BAB 3 PENGENALAN GEOMETRI TERURUT

Ukuran: px
Mulai penontonan dengan halaman:

Download "BAB 3 PENGENALAN GEOMETRI TERURUT"

Transkripsi

1 3 PENGENLN GEOMETRI TERURUT Lobachevsky Lahir di Nizhny Novgorad, Rusia. orangtuanya bernama Ivan Maksimovich Lobachevsky dan Praskovia lexan drovina Lobachevsky. Pada tahun 1800 ayahnya meninggal dan ibunya pindah ke Kazan. Di Kazan, Nikola Ivanovich Lobachevsky mengikuti Kazan Gymnasium pada tahun dan lulus tahun Manfaat utama teori yang ditemukan Lobachevsky adalah perkembangan geometri Non-Euclide yang tidak berbeda dari Janos ulyai. Sebelumnya para matematikawan mencoba membuat kesimpulan 5 postulat euclide dari aksioma-aksioma lain.kelima postulat euclide adalah postulat kesejajaran euclide biasanya diganti dengan postulat John Playfair yang mengatakan bahwa diberikan sebuah garis dan sebuah titik di luar garis, hanya ada satu garis yang sejajar dengan garis tersebut yang melalui sebuah titik diluar garis tersebut. geometri Lobachevsky menerima semua postulat geometri euclidedengan membuang postulat kesejajarannya. Lobachevsky mengganti postulat kesejajaran euclide dengan suatu postulat bahwa ada lebih dari satu garis yang sejajar dengan suatu garis tertentu yang melalui suatu titik diluar garis tersebut.geometri lobachevsky memandang bahwa setiap segitiga jumlah besar sudutnya kurang dari 180 derajat. perkembangan geometri non-euclide Lobachevsky disebut geometri hiperbolik. Pada Geometri Terurut ditentukan titik-titik,,... sebagai unsur yang tidak didefinisikan dan 60 / Geometri Terurut

2 relasi keantaraan sebagai relasi yang tidak didefinisikan. Relasi ini dinyatakan dengan [ ], yang berarti terletak antara dan. Jika tidak terletak antara dan, maka dikatakan tidak []. ksioma-aksioma pada Geometri Terurut: ksioma 3.1 da paling sedikit dua titik ksioma 3.2 Jika dan dua titik berlainan, maka ada satu titik yang memenuhi [ ]. ksioma 3.3 Jika [ ], maka dan berlainan ksioma 3.4. Jika [ ], maka [ ] tetapi tidak [ ] Dari aksioma-aksioma di atas diturunkan teoremateorema seperti berikut. Teorema 3.1 Jika [ ], maka tidak [ ] ukti: Menurut ksioma 3.4 Jika [ ], maka tidak [ ] Ini ekuivalen dengan jika [ ], maka tidak [] Teorema 3.2 Jika [ ], maka, dan berlainan atau ukti: ndaikan =, maka [ ] Jika [ ] maka [ ] (aksioma 3.4) Jika [ ] maka tidak [ ] (aksioma 3.4). Kontradiksi Jadi ndaikan =, maka [ ] Jika [ ], maka [ ] (menurut ksioma 3. 4) Geometri Terurut / 61

3 Jika [ ], maka tidak [ ] (menurut Teorema 3.1) terdapat kontradiksi, jadi. ksioma 3.3 didapat Terbukti, bahwa Definisi 3.1 Jika dan dua titik berlainan, maka segmen atau ruas garis ialah himpunan titik P yang memenuhi [ P ]. Dikatakan titik P terletak pada segmen. Teorema 3.3 Titik maupun titik tidak terletak pada segmen ukti : ndaikan atau terletak pada segmen maka terdapat [] atau [ ]. Ini bertentangan dengan Teorema 3.2. Jadi maupun tidak terletak pada segmen. Teorema 3.4 Segmen = segmen ukti Segmen = himpunan titik P sedemikian hingga [P] (definisi) = himpunan titik P sedemikian hingga [P] (aksioma 3.4) = segmen (definisi) Definisi 3.2 Interval ialah segmen ditambah ujungujungnya yaitu dan. Jadi = + + Sinar / (dari menjauhi ) ialah himpunan titik-titik P yang memenuhi [P ]. 62 / Geometri Terurut

4 Garis ialah interval ditambah sinar-sinar / dan /. Jadi garis = / + + / kibat : Interval = interval Garis = garis, ukti Interval = segmen ditambah dan = segmen ditambah dan = segmen ditambah dan = interval ksioma 3.5 Jika dan D titik-titik berlainan pada garis, maka pada garis D. Teorema 3.5 Jika dan D titik-titik berlainan pada garis, maka garis = garis D. ukti : Jika,, dan D tidak semuanya berlainan, maka dapat dimisalkan = D dan akan dibuktikan, bahwa garis = garis. Untuk membuktikan, bahwa garis = garis, kita tunjukkan, bahwa setiap titik pada garis adalah juga titik pada garis dan sebaliknya. i) pada garis (premis) Misalkan X pada garis. maka menurut ksioma 3.5, pada garis X pada garis X pada garis X ( ujung X) Maka menurut aksioma 3.5, X pada garis. Jadi, jika X pada garis, maka X pada garis. Geometri Terurut / 63

5 Kesimpulan garis himpunan bagian dari garis ii) Misalkan Y pada garis, pada (premis) pada ( ujung ) maka menurut ksioma 3.5, pada garis. Y pada garis pada garis menurut ksioma 3.5, maka pada garis Y pada garis Y pada garis Y ( ujung Y) Jadi menurut ksioma 3.5, Y pada garis. Jika Y pada garis, maka Y pada garis. Kesimpulan garis himpunan bagian dari garis Dari i) dan ii) terbukti bahwa garis = garis. Jika D, maka dengan jalan yang sama dapat dibuktikan, bahwa garis sama dengan garis D, sehingga garis = garis = garis D. Jadi jika,, dan D semua berlainan garis = garis D. kibat 1: Dua titik berlainan terletak tepat pada satu garis. Dua garis berlainan (jika ada) mempunyai paling banyak 1 titik persekutuan. Titik persekutuan ini disebut titik potong kedua garis itu. kibat 2: Tiga titik berlainan, dan pada suatu garis memenuhi tepat hanya salah satu dari relasi-relasi [ ], [ ], atau [ ]. ksioma / Geometri Terurut

6 Jika suatu garis, ada suatu titik tidak pada garis ini. Teorema 3.6 Jika tidak pada garis, maka tidak pada, juga tidak pada. Garis-garis, dan berlainan. ukti : ndaikan pada garis pada garis ( ujung ) Jadi pada garis, kontradiksi dengan tidak pada garis. Kesimpulan tidak pada garis Dengan cara yang sama untuk yang lain. Definisi Titik-titik yang terletak pada garis yang sama disebut ollinear (kolinier atau segaris). 2. Tiga titik noncollinear,, menentukan suatu segitiga yang memuat tiga titik ini, yang disebut titik-titik sudut, dan tiga segmen,, yang disebut sisi-sisi. ksioma 3.7 Jika suatu segitiga, [ D] dan [ E ], maka pada garis DE, ada suatu titik F yang memenuhi [ F ]. Teorema 3.7 ntara dua titik berlainan ada suatu titik lain. ukti : Misalkan dan kedua titik itu seperti pada gambar berikut. Geometri Terurut / 65

7 D E F Menurut ksioma 3.6 ada suatu titik E tidak pada. Menurut ksioma 3.2 ada suatu titik memenuhi [ E ]. Mengingat Teorema 3.5 maka garis sama dengan garis E, tidak terletak pada garis ini, maka suatu segitiga. Menurut ksioma 3.2 ada suatu titik D yang memenuhi [ D]. Menurut ksioma 3.7 ada titik F antara dan. terbukti. ontoh 3.1 Didefinisikan, bahwa suatu segmen ialah himpunan titik-titik. pakah himpunan ini dapat berupa himpunan kosong? Jawab: Jika dan dua titik berlainan, maka segmen ialah himpunan titik P yang memenuhi [ P ]. Dikatakan titik P terletak pada segmen. Menurut Teorema 3.7 yang mengatakan, bahwa antara dua titik berlainan ada suatu titik lain, maka himpunan titik P tersebut tidak mungkin berupa himpunan kosong. 66 / Geometri Terurut

8 Teorema 3.8 Jika suatu segitiga dan [ D] dan [ E ], maka pada garis DE ada suatu titik F yang memenuhi [ F ] dan [D E F]. ukti : Karena F terletak pada garis DE, maka ada 5 kemungkinan: a) F = D; b. F = E; c) [E F D]; d. [F D E] e) [D E F] Kemungkinan: a) Jika F = D, maka [ D] dan [ D ], jadi, dan collinear. Kontradiksi dengan suatu segitiga. Jadi F D. b) Jika F = E, maka [ E ] dan [ E ], jadi, dan collinear. Kontradiksi dengan suatu segitiga. Jadi F E c) Jika [E F D], maka perhatikan gambar berikut. Dalam segitiga D E dengan [ E ] dan [E F D] Menurut ksioma 3.2 pada F ada X yang memenuhi [D X ]. Karena F dan D tidak mungkin berpotongan lebih dari satu kali, maka X =, sehingga terdapat [D ]. Kontradiksi dengan ketentuan [ D]. Jadi Geometri Terurut / 67

9 tidak mungkin [E F D] d) Jika [F D E], maka gambarnya adalah sebagai berikut. Dalam segitiga FE dengan [ F ], maka menurut ksioma 3.7 pada garis D ada suatu titik X sedemikian, sehingga [ X E]. Karena D dan E tidak berpotongan di lebih dari satu titik, maka X =, sehingga terdapat [ E]. Ini bertentangan dengan ketentuan [ E ]. Jadi tidak mungkin [F D E]. Jadi kemungkinan hanya [D E F]. ontoh 1.2 Tunjukkan bahwa suatu garis mempunyai titik yang tidak terhingga banyaknya. Jawab: Menurut definisi garis ialah interval ditambah sinar-sinar / dan /. Jadi garis = / + + /. Garis ialah himpunan titik P yang memenuhi [P ] digabung dengan himpunan titik P yang memenuhi [ P ] dan digabung lagi dengan himpunan titik P yang memenuhi [ P] dan ditambah titik-titik dan. 68 / Geometri Terurut

10 Sehingga banyaknya titik pada garis tidak terhingga (ksioma 3.2 dan Teorema 3.8). Teorema 3.9 Suatu garis tidak mungkin memotong ketiga sisi suatu segitiga (sisi berupa segmen) Teorema 3.10 Jika [ ] dan [ D], maka [ D] D Teorema 3.11 Jika [ ] dan [ D] serta D, maka: 1) [ D] atau [ D ], dan 2) [ D] atau [ D ] lihat gambar a), b) Teorema 3.12 Jika [ D] dan [ D] dan, maka [ ] atau [ ] lihat gambar c), d) Teorema 3.13 Jika [ ] dan [ D], maka [ D] dan [ D] lihat gambar e) a) D b) D c) D d) D Geometri Terurut / 69

11 e) D Definisi 3.3 Jika [ ] dan [ D], kita tulis [ D] Urutan 4 titik ini mempunyai sifat, jika [ D], maka [D ]. Urutan titik-titik ini dapat diperluas sebagai berikut. Seperti telah kita ketahui sebarang titik O pada segmen membagi segmen itu dalam dua segmen, O dan O. 0 Sebarang titk O pada sinar dari membagi sinar dalam suatu segmen dan suatu sinar, O dan O/. 0 Sebarang titik pada garis membagi garis dalam dua sinar berlawanan, jika [ O ], maka sinar-sinar itu ialah O/ dan O/, sinar O/ yang memuat titik, kadang-kadang lebih mudah disebut sinar O. 0 Untuk n > 1, maka n titik berlainan membagi garisnya dalam 2 sinar dan n-1 segmen. Titik titiknya dapat T1, T2,.Tn sedemikian hingga kedua sinar itu T1/Tn dan Tn/T1, 70 / Geometri Terurut

12 T 1 T 2 T 3 T n sedang n 1 segmen itu T1T2, T2T3,.. Tn-1Tn, masing-masing tidak memuat titik itu. Kita katakan, bahwa titik-titik itu dalam urutan T1T2. Tn dan ditulis [T1T2, T2T3,.., Tn]. Syarat perlu dan cukup untuk ini ialah : [T1T2T3], [T2 T3 T4], [T3 T4 T5],.. [Tn-2 Tn-1 Tn]. Marilah kita perhatikan kembali ksioma 3.8. Perkembangan logika yang terbaik dari suatu subjek menggunakan himpunan aksioma yang paling sederhana atau yang paling lemah. Pasch memberikan pernyataan yang lebih kuat tentang ksioma 3.7 Ia menyatakan : Jika sebuah garis dalam bidang suatu segitiga memotong satu sisi, maka ia juga akan memotong sisi yang lain (atau melalui suatu titik sudut). ksioma 3.7 yang kita pakai yaitu suatu aksioma dari Peano, lebih baik, karena a. kata bidang tidak dipakai sama sekali b. garis DE memasuki segitiga dengan cara yang khusus, yaitu sebelum memotong ia berasal dari titik D pada / ksioma ini cukup kuat dan dari ini dapat diturunkan Teorema Jika Teorema 3.14 ini diambil sebagai aksioma, maka dari ini tidak dapat diturunkan ksioma 3.7 sebagai Teorema. Teorema 3.14 Jika suatu segitiga dan [ F ] dan [ D] maka pada garis DF, ada suatu titik E yang memenuhi [ E ]. Geometri Terurut / 71

13 ukti : Diambil G pada /F dan dipandang OF dengan [F G] dan [ D]. Maka menurut aksioma VII pada garis G ada titik H sedemikian, sehingga [D H F]. Menurut Teorema 3.8 [G H]. D K H E G F Menurut Teorema 3.10, karena [ F H] dan [F G], maka [ F G]. Di pandang FD dengan [ F G] dan [D H F]. Maka menurut ksioma 3.7 pada garis GH ada suatu titik K sedemikian, sehingga [D K ], dan menurut Teorema 3.8 [G H K]. Karena [G H] dan [G H K], maka [ H K]. Jadi ada segitiga K dengan [ K D] dan [K H ], maka menurut ksioma 3.7 pada garis DH (atau garis DF) ada suatu titik E yang memenuhi [ E ] terbukti. ontoh 3.3 uktikan.bahwa jika suatu segitiga dan [ L ], [ M ] dan [ N ], maka ada suatu titik E yang memenuhi [ E L] dan [M E N]. M E D L 72 / Geometri Terurut N

14 Diketahui segitiga, [ L ], [ M ] dan [ N ] Dibuktikan : ada titik E yang memenuhi [ E L] dan [M E N]. ukti : Dipandang segitiga N dengan [ N ] (karena [ N ] dan [ L ]. Menurut Teorema 3.14 pada garis L ada titik D yang memenuhi [ D N]. Dipandang segitiga M N dengan [ D N] dan [ M ]. Maka menurut Teorema 3.14 pada garis D ada titik E yang memenuhi [M E N]. Karena [ D L], maka garis D sama dengan garis L. Jadi ada titik E yang memenuhi [M E N] dan [ E L] Terbukti. ontoh 3.4 Jika suatu segitiga, maka ketiga sinar /, /, / mempunyai transversal (yaitu suatu garis yang memotong ketiganya). uktikan! Diketahui segitiga Dibuktikan : /, /, / mempunyai transversal ukti : mbillah titik pada / dan titik pada / dan dipandang segitiga. Dipenuhi [ ] dan [ ]. D Geometri Terurut / 73

15 Maka menurut ksioma 3.7 pada garis ada suatu titik D yang memenuhi [ D ] dan menurut Teorema 3.8 [ D]. Jadi garis merupakan transversal dari /, / dan / Terbukti. ontoh 1.5 Jika suatu segitiga, maka /, / dan / tidak mempunyai transversal. Diketahui segitiga uktikan ; /, /, / tidak mempunyai transversal. ukti : mbillah pada / dan pada /. Telah terbukti (pada soal 4) bahwa memotong / jadi tidak mungkin memotong /. Maka /, / dan / tidak mempunyai transversal. Terbukti. Definisi Jika,, tiga titik noncolinier, bidang adalah himpunan semua titik yang colinier dengan pasangan titik-titik pada satu atau dua sisi dari segitiga. 2. Suatu segmen, interval, garis atau sinar dikatakan terletak dalam bidang, jika semua 74 / Geometri Terurut

16 titiknya terletak dalam bidang itu. ksioma 3.1 sampai 3.7 dapat digunakan membuktikan letak dalam bidang. ksioma lainnya yang dapat digunakan adaladh aksioma yang dikemukakan Hilbert, yaitu: 1. Sekarang tiga titik noncolinier dalam bidang menentukan dengan lengkap bidang tersebut. 2. Jika dua titik berlainan pada suatu garis m terletak pada bidang, maka setiap titik dari m terletak dalam bidang. Definisi 3.5 Suatu sudut terdiri dari suatu titik O dan dua sinar yang noncoliner yang titik pangkalnya O. Titik O disebut titik sudut dan sinar-sinar itu adalah sisi-sisi sudut. ksioma 3.8 (Dalam ruang dimensi dua) Semua titik ada dalam satu bidang ksioma 3.9 Untuk setiap partisi dari semua titik pada suatu garis dalam dua himpunan yang tidak kosong, sedemikian hingga tidak ada titik dari masing-masing himpunan yang terletak antara dua titik dari himpunan lainnya, maka ada satu titik dari satu himpunan yang terletak antara setiap titik dari himpunan itu dan setiap titik himpunan lainnya. LTIHN Jika [ D] dan [ D] dan, buktikan [ ]. atau [ ]. Geometri Terurut / 75

17 2. uktikan Teorema uktikan Teorema uktikan Teorema / Geometri Terurut

Janos meninggalkan sekolahnya pada saat kelas 4. Ia

Janos meninggalkan sekolahnya pada saat kelas 4. Ia 4 PENGENLN GEOMETRI FFINE Janos olyai dilahirkan pada tanggal 15 Desember 1802 di Koloszvar, sekarang luj, bagian dari Romania Transylvania. Orang tua dari Janos olyai adalah Farkas Wolfgang olyai dan

Lebih terperinci

BAB II KAJIAN PUSTAKA

BAB II KAJIAN PUSTAKA BAB II KAJIAN PUSTAKA Pada Bab II ini akan diuraikan berbagai konsep dasar yang digunakan pada bagian pembahasan. Pada bab II ini akan dibahas pengenalan Geometri Non- Euclid, Geometri Insidensi, Geometri

Lebih terperinci

UKURAN RUAS-RUAS GARIS PADA SEGITIGA SKRIPSI

UKURAN RUAS-RUAS GARIS PADA SEGITIGA SKRIPSI UKURAN RUAS-RUAS GARIS PADA SEGITIGA SKRIPSI Diajukan kepada Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Negeri Yogyakarta untuk Memenuhi Sebagian Persyaratan guna Memperoleh Gelar Sarjana

Lebih terperinci

BAB I PENDAHULUAN. Geometri berasal dari kata Latin Geometria. Kata geo memiliki arti

BAB I PENDAHULUAN. Geometri berasal dari kata Latin Geometria. Kata geo memiliki arti BAB I PENDAHULUAN A. Latar Belakang Masalah Geometri berasal dari kata Latin Geometria. Kata geo memiliki arti tanah dan metria memiliki arti pengukuran. Berdasarkan sejarah, Geometri tumbuh jauh sebelum

Lebih terperinci

BAB III PEMBAHASAN. Pada bab pembahasan ini akan dibahas mengenai Geometri Hiperbolik yang

BAB III PEMBAHASAN. Pada bab pembahasan ini akan dibahas mengenai Geometri Hiperbolik yang BAB III PEMBAHASAN Pada bab pembahasan ini akan dibahas mengenai Geometri Hiperbolik yang didasarkan kepada enam postulat pada Geometri Netral dan Postulat Kesejajaran Hiperbolik. Akan dibahas sifat-sifat

Lebih terperinci

Bab II TINJAUAN PUSTAKA. Aksioma-aksioma yang membentuk geometri Affin disebut dengan aksioma playfair

Bab II TINJAUAN PUSTAKA. Aksioma-aksioma yang membentuk geometri Affin disebut dengan aksioma playfair Bab II TINJAUAN PUSTAKA 2.1 Konsep Dasar Geometri Affin ( Rawuh, 2009) Aksioma-aksioma yang membentuk geometri Affin disebut dengan aksioma playfair yaitu aksioma yang menyatakan bahwa melalui suatu titik

Lebih terperinci

KONSISTENSI PADA GEOMETRI EUCLID DAN GEOMETRI HIPERBOLIK

KONSISTENSI PADA GEOMETRI EUCLID DAN GEOMETRI HIPERBOLIK KONSISTENSI PADA GEOMETRI EUCLID DAN GEOMETRI HIPERBOLIK (Jurnal 9) Memen Permata Azmi Mahasiswa S2 Pendidikan Matematika Universitas Pendidikan Indonesia Setelah beberapa pertemuan mempelajari tentang

Lebih terperinci

II. TINJAUAN PUSTAKA. sebuah geometri selain aksioma diperlukan juga unsur-unsur tak terdefinisi. Untuk. 2. Himpunan titik-titik yang dinamakan garis.

II. TINJAUAN PUSTAKA. sebuah geometri selain aksioma diperlukan juga unsur-unsur tak terdefinisi. Untuk. 2. Himpunan titik-titik yang dinamakan garis. 5 II. TINJAUAN PUSTAKA 2.1 Geometri Insidensi Suatu geometri dibentuk berdasarkan aksioma yang berlaku dalam geometrigeometri tersebut. Geometri insidensi didasari oleh aksioma insidensi. Di dalam sebuah

Lebih terperinci

GEOMETRI AFFINE A. PENDAHULUAN

GEOMETRI AFFINE A. PENDAHULUAN 1 GEOMETRI FFINE. PENDHULUN Euclides telah mengumpulkan materinya dari beberapa sumber, maka tidak mengherankan bahwa geometri Euclides dapat diambil sarinya berupa dua geometri yang berlainan dalam dasar

Lebih terperinci

IKIP BUDI UTOMO MALANG GEOMETRI HAND OUT 2

IKIP BUDI UTOMO MALANG GEOMETRI HAND OUT 2 IKIP BUDI UTOMO MALANG GEOMETRI HAND OUT 2 ALFIANI ATHMA PUTRI ROSYADI, M.Pd 4/14/2012 KUMPULAN DEFINISI DAN AKSIOMA DALAM GEOMETRI Nama Definisi 2.1 Definisi 2.2 Definisi 2.3 Definisi 2.4 Definisi 2.5

Lebih terperinci

TRANSFORMASI. 1) T(A) = A 2) Apabila P A, maka T(P) = Q dengan Q titik tengah garis. Selidiki apakah

TRANSFORMASI. 1) T(A) = A 2) Apabila P A, maka T(P) = Q dengan Q titik tengah garis. Selidiki apakah TRNSFORMSI Suatu transformasi pada suatu bidang V adalah suatu fungsi yang bijektif dengan daerah asalnya V dan daerah nilainya V juga. Fungsi yang bijektif adalah sebuah fungsi yang bersifat : juga V.

Lebih terperinci

BAB I PENDAHULUAN. salah satunya adalah bidang geometri. Geometri berasal dari bahasa Yunani yaitu

BAB I PENDAHULUAN. salah satunya adalah bidang geometri. Geometri berasal dari bahasa Yunani yaitu BAB I PENDAHULUAN A. Latar Belakang Perkembangan ilmu matematika terus berlangsung dari masa ke masa, salah satunya adalah bidang geometri. Geometri berasal dari bahasa Yunani yaitu "Geometrein", kata

Lebih terperinci

SIFAT-SIFAT KETEGAKLURUSAN, KESEJAJARAN, DAN SEGITIGA ASIMPTOTIK PADA GEOMETRI HIPERBOLIK

SIFAT-SIFAT KETEGAKLURUSAN, KESEJAJARAN, DAN SEGITIGA ASIMPTOTIK PADA GEOMETRI HIPERBOLIK 40 Jurnal Matematika Vol 6 No 1 Tahun 2017 SIFAT-SIFAT KETEGAKLURUSAN, KESEJAJARAN, DAN SEGITIGA ASIMPTOTIK PADA GEOMETRI HIPERBOLIK CARACTERISTICS OF PERPENDICULARITY, PARALLELISM, AND ASYMPTOTIC TRIANGLES

Lebih terperinci

II. LANDASAN TEORI. Dalam bab ini akan didiskusikan unsur tak terdefinisi, aksioma-aksioma, istilahistilah,

II. LANDASAN TEORI. Dalam bab ini akan didiskusikan unsur tak terdefinisi, aksioma-aksioma, istilahistilah, 3 II. LANDASAN TEORI Dalam bab ini akan didiskusikan unsur tak terdefinisi, aksioma-aksioma, istilahistilah, definisi-definisi dan teorema-teorema yang berhubungan dengan penelitian ini. 2.1 Geometri Insidensi

Lebih terperinci

GEOMETRI EUCLID DAN GEOMETRI HIPERBOLIK

GEOMETRI EUCLID DAN GEOMETRI HIPERBOLIK GEOMETRI EUCLID DAN GEOMETRI HIPERBOLIK (Jurnal 3) Memen Permata Azmi Mahasiswa S2 Pendidikan Matematika Universitas Pendidikan Indonesia Kuliah geometri pada rabu pagi tanggal 25 september 2013 disampaikan

Lebih terperinci

Geometri Insidensi. Modul 1 PENDAHULUAN

Geometri Insidensi. Modul 1 PENDAHULUAN Modul 1 Geometri Insidensi M PENDAHULUAN Drs. Rawuh odul Geometri Insidensi ini berisi pembahasan tentang pembentukkan sistem aksioma dan sifat-sifat yang mendasari geometri tersebut. Sebelumnya Anda akan

Lebih terperinci

MAKALAH. GEOMETRI BIDANG Oleh Asmadi STKIP Muhammadiyah Pagaralam

MAKALAH. GEOMETRI BIDANG Oleh Asmadi STKIP Muhammadiyah Pagaralam MAKALAH GEOMETRI BIDANG Oleh Asmadi STKIP Muhammadiyah Pagaralam 1 BAB I PENDAHULUAN A. Latar Belakang Kata geometri berasal dari bahasa Yunani yang berarti ukuran bumi. Maksudnya mencakup segala sesuatu

Lebih terperinci

Oleh : Sutopo, S.Pd., M.Pd. Prodi P Mat-Jurusan PMIPA FKIP UNS

Oleh : Sutopo, S.Pd., M.Pd. Prodi P Mat-Jurusan PMIPA FKIP UNS Oleh : Sutopo, S.Pd., M.Pd. Prodi P Mat-Jurusan PMIPA FKIP UNS Materi KKD I Konsep dasar geometri dan segitiga (termasuk teorema dan aksioma terkait) KKD II Poligon dan Lingkaran (sifat dan luas) KKD III

Lebih terperinci

( A) RUAS GARIS BERARAH

( A) RUAS GARIS BERARAH RUS GRIS ERRH Definisi Ruas Garis erarah Definisi 1 Suatu ruas atau garis berarah adalah sebuah ruas garis yang salah satu ujungnya dinamakan titik pangkal dan ujung yang lain dinamakan titik akhir. ontoh:

Lebih terperinci

Modul 1. Geometri Datar. 1.1 Perkembangan Geometri

Modul 1. Geometri Datar. 1.1 Perkembangan Geometri Modul 1 Geometri Datar 1.1 erkembangan Geometri enda-benda alam yang konkrit, seperti televisi, batu bata, lapangan sepakbola, lapangan soft-ball, bola, bola rugby dan sebagainya merupakan awal diselidikinya

Lebih terperinci

BAB 7 GEOMETRI NETRAL

BAB 7 GEOMETRI NETRAL BAB 7 GEOMETRI NETRAL Ilmuwan besar matematika ini lahir pada bulan April 1777, di Brunswick, Daerah duke Brunswick (sekarang Negara Jerman). Gauss tumbuh didalam keluarga yang agak sederhana, bukan kaya

Lebih terperinci

TEOREMA MENELAOS DAN TEOREMA DE CEVA DALAM SEGITIGA

TEOREMA MENELAOS DAN TEOREMA DE CEVA DALAM SEGITIGA pril 18, 2015 [DOKUE HFIUDI S.] TEOE EEOS D TEOE DE EV D SEGITIG. EDHUU Teorema enelaos ini terkait dengan penentuan titik yang segaris dalam segitiga dan sangat berguna untuk membuktikan titik-titik kolinier,

Lebih terperinci

SEGIEMPAT SACCHERI. (Jurnal 7) Memen Permata Azmi Mahasiswa S2 Pendidikan Matematika Universitas Pendidikan Indonesia. 4 2 l2

SEGIEMPAT SACCHERI. (Jurnal 7) Memen Permata Azmi Mahasiswa S2 Pendidikan Matematika Universitas Pendidikan Indonesia. 4 2 l2 SEGIEMPT SCCHERI (Jurnal 7) Memen Permata zmi Mahasiswa S2 Pendidikan Matematika Universitas Pendidikan Indonesia Segiempat saccheri merupakan materi perkuliahan geometri pada pertemuan ke-7. Perkuliah

Lebih terperinci

GEOMETRI Geometri Dasar Oleh: WIDOWATI Jurusan Matematika FMIPA UNDIP

GEOMETRI Geometri Dasar Oleh: WIDOWATI Jurusan Matematika FMIPA UNDIP GEOMETRI Geometri Dasar Oleh: WIDOWATI Jurusan Matematika FMIPA UNDIP 1 Geometri dasar Himpunan berbentuk beserta sistem aksioma yang melibatkan 5 aksioma disebut Struktur Geometri Euclid, dengan unsurunsur

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA Pada bagian ini dipaparkan dasar-dasar yang digunakan pada bagian pembahasan. Tinjauan yang dilakukan dengan memaparkan definisi mengenai unsur-unsur kajian geometri, aksioma kekongruenan,

Lebih terperinci

Geometri Dimensi Dua

Geometri Dimensi Dua Geometri Dimensi Dua Materi Pelatihan Guru SMK Model Seni/Pariwisata/Bisnis Manajemen Yogyakarta, 28 November 23 Desember 2010 Oleh Dr. Ali Mahmudi JURUSAN PENDIDIKAN MATEMATIKA FAKULTAS MATEMATIKA DAN

Lebih terperinci

PEMBAHASAN. Teorema 1. Tidak ada bilangan asli N yang lebih besar dari semua bilangan bulat lainnya.

PEMBAHASAN. Teorema 1. Tidak ada bilangan asli N yang lebih besar dari semua bilangan bulat lainnya. PEMAHAAN 1. Pengertian Kontradiksi Kontradiksi adalah dua pernyataan yang bernilai salah untuk setiap nilai kebenaran dari setiap komponen-komponennya. 2. Pembuktian dengan Kontradiksi Kontradiksi merupakan

Lebih terperinci

JENIS-JENIS SEGITIGA YANG TERBENTUK AKIBAT TERBENTUKNYA SEBUAH SEGIEMPAT PADA SEBUAH BOLA

JENIS-JENIS SEGITIGA YANG TERBENTUK AKIBAT TERBENTUKNYA SEBUAH SEGIEMPAT PADA SEBUAH BOLA JENIS-JENIS SEGITIGA YANG TERBENTUK AKIBAT TERBENTUKNYA SEBUAH SEGIEMPAT PADA SEBUAH BOLA SKRIPSI Diajukan Kepada Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Negeri Yogyakarta Untuk Memenuhi

Lebih terperinci

Drs. Slamin, M.Comp.Sc., Ph.D. Program Studi Sistem Informasi Universitas Jember

Drs. Slamin, M.Comp.Sc., Ph.D. Program Studi Sistem Informasi Universitas Jember Penalaran Dalam Matematika Drs. Slamin, M.Comp.Sc., Ph.D Program Studi Sistem Informasi Universitas Jember Outline Berpikir Kritis 1 p 2 Penalaran Induktif 3 Bekerja dengan Pola Pola Bilangan Pola Geometri

Lebih terperinci

ISOMETRI TERHADAP GEOMETRI INSIDENSI TERURUT

ISOMETRI TERHADAP GEOMETRI INSIDENSI TERURUT Prosiding Semirata FMIPA Universitas Lampung, 2013 ISOMETRI TERHADAP GEOMETRI INSIDENSI TERURUT Damay Lisdiana, Muslim Ansori, Amanto Jurusan Matematika FMIPA Universitas Lampung Email: peace_ay@yahoo.com

Lebih terperinci

BAB I DEFINISI DEFINISI DAN PENGGUNAANNYA DIDALAM PEMBUKTIAN

BAB I DEFINISI DEFINISI DAN PENGGUNAANNYA DIDALAM PEMBUKTIAN I FINISI FINISI N PNGGUNNNY ILM PMUKTIN Mendifinisikan suatu kata adalah penting, sebab (1) definisi-definisi tersebut dibentuk untuk keperluan manusia dalam kaitannya dengan diskusi, dan (2) setiap definisi

Lebih terperinci

A. Titik, Garis, dan Bidang dalam Ruang. Definisi 1 (Space) Ruang (space) adalah himpunan semua titik.

A. Titik, Garis, dan Bidang dalam Ruang. Definisi 1 (Space) Ruang (space) adalah himpunan semua titik. Dalam geometri bidang atau geometri dimensi-2 perhatian kita pada dua dimensi, yaitu dimensi-1 dan dimensi-2. Ketika kita mempelajarinya, imajinasi kita pada selembar kertas tipis yang terhampar tak terbatas.

Lebih terperinci

GEOMETRI DIMENSI TIGA

GEOMETRI DIMENSI TIGA GEOMETRI IMENSI TIG NGUN RUNG Materi tentang bangun ruang sudah pernah dipelajari di SMP, di antaranya : Kubus, alok, Prisma, Limas, Tabung, Kerucut, dan ola. Kubus Kubus adalah bangun ruang yang dibatasi

Lebih terperinci

RUAS GARIS BERARAH. Andaikan sekarang ada 2 ruas garis berarah AB dan CD. Dalam

RUAS GARIS BERARAH. Andaikan sekarang ada 2 ruas garis berarah AB dan CD. Dalam RUAS GARIS BERARAH 9.1 Definisi dan Sifat-sifat ang Sederhana Untuk melajutkan penelidikan tentang isometri diperlukan pengertian tentang ruas garis berarah sebagai berikut: Definisi: Suatu ruas garis

Lebih terperinci

Geometri Bangun Datar. Suprih Widodo, S.Si., M.T.

Geometri Bangun Datar. Suprih Widodo, S.Si., M.T. Geometri Bangun Datar Suprih Widodo, S.Si., M.T. Geometri Adalah pengukuran tentang bumi Merupakan cabang matematika yang mempelajari hubungan dalam ruang Mesir kuno & Yunani Euclid Geometri Aksioma /postulat

Lebih terperinci

MATERI : RUAS GARIS BERARAH (KELOMPOK V / VI.D) SEKOLAH TINGGI KEGURUAN DAN ILMUPENDIDIKAN PERSATUAN GURU REPUBLIK INDONESIA STKIP PGRI LUBUKLINGGAU

MATERI : RUAS GARIS BERARAH (KELOMPOK V / VI.D) SEKOLAH TINGGI KEGURUAN DAN ILMUPENDIDIKAN PERSATUAN GURU REPUBLIK INDONESIA STKIP PGRI LUBUKLINGGAU MTERI : RUS GRIS ERRH (KELOMOK V / VI.) isusun Oleh: 1. MEILI 2. MEII 3. ROHELI 4. RUI HR 5. TRI YULITIK 6. SILM JR SEKOLH TINGGI KEGURUN N ILMUENIIKN ERSTUN GURU REULIK INONESI STKI GRI LUUKLINGGU RUS

Lebih terperinci

REFLEKSI TERHADAP LINGKARAN SKRIPSI

REFLEKSI TERHADAP LINGKARAN SKRIPSI REFLEKSI TERHADAP LINGKARAN SKRIPSI Diajukan kepada Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Negeri Yogyakarta Untuk Memenuhi Sebagian Persyaratan Guna Memperoleh Gelar Sarjana Sains Disusun

Lebih terperinci

Jurnal Silogisme: Kajian Ilmu Matematika dan Pembelajarannya Desember 2016, Vol. 1, No.2. ISSN:

Jurnal Silogisme: Kajian Ilmu Matematika dan Pembelajarannya Desember 2016, Vol. 1, No.2. ISSN: RUANG DASAR DAN MODEL ROYEKSI STEREOGRAFIK ADA GEOMETRI HIERBOLIK Fuad Arianto 1, Julan Hernadi 2 Universitas Muhammadiyah onorogo fuad8arianto@gmail.com Abstrak Geometri Non-Euclid adalah salah satu pengklasifikasian

Lebih terperinci

By Drs. La Misu, M.Pd Drs. La Arapu,, M.Si Reviewers: Dr. Sugiman, M.Si SUBJECT MATTER

By Drs. La Misu, M.Pd Drs. La Arapu,, M.Si Reviewers: Dr. Sugiman, M.Si SUBJECT MATTER SUJET MTTER o m p i L e d y rs. La Misu, M.Pd rs. La rapu,, M.Si Reviewers: r. Sugiman, M.Si epartment Of Mathematics Education and Natural Sciences Faculty of Teacher Training and Education H L U O L

Lebih terperinci

BAB 3 PENALARAN DALAM GEOMETRI

BAB 3 PENALARAN DALAM GEOMETRI BAB 3 PENALARAN DALAM GEOMETRI A. Kompetensi dan Indikator A.1 Kompetensi Memahami penalaran dalam geometri A.2 Indikator 1. Menjelaskan penalaran induksi 2. Menjelaskan contoh sangkalan 3. Menjelaskan

Lebih terperinci

LOGO JARAK DUA TITIK

LOGO JARAK DUA TITIK LOGO JARAK DUA TITIK JARAK TITIK A KE TITIK B Jakarta Bandung Lintasan yang ditempuh kereta-api Lintasan yang ditempuh sebuah mobil Ruas garis yang menghubungkan kedua kota LOGO www.themegallery.com POSTULAT

Lebih terperinci

Hubungan Kekongruenan Dalam Geometri Terhingga

Hubungan Kekongruenan Dalam Geometri Terhingga Prosiding Semirata FMIPA Universitas Lampung, 2013 Hubungan Kekongruenan Dalam Geometri Terhingga Lina Ardila Sari, Suharsono, Muslim Ansori Jurusan Matematika FMIPA Universitas Lampung Alamat Email :

Lebih terperinci

Bab 2. Teori Dasar. 2.1 Erlanger Program Kongruen

Bab 2. Teori Dasar. 2.1 Erlanger Program Kongruen Bab 2 Teori Dasar 2.1 Erlanger Program Erlanger program digunakan untuk menjelaskan geometri. Erlanger program memungkinkan pengembangan yang seragam dan perbandingan geometri yang berbeda. Membandingkan

Lebih terperinci

BAB 5 POSTULAT KESEJAJARAN EUCLIDES

BAB 5 POSTULAT KESEJAJARAN EUCLIDES BAB 5 POSTULAT KESEJAJARAN EUCLIDES Leonhard Euler dilahirkan di Basel (Switzerland), pada tanggal 15 April 1707 di St Petersburg (Rusia).Keluarga Leonhard Euler pindah ke Riehen, daerah yang tidak jauh

Lebih terperinci

BAB I TITIK DAN GARIS

BAB I TITIK DAN GARIS 1. Titik, garis, sinar dan ruas garis BB I TITIK DN GRIS Geometri dibangun atas dasar unsur-unsur yang tidak didefinisikan yaitu: titik, garis, dan bidang. Titik dipahami secara intuisi sebagai sebuah

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI A. Titik, Garis, dan Bidang Pada geometri, tepatnya pada sistem aksioma, terdapat istilah tak terdefinisi. Istilah tak terdefinisi adalah istilah dasar yang digunakan dalam membangun

Lebih terperinci

PLAGIAT MERUPAKAN TINDAKAN TIDAK TERPUJI

PLAGIAT MERUPAKAN TINDAKAN TIDAK TERPUJI LUAS PADA GEOMETRI HIPERBOLIK Skripsi Diajukan untuk Memenuhi Salah Satu Syarat Memperoleh Gelar Sarjana Pendidikan Program Studi Pendidikan Matematika Oleh : Singgih Satriyo Wicaksono NIM : 111414064

Lebih terperinci

BAB 9 TEORI GEOMETRI NON-EUCLIDEAN RIEMANN

BAB 9 TEORI GEOMETRI NON-EUCLIDEAN RIEMANN BAB 9 TEORI GEOMETRI NON-EUCLIDEAN RIEMANN Georg Ferdinand Ludwig Philipp Cantor ( 3 Maret 1845 6 Januari 1918) adalah seorang matema tikawan Jerman. Dia pencetus teori himpunan terkemuka. Cantor mencetuskan

Lebih terperinci

GARIS DAN SUDUT. (Materi SMP Kelas VII Semester1)

GARIS DAN SUDUT. (Materi SMP Kelas VII Semester1) GARIS DAN SUDUT (Materi SMP Kelas VII Semester1) Garis dan Sudut Memahami Kedudukan Garis dan Sudut a. Menemukan konsep titik, garis, dan bidang Dalam ilmu Geometri, terdapat beberapa istilah atau sebutan

Lebih terperinci

1 SISTEM BILANGAN REAL

1 SISTEM BILANGAN REAL Bilangan real sudah dikenal dengan baik sejak masih di sekolah menengah, bahkan sejak dari sekolah dasar. Namun untuk memulai mempelajari materi pada BAB ini anggaplah diri kita belum tahu apa-apa tentang

Lebih terperinci

2. Memahami dan mampu menyelesaikan Permasalahan yang berkaitan dengan vektor di Ruang Tiga, yaitu Persamaan Bidang

2. Memahami dan mampu menyelesaikan Permasalahan yang berkaitan dengan vektor di Ruang Tiga, yaitu Persamaan Bidang TUJUAN EMBELAJARAN Agar pembaca memahami tentang Sistem Koordinat Kartesian beserta fungsinya yaitu titik, jarak dua titik, persamaan bola serta Vektor dalam ruang dimensi tiga beserta aplikasinya yaitu

Lebih terperinci

MODUL 2 GARIS LURUS. Mesin Antrian Bank

MODUL 2 GARIS LURUS. Mesin Antrian Bank 1 MODUL 2 GARIS LURUS Gambar 4. 4 Mesin Antrian Bank Persamaan garis lurus sangat berperan penting terhadap kemajuan teknologi sekarang ini. Bagi programmer handal, banyak aplikasi yang membutuhkan persamaan

Lebih terperinci

REFLEKSI DAN AKSIOMA CERMIN PADA BIDANG POINCARÉ

REFLEKSI DAN AKSIOMA CERMIN PADA BIDANG POINCARÉ REFLEKSI DAN AKSIOMA CERMIN PADA BIDANG POINCARÉ Skripsi Diajukan untuk Memenuhi Salah Satu Syarat Memperoleh Gelar Sarjana Pendidikan Program Studi Pendidikan Matematika Oleh : Chintia Rudiyanto NIM :

Lebih terperinci

BAB V BAHAN LATIHAN DAN SARAN PEMECAHANNYA

BAB V BAHAN LATIHAN DAN SARAN PEMECAHANNYA V HN LTIHN N SRN PMHNNY. ahan Latihan Kerjakanlah soal-soal berikut. Jangan mencoba melihat petunjuk atau kunci, sebelum benar-benar nda mengalami jalan buntu. 1. alam sebuah persegipanjang ditarik 40

Lebih terperinci

VEKTOR. Gambar 1.1 Gambar 1.2 Gambar 1.3. Liduina Asih Primandari, S.Si., M.Si.

VEKTOR. Gambar 1.1 Gambar 1.2 Gambar 1.3. Liduina Asih Primandari, S.Si., M.Si. VEKTOR 1 A. Definisi vektor Beberapa besaran Fisika dapat dinyatakan dengan sebuah bilangan dan sebuah satuan untuk menyatakan nilai besaran tersebut. Misal, massa, waktu, suhu, dan lain lain. Namun, ada

Lebih terperinci

DASAR-DASAR GEOMETRI Suatu Pengantar Mempelajari Sistem-sistem Geometri

DASAR-DASAR GEOMETRI Suatu Pengantar Mempelajari Sistem-sistem Geometri DASAR-DASAR GEOMETRI Suatu Pengantar Mempelajari Sistem-sistem Geometri Budiyono Jurusan Pendidikan Matematika FKIP Universitas Muhammadiyah Purworejo Abstrak Dengan memandang geometri sebagai sistem deduktif,

Lebih terperinci

Bab 5 - Garis dan Sudut

Bab 5 - Garis dan Sudut Bab 5 - Garis dan Sudut Gambar 5.1 Gambar benda di sekitar kita yang membentuk sudut Sumber: Koleksi pribadi Di Sekolah Dasar, kita sudah diperkenalkan tentang garis dan sudut. Ini bisa menjadi dasar bagi

Lebih terperinci

TEOREMA PYTHAGORAS. Kata-Kata Kunci: teorema Pythagoras tripel Pythagoras segitiga siku-siku istimewa. Sumber: Indonesian Heritage, 2002

TEOREMA PYTHAGORAS. Kata-Kata Kunci: teorema Pythagoras tripel Pythagoras segitiga siku-siku istimewa. Sumber: Indonesian Heritage, 2002 5 TEOREM PYTHGORS Sumber: Indonesian Heritage, 00 Pernahkah kalian memerhatikan para tukang kayu atau tukang bangunan? Dalam bekerja, mereka banyak memanfaatkan teorema Pythagoras. oba perhatikan kerangka

Lebih terperinci

A. Jumlah Sudut dalam Segitiga. Teorema 1 Jumlah dua sudut dalam segitiga kurang dari Bukti:

A. Jumlah Sudut dalam Segitiga. Teorema 1 Jumlah dua sudut dalam segitiga kurang dari Bukti: Geometri Netral? Geometri yang dilengkapi dengan sistem aksioma-aksioma insidensi, sistem aksioma-aksioma urutan, sistem aksioma kekongruenan (ruas garis, sudut, segitiga) dan sistem aksioma-aksioma archiemedes

Lebih terperinci

BAB III RUANG VEKTOR R 2 DAN R 3. Bab ini membahas pengertian dan operasi vektor-vektor. Selain

BAB III RUANG VEKTOR R 2 DAN R 3. Bab ini membahas pengertian dan operasi vektor-vektor. Selain BAB III RUANG VEKTOR R DAN R 3 Bab ini membahas pengertian dan operasi ektor-ektor. Selain operasi aljabar dibahas pula operasi hasil kali titik dan hasil kali silang dari ektor-ektor. Tujuan Instruksional

Lebih terperinci

1 P E N D A H U L U A N

1 P E N D A H U L U A N 1 P E N D A H U L U A N Pemetaan (fungsi) f dari himpunan A ke himpunan B adalah suatu hubuungan yang memasangkan setiap unsur di A dengan tepat satu unsur di B. Jika a A dan pasangannya b B, maka ditulis

Lebih terperinci

1 SISTEM BILANGAN REAL

1 SISTEM BILANGAN REAL 1 SISTEM BILANGAN REAL Bilangan real sudah dikenal dengan baik sejak masih di sekolah menengah, bahkan sejak dari sekolah dasar. Namun untuk memulai mempelajari materi pada BAB ini anggaplah diri kita

Lebih terperinci

CARA LAIN PEMBUKTIAN TEOEMA ARZELA-ASCOLI DAN HUBUNGANNYA DENGAN EKSISTENSI PENYELESAIAN PERSAMAAN DIFERENSIAL (SUATU KAJIAN TEORITIS)

CARA LAIN PEMBUKTIAN TEOEMA ARZELA-ASCOLI DAN HUBUNGANNYA DENGAN EKSISTENSI PENYELESAIAN PERSAMAAN DIFERENSIAL (SUATU KAJIAN TEORITIS) CARA LAIN PEMBUKTIAN TEOEMA ARZELA-ASCOLI DAN HUBUNGANNYA DENGAN EKSISTENSI PENYELESAIAN PERSAMAAN DIFERENSIAL SUATU KAJIAN TEORITIS) Sufri Program Studi Pendidikan Matematika FKIP Universitas Jambi Kampus

Lebih terperinci

BAHAN BELAJAR: UNSUR DASAR PEMBANGUN GEOMETRI. Untung Trisna Suwaji. Agus Suharjana

BAHAN BELAJAR: UNSUR DASAR PEMBANGUN GEOMETRI. Untung Trisna Suwaji. Agus Suharjana BAHAN BELAJAR: UNSUR DASAR PEMBANGUN GEOMETRI Untung Trisna Suwaji Agus Suharjana KEMENTERIAN PENDIDIKAN DAN KEBUDAYAAN PUSAT PENGEMBANGAN DAN PEMBERDAYAAN PENDIDIK DAN TENAGA KEPENDIDIKAN (PPPPTK) MATEMATIKA

Lebih terperinci

D. GEOMETRI 2. URAIAN MATERI

D. GEOMETRI 2. URAIAN MATERI D. GEOMETRI 1. TUJUAN Setelah mempelajari modul ini diharapkan peserta diklat memahami dan dapat menjelaskan unsur-unsur geometri, hubungan titik, garis dan bidang; sudut; melukis bangun geometri; segibanyak;

Lebih terperinci

SKRIPSI PERBANDINGAN SEGIEMPAT SACCHERI PADA GEOMETRI EUCLID DAN GEOMETRI NON EUCLID. Universitas Negeri Yogyakarta

SKRIPSI PERBANDINGAN SEGIEMPAT SACCHERI PADA GEOMETRI EUCLID DAN GEOMETRI NON EUCLID. Universitas Negeri Yogyakarta SKRIPSI PERBANDINGAN SEGIEMPAT SACCHERI PADA GEOMETRI EUCLID DAN GEOMETRI NON EUCLID Diajukan Kepada Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Negeri Yogyakarta Untuk Memenuhi Sebagian

Lebih terperinci

PENALARAN INDUKTIF DAN DEDUKTIF

PENALARAN INDUKTIF DAN DEDUKTIF Unit 6 PENALARAN INDUKTIF DAN DEDUKTIF Wahyudi Pendahuluan U nit ini membahas tentang penalaran induktif dan deduktif yang berisi penarikan kesimpulan dan penalaran indukti deduktif. Dalam penalaran induktif

Lebih terperinci

TINJAUAN MATA KULIAH Mata Kuliah Geometri dan Pengukuran merupakan mata kuliah yang memberi pemahaman kepada mahasiswa tentang konsep-konsep geometri

TINJAUAN MATA KULIAH Mata Kuliah Geometri dan Pengukuran merupakan mata kuliah yang memberi pemahaman kepada mahasiswa tentang konsep-konsep geometri 1 TINJAUAN MATA KULIAH Mata Kuliah Geometri dan Pengukuran merupakan mata kuliah yang memberi pemahaman kepada mahasiswa tentang konsep-konsep geometri dan pengukuran. Dijabarkan ke dalam materi: dasar-dasar

Lebih terperinci

BAB 8 PENGANTAR GEOMETRI NON-EUCLIDES

BAB 8 PENGANTAR GEOMETRI NON-EUCLIDES BAB 8 PENGANTAR GEOMETRI NON-EUCLIDES Riemann dilahirkan pada tanggal 17 September 1826 di Breselenz, sebuah desa di dekat Dannenberg di kerajaan Han-nover Jerman. Ayahnya bernama Friedrich Bernard Riemann

Lebih terperinci

PENDEKATAN DALAM PENGAJARAN MATEMATIKA

PENDEKATAN DALAM PENGAJARAN MATEMATIKA 138 PENDEKATAN DALAM PENGAJARAN MATEMATIKA Utu Rahim Jurusan PMIPA/Matematika FKIP Unhalu, Kampus Bumi Tridharma, Kambu, Kendari 93232 Abstrak: Proses belajar mengajar adalah proses yang dilakukan oleh

Lebih terperinci

MATRIKS & TRANSFORMASI LINIER

MATRIKS & TRANSFORMASI LINIER MATRIKS & TRANSFORMASI LINIER Oleh : SRI ESTI TRISNO SAMI, ST, MMSI 082334051324 Daftar Referensi : 1. Kreyzig Erwin, Advance Engineering Mathematic, Edisi ke-7, John wiley,1993 2. Spiegel, Murray R, Advanced

Lebih terperinci

Geometri di Bidang Euclid

Geometri di Bidang Euclid Modul 1 Geometri di Bidang Euclid Dr. Wono Setya Budhi G PENDAHULUAN eometri merupakan ilmu pengetahuan yang sudah lama, mulai dari ribuan tahun yang lalu. Berpikir secara geometris dari satu bentuk ke

Lebih terperinci

Relasi, Fungsi, dan Transformasi

Relasi, Fungsi, dan Transformasi Modul 1 Relasi, Fungsi, dan Transformasi Drs. Ame Rasmedi S. Dr. Darhim, M.Si. M PENDAHULUAN odul ini merupakan modul pertama pada mata kuliah Geometri Transformasi. Modul ini akan membahas pengertian

Lebih terperinci

DASAR-DASAR MATEMATIKA

DASAR-DASAR MATEMATIKA DASAR-DASAR MATEMATIKA Manfaat Matematika Pengertian Karakteristik Matematika Perbedaan matematika dan Pendidikan Matematika Refleksi Pengantar Dasar Matematika 1 MANFAAT MEMPELAJARI MATEMATIKA PERDAGANGAN

Lebih terperinci

GEOMETRI DALAM RUANG DIMENSI TIGA

GEOMETRI DALAM RUANG DIMENSI TIGA GEOMETRI DLM RUNG DIMENSI TIG GEOMETRI DLM RUNG DIMENSI TIG (l. Krismanto, M.Sc.) I. KEDUDUKN TITIK, GRIS, DN IDNG. TITIK, GRIS DN IDNG Titik merupakan unsur ruang yang paling sederhana, tidak didefinisikan,

Lebih terperinci

SISTEM BILANGAN REAL

SISTEM BILANGAN REAL DAFTAR ISI 1 SISTEM BILANGAN REAL 1 1.1 Sifat Aljabar Bilangan Real..................... 1 1.2 Sifat Urutan Bilangan Real..................... 6 1.3 Nilai Mutlak dan Jarak Pada Bilangan Real............

Lebih terperinci

Matematika Semester IV

Matematika Semester IV F U N G S I KOMPETENSI DASAR Mendeskripsikan perbedaan konsep relasi dan fungsi Menerapkan konsep fungsi linear Menggambar fungsi kuadrat Menerapkan konsep fungsi kuadrat Menerapkan konsep fungsi trigonometri

Lebih terperinci

Bab 7. Bangun Ruang Sisi Datar. Standar Kompetensi. Memahami hubungan garis dengan garis, garis dengan sudut, serta menentukan ukuranya.

Bab 7. Bangun Ruang Sisi Datar. Standar Kompetensi. Memahami hubungan garis dengan garis, garis dengan sudut, serta menentukan ukuranya. ab 7 angun Ruang Sisi Datar Standar Kompetensi Memahami hubungan garis dengan garis, garis dengan sudut, serta menentukan ukuranya. Kompetensi Dasar 4.1 Menentukan hubungan antara dua garis, serta besar

Lebih terperinci

BAB I PENDAHULUAN. A. Latar Belakang. B. Tujuan. D. Rumusan Masalah

BAB I PENDAHULUAN. A. Latar Belakang. B. Tujuan. D. Rumusan Masalah I PENDHULUN. Latar elakang Geometri (daribahasayunani, geo = bumi, metria = pengukuran) secaraharfiah berarti pengukuran tentang bumi, adalahcabangdarimatematika yang mempelajari hubungan di dalamruang.

Lebih terperinci

TEOREMA PAPPUS PADA ELIPS, PARABOLA DAN HIPERBOLA. Fakultas Matematika dan Ilmu Pengetahuan Alam Univeritas Riau Kampus Bina Widya Indonesia

TEOREMA PAPPUS PADA ELIPS, PARABOLA DAN HIPERBOLA. Fakultas Matematika dan Ilmu Pengetahuan Alam Univeritas Riau Kampus Bina Widya Indonesia TEOREMA PAPPUS PADA ELIPS, PARABOLA DAN HIPERBOLA Ardiansyah Yan Hakim Nst. 1*, Sri Gemawati 2, Musraini M. 2 1 Mahasiswa Program S1 Matematika 2 Dosen Jurusan Matematika Fakultas Matematika dan Ilmu Pengetahuan

Lebih terperinci

MENGGAMBAR BIDANG A. MEMBAGI GARIS DAN SUDUT

MENGGAMBAR BIDANG A. MEMBAGI GARIS DAN SUDUT MENGGAMBAR BIDANG A. MEMBAGI GARIS DAN SUDUT 1. MEMBAGI GARIS a. Membagi garis menjadi 2 bagian yang sama panjang Membagi garis menjadi 2 bagian yang sama panjang menggunakan jangka dapat diikuti melalui

Lebih terperinci

PERSAMAAN GARIS LURUS

PERSAMAAN GARIS LURUS 1 KEGIATAN BELAJAR 3 PERSAMAAN GARIS LURUS Setelah mempelajari kegiatan belajar 3 ini, mahasiswa diharapkan mampu: 1. menentukan persamaan gradien garis lurus, 2. menentukan persamaan vektoris dan persamaan

Lebih terperinci

TRANSFORMASI. Dosen Pengampu Mata Kuliah. HERDIAN, S.Pd., M.Pd. Disusun Oleh : Kelompok 1. Hayatun Nupus Rina Ariyani

TRANSFORMASI. Dosen Pengampu Mata Kuliah. HERDIAN, S.Pd., M.Pd. Disusun Oleh : Kelompok 1. Hayatun Nupus Rina Ariyani TRANSFORMASI Makalah ini disusun sebagai tugas mata kuliah Geometri Transformasi Dosen Pengampu Mata Kuliah HERDIAN, S.Pd., M.Pd. Disusun Oleh : Kelompok 1 Hayatun Nupus 08030121 Rina Ariyani 08030057

Lebih terperinci

SUMBER BELAJAR PENUNJANG PLPG 2016 MATA PELAJARAN/PAKET KEAHLIAN GURU KELAS SD

SUMBER BELAJAR PENUNJANG PLPG 2016 MATA PELAJARAN/PAKET KEAHLIAN GURU KELAS SD SUMER ELJR PENUNJNG PLPG 2016 MT PELJRN/PKET KEHLIN GURU KELS S III GEOMETRI ra.hj.rosdiah Salam, M.Pd. ra. Nurfaizah, M.Hum. rs. Latri S, S.Pd., M.Pd. Prof.r.H. Pattabundu, M.Ed. Widya Karmila Sari chmad,

Lebih terperinci

1 SISTEM BILANGAN REAL

1 SISTEM BILANGAN REAL Pertemuan Standar kompetensi: mahasiswa memahami cara membangun sistem bilangan real, aturan dan sifat-sifat dasarnya. Kompetensi dasar Memahami aksioma atau sifat aljabar bilangan real Memahami fakta-fakta

Lebih terperinci

II. TINJAUAN PUSTAKA

II. TINJAUAN PUSTAKA II. TINJAUAN PUSTAKA 2.1 Angin Angin adalah gerakan udara dari daerah yang bertekanan tinggi ke daerah yang bertekanan rendah. Kekuatan angin berlebihan dapat dikontrol menggunakan sistem manual atau otomatik.

Lebih terperinci

1. Titik, Garis dan Bidang Dalam Ruang. a. Defenisi. Titik ditentukan oleh letaknya dan tidak mempunyai ukuran sehingga dikatakan berdimensi nol

1. Titik, Garis dan Bidang Dalam Ruang. a. Defenisi. Titik ditentukan oleh letaknya dan tidak mempunyai ukuran sehingga dikatakan berdimensi nol 1. Titik, Garis dan Bidang Dalam Ruang a. Defenisi Titik ditentukan oleh letaknya dan tidak mempunyai ukuran sehingga dikatakan berdimensi nol Titik digambarkan dengan sebuah noktah dan penamaannya menggunakan

Lebih terperinci

GEOMETRI PROJEKTIF DAN APLIKASINYA. Sangadji dan Marsodi *

GEOMETRI PROJEKTIF DAN APLIKASINYA. Sangadji dan Marsodi * (43-52) GEOMETRI PROJEKTIF DAN APLIKASINYA Sangadji dan Marsodi * ABSTRAK GEOMETRI PROJEKTIF DAN APLIKASINYA. Geometri projektif adalah cabang geometri yang mempelajari sifat-sifat dan konfigurasi geometri

Lebih terperinci

Program Studi Pendidikan Matematika STKIP PGRI SUMBAR

Program Studi Pendidikan Matematika STKIP PGRI SUMBAR VEKTOR DAN SKALAR Materi pokok pertemuan ke I: 1. Vektor dan skalar 2. Komponen vektor 3. Operasi dasar aljabar vektor URAIAN MATERI Masih ingatkah Anda tentang vektor? Apa beda vektor dengan skalar? Ya,

Lebih terperinci

Peta Konsep. Bangun datar. Sifat-sifat bangun datar. Sudut

Peta Konsep. Bangun datar. Sifat-sifat bangun datar. Sudut Pelajaran 4 angun atar Peta Konsep angun datar Sifat-sifat bangun datar Sudut Persegi Persegi panjang Segitiga Mengenal sudut Membandingkan dan mengurutkan besar sudut Mengenal dan membuat sudut siku-siku,

Lebih terperinci

GEOMETRI EUCLID D I S U S U N OLEH :

GEOMETRI EUCLID D I S U S U N OLEH : GEOMETRI EUCLID D I S U S U N OLEH : SARI MEILANI (11321435) TITIS SETYO BAKTI (11321436) DEWI AYU FATMAWATI (11321439) INKA SEPIANA ROHMAH (11321460) KELAS II B MATEMATIKA UNIVERSITAS MUHAMMADIYAH PONOROGO

Lebih terperinci

GEOMETRI EUCLID. Makalah ini disusun untuk memenuhi tugas mata kuliah Geometri Dosen Pembimbing: Prof. Dr. Dwi Juniati, M.Si.

GEOMETRI EUCLID. Makalah ini disusun untuk memenuhi tugas mata kuliah Geometri Dosen Pembimbing: Prof. Dr. Dwi Juniati, M.Si. GEOMETRI EUCLID Makalah ini disusun untuk memenuhi tugas mata kuliah Geometri Dosen Pembimbing: Prof. Dr. Dwi Juniati, M.Si. UNIVERSITAS NEGERI SURABAYA FAKULTAS PASCA SARJANA PROGRAM STUDI PENDIDIKAN

Lebih terperinci

GEOMETRI RUANG. Oleh : Tetty Natalia Sipayung, S.Si., M.Pd. Geometri Ruang i

GEOMETRI RUANG. Oleh : Tetty Natalia Sipayung, S.Si., M.Pd. Geometri Ruang i i GEOMETRI RUANG Oleh : Tetty Natalia Sipayung, S.Si., M.Pd. Geometri Ruang i GEOMETRI RUANG Penulis: Tetty Natalia Sipayung, S.Si., M.Pd. Isi diluar tanggungjawab penerbit Hak Cipta 2018 pada Penulis

Lebih terperinci

Hand-Out Geometri Transformasi. Bab I. Pendahuluan

Hand-Out Geometri Transformasi. Bab I. Pendahuluan Hand-Out Geometri Transformasi Bab I. Pendahuluan 1.1 Vektor dalam R 2 Misalkan u = (x 1,y 1 ), v = (x 2,y 2 ) dan w = (x 3,y 3 ) serta k skalar (bilangan real) Definisi 1. : Penjumlahan vektor u + v =

Lebih terperinci

KEDUDUKAN DUA GARIS LURUS, SUDUT DAN JARAK

KEDUDUKAN DUA GARIS LURUS, SUDUT DAN JARAK 1 KEGIATAN BELAJAR 4 KEDUDUKAN DUA GARIS LURUS, SUDUT DAN JARAK Setelah mempelajari kegiatan belajar 4 ini, mahasiswa diharapkan mampu: 1. Menentukan kedudukan dua garis lurus di bidang dan di ruang 2.

Lebih terperinci

SIFAT-SIFAT SEGITIGA SIKU-SIKU PADA GEOMETRI BOLA. Skripsi. Diajukan untuk Memenuhi Salah Satu Syarat. Memperoleh Gelar Sarjana Pendidikan

SIFAT-SIFAT SEGITIGA SIKU-SIKU PADA GEOMETRI BOLA. Skripsi. Diajukan untuk Memenuhi Salah Satu Syarat. Memperoleh Gelar Sarjana Pendidikan SIFAT-SIFAT SEGITIGA SIKU-SIKU PADA GEOMETRI BOLA Skripsi Diajukan untuk Memenuhi Salah Satu Syarat Memperoleh Gelar Sarjana Pendidikan Program Studi Pendidikan Matematika Oleh: CINDY NIM: 121414079 PROGRAM

Lebih terperinci

TUGAS INDIVIDU. Geometri Insidensi Geometri Terurut DISUSUN OLEH : PROGRAM PASCASARJANA UNNES PRODI PENDIDIKAN MATEMATIKA Kampus Unnes Tegal

TUGAS INDIVIDU. Geometri Insidensi Geometri Terurut DISUSUN OLEH : PROGRAM PASCASARJANA UNNES PRODI PENDIDIKAN MATEMATIKA Kampus Unnes Tegal 1 TUGAS INDIVIDU MATA KULIAH MATEMATIKA IV GEOMETRI Geometri Insidensi Geometri Terurut DOSEN PENGAMPU Dr. Sc.Mariani,M.Si DISUSUN OLEH : MASRUKHI 4101508041 PROGRAM PASCASARJANA UNNES PRODI PENDIDIKAN

Lebih terperinci

Geometri I. Garis m dikatakan sejajar dengan garis k, jika kedua garis terletak pada satu bidang datar dan kedua garis tidak berpotongan

Geometri I. Garis m dikatakan sejajar dengan garis k, jika kedua garis terletak pada satu bidang datar dan kedua garis tidak berpotongan Definisi 1.1 Garis m dikatakan memotong garis k, jika kedua garis terletak pada satu bidang datar dan bertemu satu bidang datar dan bertemu pada satu titik Definisi 1.2 Garis m dikatakan sejajar dengan

Lebih terperinci

1 SISTEM BILANGAN REAL

1 SISTEM BILANGAN REAL Bilangan real sudah dikenal dengan baik sejak masih di sekolah menengah, bahkan sejak dari sekolah dasar. Namun untuk memulai mempelajari materi pada BAB ini anggaplah diri kita belum tahu apa-apa tentang

Lebih terperinci

Sistem Koordinat Kartesian Tegak Lurus dan Persamaan Garis Lurus

Sistem Koordinat Kartesian Tegak Lurus dan Persamaan Garis Lurus Modul 1 Sistem Koordinat Kartesian Tegak Lurus dan Persamaan Garis Lurus Drs. Sukirman, M.Pd. D alam Modul Pertama ini, kita akan membahas tentang Sistem Koordinat Kartesian Tegak Lurus dan Persamaan Garis

Lebih terperinci