Bab II TINJAUAN PUSTAKA. Aksioma-aksioma yang membentuk geometri Affin disebut dengan aksioma playfair

dokumen-dokumen yang mirip
II. LANDASAN TEORI. Dalam bab ini akan didiskusikan unsur tak terdefinisi, aksioma-aksioma, istilahistilah,

II. TINJAUAN PUSTAKA. sebuah geometri selain aksioma diperlukan juga unsur-unsur tak terdefinisi. Untuk. 2. Himpunan titik-titik yang dinamakan garis.

Geometri Insidensi. Modul 1 PENDAHULUAN

BAB II KAJIAN PUSTAKA

SD kelas 6 - MATEMATIKA BAB 11. BIDANG DATARLatihan Soal 11.1

GEOMETRI Geometri Dasar Oleh: WIDOWATI Jurusan Matematika FMIPA UNDIP

GEOMETRI AFFINE A. PENDAHULUAN


Hubungan Kekongruenan Dalam Geometri Terhingga

A. Jumlah Sudut dalam Segitiga. Teorema 1 Jumlah dua sudut dalam segitiga kurang dari Bukti:

UKURAN RUAS-RUAS GARIS PADA SEGITIGA SKRIPSI

MAKALAH. GEOMETRI BIDANG Oleh Asmadi STKIP Muhammadiyah Pagaralam

BAB 3 PENGENALAN GEOMETRI TERURUT

IKIP BUDI UTOMO MALANG GEOMETRI HAND OUT 2

SEGITIGA DAN SEGIEMPAT

OLEH : PROGRAM STUDI PENDIDIKAN MATEMATIKA JURUSAN PENDIDIKAN MATEMATIKA DAN ILMU SEKOLAH TINNGI KEGURUAN DAN ILMU PENDIDIKAN

1 P E N D A H U L U A N

BAB II TINJAUAN PUSTAKA

1. Titik, Garis dan Bidang Dalam Ruang. a. Defenisi. Titik ditentukan oleh letaknya dan tidak mempunyai ukuran sehingga dikatakan berdimensi nol

II. TINJAUAN PUSTAKA

BAB III PEMBAHASAN. Pada bab pembahasan ini akan dibahas mengenai Geometri Hiperbolik yang

Relasi, Fungsi, dan Transformasi

ISOMETRI TERHADAP GEOMETRI INSIDENSI TERURUT

1 SISTEM BILANGAN REAL

Himpunan. Modul 1 PENDAHULUAN

Vektor di Bidang dan di Ruang

2. Tentukan persamaan garis yang melalui titik P (x 1,y 1,z 1 ) dan R (x 2,y 2,z 2 ) seperti yang ditunjukkan pada gambar. Z P Q R

abcde dengan a, c, e adalah bilangan genap dan b, d adalah bilangan ganjil? A B C D E. 3000

LOGO JARAK DUA TITIK

TRANSFORMASI. Suatu transfornmasi pada bidang V adalah suatu fungsi yang bijektif dengan daerah asalnya V dan daerah nilainya V juga.

BAB IV ANALISA KECEPATAN

BAB 7 GEOMETRI NETRAL

Pengertian Dan Sifat-Sifat Bangun Segi Empat 1. Jajaran Genjang

Tujuan Instruksional Umum Mahasiswa memahami pengertian relasi, relasi ekuivalen, hasil ganda suatu

RELASI. Cece Kustiawan, FPMIPA, UPI

SOAL 1. Diketahui bangun persegi panjang berukuran 4 6 dengan beberapa ruas garis, seperti pada gambar.

BAB V RELASI DAN FUNGSI

Sifat-Sifat Bangun Datar

TRANSFORMASI. 1) T(A) = A 2) Apabila P A, maka T(P) = Q dengan Q titik tengah garis. Selidiki apakah

1 SISTEM BILANGAN REAL

SUMBER BELAJAR PENUNJANG PLPG 2016 MATA PELAJARAN/PAKET KEAHLIAN MATEMATIKA BAB XI ALAT PERAGA DALAM GEOMETRI RUANG

Hasil Kali Titik, Hasil Kali Silang, dan Hasil Kali Tripel

Oleh : Sutopo, S.Pd., M.Pd. Prodi P Mat-Jurusan PMIPA FKIP UNS

REFLEKSI DAN AKSIOMA CERMIN PADA BIDANG POINCARÉ

Hand-Out Geometri Transformasi. Bab I. Pendahuluan

OSN 2014 Matematika SMA/MA

fungsi Dan Grafik fungsi

GEOMETRI TRANSFORMASI SETENGAH PUTARAN

TEOREMA VIETA DAN JUMLAH NEWTON. 1. Pengenalan

A. Pengantar B. Tujuan Pembelajaran Umum C. Tujuan Pembelajaran Khusus

Geometri I. Garis m dikatakan sejajar dengan garis k, jika kedua garis terletak pada satu bidang datar dan kedua garis tidak berpotongan

SISTEM BILANGAN REAL

Geometri Ruang (Dimensi 3)

A. Titik, Garis, dan Bidang dalam Ruang. Definisi 1 (Space) Ruang (space) adalah himpunan semua titik.

RUAS GARIS BERARAH. Andaikan sekarang ada 2 ruas garis berarah AB dan CD. Dalam

Grup Permutasi dan Grup Siklis. Winita Sulandari

DASAR-DASAR MATEMATIKA

PROGRAM STUDI : PENDIDIKAN MATEMATIKA

RELASI SMTS 1101 / 3SKS

PERLUASAN SISTEM AKSIOMA INSIDENSI PADA DIMENSI EMPAT. Sitta Alief Farihati Universitas Terbuka ABSTRAK

1 SISTEM BILANGAN REAL

Modul 3 SIMETRI, PERSEGIPANJANG, PERSEGI, DAN KESEJAJARAN GARIS

BAB 2 TINJAUAN PUSTAKA

Pola (1) (2) (3) Banyak segilima pada pola ke-15 adalah. A. 235 C. 255 B. 250 D Yang merupakan bilangan terbesar adalah. A. C. B. D.

Dari gambar jaring-jaring kubus di atas bujur sangkar nomor 6 sebagai alas, yang menjadi tutup kubus adalah bujur sangkar... A. 1

KEGIATAN BELAJAR SISWA

BAB 3 PENALARAN DALAM GEOMETRI

Beberapa Benda Ruang Yang Beraturan

TRANSFORMASI. Dosen Pengampu Mata Kuliah. HERDIAN, S.Pd., M.Pd. Disusun Oleh : Kelompok 1. Hayatun Nupus Rina Ariyani

MAKALAH OLEH KELOMPOK I NAMA : 1. SHINTA JULIANTY 2. SITI HERLIZA 3. FATMALIZA 4. SUPRA ANTONI 5. JUNIANTY

Keterhubungan. Modul 3

KONGRUENSI PADA SEGITIGA

Modul ini adalah modul ke-7 dalam mata kuliah Matematika. Isi modul ini

HUBUNGAN BENTUK-BENTUK KHUSUS K-ALJABAR HIPER IMPLIKATIF

Janos meninggalkan sekolahnya pada saat kelas 4. Ia

TUGAS MATA KULIAH GEOMETRI TRANSFORMASI

DALIL PYTHAGORAS DAN PEMECAHAN MASALAH GEOMETRI

Vektor dan Operasi Dasarnya

BAB II MATERI. sejajar dengan garis CD. B

SEKILAS TENTANG KONSEP. dengan grup faktor, dan masih banyak lagi. Oleh karenanya sebelum

OSN MATEMATIKA SMA Hari 1 Soal 1. Buktikan bahwa untuk sebarang bilangan asli a dan b, bilangan. n = F P B(a, b) + KP K(a, b) a b

DAFTAR NILAI PRETEST DAN POSTTEST KELAS EKSPERIMEN

MATRIKS. a A mxn = 21 a 22 a 2n a m1 a m2 a mn a ij disebut elemen dari A yang terletak pada baris i dan kolom j.

MODUL MATEMATIKA KELAS 8 APRIL 2018

BAB II KAJIAN PUSTAKA. glide/refleksi geser, grup simetri, frieze group, graphical user interface (GUI) dijelaskan mengenai operasi biner.

BAB MATRIKS. Tujuan Pembelajaran. Pengantar

Sistem Bilangan Real

Segiempat. [Type the document subtitle]

II. TINJUAN PUSTAKA. lim f(x) = L berarti bahwa bilamana x dekat tetapi sebelah kiri c 0 maka f(x)

1. GRUP. Definisi 1.1 (Operasi Biner) Diketahui G himpunan dan ab, G. Operasi biner pada G merupakan pengaitan

1. Diketahui suatu polynomial 15. A B 3C D. Berapakah koefisien dari. A B C D Jawab :

SOAL DAN PENYELESAIAN RING

Oleh Nialismadya dan Nurbaiti, S. Si

Evaluasi Belajar Tahap Akhir Nasional Tahun 1986 Matematika

Shortlist Soal OSN Matematika 2014

MATEMATIKA. Pertemuan 2 N.A

GEOMETRI EUCLID D I S U S U N OLEH :

JAWABAN SOAL POST-TEST. No Keterangan Skor 1. Ada diketahui :

Prestasi itu diraih bukan didapat!!! SOLUSI SOAL

Pelatihan-osn.com Konsultan Olimpiade Sains Nasional contact person : ALJABAR

Transkripsi:

Bab II TINJAUAN PUSTAKA 2.1 Konsep Dasar Geometri Affin ( Rawuh, 2009) Aksioma-aksioma yang membentuk geometri Affin disebut dengan aksioma playfair yaitu aksioma yang menyatakan bahwa melalui suatu titik yang terletak di luar suatu garis dapat ditarik tepat satu garis yang sejajar dengan garis yang diketahui. Sedangkan, aksiomaaksioma dalam geometri Affin antara lain: 1. Kesejajaran dua bidang dan garis 2. Ketransversalan garis 3. Terdapat perlintasan garis dan bidang 4. Relasi searah antara dua bidang 2.1.1 Kesejajaran Dua Bidang dan Garis Definisi Kesejajaran Geometri Affin Kesejajaran dalam geometri Affin adalah suatu relasi ekuivalensi yang memenuhi sifat-sifat sebagai berikut : 2. Refleksi, yaitu setiap garis a//a. 3. Simetrik, yaitu jika garis a //b, maka garis b //a. 4. Transitif, yaitu jika garis a //b dan garis b //c, maka garis a //c. Teorema 2.1.1

Misalkan garis a sejajar dengan garis b, jika garis c memotong garis a, maka c juga memotong garis b. Bukti : Andaikan c memotong a di titik P dan andaikan c\\b. Ini berarti bahwa melalui P ada dua garis yaitu a dan c yang sejajar dengan garis b. Hal ini berlawanan dengan aksioma kesejajaran. Jadi haruslah c memotong garis b. c P a b Gambar 1.1 Suatu garis yang melintasi dua garis yang sejajar Akibat 2.1.1 1. Jika garis a \\b dan c\\a, maka garis c\\b. 2. Jika garis a\\b, b\\c maka a=c atau a\\c. Definisi pusat kesejajaran yang tak kolinier adalah sebagai berikut: 1. Empat titik A,B,C, dan D yang tidak segaris dikatakan membentuk suatu jajaran genjang jika AB sejajar DC dan BC sejajar AD. 2. A,B,C, dan D adalah titik sudut jajaran genjang tersebut. Segmen-segmen AB, BC,CD, dan DA adalah sisi-sisinya, sedangkan segmen-segmen AC dan BD adalah diagonal-diagonalnya. Karena B dan D pada pihak yang berlainan dari AC, maka diagonal-diagonal berpotongan di suatu titik yang disebut pusat jajaran genjang.

Definisi Kesejajaran Garis 1. Jika garis a // b, maka garis a searah dengan garis b. 2. Dua garis l dan m dinamakan sejajar (ditulis l//m) apabila l dan m termuat dalam satu bidang dan l dan m tidak memiliki titik sekutu Akibatnya Apabila l//m maka l dan m termuat dalam satu bidang. Bukti Menurut definisi kesejajaran garis, andaikan terdapat suatu bidang V yang memuat l dan m. Andaikan bidang V juga memuat l dan m, dan titik A m, maka V dan V memuat l dan titik A, maka V = V. Jadi, hanya ada satu (unik) bidang yang memuat dua garis yang sejajar. Teorema 1 Jika bidang V terdapat dua garis berpotongan yang sejajar dengan bidang W maka V\\W. Teorema 2 Jika titik A pada bidang V dan A tidak pada bidang W dan jika pada V ada dua garis melalui A sejajar dengan garis-garis pada W, maka V\\W. Bukti: Andaikan l dan m garis pada V yang sejajar dengan garis-garis pada W, karena l tidak pada W, sehingga l\\w. Begitu pula karena m\\w, sehingga V\\W. Teorema 3 Jika dua garis berbeda saling sejajar, maka keduanya terletak pada tepat satu bidang. Teorema4 Jika dua buah garis koplanar dan keduanya tegak lurus terhadap suatu garis yang sama, maka keduanya saling sejajar. Teorema 5

Jika suatu bidang memotong dua buah bidang yang saling sejajar, maka perpotongannya adalah dua buah garis yang saling sejajar seperti gambar berikut ini Gambar 1.2 Suatu bidang yang melintasi dua bidang yang sejajar Teorema 6 Jika suatu garis tegak lurus terhadap salah satu bidang dari dua bidang yang saling sejajar, maka garis tersebut tegak lurus terhadap bidang yang kedua. Teorema7 Jika dua bidang yang setiap bidangnya tegak lurus terhadap suatu garis yang sama, maka kedua bidang tersebut saling sejajar. Teorema 8 Jika dua garis tegak lurus terhadap suatu bidang yang sama, maka kedua garis tersebut saling sejajar. Teorema 9 Dua bidang yang saling sejajar, maka keduanya berjarak sama. Definisi Garis Searah Apabila garis a dan b bersifat bahwa a\\b atau a=b maka dikatakan bahwa garis a searah garis b.

Kesearahan garis merupakan perluasan kesejajaran dan juga merupakan relasi ekuivalensi, maka berlaku : i. Jika a searah b maka b searah a ii. Jika a searah b dan b searah c, maka garis a searah c. Definisi Relasi Equivalensi Geometri Andaikan S suatu himpunan dan R suatu relasi dalam S x S yang ditulis sebagai a R b untuk a S dan b S relasi R, maka berlaku: i. ara ( sifat refleksif) untuk setiap a S ii. Apabila arb maka bra (sifat simetri) untuk setiap a, b S. iii. Apabila arb dan bra maka arc untuk setiap a, b, c S. Definisi Kesejajaran Dua Bidang Dua bidang yang berbeda pada suatu bidang dan juga suatu garis, dikatakan saling sejajar, jika keduanya tidak berpotongan. Gambar 1.3 Bentuk bidang yang sejajar 2.1.2 Ketransversalan Garis Definisi Ketransversalan Garis yaitu: Jika garis l dan m sebidang, maka terdapat tiga kemungkinan yaitu: (1) l\\ m (2) l = m

(3) l \\ m atau l = m Hubungan antara kesejajaran dan perlintasan dituangkan dalam teorema berikut Teorema 1: Apabila sebuah bidang terdapat sebuah garis transversal dengan satu dari dua garis sejajar, maka akan transversal dengan garis yang lainnya. Akibatnya 1. a lint b jika dan hanya jika perpotongan antara a dan b adalah sebuah titik. 2. jika a dan b dua garis yang sebidang (coplanar) maka ada tiga kemungkinan,yaitu (i) a sejajar b (ii) a lint b (iii) a=b Teorema 2 Apabila terdapat garis pada suatu bidang melintasi salah satu dari dua garis yang sejajar, maka garis tersebut akan melintasi garis yang lain. 2.1.3 Perlintasan Garis dan Bidang Definisi perlintasan bidang adalah sebagai berikut: Bidang V dikatakan melintasi bidang W, ditulis V lint W apabila terdapat perpotongan V dan W berupa garis. Konsep kesejajaran dari perlintasan garis dan bidang adalah sebagai berikut: 1. Apabila g dan V tidak memiliki titik potong maka, g\\v atau V\\g. 2. Apabila garis g dan bidang V bertemu pada suatu titik maka, garis g lint(melintasi) V atau V lint(melintasi) g. 3. Apabila V W = (himpunan kosong), maka terdapat bidang V \\W. 2.2 Definisi Geometri Insidensi

Sebuah model geometri insidensi adalah sebuah sistem(s1, S2,S3) yang terdiri atas tiga himpunan tertentu S1, S2, S3. Anggota-anggota himpunan tersebut masing-masing dinamakan titik, garis,dan bidang yang memenuhi aksioma insidensi. Aksioma insidensi terdiri dari Garis mengandung paling sedikit dua titik 1. Paling banyak satu garis mengandung dua titik yang berlainan 2. Bidang mengandung paling sedikit tiga titik yang tak segaris(tak kolinier) 3. Tiga titik berlainan yang tak segaris terkandung dalam cukup satu bidang 4. Apabila sebuah bidang memuat dua titik berlainan dari sebuah garis, maka bidang itu akan memuat setiap titik pada garis tersebut (garis terletak dalam bidang itu ). 5. Apabila dua bidang bersekutu pada sebuah titik maka kedua bidang itu akan bersekutu pada titik kedua yang lain. Jadi, sebuah himpunan titik-titik bersama dengan himpunan bagian seperti garis dan bidang yang memenuhi aksioma 1 sampai 6 disebut geometri insidensi. Karena, suatu geometri dibentuk berdasarkan aksioma yang berlaku dalam geometri-geometri tersebut maka dapat dikatakan bahwa geometri insidensi didasari oleh aksioma insidensi. Dalam geometri selain aksioma diperlukan juga unsur-unsur tak terdefinisi. Untuk suatu geometri diperlukan unsur tak terdefinisi sebagai berikut. 1. Titik 2. Garis( Himpunan titik-titik) 3. Bidang (himpunan titik-titik) Teorema 11 Dua garis yang berbeda bersekutu paling banyak pada satu titik.

Definisi Garis Suatu garis yang mengandung titik A dan titik B yang berbeda disebut garis AB. Teorema 12 Apabila titik A tidak pada garis BC maka titik A, B, dan C berlainan dan tidak kolinier. Bukti: a) Bukti garis A, B, C berlainan. Menurut ketentuan B C. Andaikan A = B, karena B BC (B pada garis BC), maka A BC. Hal ini berlawanan dengan yang diketahui sehingga pengumpamaan A = B adalah tidak benar. Maka haruslah A B. begitu pula dengan cara yang sama dapat dibuktikan A C. Jadi A, B, C berlainan. a) Bukti garis A,B C kolinier. Untuk membuktikan titik A, B, C tak segaris. Andaikan A, B, C segaris. Akan ditunjukkan adanya kontradiksi. Andaikan titik A, B, C segaris maka ada garis g yang memuat A, B, dan C. Karena g memuat b dan C dan B C maka g = BC, hal ini berlawanan dengan yang diketahui bahwa tidak pada garis BC. Sehingga pengandaian bahwa A, B, C segaris mengakibatkan kontradiksi. Ini berarti A, B, C tak segaris (tidak kolinier). Teorema 13 Suatu garis dan suatu titik yang tidak pada garis itu termuat dalam tepat satu bidang. Bukti Andaikan A titik dan g garis dengan A g ( A tidak pada g). Menurut aksioma 1 ada dua titik berlainan pada g, misalkan titik tersebut adalah B dan C, sehingga g = BC. Jadi A BC. Menurut aksioma 2 titik A, B, dan C berlainan dan tak segaris. Menurut aksioma 4 titik A, B, dan C termuat dalam satu bidang, anggap bidang tersebut bidang V. Karena B Vdan C V maka, menurut aksioma 5, BC = g V (V memuat g ). Andaikan ada bidang lain V yang

memuat garis g dan titik A. Jadi V memuat pula B dan C. Ini berarti V memuat A, B, dan C. Menurut aksioma 4 bahwa V = V. Jadi V adalah satu-satunya bidang yang memuat g dan A. Karena jika ada bidang lain yang memuat A, B dan C bidang tersebut akan sama dengan bidang V. Definisi Garis dan Bidang 1. Andaikan A g (titik A tidak pada garis g), bidang yang memuat garis g dan titik A dapat ditulis dengan ga. 2. Andaikan titik A, B, dan C berlainan dan tak kolinier, bidang yang memuat A, B, dan C dapat ditulis dengan ABC. 2.3 Ke-Isomorfismaan Definisi isomorf adalah suatu padanan(korespondensi) satu-satu antara suatu himpunan S dan himpunan S adalah suatu padanan a a (dibaca a sepadan dengan a atau a sepadan dengan a) antara unsur-unsur S dan unsur-unsur S sedemikian hingga tiap unsur a dalam S sepadan dengan unsur tunggal a dalam S dan sebaliknya tiap unsur b dalam S adalah padanan unsur tunggal b dalam S sehingga b b. Bidang G1 dan G2 disebut isomorfis jika ada sebuah fungsi bijektif (satu-ke-satu dan onto) dari V1 ke V2 dengan sifat bahwa a bertetangga dengan b pada G1 jika dan hanya jika f(a) bertetangga dengan f(b) pada G2, untuk seluruh a dan b pada V1. Dua geometri affin G dan G yang isomorf, memiliki struktur yang sama. Jika G1, G2, G3 tiga geometri affin, maka berlaku suatu relasi keequivalenan sebagai berikut: 1. G1 G1( sifat reflektif) 2. Jika G1 G2 maka G2 G1 (sifat simetri)

3. Jika G1 G2,G2 G3, maka G1 G3( Transitif) Keterangan adalah simbol isomorf. Beberapa teorema: Jika f : GG suatu isomorfisma, e dan e masing-masing adalah unsur kesatuan G dan G, maka f(e)=e. Jika f : GG suatu isomorfisma dan f(a) = a, ag, a G, maka f(a -1 )=[f(a)] -1. Jika f : GG suatu isomorfisma dan order elemen a adalah n, maka order f(a) juga adalah n. Relasi isomorfisma dalam himpunan grup adalah relasi ekuivalen Definisi (Rawuh, 2009) Dua geometri G dan G disebut isomorf apabila ada tiga padanan satu-satu yaitu antara titiktitik, antara garis-garis, dan antara bidang-bidang. PP, gg, dan VV ( dibaca: titik P sepadan P, garis g sepadan g, dan bidang V sepadan V ) dengan sifat: i) P g dan P g ii) P V dan P V iii) g V dan g V