari gen Cyt b menggunakan metode NJ dengan boostrap 1000x. Mutasi Nukleotida dan Analisis Filogeni Berdasarkan Ruas Dloop Ruas Dloop sampel sapi madura memiliki panjang yang bervariasi. Variasi disebabkan adanya proses delesi dan insersi. Pada sapi madura tipe II ditemukan basa sepanjang 22 nt yang mengalami pengulangan secara beruntun (tandem repeat). Motif berulang yang muncul adalah GTACATAATATTA ATGTAATAA. Pada genus Bos ruas berulang selalu diawali dengan motif GTAAT. Berdasarkan data hasil penjajaran, ruas berulang ditemukan pada semua spesies yang disejajarkan. Pada B. indicus, sapi madura tipe I, B. taurus dan Bubalus bubalus ruas berulang hanya berulang satu kali. Ruas berulang pada sampel B. javanicus, sapi madura 41, sapi madura 29, berulang sebanyak sembilan kali dan pada sampel sapi madura 32 berulang tiga kali (Gambar 6 dan Lampiran 2). Pada Bubalus bubalus terdapat mutasi pada motif GTACATAATATTA ATGAATAA dimana terjadi perubahan basa T menjadi basa G pada basa pertama (basa no pada Gambar 6). Mutasi juga muncul pada basa ke sembilan pada motif ruas berulang dimana pada B. indicus dan B. taurus terjadi perubahan basa T menjadi C (basa no pada Gambar 6).

32 B.javanicus3 GATAA GTACATAATATTAATGTAATAAGTACATAATATTAATGTAATAA Madura 29 GATAA GTACATAATATTAATGTAATAAGTACATAATATTAATGTAATAA Madura 41 GATAA GTACATAATATTAATGTAATAAGTACATAATATTAATGTAATAA Madura 32 GATAA GTACATAATATTAATGTAATAAGTACATAATATTAATGTAATAA B. Taurus -CCTA------CGCAAGGGGTAATGTACATAACATTAATGTAATAA B. indicus -CCCA------GGCAAGAGGTAATGTACATAACATTAATGTAATAA Madura 14 -CCCA------GGCAAGAGGTAATGTACATAACATTAATGTAATAA Madura 26 -CCCA------GGCAAGAGGTAATGTACATAACATTAATGTAATAA Madura 38 CCCCA------GGCAAGAGGTAATGTACATAACATTAATGTAATAA Bub bubalus CCCTACTACTCCGAATGGGGGGGGGGACATAACATTAATGTAATAA Gambar 6 Bagian yang berwarna abu-abu merupakan sebagian ruas berulang sepanjang 22 nt. Keterangan: tiga baris pertama menunjukkan nomor posisi nukleotida dibaca secara vertikal, referensi dari B. indicus (AF492350). Ruas berulang pada sapi madura tipe II terletak di dekat trna Pro tepatnya pada basa ke-190 sebelum ruas Terminated Associated Sequence (TAS) (Gambar 7). Ruas TAS pada sapi madura tipe II terdeteksi dengan urutan TACATTACATTAC pada sampel sapi madura II dan B. javanicus, TACATTAAATTAT pada sapi madura tipe I, B. indicus dan B. taurus, dan TACATTATATTAT pada Bubalus bubalus. Primer AF 23 yang digunakan hanya dapat mengamplifikasi ruas awal sampai tengah Dloop sehingga ruas Conserve Sequence Block (CSB) sebagai pengatur replikasi untuk utas berat (heavy strand) tidak dapat terdeteksi. Ruas berulang Gambar 7 Letak ruas berulang (tandem repeat) dan TAS (terminated associated sequence) pada wilayah Dloop mitokondria sapi madura. Gambar berdasarkan Matson & Baker (2001).

33 18 Pada ruas Dloop nilai jarak genetik terkecil berdasarkan model Kimura 2 Parameter ditemukan antara Bos javanicus dengan Madura 41 dengan nilai sebesar Bubalus bubalus dengan Bos taurus (Friesian Holstein) memiliki nilai jarak genetik paling besar yaitu sebesar 0.293, dengan nilai perbandingan kejadian transisi dan tranversi sebesar 56/33 (Tabel 4). Kejadian subtitusi baik transisi maupun tranversi pada ruas Dloop lebih sering terjadi daripada ruas Cyt b ataupun trna. Hal ini menunjukkan bahwa ruas Dloop merupakan ruas yang memiliki laju mutasi yang lebih tinggi. Topologi filogeni berdasarkan ruas Dloop sama dengan topologi berdasarkan ruas Cyt b, yaitu terjadi dua pengelompokan sapi madura. Sapi madura tipe I berkelompok dengan B. indicus dengan boostrap 91% dan sapi madura tipe II dengan B. javanicus dengan boostrap 96% (Gambar 8). Berdasarkan runutan nukleotida, dua kelompok sapi madura dapat dibedakan dengan munculnya insersi/delesi sepanjang 17 basa (basa ke ) pada awal ruas Dloop. Insersi/delesi tersebut hanya ditemukan pada sapi madura tipe II dan B. javanicus. Insersi/delesi yang membedakan dua kelompok sapi madura juga ditemukan pada basa ke , , dan (Lampiran 2) Tabel 4 Nilai jarak genetik (di bawah diagonal) dan nilai perbandingan kejadian transisi dengan tranversi (di atas diagonal) berdasarkan ruas Dloop dengan menggunakan metode Kimura 2 Parameter (K2P) /33 56/33 55/33 48/34 49/34 49/34 50/34 62/41 62/41 62/41 59/ /0 2/0 25/1 24/1 23/1 24/1 51/24 51/24 48/24 49/ /0 24/1 23/1 22/1 23/1 50/24 50/24 47/24 48/ /1 22/1 21/1 22/1 49/24 49/24 46/24 47/ /0 4/0 3/0 42/25 42/25 39/25 40/ /0 0/0 41/25 41/25 38/25 39/ /0 41/25 41/25 38/25 39/ /26 41/26 38/26 39/ /0 5/0 1/ /0 1/ / Keterangan: (1) Bubalus bubalus, (2) B. taurus 1, (3) B. taurus FH, (4) B. taurus BC, (5) B.indicus, (6) Madura 14, (7) Madura 26, (8) Madura 38 (9) B. javanicus 3, (10) Madura 41, (11) Madura 29, (12) Madura 32.

34 Madura_26 Madura_38 Madura_14 Bos indicus Bos taurus BC Bos taurus 1 Madura_29 Madura_ Bos taurus FH Bos javanicus 3 Madura_41 Bubalus bubalus 0.1 Gambar 8 Hasil rekonstruksi pohon filogeni berdasarkan ruas Dloop dengan menggunakan metode NJ dengan boostrap 1000x. Mutasi pada Ruas trna Ruas trna Thr terbagi menjadi empat belas wilayah sesuai dengan urutannya pada saat melipat membentuk struktur daun semanggi (clover leaf) seperti yang terlihat pada gambar 9. Urutan basa pada ruas trna Thr relatif stabil pada spesies berdekatan. Mutasi hanya ditemukan di beberapa titik antara lain pada wilayah Batang D (D stem) dimana terjadi perubahan basa C pada B. javanicus dan keturunannya (sapi madura tipe I) menjadi basa T pada B. taurus, B. indicus dan keturunannya (sapi madura tipe II). Pemisahan antara B. javanicus dan keturunannya dengan B. taurus, B. indicus dan keturunannya juga terlihat pada mutasi yang terjadi pada wilayah daerah beragam (variable region) yaitu basa A menjadi G dan pada wilayah Gelung T (T loop) dimana basa TC berubah menjadi CT (Gambar 9). Seluruh kejadian mutasi yang terjadi pada wilayah trna Pro adalah transisi, dimana perubahan terjadi hanya pada basa purin dengan purin atau pirimidin dengan pirimidin. Struktur sekunder dari trna Pro juga sama dengan trna Thr, dimana membagi ruas trna Pro menjadi empat belas wilayah. Sedikit berbeda dengan trna Thr, Urutan basa nukleotida pada trna Pro terlihat lebih stabil. Hal ini dapat dibuktikan dengan hanya ditemukan dua mutasi basa. Mutasi pertama

35 20 ditemukan pada wilayah Gelung T (T loop) dimana basa T berubah menjadi basa C hanya pada B. taurus. Mutasi kedua ditemukan pada wilayah batang antikodon (anticodon stem) dimana B. taurus, B. javanicus dengan keturunanya terpisahkan dari B. indicus dan keturunannya dengan adanya perubahan basa A menjadi basa G (Gambar 10) Bjavanicus3 GTCTTTGTAGTACATCTAATACACTGGTCTTGTAAACCAGAAAAGGAGAACAATCAACCTCCCTAAGACT Madura 29 GTCTTTGTAGTACATCTAATACACTGGTCTTGTAAACCAGAAAAGGAGAACAATCAACCTCCCTAAGACT Madura 41 GTCTTTGTAGTACATCTAATACACTGGTCTTGTAAACCAGAAAAGGAGAACAATCAACCTCCCTAAGACT Madura 32 GTCTTTGTAGTACATCTAATACACTGGTCTTGTAAACCAGAAAAGGAGAACAATCAACCTCCCTAAGACT B.taurus GTCTTTGTAGTACATCTAATATACTGGTCTTGTAAACCAGAGAAGGAGAACAACTAACCTCCCTAAGACT B.indicus GTCTTTGTAGTACATCTAATATACTGGTCTTGTAAACCAGAGAAGGAGAACAACTAACCTCCCTAAGACT Madura14 GTCTTTGTAGTACATCTAATATACTGGTCTTGTAAACCAGAGAAGGAGAACAACTAACCTCCCTAAGACT Madura26 GTCTTTGTAGTACATCTAATATACTGGTCTTGTAAACCAGAGAAGGAGAACAACTAACCTCCCTAAGACT Madura38 GTCTTTGTAGTACATCTAATATACTGGTCTTGTAAACCAGAGAAGGAGAACAACTAACCTCCCTAAGACT a b c d e f g h i j k l m n Keterangan: a. Batang asam amino (acceptor stem), b. Penghubung 1 (connector 1), c. Batang D (D stem), d. Gelung D (D loop), e. Batang D (D stem), f. Penghubung 2 (connector 2), g. Batang anti kodon (anticodon stem), h. Gelung anti kodon, i. Batang anti kodon, j. Daerah beragam (variable region), k. Batang T (T stem), l. Gelung T (T loop), m. Batang T (T stem), n. Batang asam amino (Acceptor stem) (Wakita et al 1994; Helm et al 2000). Bagian yang berwarna abu-abu adalah basa yang mengalami mutasi. Gambar 9 Perbandingan runutan basa nukleotida trna Thr pada genus Bos B.javanicus3 TCAAGGAAGAAACTGTAGTCTCACCATCAACCCCCAAAGCTGAAGTTCTATTTAAACTATTCCCTG Madura 29 TCAAGGAAGAAACTGTAGTCTCACCATCAACCCCCAAAGCTGAAGTTCTATTTAAACTATTCCCTG Madura 41 TCAAGGAAGAAACTGTAGTCTCACCATCAACCCCCAAAGCTGAAGTTCTATTTAAACTATTCCCTG Madura 32 TCAAGGAAGAAACTGTAGTCTCACCATCAACCCCCAAAGCTGAAGTTCTATTTAAACTATTCCCTG B. taurus TCAAGGAAGAAACTGCAGTCTCACCATCAACCCCCAAAGCTGAAGTTCTATTTAAACTATTCCCTG B. indicus TCAAGGAAGAAACTGTAGTCTCACCGTCAACCCCCAAAGCTGAAGTTCTATTTAAACTATTCCCTG Madura 14 TCAAGGAAGAAACTGTAGTCTCACCGTCAACCCCCAAAGCTGAAGTTCTATTTAAACTATTCCCTG Madura 26 TCAAGGAAGAAACTGTAGTCTCACCGTCAACCCCCAAAGCTGAAGTTCTATTTAAACTATTCCCTG Madura38 TCAAGGAAGAAACTGTAGTCTCACCGTCAACCCCCAAAGCTGAAGTTCTATTTAAACTATTCCCTG n m l k j i h g f e d c b a Keterangan: a. Batang asam amino (Acceptor stem), b. Penghubung 1 (Connector 1), c. Batang D (D stem), d. Gelung D (D loop), e. Batang D (D stem), f. Penghubung 2 (Connector 2), g. Batang anti kodon (anticodon stem), h. Gelung anti kodon, i. Batang anti kodon, j. Daerah beragam (variable region), k. Batang T (T stem), l. Gelung T (T loop), m. Batang T (T stem), n. Batang asam amino (Acceptor stem) (Wakita et al 1994; Helm et al 2000). Bagian yang berwarna abu-abu adalah basa yang mengalami mutasi. Gambar 10 Perbandingan runutan basa nukleotida trna Pro pada genus Bos.

36 21 PEMBAHASAN Produk Perunutan dan Mutasi Nukleotida Sampel sapi madura yang digunakan pada penelitian ini dipilih dari Kabupaten Bangkalan dan Sampang di Pulau Madura. Alasan pemilihan kedua kabupaten dikaitkan dengan pola persebaran sapi madura. Persebaran sapi madura berkaitan dengan proses tata niaga di Pulau Madura yang umumnya bergerak dari wilayah timur ke barat, terutama untuk dipasarkan diluar pulau (Harmadji 1993). Proses perunutan hanya berhasil dilakukan pada sampel yang berasal dari Kabupaten Sampang. Data visualisasi dengan menggunakan gel poliakrilamid 6% menghasilkan ukuran pita tunggal yang bervariasi (Gambar 4a). Perbedaan ini disebabkan adanya perbedaan panjang pada runutan nukleotida ruas Dloop. Perbedaan panjang ini disebabkan adanya ruas berulang dan delesi. Pada sampel tipe I ukuran pita relatif sama, sebab ukuran Dloop hampir sama yaitu 578 bp untuk madura 38 dan 577 bp untuk madura 14 dan 26. Pada sampel tipe II variasi ukuran pita muncul akibat adanya ruas berulang dan delesi. Total panjang Dloop yang berhasil dirunutkan pada sampel 29 dan 41 adalah 755 bp, sedangkan sampel 32 hanya 624 bp. Hal ini menyebabkan ukuran pita pada madura 32 lebih rendah dari sampel 29 dan 41. Berdasarkan data perunutan diketahui bahwa komposisi basa yang paling banyak menyusun ruas Cyt b, trna baik Thr maupun Pro, dan Dloop sapi madura adalah A dan T, yaitu sebesar 63.5% (Tabel 2). Pola komposisi basa pada sapi madura mengikuti mamalia secara umum, dimana komposisi basa terbesar pada DNA mitokondria adalah A dan T (Sbisa et al. 1997). Tapio & Grigaliunate (2002) menyatakan bahwa proporsi nukleotida A dan T pada genom mitokondria sapi kurang lebih sebesar 70%. Komposisi basa Adan T paling banyak disumbangkan oleh ruas Dloop. Hal ini erat kaitannya dengan karakter Dloop yang banyak memiliki situs awal replikasi untuk utas berat (heavy strand) mtdna dan sebagai titik awal transkripsi bagi utas ringan (light strand) maupun utas berat (Hoelzoel et al. 1994).

37 22 Pada runutan DNA sapi madura ditemukan beberapa kejadian mutasi baik proses delesi, insersi dan subtitusi (transisi atau tranversi). ditunjukkan dengan lebih sedikitnya jumlah basa berbeda pada Cyt b dibandingkan ruas Dloop (Tabel 2). Kestabilan ruas Cyt b juga terlihat pada kejadian jumlah subtitusi (transisi dan tranversi) nukleotida Tabel 3. Pada tabel tersebut perbandingan jumlah kejadian subtitusi (transisi dan tranversi) nukleotida pada Cyt b lebih sedikit dibandingkan dengan kejadian substitusi pada ruas Dloop. Hal tersebut menunjukkan bahwa ruas Dloop merupakan ruas yang memiliki laju mutasi tinggi, sedangkan ruas Cyt b merupakan ruas yang cenderung stabil. Kestabilan Cyt b berkaitan dengan fungsinya yang cukup penting di dalam mitokondria. Menurut Dasgupta et al. (2008), ruas Cyt b berfungsi menyandikan protein yang berperan pada proses fosforilasi oksidatif. Perbedaan laju mutasi menyebabkan ruas Dloop lebih cocok sebagai penanda molekuler untuk intra spesies. Ruas Cyt b yang lebih stabil lebih cocok sebagai penanda molekuler antar spesies. Nei (1987) menyatakan bahwa ruas yang banyak mengalami subtitusi nukleotida kurang baik digunakan sebagai penanda molekuler antar spesies, sebab dapat meningkatkan nilai standar error. Mutasi lain yang ditemukan pada runutan DNA sapi madura selain subtitusi adalah ruas berulang (tandem repeat). Ruas berulang menyebabkan variasi ukuran pada ruas Dloop. Ruas berulang sepanjang 22 nt dengan motif GTACAT AATATTAATGTAATAA ditemukan pada seluruh famili bovidae yang disejajarkan. Jumlah pengulangan ruas berulang berbeda-beda pada tiap spesies tersebut. Ruas berulang ditemukan berulang satu kali pada Bubalus bubalus, B. indicus, sapi madura tipe I, dan B. taurus. Pada sapi madura sampel 32 ruas berulang ditemukan berulang tiga kali dan pada B. javanicus, sapi madura 41 dan 29 berulang sembilan kali. Kejadian subtitusi juga muncul pada ruas berulang. Kejadian subtitusi tersebut menyebabkan perbedaan urutan basa pada motif ruas berulang. Perbedaan ini muncul pada setiap spesies yang berbeda. Pada B. taurus, B. indicus terjadi perubahan basa T menjadi C pada basa ke 9 pada motif ruas berulang (basa ke pada Gambar 6), sedangkan pada Bubalus bubalus terjadi perubahan basa

38 23 T menjadi G pada basa pertama pada motif ruas berulang (basa ke pada Gambar 6). Pessole et al. (1999) menyatakan bahwa banyaknya pengulangan dan motif ruas berulang dapat berbeda antara individu maupun spesies. Ruas berulang tidak dimiliki oleh semua spesies mamalia. Ruas berulang dengan motif berbeda pernah ditemukan oleh Nijman et al. (2003) pada sampel sapi madura dengan urutan ATTACATTAATATTATGTACTT yang berulang sebanyak dua kali. Pada family bovidae ruas berulang pernah didokumentasikan pada Ovis aries sepanjang nt pada ruas Dloop (Hiendleder et al. 2002). Fungsi ruas berulang pada Dloop belum diketahui secara pasti. Keberadaan ruas berulang cenderung memperkecil ukuran genom dalam sejarah evolusinya (Avise 1994). Ruas berulang juga membentuk struktur batang gelung yang kuat (hairpain), struktur ini dapat menghambat kerja enzim polymerase secara in vitro (Gemmel et al. 1996; Farajallah 2005). Struktur batang gelung ini diperkirakan merupakan salah satu faktor yang menyebabkan tingkat keberhasilan yang rendah selama proses amplifikasi. Ruas berulang pada sapi madura tipe II terletak di dekat trna Pro tepatnya pada basa ke sebelum ruas TAS.Posisi ruas berulang pada sapi madura tipe II ini sama dengan posisi ruas berulang pada rodensia dari genus Clethrionomys (Matson & Baker 2001), kelelawar (Wilkinson & Chapman 1991), dan ikan cod (Johansen et al. 1990). Pada genus Clethrionomys ruas berulang terletak pada basa ke sebelum ruas TAS (Matson & Baker 2001). Menurut Gemmel et al. (1996), motif berulang (tandem repeat) pada mamalia umumnya berlokasi pada dua tempat. Lokasi pertama pada ujung 3 berdekatan dengan ruas TAS dan yang kedua biasanya terletak diantara O H (promotor replikasi utas berat) dan promotor utas ringan yang berdekatan dengan ruas CSB. Proses identifikasi ruas TAS pada sapi madura dan spesies pembanding didasarkan atas pernyataan Gemmel et al. (1996) bahwa motif TAS untuk sapi secara umum adalah TACATTAAATTAT dan konsensus untuk mamalia adalah TACATTAAAYYTAMT. Foran et al. (1988) menyatakan konsensus untuk ruas TAS pada mamalia adalah TACATAAAAYYYAAT.

39 24 Ruas TAS yang terdeteksi umumnya lebih stabil diantara spesies yang berdekatan. Berdasarkan data dapat diketahui hanya ada tiga basa nukleotida yang berbeda diantara semua spesies yang disejajarkan. Kestabilan ruas TAS ini juga diungkapkan oleh Matson dan Baker (2001), dari 57 sampel rodensia dari genus Clethrionomys hanya ditemukan 7 (12%) nukleotida yang berbeda. Kestabilan ruas TAS berkaitan dengan fungsinya sebagai sinyal untuk terminasi pada peristiwa replikasi (Pessole et al 1999). Kejadian mutasi juga ditemukan pada ruas trna baik Thr maupun Pro. Beberapa mutasi ditemukan pada wilayah batang dan gelung (Gambar 9 dan Gambar 10). Mutasi pada wilayah gelung umumnya ditemukan pada beberapa spesies yang berbeda (Kern & Kondrashov 2004). Pada Gambar 9 dapat diketahui bahwa B. javanicus (sapi madura tipe II) dan keturunannya terpisah dari B. taurus dan B. indicus beserta keturunanya (sapi madura tipe I) berdasarkan mutasi pada wilayah gelung T. Pemisahan antara B. javanicus dengan B. indicus dan B. taurus juga diketahui berdasarkan mutasi pada wilayah batang (Gambar 9 dan Gambar 10). Pemisahan antara B. javanicus dengan B. indicus dan B. taurus berkaitan dengan sejarah awal domestikasi ketiga jenis sapi tersebut. B. taurus dan B. indicus memiliki nenek moyang yang sama yaitu B. prigimineus, sehingga keduanya memiliki kekerabatan yang dekat. Kedekatan diantara B. taurus dengan B. indicus ditunjukkan dengan hasil persilangan yang fertil (Loftus et al. 1994; Verkaar et al. 2004). Lenstra & Bradley (1999) menyatakan kesuksesan persilangan antara B. indicus dan B. taurus menunjukkan bahwa kedua spesies tersebut belum sepenuhnya terspesiasi. Analisis filogeni Hasil rekonstruksi pohon filogeni baik dengan menggunakan ruas mtdna yang stabil (Cyt b) maupun yang memiliki laju mutasi tinggi (Dloop) menunjukkan sampel sapi madura terbagi menjadi dua kelompok dalam cabang yang berbeda. Sapi madura I terlihat berkelompok dalam satu cabang dengan B. indicus dan sapi madura tipe II berkelompok dengan B. javanicus (Gambar 5A, Gambar 5B dan Gambar 8). Data yang didapatkan mendukung hasil penelitian

40 25 Nijman et al. (2003) yang menyatakan bahwa terdapat dua tipe mtdna sapi madura berdasarkan ruas Dloop yaitu tipe mtdna B. indicus dan tipe mtdna B. javanicus. Hal ini menunjukkan bahwa sapi madura berasal dari dua moyang betina yang berbeda. Munculnya dua moyang betina kemungkinan kemungkinan disebabkan karena kecilnya tingkat keberhasilan persilangan antara B. javanicus dengan B. indicus. Sehingga persilangan dilakukan dengan dua cara yaitu dengan menggunakan pejantan B. javanicus dengan betina B. indicus atau sebaliknya pejantan B. indicus dengan betina B. javanicus hingga didapatkan keturunan yang fertil. Menurut Rollinson (1984) kecilnya tingkat keberhasilan persilangan antara B. indicus dengan B. javanicus disebabkan karena perbedaan bentuk kromosom Y diantara keduanya. Bos indicus memiliki bentuk kromosom akrosentris sedangkan B. javanicus memiliki bentuk kromosom metasentris. Perbedaan bentuk kromosom mengakibatkan gangguan pada proses spermatogenesis, sehingga terkadang F1 jantan yang dihasilkan keduanya bersifat steril.vietmeyer (1983) menyatakan bahwa 1 dari 4 betina dan 3 dari 4 jantan hasil persilangan B. javanicus dengan B.indicus bersifat steril. Keberhasilan persilangan antara B. indicus dengan B. javanicus adalah sekitar 70%. Persilangan antara banteng dan B. indicus diperkirakan terjadi sejak masuknya kebudayaan Hindu yang dibawa oleh bangsa india ke Indonesia. Awal masuknya bangsa india ke Indonesia terjadi sekitar 1800 tahun yang lalu dengan membawa sapi-sapi dari jenis B. indicus. Sapi-sapi jenis B. indicus ini kemudian disilangkan dengan banteng yang banyak terdapat di wilayah dataran rendah Pulau Jawa bagian timur (Payne & Wilson 1999). Menurut Ashari dan Liem (1993), banteng masih banyak dijumpai sebelum penggundulan hutan sekitar 150 tahun yang lalu di Pulau Madura. Persilangan antara banteng (sapi bali) dengan B. indicus lebih intensif terjadi pada saat program ongolisasi yang digalakkan oleh pemerintah pada jaman Hindia Belanda. Sapi ongole (B. indicus) mulai didatangkan ke Sumba dari Madras India pada tahun Selanjutnya pada tahun 1915, 1919, dan 1929 keturunan sapi ini disebarkan ke beberapa wilayah Indonesia khususnya Pulau

41 26 Jawa. Keturunan sapi ongole yang telah disebarkan kemudian banyak disilangkan dengan sapi potong lokal. Tujuan pemerintah mengeluarkan kebijakan ini adalah untuk menciptakan bangsa sapi potong yang berkualitas baik (Diwyanto 2008). Rentang waktu dari awal masuknya bangsa india ke Indonesia dan program ongolisasi hingga saat ini, cukup untuk membentuk suatu bangsa sapi madura yang stabil. Pembentukan bangsa sapi membutuhkan waktu sekitar tahun dibawah kendali manusia yang intensif, yaitu misalnya dengan metode inseminasi. Pada kondisi alami pembentukan bangsa sapi membutuhkan waktu lebih dari 100 tahun (Simm 2000). Jika waktu generasi untuk sapi adalah 4-5 tahun (Dakay et al. 2006), maka dibutuhkan lebih dari 25 generasi untuk membentuk suatu bangsa sapi baru yang stabil. Asumsi mengenai nenek moyang sapi madura berasal dari B. taurus tidak terbukti pada penelitian ini. Berdasarkan pohon filogeni dan jarak genetik dari ruas Cyt b maupun Dloop tidak terlihat adanya kedekatan sapi madura dengan B. taurus. Hal ini juga dibuktikan oleh penelitian Surjoatmodjo (1993) dengan cara membandingkan morfologi dari B. taurus, B. indicus, sapi bali, dan sapi madura. Morfologi yang dibandingkan antara lain tinggi gumba (punuk), panjang badan, lebar dada, tinggi panggul, lebar panggul, lebar paha, lingkar dada, lebar dahi, dan panjang daho. Berdasarkan analisis varian disimpulkan bahwa jarak kekerabatan sapi madura terdekat adalah dengan peranakan ongole (B. indicus) dan yang paling jauh dengan B. taurus. Nilai jarak kekerabatan sapi madura dengan sapi bali berada ditengah-tengah antara B. taurus dengan peranakan ongole.

42 27 KESIMPULAN Hasil penelitian menunjukkan adanya percampuran pada asal usul sapi madura berdasarkan garis maternal. Berdasarkan ruas mtdna baik yang memiliki laju mutasi yang lambat (Cyt b dan trna) maupun ruas yang memiliki laju mutasi tinggi (Dloop), sapi madura mengelompok menjadi dua tipe yaitu tipe B. indicus dan B. javanicus. Hasil penelitian juga tidak menunjukkan kedekatan antara sapi madura dengan B. taurus. SARAN Diperlukan penelitian lanjutan untuk mengetahui asal usul berdasarkan garis pejantan dan penciri genetik rekombinasi, misalnya gen-gen fungsional dan mikrosatelit. Hal ini perlu dilakukan sebagai upaya pelestarian dan peningkatan mutu sapi madura sebagai sapi asli Indonesia.

43 28 DAFTAR PUSTAKA Aryogi, Affandhy L, Romjali E, Hartati Pelestarian dan pemanfaatan plasma nutfah sapi potong. Pasuruan: Loka Penelitian Sapi Potong Grati. Astuti M Potensi dan keragaman sumberdaya genetik sapi peranakan ongole (PO)[Catatan Penelitian]. Yogyakarta: Universitas Gadjah Mada. Ashari T, Liem C Karakteristik sapi madura dalam perbandingan dengan ruminansia besar lainnya dan peluang pengembangannya. Di dalam: Hasil Penelitian dan Pengembangan Sapi Madura. Prosiding Pertemuan Ilmiah; Sumenep, Oktober Sumenep. Avise JC Molecular Markers, Natural Hystory and Evolution. Chapman and Hall. New York. Bradley BG, MacHugh DE, Cunningham P, Loftus RT Mitochondrial diversity and the origin of african and europaean cattle. Proc Natl Acad 1: Bollongino R, Edwards CJ, Alt KW, Burger J, Bradley DG Early history of european domestic cattle as revealed by ancient DNA. Biolett 2: Cassell B Dairy Guidelines Dairy Crossbreeding: Why and How. Virginia: Virginia State University. Dasgupta S, Hoque MO, Upadhyay S, Sidransky D Mitochondrial cytochrome b gene mutation promotes tumor growth in bladder cancer. Cancer Res 68: Dakay I, Marton D, Bene S, Kiss B, Zsuppan Z, Szabo F The age at first calving and the longevity of beef cows in Hungary. Arch Tierz Dummerstorf 49: Diwyanto Pemanfaatan sumber daya lokal dan inovasi teknologi dalam mendukung pengembangan sapi potong di Indonesia. Pengembangan Informasi Pertanian 1: Foran DR, Hixon JE, Brown WM Comparisons of ape and human sequences that regulate mitochondrial DNA transcription and dloop DNA synthesis. Nucleic Acids Res. 16: Farajallah A Kajian pembentukan ruas berulang dalam daerah pengontrol genom mitokondria labi-labi [Laporan Penelitian]. Bogor: Lembaga Penelitian dan Pemberdayaan Masyarakat, Institut Pertanian Bogor. Fries R, Ruvinsky A The Genetics of Cattle. United Kingdom. CABI Publising.

44 29 Gemmel NJ, Western PS, Watson JM, Graves JAM Evolution of the mammalian mitochondrial control region comparisons of control region sequences between monotreme and therian mammals. Mol Biol Evol 13: Handiwiryawan E, Noor RR, Muladno, Schuler L The use of HEL9 and INRA035 microsatellites as specific markers for bali cattle. Arch Tierz Dummerstorf 46: Harmadji Prospek pengembangan sapi madura. di dalam: hasil penelitian dan pengembangan sapi madura. Prosiding Pertemuan Ilmiah; Sumenep, Oktober Sumenep. Helm M, Brule H, Friede D, Giege R, Putz D, Florentz C Search characteristic structural features of mammalian mitochondrial trnas. RNA 6: Hiendleder S, Kaupe B, Wassmuth R, Janke A Molecular analysis of wild and domestic sheep questions current nomenclature and provides evidence for domestication from two different subspecies. Proc R Soc Lond 269: Hoelzoel AR, Lopez JV, Dover GA, Brien JO Rapid evolution of a heteroplasmic repetitive sequences in the mitochondrial DNA control region of carnivores. J Mol Evol 39: Hou WR, Chen Y, Wu X, Hu JC, Peng ZS, Yang J, Tang ZX, Zhou CQ, Li YM, Yang SK, Du YJ, Kong LL, Ren ZL, Zhang HY, Shuai S A complete mitochondrial genome sequence of asian black bear sichuan subspecies (Ursus thibetanus mupinensis). Int J Biol Sci 3: Johansen S, Guddal PH, Johansen T Organization of the mitochondrial genome of atlantic cod, Gadus morhoa. Biochim Biophys Acta 1218: Kern AD, Kondrashof FA Mechanisms and convergence of compensatory evolution in mammalian mitochondrial trnas. Nature Genetics 36: Kusdiantoro M, Olsson M, Anderrson G, Purwantara B, Tol HTA, Mikko S, Martinez HR, Colenbrander B, Lenstra JA Genetic diversity and conservation of South-East Asian cattle: from indian zebu to indonesian banteng, and then to the cambodian kouprey. Asia Link: Kusdiantoro M, Olsson M, Tol HTA, Mikko S, Vlamings BH, Andersson G, Martinez HR, Purwantara B, Paling, Colender B. Lenstra JA The origin of indonesian cattle. PloS ONE 4: 1-5. Lemire B Mitochondrial genetic. WormBook :1-7

45 30 Lenstra JW, Bradley. DG Systematic and phylogeny of cattle. Di dalam: Fries R dan Ruvinsky A, editor. The Genetics Of Cattle. United Kingdom. CABI Publising. Lightner JK Karyotipe variability within the cattle monobramin. Answer Research Journal 1: Loftus RT, MacHugh DE, Bradley DG, Sharp PM, Cunningham P Evidence for two independent domestication of cattle. Proc Natl Acad 91: Maksum K Hasil-hasil penelitian sapi madura di Sub Balai Penelitian Ternak Grati-Pasuruan. Di dalam: Hasil Penelitian dan Pengembangan Sapi Madura. Prosiding Pertemuan Ilmiah; Sumenep, Oktober Sumenep. Mannen H, Tsuji S, Loftus RT, Bradley DG Mitochondrial DNA variation and evolution of japanese black cattle (Bos taurus). Genetics 150: Matson CW, Baker JR DNA sequence variation in the mitochondrial control region of red blacked voles (Clethrionomys). Mol Biol Evol 18: Matthee CA, Davis SK Molecular insights into the evolution of the familly bovidae: nuclear DNA perspective. bovid molecular phylogeny. Mol Biol Evol 18: McHugh DE Molecular biogeography and genetic structure of domestic cattle [Thesis]. University of Dublin. Nei M Molecular Evolutionary Genetics. New York. Colombia Univ Pr. Namikawa T Geographic distribution of bovine hemoglobin-beta (hbb) aleles and phylogenetic analysis of the cattle in Eastern Asia. Zeitschift fur Tierzuchtung and Zuchtungsbiologie 98: Nijman IJ, Otsen M, Verkaar ELC, Ruitjer CD, Hanekamp E, Ochieng JW, Shamshad S, Rege JEO, Hannotte O, Barwegen MW, Sulawati T, Lenstra JA Hybridization of banteng (Bos javanicus) and zebu (Bos indicus) revealed by mitochondrial DNA, satellite DNA, AFLP microsatelites. Heredity 90: Pessole G, Gissi C, Chirico AD, Saccone C Nucleotide subtitution rate of mammalian mitochondrial genomes. J Mol Evol 48: Payne WJA, Hodges J Tropical Cattle: Origins, Breed, and Breeding Policies. Oxford: Blackwell Science Ltd. Payne WJA, Wilson An Introduction to Animal Husbandry in the Tropics. Oxford: Blackwell Science Ltd.

46 31 Roderick GK geographic structure of insect population: gene flow, phylogeography and their uses. Annu Rev 41: Rollinson DHL Bali cattle. Di dalam: Mason IL, editor. Evolution of Domestic Cattle. New York. Longman. Rouse JE Cattle Of Afrika and Asia. Oklahoma. University Of Oklahoma Press. Sambrook J, Fritsch EF, Miniatis T Molecular Clooning: A laboratory Manual. Ed ke-8. New York: Cold Spring Harbor Laboratory Press. Sbisa EF, Reyes A, Pesole G, Sacone C Mammalian mitochondrial D-loop region structural analysis: identification of new conserved sequences and their functional and evolutionary implication. Gene 250: Simm G Genetic Improvement of Cattle and Sheep. United Kingdom: Farming Press. Sitorus P, Soepeno, Subandriyo Strategi, arah dan program penelitian sapi potong (sapi madura). Di dalam: Hasil Penelitian dan Pengembangan Sapi Madura. Prosiding Pertemuan Ilmiah; Sumenep, Oktober Sumenep. Surjoatmodjo M Asal usul sapi madura ditinjau dari hasil pengukuran bagian-bagian tubuhnya. Di dalam: Hasil Penelitian dan Pengembangan Sapi Madura. Prosiding Pertemuan Ilmiah; Sumenep, Oktober Sumenep. Tamura K, Dudley J, Nei M & Kumar S (2007) MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Molecular Biology and Evolution /molbev/msm092. Tapio M, Grigaliunaite I Is there a role for mitochondrial in sheep breeding? Veterinarija Ir Zootechnika 18: Tapio M, Grigaliunaite I Use of mitochondrial DNA as a genetic marker in domesticated mammals. Ekologija 1: Tegelstrom H Mitochondrial DNA in natural population: an improved routine for screening of genetic variation based on sensitive silver staining. Electrophoresis 7: Uggla CM Investigating genetic variability within specific indigenous Indonesia cattle breed [Disertasi]. Swedish University of Agricultural Science. Verkaar ELC, Nijman I, Beeke M, Hanekamp E, Lenstra JA Maternal and paternal linieages in cross-breeding bovine species. Mol Biol Evol 21:

47 32 Vietmeyer ND Little Known Asian Animals With a Promising Economic Future. Washington: National Academy Press. Williamson G, Payne WJA An Introduction To Animal Husbandry In The Trophic. London: Loungman Group Limited. Wilkinson GS, Chapman AM Length and sequence variation in evening bat dloop mtdna. Genetics 128: Wakita K, Watanabe Y, Yokogawa T, Kumazawa Y, Nakamura S, Ueda T, Watanabe K, Nishikawa K Higher-order structure of bovine mitochondrial trna Phe lacking the 'conserved' GG and TICG sequences as inferred by enzymatic and chemical probing. Nucleic Acid Research 22:

48 Lampiran 1. Peta Lokasi Pengambilan sampel sapi madura di Pulau Madura Perbesaran Lokasi A di P. Madura A B P. MADURA 3 7 P. JAWA P. BALI Perbesaran Lokasi B di P. Madura Keterangan: Komis Tadan Tengah Polagan Golbung Patereman Anjun Serabi Timur Paterongan Angka pada peta menunjukkan nomor koleksi sampel darah sapi madura U B S T Sumber: Tele Atlas 2010

The Origin of Madura Cattle

The Origin of Madura Cattle The Origin of Madura Cattle Nama Pembimbing Tanggal Lulus Judul Thesis Nirmala Fitria Firdhausi G352080111 Achmad Farajallah RR Dyah Perwitasari 9 Agustus 2010 Asal-usul sapi Madura berdasarkan keragaman

Lebih terperinci

HASIL DAN PEMBAHASAN. Amplifikasi Daerah D-loop M B1 B2 B3 M1 M2 P1 P2 (-)

HASIL DAN PEMBAHASAN. Amplifikasi Daerah D-loop M B1 B2 B3 M1 M2 P1 P2 (-) HASIL DAN PEMBAHASAN Amplifikasi Daerah D-loop Amplifikasi daerah D-loop DNA mitokondria (mtdna) pada sampel DNA sapi Bali, Madura, Pesisir, Aceh, dan PO dilakukan dengan menggunakan mesin PCR Applied

Lebih terperinci

MATERI DAN METODE. Lokasi dan Waktu. Materi. Tabel 1. Jumah Sampel Darah Ternak Sapi Indonesia Ternak n Asal Sapi Bali 2 4

MATERI DAN METODE. Lokasi dan Waktu. Materi. Tabel 1. Jumah Sampel Darah Ternak Sapi Indonesia Ternak n Asal Sapi Bali 2 4 MATERI DAN METODE Lokasi dan Waktu Penelitian dilaksanakan di Laboratorium Genetika Molekuler Ternak, Bagian Pemuliaan dan Genetika Ternak, Fakultas Peternakan, Institut Pertanian Bogor. penelitian ini

Lebih terperinci

Penelitian akan dilaksanakan pada bulan Februari-Agustus 2010 di Laboratorium Zoologi Departemen Biologi, FMIPA, IPB.

Penelitian akan dilaksanakan pada bulan Februari-Agustus 2010 di Laboratorium Zoologi Departemen Biologi, FMIPA, IPB. Kolokium Ajeng Ajeng Siti Fatimah, Achmad Farajallah dan Arif Wibowo. 2009. Karakterisasi Genom Mitokondria Gen 12SrRNA - COIII pada Ikan Belida Batik Anggota Famili Notopteridae. Kolokium disampaikan

Lebih terperinci

METODE PENELITIAN. Tabel 1 Sampel yang digunakan dalam penelitian

METODE PENELITIAN. Tabel 1 Sampel yang digunakan dalam penelitian 12 METODE PEELITIA Waktu dan Tempat Penelitian dilaksanakan pada bulan Mei sampai dengan April 2010, bertempat di Bagian Fungsi Hayati dan Perilaku Hewan, Departemen Biologi, Fakultas Matematika dan Ilmu

Lebih terperinci

PRAKATA. Alhamdulillah syukur senantiasa penulis panjatkan kepada Allah swt., atas

PRAKATA. Alhamdulillah syukur senantiasa penulis panjatkan kepada Allah swt., atas PRAKATA Alhamdulillah syukur senantiasa penulis panjatkan kepada Allah swt., atas segala nikmat dan karunia-nya, penulisan Tugas Akhir dengan judul Keragaman Genetik Abalon (Haliotis asinina) Selat Lombok

Lebih terperinci

HASIL DAN PEMBAHASAN

HASIL DAN PEMBAHASAN HASIL DAN PEMBAHASAN Amplifikasi Gen Calpastatin (CAST MspI) Amplifikasi fragmen gen calpastatin (CAST MspI) pada setiap bangsa sapi dilakukan dengan menggunakan mesin thermal cycler (AB Bio System) pada

Lebih terperinci

PENGANTAR. Latar Belakang. Itik yang dikenal saat ini adalah hasil penjinakan itik liar (Anas Boscha atau

PENGANTAR. Latar Belakang. Itik yang dikenal saat ini adalah hasil penjinakan itik liar (Anas Boscha atau PENGANTAR Latar Belakang Itik yang dikenal saat ini adalah hasil penjinakan itik liar (Anas Boscha atau Wild Mallard). Proses penjinakan telah terjadi berabad-abad yang lalu dan di Asia Tenggara merupakan

Lebih terperinci

TINJAUAN PUSTAKA. Klasifikasi Sapi

TINJAUAN PUSTAKA. Klasifikasi Sapi TINJAUAN PUSTAKA Klasifikasi Sapi Penggolongan sapi ke dalam suatu bangsa (breed) sapi, didasarkan atas sekumpulan persamaan karakteristik tertentu yang sama. Atas dasar karakteristik tersebut, mereka

Lebih terperinci

PENDAHULUAN Latar Belakang

PENDAHULUAN Latar Belakang 1 PENDAHULUAN Latar Belakang Sapi asli Indonesia secara genetik dan fenotipik umumnya merupakan: (1) turunan dari Banteng (Bos javanicus) yang telah didomestikasi dan dapat pula (2) berasal dari hasil

Lebih terperinci

Kolokium Departemen Biologi FMIPA IPB: Ria Maria

Kolokium Departemen Biologi FMIPA IPB: Ria Maria Kolokium Departemen Biologi FMIPA IPB: Ria Maria Ria Maria (G34090088), Achmad Farajallah, Maria Ulfah. 2012. Karakterisasi Single Nucleotide Polymorphism Gen CAST pada Ras Ayam Lokal. Makalah Kolokium

Lebih terperinci

BAB I PENDAHULUAN. Latar Belakang. dikembangbiakkan dengan tujuan utama untuk menghasilkan daging. Menurut

BAB I PENDAHULUAN. Latar Belakang. dikembangbiakkan dengan tujuan utama untuk menghasilkan daging. Menurut BAB I PENDAHULUAN Latar Belakang Babi domestik (Sus scrofa) merupakan hewan ternak yang dikembangbiakkan dengan tujuan utama untuk menghasilkan daging. Menurut Sihombing (2006), daging babi sangat digemari

Lebih terperinci

Seminar Dewinta G

Seminar Dewinta G Seminar Dewinta G34063443 Dewinta, Achmad Farajallah, dan Yusli Wardiatno. 2010. Pola Distribusi Geografis pada Udang Mantis di Pantai Jawa Berdasarkan Genom Mitokondria. Seminar disampaikan tanggal 11

Lebih terperinci

PENDAHULUAN. Latar Belakang

PENDAHULUAN. Latar Belakang PENDAHULUAN Latar Belakang Usaha peternakan di Provinsi Nanggroe Aceh Darussalam secara umum telah dilakukan secara turun temurun meskipun dalam jumlah kecil skala rumah tangga, namun usaha tersebut telah

Lebih terperinci

II. TINJAUAN PUSTAKA. dibedakan dari bangsa lain meskipun masih dalam spesies. bangsa sapi memiliki keunggulan dan kekurangan yang kadang-kadang dapat

II. TINJAUAN PUSTAKA. dibedakan dari bangsa lain meskipun masih dalam spesies. bangsa sapi memiliki keunggulan dan kekurangan yang kadang-kadang dapat II. TINJAUAN PUSTAKA 2.1 Keragaman Bangsa Sapi Lokal Bangsa (breed) adalah sekumpulan ternak yang memiliki karakteristik tertentu yang sama. Atas dasar karakteristik tersebut, suatu bangsa dapat dibedakan

Lebih terperinci

TINJAUAN PUSTAKA Sapi Lokal Kalimantan Tengah

TINJAUAN PUSTAKA Sapi Lokal Kalimantan Tengah TINJAUAN PUSTAKA Sapi Lokal Kalimantan Tengah Berdasarkan aspek pewilayahan Kalimantan Tengah mempunyai potensi besar untuk pengembangan peternakan dilihat dari luas lahan 153.564 km 2 yang terdiri atas

Lebih terperinci

MATERI DAN METODE. Kota Padang Sumatera Barat pada bulan Oktober Amplifikasi gen Growth

MATERI DAN METODE. Kota Padang Sumatera Barat pada bulan Oktober Amplifikasi gen Growth III. MATERI DAN METODE 3.1 Waktu dan Tempat Pengambilan sampel darah domba dilakukan di Kecamatan Koto Tengah Kota Padang Sumatera Barat pada bulan Oktober 2012. Amplifikasi gen Growth Hormone menggunakan

Lebih terperinci

MATERI DAN METODE. Materi. Tabel 1. Sampel Darah Sapi Perah dan Sapi Pedaging yang Digunakan No. Bangsa Sapi Jenis Kelamin

MATERI DAN METODE. Materi. Tabel 1. Sampel Darah Sapi Perah dan Sapi Pedaging yang Digunakan No. Bangsa Sapi Jenis Kelamin MATERI DAN METODE Lokasi dan Waktu Penelitian ini dilaksanakan di Laboratorium Genetika Molekuler Ternak, Bagian Pemuliaan dan Genetika, Fakultas Peternakan, Institut Pertanian Bogor. Penelitian ini berlangsung

Lebih terperinci

BAB III METODE PENELITIAN. Dalam penelitian ini dilakukan lima tahap utama yang meliputi tahap

BAB III METODE PENELITIAN. Dalam penelitian ini dilakukan lima tahap utama yang meliputi tahap BAB III METODE PENELITIAN Dalam penelitian ini dilakukan lima tahap utama yang meliputi tahap penyiapan templat mtdna, amplifikasi fragmen mtdna pada daerah D-loop mtdna manusia dengan teknik PCR, deteksi

Lebih terperinci

II. TINJAUAN PUSTAKA Kondisi Umum Kabupaten Kuantan Singingi. Pembentukan Kabupaten Kuantan Singingi didasari dengan Undang-undang

II. TINJAUAN PUSTAKA Kondisi Umum Kabupaten Kuantan Singingi. Pembentukan Kabupaten Kuantan Singingi didasari dengan Undang-undang II. TINJAUAN PUSTAKA 2.1. Kondisi Umum Kabupaten Kuantan Singingi Kabupaten Kuantan Singingi adalah salah satu Kabupaten di Provinsi Riau, hasil pemekaran dari Kabupaten induknya yaitu Kabupaten Indragiri

Lebih terperinci

PENDAHULUAN. Latar Belakang. masyarakat terhadap konsumsi susu semakin meningkat sehingga menjadikan

PENDAHULUAN. Latar Belakang. masyarakat terhadap konsumsi susu semakin meningkat sehingga menjadikan PENDAHULUAN Latar Belakang Sektor peternakan memegang peran yang sangat penting dalam pertumbuhan ekonomi Indonesia terutama pada ternak penghasil susu yaitu sapi perah. Menurut Direktorat Budidaya Ternak

Lebih terperinci

MATERI DAN METODE. Lokasi dan Waktu. Materi

MATERI DAN METODE. Lokasi dan Waktu. Materi MATERI DAN METODE Lokasi dan Waktu Penelitian ini dilaksanakan di Laboratorium Genetika Molekuler, Bagian Pemuliaan dan Genetika Ternak, Departemen Ilmu Produksi dan Teknologi Peternakan, Fakultas Peternakan,

Lebih terperinci

BAB 4. METODE PENELITIAN

BAB 4. METODE PENELITIAN BAB 4. METODE PENELITIAN Penelitian penanda genetik spesifik dilakukan terhadap jenis-jenis ikan endemik sungai paparan banjir Riau yaitu dari Genus Kryptopterus dan Ompok. Penelitian ini bertujuan untuk

Lebih terperinci

MATERI DAN METODE Lokasi dan Waktu Materi Sampel Pengambilan Sampel Ekstraksi DNA Primer

MATERI DAN METODE Lokasi dan Waktu Materi Sampel Pengambilan Sampel Ekstraksi DNA Primer MATERI DAN METODE Lokasi dan Waktu Penelitian ini dilaksanakan pada bulan Juni hingga Nopember 2010. Penelitian dilakukan di Laboratorium Pemuliaan dan Genetik Molekuler, Bagian Pemuliaan dan Genetik Ternak,

Lebih terperinci

TINJAUAN PUSTAKA Sapi Lokal Indonesia

TINJAUAN PUSTAKA Sapi Lokal Indonesia TINJAUAN PUSTAKA Sapi Lokal Indonesia Indonesia merupakan salah satu negara di Asia Tenggara yang memiliki banyak bangsa sapi dan hewan-hewan lainnya. Salah satu jenis sapi yang terdapat di Indonesia adalah

Lebih terperinci

4.1. Alat dan Bahan Penelitian a. Alat Penelitian. No. URAIAN ALAT. A. Pengambilan sampel

4.1. Alat dan Bahan Penelitian a. Alat Penelitian. No. URAIAN ALAT. A. Pengambilan sampel 7 IV. METODE PENELITIAN Ikan Lais diperoleh dari hasil penangkapan ikan oleh nelayan dari sungaisungai di Propinsi Riau yaitu S. Kampar dan S. Indragiri. Identifikasi jenis sampel dilakukan dengan menggunakan

Lebih terperinci

BAB III METODE PENELITIAN

BAB III METODE PENELITIAN BAB III METODE PENELITIAN A. Jenis Penelitian deskriptif. Jenis penelitian yang digunakan adalah penelitian dasar dengan metode B. Objek Penelitian Objek penelitian ini adalah sampel DNA koleksi hasil

Lebih terperinci

MATERI DAN METODE. Materi

MATERI DAN METODE. Materi MATERI DAN METODE Lokasi dan Waktu Penelitian ini dilaksanakan di Laboratorium Genetika dan Molekuler Ternak, Departemen Ilmu Produksi dan Teknologi Peternakan, Fakultas Peternakan, Institut Pertanian

Lebih terperinci

BAB I PENDAHULUAN. Sapi Bali adalah sapi asli Indonesia yang berasal dari Banteng liar (Bibos

BAB I PENDAHULUAN. Sapi Bali adalah sapi asli Indonesia yang berasal dari Banteng liar (Bibos BAB I PENDAHULUAN 1.1 Latar Belakang Masalah Sapi Bali adalah sapi asli Indonesia yang berasal dari Banteng liar (Bibos Banteng Syn Bos sondaicus) yang didomestikasi. Menurut Meijer (1962) proses penjinakan

Lebih terperinci

BAB III. METODOLOGI PENELITIAN. Pengambilan sampel. Penyiapan templat mtdna dengan metode lisis sel

BAB III. METODOLOGI PENELITIAN. Pengambilan sampel. Penyiapan templat mtdna dengan metode lisis sel 16 BAB III. METODOLOGI PENELITIAN Bab ini menggambarkan tahapan penelitian yang terdiri dari pengambilan sampel, penyiapan templat mtdna dengan metode lisis sel, amplifikasi D-loop mtdna dengan teknik

Lebih terperinci

MATERI DAN METODE. Lokasi dan Waktu

MATERI DAN METODE. Lokasi dan Waktu MATERI DAN METODE Lokasi dan Waktu Analisis Polymerase Chain Reaction (PCR) serta analisis penciri Polymerase Chain Reaction-Restriction Fragment Length Polymorphism (PCR-RFLP) dilaksanakan di Laboratorium

Lebih terperinci

BAB III METODE PENELITIAN. amplifikasi daerah HVI mtdna sampel dengan menggunakan teknik PCR;

BAB III METODE PENELITIAN. amplifikasi daerah HVI mtdna sampel dengan menggunakan teknik PCR; BAB III METODE PENELITIAN Secara garis besar, langkah-langkah yang dilakukan dalam penelitian ini adalah: pengumpulan sampel; lisis terhadap sampel mtdna yang telah diperoleh; amplifikasi daerah HVI mtdna

Lebih terperinci

HASIL DAN PEMBAHASAN. Gambar 4. Hasil Amplifikasi Gen FSHR Alu-1pada gel agarose 1,5%.

HASIL DAN PEMBAHASAN. Gambar 4. Hasil Amplifikasi Gen FSHR Alu-1pada gel agarose 1,5%. HASIL DAN PEMBAHASAN Amplifikasi Gen FSHR Alu-1 Amplifikasi fragmen gen FSHR Alu-1 dengan metode Polymerase Chain Reaction (PCR) dilakukan dengan kondisi annealing 60 C selama 45 detik dan diperoleh produk

Lebih terperinci

TINJAUAN PUSTAKA Sumber Daya Genetik Ternak Lokal

TINJAUAN PUSTAKA Sumber Daya Genetik Ternak Lokal TINJAUAN PUSTAKA Sumber Daya Genetik Ternak Lokal Keanekaragaman ternak sapi di Indonesia terbentuk dari sumber daya genetik ternak asli dan impor. Impor ternak sapi Ongole (Bos indicus) atau Zebu yang

Lebih terperinci

TINJAUAN PUSTAKA Asal Usul Sapi di Indonesia

TINJAUAN PUSTAKA Asal Usul Sapi di Indonesia TINJAUAN PUSTAKA Asal Usul Sapi di Indonesia MacHugh (1996) menyatakan jika terdapat dua spesies sapi yang tersebar diseluruh dunia yaitu spesies tidak berpunuk dari Eropa, Afrika Barat, dan Asia Utara

Lebih terperinci

Lampiran 1 Ekstraksi dan isolasi DNA dengan metode GeneAid

Lampiran 1 Ekstraksi dan isolasi DNA dengan metode GeneAid LAMPIRAN 9 Lampiran 1 Ekstraksi dan isolasi DNA dengan metode GeneAid Satu ruas tungkai udang mantis dalam etanol dipotong dan dimasukkan ke dalam tube 1,5 ml. Ruas tungkai yang telah dipotong (otot tungkai)

Lebih terperinci

MATERI DAN METODE. Materi

MATERI DAN METODE. Materi MATERI DAN METODE Lokasi dan Waktu Penelitian ini dilakukan di Laboratorium Genetika Molekuler Ternak, Bagian Pemuliaan dan Genetik Ternak, Departemen Ilmu Produksi dan Teknologi Peternakan, Fakultas Peternakan,

Lebih terperinci

TINJAUAN PUSTAKA Sejarah Asal Usul Sapi Lokal Indonesia

TINJAUAN PUSTAKA Sejarah Asal Usul Sapi Lokal Indonesia TINJAUAN PUSTAKA Sejarah Asal Usul Sapi Lokal Indonesia Ternak sapi merupakan anggota famili bovidae yang muncul pada era Pleistosen. Ternak sapi berasal dari keturunan aurok liar (Bos primigenius) (Mannen

Lebih terperinci

PERAN MODEL ARSITEKTUR RAUH DAN NOZERAN TERHADAP PARAMETER KONSERVASI TANAH DAN AIR DI HUTAN PAGERWOJO, TULUNGAGUNG NURHIDAYAH

PERAN MODEL ARSITEKTUR RAUH DAN NOZERAN TERHADAP PARAMETER KONSERVASI TANAH DAN AIR DI HUTAN PAGERWOJO, TULUNGAGUNG NURHIDAYAH PERAN MODEL ARSITEKTUR RAUH DAN NOZERAN TERHADAP PARAMETER KONSERVASI TANAH DAN AIR DI HUTAN PAGERWOJO, TULUNGAGUNG NURHIDAYAH SEKOLAH PASCASARJANA INSTITUT PERTANIAN BOGOR BOGOR 2009 PERNYATAAN MENGENAI

Lebih terperinci

HASIL DAN PEMBAHASAN. Hasil. dua lembar plastik transparansi dan semua sisinya direkatkan hingga rapat.

HASIL DAN PEMBAHASAN. Hasil. dua lembar plastik transparansi dan semua sisinya direkatkan hingga rapat. (Polyacrilamide Gel Elektroforesis) 5,5% pada tegangan 85 V selama 6 jam. Standar DNA yang digunakan adalah ladder (Promega) Gel polyacrilmide dibuat dengan menggunakan 30 ml aquades, 4 ml 10xTBE, 5,5

Lebih terperinci

HASIL Amplifikasi Ruas Target Pemotongan dengan enzim restriksi PCR-RFLP Sekuensing Produk PCR ruas target Analisis Nukleotida

HASIL Amplifikasi Ruas Target Pemotongan dengan enzim restriksi PCR-RFLP Sekuensing Produk PCR ruas target Analisis Nukleotida 2 sampai ke bagian awal gen trna Phe. Komposisi reaksi amplifikasi bervolume 25 µl adalah sampel DNA sebagai cetakan 2 µl (10-100 ng), 2,5nM Primer 2 µl; Taq polimerase (New England Biolabs) 1 unit beserta

Lebih terperinci

Gambar 5. Hasil Amplifikasi Gen Calpastatin pada Gel Agarose 1,5%.

Gambar 5. Hasil Amplifikasi Gen Calpastatin pada Gel Agarose 1,5%. HASIL DAN PEMBAHASAN Amplifikasi Gen Calpastatin (CAST AluI) Amplifikasi fragmen gen CAST AluI dilakukan dengan menggunakan mesin PCR dengan kondisi annealing 60 0 C selama 45 detik, dan diperoleh produk

Lebih terperinci

KAJIAN KEPUSTAKAAN. Menurut Blakely dan Bade (1992), bangsa sapi perah mempunyai

KAJIAN KEPUSTAKAAN. Menurut Blakely dan Bade (1992), bangsa sapi perah mempunyai II KAJIAN KEPUSTAKAAN 2.1 Sapi Perah Fries Holland (FH) Menurut Blakely dan Bade (1992), bangsa sapi perah mempunyai klasifikasi taksonomi sebagai berikut : Phylum Subphylum Class Sub class Infra class

Lebih terperinci

MATERI DAN METODE. Materi

MATERI DAN METODE. Materi MATERI DAN METODE Lokasi dan Waktu Penelitian dilaksanakan di Laboratorium Genetika Molekuler Ternak, Departemen Ilmu Produksi dan Teknologi Peternakan, Fakultas Peternakan IPB dan Laboratorium Terpadu,

Lebih terperinci

TINJAUAN PUSTAKA Bangsa-Bangsa Sapi

TINJAUAN PUSTAKA Bangsa-Bangsa Sapi TINJAUAN PUSTAKA Bangsa-Bangsa Sapi Bangsa (breed) adalah sekumpulan ternak yang memiliki karakteristik tertentu yang sama. Atas dasar karakteristik tertentu tersebut, suatu bangsa dapat dibedakan dari

Lebih terperinci

IDENTIFIKASI KERAGAMAN D-LOOP DNA MITOKONDRIA PADA SAPI POTONG DI INDONESIA

IDENTIFIKASI KERAGAMAN D-LOOP DNA MITOKONDRIA PADA SAPI POTONG DI INDONESIA IDENTIFIKASI KERAGAMAN D-LOOP DNA MITOKONDRIA PADA SAPI POTONG DI INDONESIA SKRIPSI SRI RAHAYU DEPARTEMEN ILMU PRODUKSI DAN TEKNOLOGI PETERNAKAN FAKULTAS PETERNAKAN INSTITUT PERTANIAN BOGOR 2012 i RINGKASAN

Lebih terperinci

METODE. Materi. Tabel 1. Jumlah Sampel DNA yang Digunakan dan Asal Pengambilan Sampel Darah.

METODE. Materi. Tabel 1. Jumlah Sampel DNA yang Digunakan dan Asal Pengambilan Sampel Darah. METODE Lokasi dan Waktu Penelitian ini dilaksanakan di Laboratorium Pemuliaan dan Genetika Molekuler, Bagian Pemuliaan dan Genetik Ternak, Departemen Ilmu Produksi dan Teknologi Peternakan, Fakultas Peternakan,

Lebih terperinci

BAB III METODE PENELITIAN. Secara garis besar langkah-langkah yang dilakukan dalam penelitian ini

BAB III METODE PENELITIAN. Secara garis besar langkah-langkah yang dilakukan dalam penelitian ini BAB III METODE PENELITIAN Secara garis besar langkah-langkah yang dilakukan dalam penelitian ini adalah: pengumpulan sampel; lisis terhadap sampel mtdna yang telah diperoleh; amplifikasi daerah D-loop

Lebih terperinci

TINJAUAN PUSTAKA Sumber Daya Genetik Sapi Lokal Indonesia

TINJAUAN PUSTAKA Sumber Daya Genetik Sapi Lokal Indonesia TINJAUAN PUSTAKA Sumber Daya Genetik Sapi Lokal Indonesia Ternak sapi di Indonesia dapat dikelompokkan ke dalam tiga kategori, yaitu terak asli, ternak yang telah beradaptasi dan ternak impor (Sarbaini,

Lebih terperinci

BAB IV. HASIL DAN PEMBAHASAN

BAB IV. HASIL DAN PEMBAHASAN BAB IV. HASIL DAN PEMBAHASAN Pada bab ini akan disajikan hasil dan pembahasan berdasarkan langkah-langkah penelitian yang telah diuraikan dalam bab sebelumnya dalam empat bagian yang meliputi; sampel mtdna,

Lebih terperinci

I. TINJAUAN PUSTAKA Kondisi Umum Kabupaten Kuantan Singingi. Pembentukan kabupaten Kuantan Singingi didasari dengan Undang-undang

I. TINJAUAN PUSTAKA Kondisi Umum Kabupaten Kuantan Singingi. Pembentukan kabupaten Kuantan Singingi didasari dengan Undang-undang I. TINJAUAN PUSTAKA 2.1. Kondisi Umum Kabupaten Kuantan Singingi Kabupaten Kuantan Singingi adalah salah satu kabupaten di Provinsi Riau, hasil pemekaran dari kabupaten induknya yaitu kabupaten Indragiri

Lebih terperinci

IDENTIFIKASI KERAGAMAN GEN PITUITARY SPECIFIC POSITIVE TRANSCRIPTION FACTOR

IDENTIFIKASI KERAGAMAN GEN PITUITARY SPECIFIC POSITIVE TRANSCRIPTION FACTOR IDENTIFIKASI KERAGAMAN GEN PITUITARY SPECIFIC POSITIVE TRANSCRIPTION FACTOR 1 (PIT1) PADA KERBAU LOKAL (Bubalus bubalis) DAN SAPI FH (Friesian-Holstein) SKRIPSI RESTU MISRIANTI DEPARTEMEN ILMU PRODUKSI

Lebih terperinci

4 Hasil dan Pembahasan

4 Hasil dan Pembahasan 4 Hasil dan Pembahasan Dalam bab ini akan dipaparkan hasil dari tahap-tahap penelitian yang telah dilakukan. Melalui tahapan tersebut diperoleh urutan nukleotida sampel yang positif diabetes dan sampel

Lebih terperinci

BAB III METODE PENELITIAN Bagan Alir Penelitian ini secara umum dapat digambarkan pada skema berikut:

BAB III METODE PENELITIAN Bagan Alir Penelitian ini secara umum dapat digambarkan pada skema berikut: BAB III METODE PENELITIAN Tahapan-tahapan yang dilakukan dalam penelitian ini adalah: pengumpulan sampel, lisis terhadap sampel mtdna yang telah diperoleh, amplifikasi daerah HVI mtdna sampel dengan menggunakan

Lebih terperinci

HASIL DAN PEMBAHASAN

HASIL DAN PEMBAHASAN HASIL DAN PEMBAHASAN Virus Hepatitis B Gibbon Regio Pre-S1 Amplifikasi Virus Hepatitis B Regio Pre-S1 Hasil amplifikasi dari 9 sampel DNA owa jawa yang telah berstatus serologis positif terhadap antigen

Lebih terperinci

BAHAN DAN METODE. Tahapan Analisis DNA S. incertulas

BAHAN DAN METODE. Tahapan Analisis DNA S. incertulas 11 BAHAN DAN METODE Waktu dan Tempat Penelitian Penelitian ini dilaksanakan pada bulan Juli 2010 sampai dengan Mei 2011. Koleksi sampel dilakukan pada beberapa lokasi di Jawa Tengah, Daerah Istimewa Yogyakarta

Lebih terperinci

KAJIAN BRUSELLOSIS PADA SAPI DAN KAMBING POTONG YANG DILALULINTASKAN DI PENYEBERANGAN MERAK BANTEN ARUM KUSNILA DEWI

KAJIAN BRUSELLOSIS PADA SAPI DAN KAMBING POTONG YANG DILALULINTASKAN DI PENYEBERANGAN MERAK BANTEN ARUM KUSNILA DEWI KAJIAN BRUSELLOSIS PADA SAPI DAN KAMBING POTONG YANG DILALULINTASKAN DI PENYEBERANGAN MERAK BANTEN ARUM KUSNILA DEWI SEKOLAH PASCASARJANA INSTITUT PERTANIAN BOGOR BOGOR 2009 PERNYATAAN MENGENAI TESIS DAN

Lebih terperinci

LAPORAN PRAKTIKUM REKAYASA GENETIKA

LAPORAN PRAKTIKUM REKAYASA GENETIKA LAPORAN PRAKTIKUM REKAYASA GENETIKA LAPORAN II (ISOLASI DNA GENOM) KHAIRUL ANAM P051090031/BTK BIOTEKNOLOGI SEKOLAH PASCASARJANA INSTITUT PERTANIAN BOGOR 2010 0 ISOLASI DAN IDENTIFIKASI DNA SEL MUKOSA

Lebih terperinci

Keanekaragaman Genetika Ikan Lais Cryptopterus spp. dari Propinsi Riau Berdasarkan Sitokrom-b DNA Mitokondria

Keanekaragaman Genetika Ikan Lais Cryptopterus spp. dari Propinsi Riau Berdasarkan Sitokrom-b DNA Mitokondria Ill Keanekaragaman Genetika Ikan Lais Cryptopterus spp. dari Propinsi Riau Berdasarkan Sitokrom-b DNA Mitokondria Yusnarti Yus' dan Roza Elvyra' 'Program Studi Biologi, Fakultas MIPA, Universitas Riau,

Lebih terperinci

BAB III METODE PENELITIAN. Penelitian ini merupakan penelitian eksperimental dengan 7 sampel dari 7

BAB III METODE PENELITIAN. Penelitian ini merupakan penelitian eksperimental dengan 7 sampel dari 7 BAB III METODE PENELITIAN 3.1 Rancangan Penelitian Penelitian ini merupakan penelitian eksperimental dengan 7 sampel dari 7 individu udang Jari yang diambil dari Segara Anakan Kabupaten Cilacap Jawa Tengah.

Lebih terperinci

menggunakan program MEGA versi

menggunakan program MEGA versi DAFTAR ISI COVER... i HALAMAN PENGESAHAN... ii HALAMAN PERSEMBAHAN... iii PRAKATA... iv DAFTAR ISI... vi DAFTAR TABEL... viii DAFTAR GAMBAR... ix DAFTAR LAMPIRAN... x INTISARI... xi ABSTRACT... xii PENDAHULUAN...

Lebih terperinci

BAB III METODOLOGI PENELITIAN. Penelitian akan diawali dengan preparasi alat dan bahan untuk sampling

BAB III METODOLOGI PENELITIAN. Penelitian akan diawali dengan preparasi alat dan bahan untuk sampling 16 BAB III METODOLOGI PENELITIAN Penelitian akan diawali dengan preparasi alat dan bahan untuk sampling sel folikel akar rambut. Sampel kemudian dilisis, diamplifikasi dan disekuensing dengan metode dideoksi

Lebih terperinci

TINJAUAN PUSTAKA Sapi Perah Friesian Holstein

TINJAUAN PUSTAKA Sapi Perah Friesian Holstein TINJAUAN PUSTAKA Sapi Perah Friesian Holstein Sapi Friesian Holstein (FH) merupakan bangsa sapi yang paling banyak terdapat di Amerika Serikat, sekitar 80-90% dari seluruh sapi perah yang berada di sana.

Lebih terperinci

HASIL DAN PEMBAHASAN. divisualisasikan padaa gel agarose seperti terlihat pada Gambar 4.1. Ukuran pita

HASIL DAN PEMBAHASAN. divisualisasikan padaa gel agarose seperti terlihat pada Gambar 4.1. Ukuran pita IV. HASIL DAN PEMBAHASAN 4.1. Amplifikasi Gen Mx Amplifikasi gen Mx telah berhasil dilakukan. Hasil amplifikasi gen Mx divisualisasikan padaa gel agarose seperti terlihat pada Gambar 4.1. Ukuran pita yang

Lebih terperinci

FAKULTAS BIOLOGI LABORATORIUM GENETIKA & PEMULIAAN INSTRUKSI KERJA UJI

FAKULTAS BIOLOGI LABORATORIUM GENETIKA & PEMULIAAN INSTRUKSI KERJA UJI ISOLASI TOTAL DNA TUMBUHAN DENGAN KIT EKSTRAKSI DNA PHYTOPURE Halaman : 1 dari 5 1. RUANG LINGKUP Metode ini digunakan untuk mengisolasi DNA dari sampel jaringan tumbuhan, dapat dari daun, akar, batang,

Lebih terperinci

ANALISIS VARIASI NUKLEOTIDA DAERAH D-LOOP DNA MITOKONDRIA PADA SATU INDIVIDU SUKU BALI NORMAL

ANALISIS VARIASI NUKLEOTIDA DAERAH D-LOOP DNA MITOKONDRIA PADA SATU INDIVIDU SUKU BALI NORMAL ISSN 1907-9850 ANALISIS VARIASI NUKLEOTIDA DAERAH D-LOOP DNA MITOKONDRIA PADA SATU INDIVIDU SUKU BALI NORMAL Ketut Ratnayani, I Nengah Wirajana, dan A. A. I. A. M. Laksmiwati Jurusan Kimia FMIPA Universitas

Lebih terperinci

BAB III BAHAN DAN METODE

BAB III BAHAN DAN METODE 9 BAB III BAHAN DAN METODE 3.1 Waktu dan Tempat Penelitian Penelitian dilaksanakan pada bulan September 2011 sampai dengan Juli 2012. Kegiatan ekstraksi DNA sampai PCR-RFLP dilakukan di laboratorium Analisis

Lebih terperinci

KAJIAN PENANDA GENETIK GEN CYTOCHROME B DAN DAERAH D-LOOP PADA Tarsius sp. OLEH : RINI WIDAYANTI

KAJIAN PENANDA GENETIK GEN CYTOCHROME B DAN DAERAH D-LOOP PADA Tarsius sp. OLEH : RINI WIDAYANTI KAJIAN PENANDA GENETIK GEN CYTOCHROME B DAN DAERAH D-LOOP PADA Tarsius sp. OLEH : RINI WIDAYANTI SEKOLAH PASCASARJANA INSTITUT PERTANIAN BOGOR BOGOR 2006 i ABSTRACT RINI WIDAYANTI. The Study of Genetic

Lebih terperinci

ANALISIS KERAGAMAN GENETIK MUTAN JARAK PAGAR (Jatropha curcas L.) HASIL PERLAKUAN MUTAGEN KOLKISIN BERDASARKAN PENANDA MOLEKULER RAPD

ANALISIS KERAGAMAN GENETIK MUTAN JARAK PAGAR (Jatropha curcas L.) HASIL PERLAKUAN MUTAGEN KOLKISIN BERDASARKAN PENANDA MOLEKULER RAPD ANALISIS KERAGAMAN GENETIK MUTAN JARAK PAGAR (Jatropha curcas L.) HASIL PERLAKUAN MUTAGEN KOLKISIN BERDASARKAN PENANDA MOLEKULER RAPD Herdiyana Fitriani Dosen Program Studi Pendidikan Biologi FPMIPA IKIP

Lebih terperinci

BAHAN DAN METODE Tempat dan Waktu Penelitian Bahan dan Alat

BAHAN DAN METODE Tempat dan Waktu Penelitian Bahan dan Alat 12 BAHAN DAN METODE Tempat dan Waktu Penelitian Survei penyakit klorosis dan koleksi sampel tanaman tomat sakit dilakukan di sentra produksi tomat di daerah Cianjur, Cipanas, Lembang, dan Garut. Deteksi

Lebih terperinci

BAB I PENDAHULUAN. kerja dan kebutuhan lainnya. Sapi menghasilkan sekitar 50% (45-55%) kebutuhan

BAB I PENDAHULUAN. kerja dan kebutuhan lainnya. Sapi menghasilkan sekitar 50% (45-55%) kebutuhan BAB I PENDAHULUAN 1.1 Latar Belakang Masalah Sapi adalah hewan ternak terpenting sebagai sumber daging, susu, tenaga kerja dan kebutuhan lainnya. Sapi menghasilkan sekitar 50% (45-55%) kebutuhan daging

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar Belakang

BAB I PENDAHULUAN 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Ikan sebagai salah satu sumber protein hewani mengandung semua jenis asam amino esensial yang diperlukan oleh tubuh manusia (Suhartini dan Nur 2005 dalam Granada 2011),

Lebih terperinci

Tabel 1. Komposisi nukleotida pada gen sitokrom-b parsial DNA mitokondria Cryptopterus spp.

Tabel 1. Komposisi nukleotida pada gen sitokrom-b parsial DNA mitokondria Cryptopterus spp. 12 V. HASIL DAN PEMBAHASAN Ikan Lais Cryptopterus spp. yang didapatkan dari S. Kampar dan Indragiri terdiri dari C. limpok dan C. apogon. Isolasi DNA total dilakukan terhadap cuplikan otot ikan Lais Cryptopterus

Lebih terperinci

POLYMERASE CHAIN REACTION (PCR)

POLYMERASE CHAIN REACTION (PCR) POLYMERASE CHAIN REACTION (PCR) Disusun oleh: Hanif Wahyuni (1210411003) Prayoga Wibhawa Nu Tursedhi Dina Putri Salim (1210412032) (1210413031) SEJARAH Teknik ini dirintis oleh Kary Mullis pada tahun 1985

Lebih terperinci

BAB II TINJAUAN PUSTAKA. Tubuh manusia tersusun atas sel yang membentuk jaringan, organ, hingga

BAB II TINJAUAN PUSTAKA. Tubuh manusia tersusun atas sel yang membentuk jaringan, organ, hingga 6 BAB II TINJAUAN PUSTAKA 2.1 DNA Mitokondria Tubuh manusia tersusun atas sel yang membentuk jaringan, organ, hingga sistem organ. Dalam sel mengandung materi genetik yang terdiri dari DNA dan RNA. Molekul

Lebih terperinci

FAKULTAS BIOLOGI LABORATORIUM GENETIKA & PEMULIAAN INSTRUKSI KERJA UJI

FAKULTAS BIOLOGI LABORATORIUM GENETIKA & PEMULIAAN INSTRUKSI KERJA UJI Halaman : 1 dari 5 ISOLASI TOTAL DNA HEWAN DENGAN KIT EKSTRAKSI DNA 1. RUANG LINGKUP Metode ini digunakan untuk mengisolasi DNA dari sampel jaringan hewan, dapat dari insang, otot, darah atau jaringan

Lebih terperinci

IDENTIFIKASI ISOLAT BAKTERI DARI PANTAI BANDEALIT JEMBER BERDASARKAN SEKUEN DNA PENGKODE 16S rrna SKRIPSI. Oleh Dina Fitriyah NIM

IDENTIFIKASI ISOLAT BAKTERI DARI PANTAI BANDEALIT JEMBER BERDASARKAN SEKUEN DNA PENGKODE 16S rrna SKRIPSI. Oleh Dina Fitriyah NIM IDENTIFIKASI ISOLAT BAKTERI DARI PANTAI BANDEALIT JEMBER BERDASARKAN SEKUEN DNA PENGKODE 16S rrna SKRIPSI Oleh Dina Fitriyah NIM 061810401071 JURUSAN BIOLOGI FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM

Lebih terperinci

BAB II TINJAUAN PUSTAKA. Sapi yang menyebar di berbagai penjuru dunia terdapat kurang lebih 795.

BAB II TINJAUAN PUSTAKA. Sapi yang menyebar di berbagai penjuru dunia terdapat kurang lebih 795. 4 BAB II TINJAUAN PUSTAKA 2.1. Sapi Potong Sapi yang menyebar di berbagai penjuru dunia terdapat kurang lebih 795. Walaupun demikian semuanya termasuk dalam genus Bos dari famili Bovidae (Murwanto, 2008).

Lebih terperinci

METODOLOGI PENELITIAN

METODOLOGI PENELITIAN METODOLOGI PENELITIAN Waktu dan Tempat Penelitian Kegiatan penelitian ini meliputi kegiatan lapang dan kegiatan laboratorium. Kegiatan lapang dilakukan melalui pengamatan dan pengambilan data di Balai

Lebih terperinci

POLIMORFISME GEN LEPTIN DAN GEN MIOSTATIN PADA SAPI POTONG ACEH DAN MADURA KAMALIAH

POLIMORFISME GEN LEPTIN DAN GEN MIOSTATIN PADA SAPI POTONG ACEH DAN MADURA KAMALIAH POLIMORFISME GEN LEPTIN DAN GEN MIOSTATIN PADA SAPI POTONG ACEH DAN MADURA KAMALIAH SEKOLAH PASCASARJANA INSTITUT PERTANIAN BOGOR BOGOR 2012 PERNYATAAN MENGENAI TESIS DAN SUMBER INFORMASI Dengan ini saya

Lebih terperinci

BAB III METODOLOGI PENELITIAN. Pada penelitian ini terdapat lima tahapan penelitian yang dilakukan yaitu

BAB III METODOLOGI PENELITIAN. Pada penelitian ini terdapat lima tahapan penelitian yang dilakukan yaitu BAB III METODOLOGI PENELITIAN Pada penelitian ini terdapat lima tahapan penelitian yang dilakukan yaitu pengumpulan sampel berupa akar rambut, ekstraksi mtdna melalui proses lisis akar rambut, amplifikasi

Lebih terperinci

BAB XII. REAKSI POLIMERISASI BERANTAI

BAB XII. REAKSI POLIMERISASI BERANTAI BAB XII. REAKSI POLIMERISASI BERANTAI Di dalam Bab XII ini akan dibahas pengertian dan kegunaan teknik Reaksi Polimerisasi Berantai atau Polymerase Chain Reaction (PCR) serta komponen-komponen dan tahapan

Lebih terperinci

3 METODOLOGI 3.1 Waktu dan Tempat 3.2 Bahan dan Alat

3 METODOLOGI 3.1 Waktu dan Tempat 3.2 Bahan dan Alat 3 METODOLOGI 3.1 Waktu dan Tempat Penelitian Autentikasi Bahan Baku Ikan Tuna (Thunnus sp.) dalam Rangka Peningkatan Keamanan Pangan dengan Metode Berbasis DNA dilaksanakan pada bulan Januari sampai dengan

Lebih terperinci

KATAPENGANTAR. Pekanbaru, Desember2008. Penulis

KATAPENGANTAR. Pekanbaru, Desember2008. Penulis KATAPENGANTAR Fuji syukut ke Hadirat Allah SWT. berkat rahmat dan izin-nya penulis dapat menyelesaikan skripsi yang beijudul "Skrining Bakteri Vibrio sp Penyebab Penyakit Udang Berbasis Teknik Sekuens

Lebih terperinci

CROSSBREEDING PADA SAPI FH DENGAN BANGSA SAHIWAL. Oleh: Sohibul Himam Haqiqi FAKULTAS PETERNAKAN UNIVERSITAS BRAWIJAYA MALANG 2008

CROSSBREEDING PADA SAPI FH DENGAN BANGSA SAHIWAL. Oleh: Sohibul Himam Haqiqi FAKULTAS PETERNAKAN UNIVERSITAS BRAWIJAYA MALANG 2008 CROSSBREEDING PADA SAPI FH DENGAN BANGSA SAHIWAL Oleh: Sohibul Himam Haqiqi 0710510087 FAKULTAS PETERNAKAN UNIVERSITAS BRAWIJAYA MALANG 2008 PENDAHULUAN Saat ini jenis sapi perah yang ada di Indonesia

Lebih terperinci

HASIL DAN PEMBAHASAN

HASIL DAN PEMBAHASAN HASIL DAN PEMBAHASAN Ekstraksi dan Purifikasi DNA Total DNA total yang diperoleh dalam penelitian bersumber dari darah dan bulu. Ekstraksi DNA yang bersumber dari darah dilakukan dengan metode phenolchloroform,

Lebih terperinci

EVALUASI DAN OPTIMALISASI PROGRAM PCR DALAM DETERMINASI KELAMIN IKAN BARBIR EMAS Puntius conchonius SECARA MOLEKULAR RADI IHLAS ALBANI

EVALUASI DAN OPTIMALISASI PROGRAM PCR DALAM DETERMINASI KELAMIN IKAN BARBIR EMAS Puntius conchonius SECARA MOLEKULAR RADI IHLAS ALBANI EVALUASI DAN OPTIMALISASI PROGRAM PCR DALAM DETERMINASI KELAMIN IKAN BARBIR EMAS Puntius conchonius SECARA MOLEKULAR RADI IHLAS ALBANI DEPARTEMEN BUDIDAYA PERAIRAN FAKULTAS PERIKANAN DAN ILMU KELAUTAN

Lebih terperinci

HASIL DAN PEMBAHASAN

HASIL DAN PEMBAHASAN HASIL DAN PEMBAHASAN Amplifikasi Gen Hormon Pertumbuhan (GH) Amplifikasi gen hormon pertumbuhan pada sapi FH yang berasal dari BIB Lembang, BBIB Singosari, dan BET Cipelang; serta sapi pedaging (sebagai

Lebih terperinci

1.1 Latar Belakang BAB I. PENDAHULUAN. Banteng (Bos javanicus d Alton 1823) merupakan salah satu mamalia

1.1 Latar Belakang BAB I. PENDAHULUAN. Banteng (Bos javanicus d Alton 1823) merupakan salah satu mamalia BAB I. PENDAHULUAN 1.1 Latar Belakang Banteng (Bos javanicus d Alton 1823) merupakan salah satu mamalia besar yang hidup di Pulau Jawa. Menurut Alikodra (1823), satwa berkuku genap ini mempunyai peranan

Lebih terperinci

4 HASIL DAN PEMBAHASAN

4 HASIL DAN PEMBAHASAN 4 HASIL DAN PEMBAHASAN 4.1 Karakteristik Morfologi Pada penelitian ini digunakan lima sampel koloni karang yang diambil dari tiga lokasi berbeda di sekitar perairan Kepulauan Seribu yaitu di P. Pramuka

Lebih terperinci

TINJAUAN PUSTAKA. Domba lokal merupakan salah satu ternak yang ada di Indonesia, telah

TINJAUAN PUSTAKA. Domba lokal merupakan salah satu ternak yang ada di Indonesia, telah II. TINJAUAN PUSTAKA 2.1. Domba Lokal Indonesia Domba lokal merupakan salah satu ternak yang ada di Indonesia, telah beradaptasi dengan iklim tropis dan beranak sepanjang tahun. Domba lokal ekor tipis

Lebih terperinci

II. MATERI DAN METODE. Tempat pengambilan sampel daun jati (Tectona grandis Linn. f.) dilakukan di

II. MATERI DAN METODE. Tempat pengambilan sampel daun jati (Tectona grandis Linn. f.) dilakukan di II. MATERI DAN METODE 2.1 Waktu dan Tempat Penelitian Tempat pengambilan sampel daun jati (Tectona grandis Linn. f.) dilakukan di enam desa yaitu tiga desa di Kecamatan Grokgak dan tiga desa di Kecamatan

Lebih terperinci

IMPLIKASI GENETIK SISTEM SILVIKULTUR TEBANG PILIH TANAM JALUR (TPTJ) PADA JENIS

IMPLIKASI GENETIK SISTEM SILVIKULTUR TEBANG PILIH TANAM JALUR (TPTJ) PADA JENIS IMPLIKASI GENETIK SISTEM SILVIKULTUR TEBANG PILIH TANAM JALUR (TPTJ) PADA JENIS Shorea johorensis Foxw DI PT. SARI BUMI KUSUMA BERDASARKAN RANDOM AMPLIFIED POLYMORPHIC DNA (RAPD) TEDI YUNANTO E14201027

Lebih terperinci

II. BAHAN DAN METODE

II. BAHAN DAN METODE II. BAHAN DAN METODE 2.1. Waktu dan Lokasi Penelitian Penelitian ini dilaksanakan dari bulan Agustus sampai September tahun 2011. Sampel ikan berasal dari 3 lokasi yaitu Jawa (Jawa Barat), Sumatera (Jambi),

Lebih terperinci

LAPORAN PRAKTIKUM REKAYASA GENETIKA

LAPORAN PRAKTIKUM REKAYASA GENETIKA LAPORAN PRAKTIKUM REKAYASA GENETIKA LAPORAN IV (ISOLASI RNA DARI TANAMAN) KHAIRUL ANAM P051090031/BTK BIOTEKNOLOGI SEKOLAH PASCASARJANA INSTITUT PERTANIAN BOGOR 2010 0 ISOLASI RNA DARI TANAMAN TUJUAN Tujuan

Lebih terperinci

III. BAHAN DAN METODE

III. BAHAN DAN METODE III. BAHAN DAN METODE Tempat dan Waktu Penelitian dilakukan di Laboratorium BIORIN (Biotechnology Research Indonesian - The Netherlands) Pusat Penelitian Sumberdaya Hayati dan Bioteknologi IPB. Penelitian

Lebih terperinci

KERAGAMAN GENETIK KAMBING BOER BERDASARKAN ANALISIS SEKUEN DNA MITOKONDRIA BAGIAN D-LOOP. Skripsi

KERAGAMAN GENETIK KAMBING BOER BERDASARKAN ANALISIS SEKUEN DNA MITOKONDRIA BAGIAN D-LOOP. Skripsi KERAGAMAN GENETIK KAMBING BOER BERDASARKAN ANALISIS SEKUEN DNA MITOKONDRIA BAGIAN D-LOOP Skripsi Untuk memenuhi sebagian persyaratan guna memperoleh derajat Sarjana Peternakan di Fakultas Pertanian Universitas

Lebih terperinci

II. BAHAN DAN METODE. Betina BEST BB NB RB. Nirwana BN NN RN. Red NIFI BR NR RR

II. BAHAN DAN METODE. Betina BEST BB NB RB. Nirwana BN NN RN. Red NIFI BR NR RR II. BAHAN DAN METODE Ikan Uji Ikan uji yang digunakan adalah ikan nila hibrida hasil persilangan resiprok 3 strain BEST, Nirwana dan Red NIFI koleksi Balai Riset Perikanan Budidaya Air Tawar Sempur, Bogor.

Lebih terperinci

TINJAUAN PUSTAKA. Sumber :

TINJAUAN PUSTAKA. Sumber : TINJAUAN PUSTAKA Sapi Friesian Holstein Sapi Friesian Holstein merupakan bangsa sapi perah yang banyak terdapat di Amerika Serikat dengan jumlah sekitar 80-90% dari seluruh sapi perah yang ada. Sapi ini

Lebih terperinci

Kryptopterus spp. dan Ompok spp.

Kryptopterus spp. dan Ompok spp. TINJAUAN PUSTAKA Kryptopterus spp. dan Ompok spp. Kryptopterus spp. dan Ompok spp. merupakan kelompok ikan air tawar yang termasuk dalam ordo Siluriformes, famili Siluridae. Famili Siluridae dikenal sebagai

Lebih terperinci