Pengantar Statistika Matematik(a)

dokumen-dokumen yang mirip
Pengantar Statistika Matematik(a)

Pengantar Statistika Matematik(a)

MA3081 STATISTIKA MATEMATIKA We love Statistics

MA4183 MODEL RISIKO Control your Risk!

MA4181 MODEL RISIKO Risk is managed, not avoided

Catatan Kuliah. MA4183 Model Risiko

MA4181 MODEL RISIKO Risk is managed, not avoided

Peubah Acak dan Distribusi Kontinu

MA4181 MODEL RISIKO Risk is managed, not avoided

MA4183 MODEL RISIKO Control your Risk!

Catatan Kuliah. MA4183 Model Risiko Forecast, assess, and control your risk. Dosen: Khreshna I.A. Syuhada, MSc. PhD.

MA4183 MODEL RISIKO Control your Risk!

Catatan Kuliah. MA4183 Model Risiko

Catatan Kuliah. MA4183 Model Risiko Risk: Quantify and Control. Dosen: Khreshna I.A. Syuhada, MSc. PhD.

Catatan Kuliah. MA4183 Model Risiko

Catatan Kuliah AK5161 MATEMATIKA KEUANGAN AKTUARIA. Insure and Invest! Khreshna I.A. Syuhada, MSc. PhD.

MA3081 STATISTIKA MATEMATIKA We love Statistics

Catatan Kuliah. MA4183 Model Risiko Forecast, assess, and control your risk. Dosen: Khreshna I.A. Syuhada, MSc. PhD.

AK5161 Matematika Keuangan Aktuaria

Catatan Kuliah AK5161 Matematika Keuangan Aktuaria Insure and Invest! Dosen: Khreshna I.A. Syuhada, MSc. PhD.

Catatan Kuliah MA3081 STATISTIKA MATEMATIKA Statistika Mengalahkan Matematika. disusun oleh Khreshna I.A. Syuhada, MSc. PhD.

AK5161 Matematika Keuangan Aktuaria

Catatan Kuliah AK5161 Matematika Keuangan Aktuaria Insure and Invest! Dosen: Khreshna I.A. Syuhada, MSc. PhD.

MA4183 MODEL RISIKO Control your Risk!

MA5181 PROSES STOKASTIK

Catatan Kuliah MA4181 Pengantar Proses Stokastik Precise and Stochastic. Dosen: Khreshna I.A. Syuhada, MSc. PhD.

Catatan Kuliah. MA4183 Model Risiko

Pengantar Proses Stokastik

Catatan Kuliah. MA4181 PENGANTAR PROSES STOKASTIK Smart and Stochastic. disusun oleh Khreshna I.A. Syuhada, MSc. PhD.

Catatan Kuliah. MA4183 Model Risiko Risk: Quantify and Control. Dosen: Khreshna I.A. Syuhada, MSc. PhD.

MA3081 STATISTIKA MATEMATIKA Statistika Mengalahkan Matematika

Catatan Kuliah MA3081 STATISTIKA MATEMATIKA Statistika Mengalahkan Matematika. disusun oleh Khreshna I.A. Syuhada, MSc. PhD.

MA2082 BIOSTATISTIKA Bab 3 Peubah Acak dan Distribusi

Catatan Kuliah. MA4183 Model Risiko Forecast, assess, and control your risk. Dosen: Khreshna I.A. Syuhada, MSc. PhD.

Catatan Kuliah. MA5181 Proses Stokastik

Catatan Kuliah. MA5181 Proses Stokastik

BI5106 ANALISIS BIOSTATISTIK Bab 3 Peubah Acak dan Dist

Definisi: Nilai harapan/ekspektasi (expected value/expectation) atau ekspektasi dari peubah acak diskrit/kontinu X adalah

Pengantar Proses Stokastik

Pengantar Proses Stokastik

Bab 7 Ekspektasi dan Fungsi Pembangkit Momen: Cintailah Mean

MA4181 MODEL RISIKO Enjoy the Risks

MA6281 Topik Lanjut dalam Statistika ANALISIS DATA DENGAN COPULA Dependency is not necessarily bad

Catatan Kuliah. AK5161 Matematika Keuangan Aktuaria Insure and Invest. Dosen: Khreshna I.A. Syuhada, MSc. PhD.

Catatan Kuliah. MA4181 PENGANTAR PROSES STOKASTIK Smart and Stochastic. disusun oleh Khreshna I.A. Syuhada, MSc. PhD.

MA4181 MODEL RISIKO Enjoy the Risks

Pengantar Proses Stokastik

Catatan Kuliah. AK5161 Matematika Keuangan Aktuaria Insure and Invest. Dosen: Khreshna I.A. Syuhada, MSc. PhD.

Catatan Kuliah. MA4181 Pengantar Proses Stokastik Stochastics: Precise and Prospective. Dosen: Khreshna I.A. Syuhada, MSc. PhD.

MA5181 PROSES STOKASTIK

Catatan Kuliah. AK5161 Matematika Keuangan Aktuaria Insure and Invest. Dosen: Khreshna I.A. Syuhada, MSc. PhD.

Catatan Kuliah. AK5161 Matematika Keuangan Aktuaria Insure and Invest. Dosen: Khreshna I.A. Syuhada, MSc. PhD.

Catatan Kuliah. AK5161 Matematika Keuangan Aktuaria Insure and Invest. Dosen: Khreshna I.A. Syuhada, MSc. PhD.

Bab 9 Peluang dan Ekspektasi Bersyarat: Harapan Tanpa Syarat

Peubah Acak dan Distribusi

Catatan Kuliah AK5161 Matematika Keuangan Aktuaria Insure and Invest! Dosen: Khreshna I.A. Syuhada, MSc. PhD.

Catatan Kuliah. MA4283 Teori Risiko dan Kredibilitas Forecasting Risk: Precise and Prospective. Dosen: Khreshna I.A. Syuhada, MSc. PhD.

CNH3E3 PROSES STOKASTIK Peubah Acak & Pendukungnya

Dengan demikian, untuk sembarang B = [a, b], maka persamaan (5.1) menjadi

Bab 8 Fungsi Peluang Bersama: Bersama Kita Berpisah

MA4081 PENGANTAR PROSES STOKASTIK Cerdas dan Stokastik

MINGGU KE-11 HUKUM BILANGAN BESAR LEMAH DAN KUAT

STATISTIK PERTEMUAN VI

Catatan Kuliah. MA4283 Teori Risiko dan Kredibilitas Forecasting Risk: Precise and Prospective. Dosen: Khreshna I.A. Syuhada, MSc. PhD.

MA3081 STATISTIKA MATEMATIK(A) Bab 2: Distribusi Samp

STK 203 TEORI STATISTIKA I

Misalkan X peubah acak dengan fungsi distribusi berikut: + x, 0 x < 1. , 1 x < 2. , 2 x < 3. 1, x 3

MA2081 Statistika Dasar

STATISTIKA UNIPA SURABAYA

Pengantar Statistika Matematika II

STK 203 TEORI STATISTIKA I

Uji Hipotesis dan Aturan Keputusan

STK 203 TEORI STATISTIKA I

BAB II LANDASAN TEORI

MA5283 STATISTIKA Bab 3 Inferensi Untuk Mean

Pr { +h =1 = } lim. Suatu fungsi dikatakan h apabila lim =0. Dapat dilihat bahwa besarnya. probabilitas independen dari.

Pengantar Statistika Matematika II

Pengantar Proses Stokastik

Catatan Kuliah. MA5181 Proses Stokastik

Minggu 4-5 Analisis Model MA, AR, ARMA. Minggu 6-7 Model Diagnostik dan Forecasting. Minggu 8-9 Analisi Model ARI, IMA, ARIMA

MA5181 PROSES STOKASTIK

Teorema Newman Pearson

Pengantar Proses Stokastik

Pengantar Statistika Matematika II

AK5161 Matematika Keuangan Aktuaria

DISTRIBUSI SATU PEUBAH ACAK

TINJAUAN PUSTAKA. ruang sampel dan dilambangkan dengan huruf S. Ruang sampel beranggotakan

Pengantar Statistika Matematika II

MA5181 PROSES STOKASTIK

DISTRIBUTIONS OF RANDOM VARIABLE DISTRIBUSI VARIABEL RANDOM

MINGGU KE-6 VARIABEL RANDOM DAN DISTRIBUSINYA

Minggu 4-5 Analisis Model MA, AR, ARMA. Minggu 6-7 Model Diagnostik dan Forecasting. Minggu 8-9 Analisi Model ARI, IMA, ARIMA

Catatan Kuliah MA4181 Pengantar Proses Stokastik Precise and Stochastic. Dosen: Khreshna I.A. Syuhada, MSc. PhD.

Catatan Kuliah. MA4181 PENGANTAR PROSES STOKASTIK Smart and Stochastic. disusun oleh Khreshna I.A. Syuhada, MSc. PhD.

KONVOLUSI DISTRIBUSI EKSPONENSIAL DENGAN PARAMETER BERBEDA

MA1201 KALKULUS 2A Do maths and you see the world

Pengantar Statistika Matematika II

Catatan Kuliah MA4181 Pengantar Proses Stokastik Precise and Stochastic. Dosen: Khreshna I.A. Syuhada, MSc. PhD.

Pengantar Statistika Matematika II

Distribusi Diskrit dan Kontinu yang Penting. Oleh Azimmatul Ihwah

Transkripsi:

Catatan Kuliah Pengantar Statistika Matematik(a) Statistika Lebih Dari Sekadar Matematika disusun oleh Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan STATISTIKA - FMIPA Institut Teknologi Bandung 2014

Tentang Pengantar Statistika Matematik(a) A. Jadwal kuliah: Senin, 13.00-17.00 Rabu, 08.00-12.00 B. Silabus: Peubah acak dan distribusi Distribusi diskrit Distribusi kontinu Fungsi peluang bersama Peluang dan ekspektasi bersyarat C. Buku teks: Sheldon M Ross; A First Course in Probability. Mathematical Statistics. D. Penilaian: 1. Ujian 1 (45%) - Rabu, 2.4.2014 2. Ujian 2 (45%) - Rabu, 21.5.2014 3. PR/Kuis (10%) Pengantar Statistika Matematik(a) i K. Syuhada, PhD.

D. Matriks kegiatan perkuliahan: Table 1: Matriks perkuliahan Analisis Data. Minggu- Materi Keterangan 1-2 Pengantar Penjelasan kuliah Peubah acak dan distribusi 3-4 Distribusi diskrit 5-6 Distribusi kontinu 7 UTS Rabu, 2.4.2014 8 Praktik Nyata Peluang Nyoblos! 9-10 Fungsi peluang bersama 11-12 Peluang dan ekspektasi bersyarat 13 14 UAS Rabu, 21.5.2014 Pengantar Statistika Matematik(a) ii K. Syuhada, PhD.

Daftar Isi 1 Peubah Acak dan Fungsi Distribusi 1 1.1 Peubah Acak Diskrit dan Kontinu................. 1 1.2 Tentang Fungsi Distribusi..................... 4 1.3 Ekspektasi.............................. 6 1.4 Fungsi Pembangkit Momen.................... 7 2 Distribusi Diskrit 1 2.1 Distribusi Binomial......................... 1 2.2 Distribusi Geometrik........................ 2 2.3 Distribusi Poisson.......................... 3 2.4 Lebih Jauh Tentang Distribusi Diskrit.............. 4 iii

BAB 1 Peubah Acak dan Fungsi Distribusi Silabus: Peubah acak diskrit, peubah acak kontinu, fungsi distribusi, fungsi peluang. Statistika Matematik(a) adalah perkuliahan yang menitikberatkan pada kajian peluang secara matematik. Untuk itu, peluang yang harus ditekankan adalah peluang pada nilai peubah acak. Tujuan yang ingin dicapai dalam mempelajari peubah acak dan distribusi adalah: 1. memahami dan membedakan peubah acak diskrit dan kontinu 2. menghitung peluang pada nilai peubah acak 3. menentukan fungsi distribusi dan transformasi peubah acak (serta distribusi peluang yang menyertainya) 4. menghitung ekspektasi dan fungsi pembangkit momen 1.1 Peubah Acak Diskrit dan Kontinu Apa yang dapat kita katakan tentang peubah acak? Peubah acak tidaklah acak dan bukanlah peubah Peubah acak adalah fungsi yang memetakan ruang sampel S ke bilangan real R 1

Definisi Peubah acak X dikatakan diskrit jika terdapat barisan terhitung dari bilangan {a i, i = 1, 2,... } sedemikian hingga P ( {X = a i } ) = P (X = a i ) = 1 i i Catatan: Sebuah peubah acak diskrit tidak selalu berasal ruang sampel diskrit. F X disebut fungsi distribusi (diskrit) dari X jika terdapat barisan terhitung {a i, i = 1, 2,... } dari bilangan real dan barisan {p i, i = 1, 2,... } dari bilangan positif yang bersesuaian sedemikian hingga p i = 1 dan i F X (x) = a i x p i Jika diberikan himpunan terhitung {a i, i = 1, 2,... } dan bilangan positif {p i, i = 1, 2,... } sdh i p i = 1, fungsi peluang p X (x) adalah p X (x) = p i = P (X = a i ), dengan x = a i Catatan: P (a < X b) = F (b) F (a) P (X b) P (X < b) ( { P (X < b) = P lim X b 1 }) n n ( = lim P X b 1 ) n n ( = lim F b 1 ) n n Pengantar Statistika Matematik(a) 2 K. Syuhada, PhD.

Definisi Misalkan X peubah acak dan fungsi distribusinya F X dapat diturunkan. Fungsi (densitas) peluang f X adalah turunan dari fungsi distribusi, f X (x) = d dx F X(x); f(x) 0, x atau dengan kata lain F X (x) = x f X (t) dt Jika X adalah peubah acak sedemikian hingga fungsi (densitas) peluang ada maka X dikatakan sebagai peubah acak kontinu. Catatan: 1 = F X ( ) = P (a X b) = F X (b) F X (a) = P (X = a) = a a f X (t) dt = 0 f X (t) dt b a f X (t) dt LATIHAN: 1. Misalkan X Bin(3, 0.5), maka fungsi distribusi F (x) adalah... 2. Misalkan X peubah acak dengan support S = [a, b], b > 0. Misalkan peluang X akan berada di selang S proporsional terhadap panjang selang. Dengan kata lain, P (x 1 X x 2 ) = λ (x 2 x 1 ), untuk a x 1 x 2 b. Untuk menentukan λ, misalkan x 1 = a dan x 2 = b. Maka, P (a X b) = 1 = λ (b a) λ = 1/(b a). Fungsi distribusinya adalah... Fungsi peluangnya adalah... Pengantar Statistika Matematik(a) 3 K. Syuhada, PhD.

1.2 Tentang Fungsi Distribusi Fungsi distribusi berperan dalam kajian peluang pada peubah acak. Jika kita memiliki fungsi distribusi maka fungsi peluang dapat (dengan mudah) ditentukan. Namun, hal sebaliknya tidak berlaku. Pada kajian statistika lanjut, seperti konsep Copula, fungsi distribusi akan lebih bermanfaat dibandingkan dengan fungsi peluang. Sifat-sifat fungsi distribusi: F ( ) = 0 dan F ( ) = 1 F merupakan fungsi tidak turun; F (a) F (b) untuk a b F adalah fungsi kontinu kanan; lim F (x + ϵ) = F (x) ϵ 0 + Misalkan X peubah acak dengan fungsi distribusi F (x). Jika b a, maka P (a < X b) = F (b) F (a) Untuk setiap x, P (X = x) = lim P (x ϵ < X ) = F (x) F (x ) ϵ 0 + (Perhatikan notasi F (x ) dan kasus apabila fungsi distribusi kontinu kiri) Misalkan X peubah acak kontinu dengan fungsi distribusi F X (x). Misalkan g(x) fungsi naik satu-satu kontinu. Untuk y yang berada di daerah hasil dari g, fungsi invers x = g 1 (y) ada. Misalkan Y = g(x). Fungsi distribusi dari Y adalah... Misalkan g(x) fungsi turun satu-satu kontinu. Untuk y yang berada di daerah hasil dari g, fungsi invers x = g 1 (y) ada. Misalkan Y = g(x). Fungsi distribusi dari Y adalah... Misalkan X mempunyai fungsi peluang f(x) = 1 dan Y = g(x) = hx + k, h < 0. Maka X = g 1 (Y ) = F X (x) = F Y (y) = Y Pengantar Statistika Matematik(a) 4 K. Syuhada, PhD.

LATIHAN: 1. Misalkan X peubah acak kontinu yang memiliki fungsi distribusi F X (x) yang naik murni. Misalkan Y = F X (X). Tentukan distribusi dari Y. 2. Misalkan U peubah acak berdistribusi U(0, 1). Misalkan F X (x) fungsi distribusi yang naik murni dari X. Tentukan fungsi distribusi dari peubah acak F 1 X (U). 3. Misalkan U 1, U 2,..., U n sampel acak dari U(0, 1). Bangkitkan sampel acak dari F X (x) (ambil contoh misalnya untuk F X (x) = 1 e λ x, x > 0) Misalkan X peubah acak kontinu dengan fungsi distribusi F X (x). Misalkan Y = g(x) fungsi kontinu tidak monoton. Kita ketahui bahwa pada fungsi yang monoton, F Y (y) = P (Y y) = P (g(x) y) dimana dalam hal ini setiap solusi inverse x = g 1 (y) digunakan untuk menentukan F Y (y) dengan menggunakan F X (g 1 (y)). Untuk X U( 1, 2) dan g(x) = Y = X 2, kita dapatkan fungsi distribusi dari Y : F Y (y) = LATIHAN: 1. Misalkan λ bilangan riil positif. Jika F (x) = 1 e λx, maka f(x) = 2. *Misalkan f(x) = c/(1 + x 2 ) untuk < x < dan c konstanta. Fungsi f(x) tak negatif dan (1 + x2 ) 1 dx = π. Berapa nilai c agar f(x) menjadi fungsi peluang? Tentukan fungsi distribusinya. Misalkan X peubah acak kontinu dengan fungsi peluang f(x) dan Y = g(x) fungsi yang terdiferensial bernilai tunggal. Maka fungsi peluang dari Y : f Y (y) = f X (g 1 (y)) d dy g 1 (y) untuk support Y = g(x). Komponen J(y) = d dy g 1 (y) adalah transformasi Jacobian. Pengantar Statistika Matematik(a) 5 K. Syuhada, PhD.

Misalkan g(x) memiliki lebih dari satu fungsi invers maka unsur peluang yang terpisah harus dihitung untuk setiap fungsi invers. Contoh, misalkan X U( 1, 2) dan Y = g(x) = X 2. Maka untuk y [0, 1], terdapat 2 fungsi invers yaitu, dan satu fungsi invers untuk y (1, 4] yaitu. Fungsi peluang dari Y adalah f(y) = 1.3 Ekspektasi Misalkan X peubah acak dengan fungsi peluang f(x). ekspektasi dari X, jika ada, adalah Nilai harapan atau E(X) = µ X = f(x)dx Catatan: nilai ekspektasi dikatakan ada jika nilai integral adalah hingga. Misalkan X p.a. dengan f.p. f(x). Maka nilai harapan/ekspektasi dari g(x), jika ada, adalah E[g(X)] = g(x)f(x)dx. Operator integral bersifat linier. Jika g 1 (X) dan g 2 (X) fungsi-fungsi yang memiliki ekspektasi dan a, b, c konstanta, maka E[ag 1 (X) + bg 2 (X) + c] = ae[g 1 (X)] + be[g 2 (X)] + c LATIHAN: 1. Jika distribusi X simetrik di sekitar c dan nilai harapannya ada maka E(X) = c. 2. Misalkan X U(a, b). Tunjukkan bahwa distribusi tersebut simetrik disekitar (a + b)/2. 3. Misalkan X berdistribusi Cauchy dengan fungsi peluang f(x) = 1 [ ], σπ 1 + (x µ)2 σ 2 Pengantar Statistika Matematik(a) 6 K. Syuhada, PhD.

dengan µ, σ konstanta yang memenuhi µ < dan σ (0, σ). Tunjukkan bahwa fungsi peluang simetrik di sekitar µ namun ekspektasinya bukanlah µ. 4. Misalkan X Exp(λ). Nilai harapan/ekspektasi dari X adalah... 1.4 Fungsi Pembangkit Momen Misalkan X peubah acak kontinu, fungsi pembangkit momen dari X adalah M X (t) = E(e tx ) = e tx f(x)dx, asalkan ekspektasi ada untuk t disekitar 0. Jika semua momen dari X tidak ada, maka fungsi pembangkit momen juga tidak ada. Fungsi pembangkit momen berkaitan dengan fungsi pembangkit peluang M X (t) = G X (e t ) asalkan G X (t) ada untuk t disekitar 1. Jika M X (t) adalah fungsi pembangkit peluang maka M X (0) = 1. Contoh/Latihan: 1. Jika f X (x) = λe λx I 0, (x), maka M X (t) = 2. Jika M X (t) ada maka M a+bx (t) = 3. Jika X i, i = 1,..., n saling bebas, M Xi (t) ada untuk setiap i, dan S = Xi, maka M S (t) = 4. Fungsi pembangkit momen bersifat unik. Setiap distribusi memiliki fungsi pembangkit momen yang unik, dan setiap fungsi pembangkit momen berkorespondensi dengan tepat satu distribusi. Akibatnya, jika fungsi pembangkit momen ada maka fungsi pembangkit momen tersebut secara unik menentukan distribusinya. Beri contoh. Pengantar Statistika Matematik(a) 7 K. Syuhada, PhD.

5. Pandang turunan dari M X (t) yang kemudian dievaluasi di t = 0. Apa yang dapat anda katakan? Dapatkah kita mendapatkan momen orde tinggi? 6. Dapatkah hasil diatas digunakan untuk distribusi diskrit? Ambil contoh distribusi Geometrik dengan parameter p. 7. Misalkan Y U(a, b). Gunakan fungsi pembangkit momen untuk mendapatkan momen pusat (( E((Y µ Y ) 2 ) = E Y a + b ) r ) 2 Pengantar Statistika Matematik(a) 8 K. Syuhada, PhD.

BAB 2 Distribusi Diskrit Silabus: Distribusi binomial, geometrik, Poisson; varian distribusi: kelas distribusi (a, b, 0); zero-modified and zero-truncated distributions Fungsi peluang dan/atau fungsi distribusi dari suatu peubah acak seringkali diberikan (tidak perlu ditentukan). Hal ini terjadi karena f.p. tersebut sudah dikenal atau dianggap sering dipakai/cocok dengan fenomena sehari-hari (umum). Tiga diantara distribusi tersebut adalah binomial, geometrik dan Poisson. Secara khusus, aplikasi distribusi tersebut akan diperlihatkan pada bidang asuransi. Asuransi berkaitan erat dengan risiko karena dengan produk asuransilah terjadi perpindahan (tranfer) risiko dari pemegang polis kepada pihak asuransi. Pada pemodelan kerugian klaim (claim losses) terdapat dua ukuran penting yang harus diperhatikan yaitu frekuensi klaim (claim frequency) dan besar atau severitas klaim (claim severity). Tujuan yang ingin dicapai dalam mempelajari distribusi diskrit yang telah dikenal adalah: 1. mempelajari dan menghitung peluang dari peubah acak yang berdistribusi binomial, geometrik dan Poisson 2. memahami varian distribusi 2.1 Distribusi Binomial Distribusi yang tepat untuk memodelkan frekuensi klaim adalah distribusi diskrit, antara lain binomial, geometrik, negatif binomial dan Poisson. Misalkan peubah acak X menyatakan banyak klaim yang diproses dari 1

semua klaim yang masuk. Misalkan X B(n, θ), maka fungsi peluangnya P (X = k) = C n k θ k (1 θ) n k, k = 0, 1, 2,..., n Sifat momen, atau momen ke-m, dapat ditentukan dengan memanfaatkan fungsi peluang (fp), yaitu E(X m ) = n x m P (X = k). k=0 Untuk m = 1, misalnya, didapat E(X) =, dst. Momen ke-m dapat pula ditentukan dengan menggunakan fungsi pembangkit momen (fpm): M X (t) = Catatan: Fpm suatu peubah acak berkorespondensi satu-satu dengan distribusi peubah acak tersebut. Bagaimana dengan fungsi pembangkit peluang (fpp), manfaat apa yang dapat diperoleh dengan fpp? Bagaimana menentukan peluang secara rekursif? Dapatkah ditentukan hubungan antara fpm dan fpp? Misalkan X 1, X 2,..., X n sampel acak dari X yang berdistribusi binomial dengan parameter (n, θ). Parameter θ dapat ditaksir dengan menggunakan metode likelihood maksimum sbb: Fungsi likelihood dan log-likelihood:... Turunan pertama terhadap parameter dan normalisasi:... Penaksir θ:... Turunan kedua terhadap parameter:... 2.2 Distribusi Geometrik Distribusi lain yang dapat digunakan untuk memodelkan frekuensi klaim adalah distribusi geometrik. Pertanyaannya, definisi peubah acak apakah yang tepat untuk menggambarkan distribusi ini? Misalkan X Geo(α) dengan fungsi peluang p(x) = (1 α) x 1 α, x = 1, 2,... Pengantar Statistika Matematik(a) 2 K. Syuhada, PhD.

Kita dapat menentukan sifat momen seperti sebelumnya, E(X) = 1 α, V ar(x) = 1 α 2, dan juga fpm dan fpp. Selain itu, misalkan X Geo(α), kita dapat pula menentukan sifat distribusi dari X + 1. Namun yang menarik untuk dikaji adalah apakah sifat khusus yang hanya dimiliki distribusi geometrik? Jelaskan! 2.3 Distribusi Poisson Misalkan X peubah acak yang menyatakan banyaknya/frekuensi klaim pada suatu periode waktu. Distribusi untuk X adalah Poisson dengan parameter λ. Ciri khas distribusi ini adalah nilai mean dan variansi yang sama yaitu λ, E(X) = V ar(x) = λ. Dalam praktiknya, mungkinkah kita memperoleh data dengan nilai mean sama dengan variansi? (selanjutnya nanti akan dipelajari konsep overdispersion dan underdispersion) Bagaimana kaitan antara distribusi Poisson dan Binomial? adakah manfaat yang dapat kita ambil? Teorema Jika X 1,..., X n peubah acak-peubah acak yang saling bebas dengan X i P OI(λ i ) maka X = X 1 + + X n P OI(λ 1 +... + λ n ). Pengantar Statistika Matematik(a) 3 K. Syuhada, PhD.

Misalkan X dan Y peubah acak Poisson dengan parameter, berturut-turut, λ 1 dan λ 2. Kita dapat menentukan distribusi X X + Y = n sebagai berikut P (X = k X + Y = n) P (X = k, X + Y = n) = P (X + Y = n) P (X = k, Y = n k) = P (X + Y = n) P (X = k) P (Y = n k) = P (X + Y = n) = exp( λ 1) λ k 1 (k!) 1 exp( λ 2 ) λ n k 2 ((n k)!) 1 exp( (λ 1 + λ 2 )) (λ 1 + λ 2 ) n (n!) 1 = n! k!(n k)! ( λ1 λ 1 + λ 2 ) k ( λ2 λ 1 + λ 2 ) n k. Dengan kata lain, X X + Y = n B(n, λ 1 /(λ 1 + λ 2 )). 2.4 Lebih Jauh Tentang Distribusi Diskrit Kelas Distribusi (a, b, 0) Perhatikan fungsi peluang dari peubah acak Poisson(λ): f(x) = e λ λ x, x = 0, 1, 2,... x! yang dapat dituliskan rekursif dengan memperhatikan fungsi peluang untuk X = x 1, Diperoleh f(x 1) = e λ λ x 1 (x 1)!. f(x) f(x 1) = e λ λ x / e λ λ x 1 x! (x 1)! = λ x atau f(x) = ( ) λ f(x 1), x = 1, 2,... x Pengantar Statistika Matematik(a) 4 K. Syuhada, PhD.

Distribusi-distribusi diskrit yang sudah dikenalkan sebelumnya (binomial, geometrik, binomial negatif, Poisson) dapat dikelompokkan menjadi sebuah Kelas Distribusi (a, b, 0) dengan fungsi peluang memenuhi sifat rekursif: ( f(x) = a + b ) f(x 1), x = 1, 2,..., x dengan a, b konstanta dan f(0) diberikan. Catatan: Kelas distribusi (a, b, 1) dapat pula dibentuk dengan analogi. Zero-Modified and Zero-Truncated Distributions Misalkan X B(3, 0.4). Kita dapat menentukan distribusi peluang sebagai berikut: X P (X = k) 0 0.216 1 0.432 2 0.288 3 0.064 Dalam aplikasi teori peluang, seringkali kita dihadapkan pada fenomena dimana peluang terjadinya 0 telah ditentukan, misalnya P (X = 0) = 0.3, atau bahkan mungkin tidak ada, P (X = 0) = 0. Untuk itu, perlu adanya modifikasi fungsi peluang diatas. Distribusi yang dihasilkan dikatakan sebagai zero-modified and zero-truncated distributions. Misalkan peubah acak X dari suatu distribusi (a, b, 0) memiliki fungsi peluang f(x). Misalkan f M (x) fungsi peluang yang merupakan modifikasi dari f(x); f M (x) adalah fungsi peluang dari distribusi (a, b, 1). Untuk f M (0) yang ditentukan, hubungan antara f M (x) dan f(x) adalah f M (x) = c f(x), x = 1, 2,... dengan c konstanta. Catatan: Fungsi peluang f M (x) haruslah terdefinisi dengan baik; akibatnya, c dapat diperoleh, c = 1 f M (0) 1 f(0). Untuk distribusi Binomial dengan parameter (3, 0.4) diatas, kita dapat menghi- Pengantar Statistika Matematik(a) 5 K. Syuhada, PhD.

tung f M (k), k = 1, 2, 3 sebagai berikut: f M (1) = 1 f M (0) 1 f(0) f(1) = 1 0.3 1 0.216 0.432 = 0.386. Dengan cara sama, kita peroleh f M (2) = 0.258 dan f M (3) = 0.056. Untuk zero-truncated distribution, nilai P (X = 0) = 0. Diperoleh nilai seperti tabel berikut: X P (X = k) Zero-Modified Zero-Truncated 0 0.216 0.3 0 1 0.432 0.386 2 0.288 0.258 3 0.064 0.056 Latihan: 1. Tentukan zero-modified distribution untuk X yang berdistribusi Poisson dengan parameter 2.5 2. Misalkan X adalah zero-truncated distribution dari X. Diketahui, fungsi peluang dan fungsi pembangkit peluang X, berturut-turut, adalah f X (x) dan P X (t). Tentukan fungsi pembangkit peluang untuk X Pengantar Statistika Matematik(a) 6 K. Syuhada, PhD.