BAB 2 TINJAUAN PUSTAKA

dokumen-dokumen yang mirip
BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 2 LANDASAN TEORI

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB II KAJIAN PUSTAKA. Pada bab ini akan diberikan landasan teori tentang optimasi, fungsi, turunan,

BAB II KAJIAN PUSTAKA. pemrograman nonlinear, fungsi konveks dan konkaf, pengali lagrange, dan

BAB 2 TINJAUAN PUSTAKA. ini sehingga dapat dijadikan sebagai landasan berpikir dan akan mempermudah. dalam hal pembahasan hasil utama berikutnya.

BAB II TINJAUAN PUSTAKA. operasi yang mampu menyelesaikan masalah optimasi sejak diperkenalkan di

BAB 1 PENDAHULUAN Latar Belakang

METODE NUMERIK 3SKS-TEKNIK INFORMATIKA-S1. Mohamad Sidiq PERTEMUAN : 3 & 4

BAB 2 LANDASAN TEORI

BAB 2 PROGRAM LINIER DAN TAK LINIER. Program linier (Linear programming) adalah suatu masalah matematika

Bab 2. Penyelesaian Persamaan Non Linier

Persamaan Non Linier

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

Metode Numerik. Persamaan Non Linier

OPTIMASI FUNGSI MULTIVARIABLE TANPA KENDALA DENGAN METODE NEWTON

BAB 2 LANDASAN TEORI

Penyelesaian Persa. amaan Non Linier. Metode Iterasi Sederhana Metode Newton Raphson. Metode Secant. Metode Numerik. Iterasi/NewtonRaphson/Secant

BAB 2 KAJIAN PUSTAKA. Menurut Asghar (2000), secara garis besar masalah optimisasi terbagi dalam beberapa tipe berikut:

METODE NUMERIK. Akar Persamaan (2) Pertemuan ke - 4. Rinci Kembang Hapsari, S.Si, M.Kom

MOTIVASI. Secara umum permasalahan dalam sains dan teknologi digambarkan dalam persamaan matematika Solusi persamaan : 1. analitis 2.

BAB II KAJIAN PUSTAKA

BAB III PEMBAHASAN. digunakan untuk membentuk fungsi tujuan dari masalah pemrograman nonlinear

BAB 3 PENYELESAIAN PERSAMAAN NON LINIER

Ilustrasi Persoalan Matematika

OPTIMASI FUNGSI MULTI VARIABEL DENGAN METODE UNIVARIATE. Dwi Suraningsih (M ), Marifatun (M ), Nisa Karunia (M )

METODE NUMERIK SOLUSI PERSAMAAN NON LINEAR

BAB IV PEMBAHASAN. optimasi biaya produksi pada home industry susu kedelai Pak Ahmadi

BAB 1 PENDAHULUAN Latar Belakang

Persamaan Non Linier

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 2 LANDASAN TEORI

PENGEMBANGAN ALGORITMA ITERATIF UNTUK MINIMISASI FUNGSI NONLINEAR

Langkah Penyelesaian Example 1) Tentukan nilai awal x 0 2) Hitung f(x 0 ) kemudian cek konvergensi f(x 0 ) 3) Tentukan fungsi f (x), kemudian hitung f

PERSAMAAN NON LINIER

METODE REDUCED-GRADIENT PADA OPTIMASI NONLINIER BERKENDALA PERTIDAKSAMAAN NONLINIER SKRIPSI. Oleh : Normayati Sumanto J2A

Persamaan yang kompleks, solusinya susah dicari. Contoh :

Pendahuluan Metode Numerik Secara Umum

Prosiding Matematika ISSN:

MODIFIKASI METODE NEWTON-RAPHSON UNTUK MENCARI SOLUSI PERSAMAAN LINEAR DAN NONLINEAR

METODE SEQUENTIAL QUADRATIC PROGRAMMING (SQP) PADA OPTIMASI NONLINIER BERKENDALA SKRIPSI

Teori Dualitas dan Penerapannya (Duality Theory and Its Application)

BAB IV. Pencarian Akar Persamaan Tak Linier. FTI-Universitas Yarsi

PAM 252 Metode Numerik Bab 2 Persamaan Nonlinier

BAB II LANDASAN TEORI

BAB II KAJIAN TEORI. berkaitan dengan optimasi, pemrograman linear, pemrograman nonlinear, quadratic

PLAGIAT MERUPAKAN TINDAKAN TIDAK TERPUJI

SYARAT FRITZ JOHN PADA MASALAH OPTIMASI BERKENDALA KETAKSAMAAN. Caturiyati 1 Himmawati Puji Lestari 2. Abstrak

PAM 252 Metode Numerik Bab 2 Persamaan Nonlinier

KOMBINASI PERSYARATAN KARUSH KUHN TUCKER DAN METODE BRANCH AND BOUND PADA PEMROGRAMAN KUADRATIK KONVEKS BILANGAN BULAT MURNI

ARAH KONJUGAT. dibuat guna memenuhi tugas UAS Mata Kuliah Metode Numerik Dosen: Rukmono Budi Utomo M.Sc. 4 juni Dadang Supriadi A2

PENDAHULUAN METODE NUMERIK

METODE SEQUENTIAL QUADRATIC PROGRAMMING (SQP) UNTUK MENYELESAIKAN PERSOALAN NONLINEAR BERKENDALA SKRIPSI YANI

POKOK BAHASAN. Matematika Lanjut 2 Sistem Informasi

METODE NUMERIK TKM4104. KULIAH KE-3 SOLUSI PERSAMAAN NONLINIER 1

OPTIMISASI PEMROGRAMAN CEMBUNG MENGGUNAKAN SYARAT KUHN-TUCKER SKRIPSI

METODE NUMERIK ARAH KONJUGASI

III RELAKSASI LAGRANGE

BAB II AKAR-AKAR PERSAMAAN

Metode Numerik adalah teknik-teknik yang digunakan untuk memformulasikan masalah matematis agar dapat dipecahkan dengan operasi perhitungan

METODE NUMERIK TKM4104. Kuliah ke-3 SOLUSI PERSAMAAN NONLINIER 1

BAB I PENDAHULUAN. 1.1 Latar Belakang

OPTIMASI TANAMAN PANGAN DI KOTA MAGELANG DENGAN PEMROGRAMAN KUADRATIK DAN METODE FUNGSI PENALTI EKSTERIOR

BAB I PENDAHULUAN Latar Belakang Masalah

PERBANDINGAN METODE TRUST-REGION DENGAN METODE NEWTON-RAPHSON PADA OPTIMASI FUNGSI NON LINIER TANPA KENDALA

Pengantar Metode Numerik

BAB III TURUNAN DALAM RUANG DIMENSI-n

Studi Kasus Penyelesaian Pers.Non Linier. Studi Kasus Non Linier 1

Persamaan Non Linier 1

Syarat Fritz John pada Masalah Optimasi Berkendala Ketaksamaan. Caturiyati 1 Himmawati Puji Lestari 2. Abstrak

BAB II KAJIAN PUSTAKA. Berikut diberikan landasan teori mengenai Teori Portofolio, Turunan

Pendahuluan Metode Numerik Secara Umum

Pertemuan Minggu ke Bidang Singgung, Hampiran 2. Maksimum dan Minimum 3. Metode Lagrange

Bab 1. Pendahuluan Metode Numerik Secara Umum

OPTIMASI (Pemrograman Non Linear)

METODE NUMERIK 3SKS-TEKNIK INFORMATIKA-S1. Mohamad Sidiq PERTEMUAN-1

METODE STEEPEST DESCENT

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

Jurnal Matematika Integratif ISSN Volume 12 No 1, April 2016, pp 35 42

DASAR-DASAR ANALISIS MATEMATIKA

Bentuk Standar. max. min

Penyelesaian Secara Numerik? Penyelesaian Secara Numerik Selesaikanlah persamaan nonlinier f(x) = x x -8 Solve : Misal f(x) = 0 x x 8 = 0 (x 4)(x + )

Kalkulus Multivariabel I

MODUL PRAKTIKUM METODE NUMERIK NAZARUDDIN

DIKTAT PRAKTIKUM METODE NUMERIK

BAB II LANDASAN TEORI

SILABUS MATA KULIAH. Tujuan

Silabus dan Satuan Acara Perkuliahan

BAB 2 PENYELESAIAN PERSAMAAN NON LINEAR

f (a) = laju perubahan y = f(x) pada x = a = turunan pertama y=f(x) pada x = a

BAB I ARTI PENTING ANALISIS NUMERIK

SEKOLAH TINGGI MANAJEMEN INFORMATIKA DAN KOMPUTER GLOBAL INFORMATIKA MDP

KENDALI OPTIMAL PERMAINAN NON-KOOPERATIF KONTINU SKALAR DUA PEMAIN DENGAN STRATEGI NASH TUGAS AKHIR. Oleh : M.LUTHFI RUSYDI

TURUNAN DALAM RUANG DIMENSI-n

APLIKASI METODE KHUN-TUCKER DALAM PENJUALAN OLI MOBIL (Studi Kasus : PT. Anugrah Mitra Dewata)

BAB I PENDAHULUAN 1.1. Latar Belakang

OPTIMASI PEMROGRAMAN KUADRATIK KONVEKS DENGAN MENGGUNAKAN METODE PRIMAL-DUAL PATH-FOLLOWING

3 LIMIT DAN KEKONTINUAN

Pertemuan ke 4. Non-Linier Equation

BAB I PENDAHULUAN 1.1 Latar Belakang

Transkripsi:

BAB 2 TINJAUAN PUSTAKA 2.1 Optimasi Non-Linier Suatu permasalahan optimasi disebut nonlinier jika fungsi tujuan dan kendalanya mempunyai bentuk nonlinier pada salah satu atau keduanya. Optimasi nonlinier ditinjau dari pandangan matematis merupakan topik lanjutan dan secara konseptual, sulit untuk diselesaikan. Untuk itu dibutuhkan pengetahuan aktif mengenai kalkulus, differensial dan aljabar linier (He, 2003). Kesulitan lain yang dihadapi, yaitu fungsi tujuan nonlinier, yang tidak mempunyai nilai minimum serta mempunyai daerah penyelesaian dengan batas nonlinier (tidak konvex). Secara umum tidak terdapat teknik penyelesaian yang terbaik, tetapi ada beberapa teknik yang mempunyai masa depan cerah dibandingkan yang lain. Banyak teknik penyelesaian optimasi nonlinier yang hanya efisien untuk menyelesaikan masalah yang mempunyai struktur matematis tertentu. Hampir semua teknik optimasi nonlinier modern mengandalkan pada algoritma numerik untuk mendapatkan jawabannya (Mohan dan Kannan, 2004). Beberapa permasalahan optimasi nonlinier diantaranya: 1. Optimasi satu variabel tanpa kendala 2. Optimasi multivariabel tanpa kendala 3. Optimasi multivariabel dengan kendala persamaan 4. Optimasi multivariabel dengan kendala pertidaksamaan Beberapa algoritma telah diajukan untuk menyelesaikan program taklinier. Di bawah ini disampaikan beberapa algoritma tersebut sebagai suatu kajian literatur. 5

6 2.2 Metode Newton-Raphson Dalam analisis numerik, metode Newton (juga dikenal dengan metode Newton- Raphson), merupakan suatu metode yang cukup dikenal untuk mencari pendekatan terhadap akar fungsi rill. Metode Newton-Raphson sering konvergen dengan cepat, terutama bila iterasi dimulai cukup dekat dengan akar yang diinginkan. Namum bila iterasi dimulai jauh dari akar yang dicari, metode ini dapat meleset tanpa peringatan. Implementasi metode ini biasanya mendeteksi dan mengatasi kegagalan konvergensi. 2.2.1 Gagasan awal metode newton-raphson Gagasan awal metode Newton-Raphson adalah metode yang digunakan untuk mencari akar dari sebuah fungsi rill. Metode ini dimulai dengan memperkirakan satu titik awal dan mendekatinya dengan memperlihatkan slope atau gradien pada titik tersebut. Diharapkan dari titik awal tersebut akan diperoleh pendekatan terhadap akar fungsi yang dimaksud. Gambar 2.1 Metode newton-raphson Jika terkaan awal pada akar adalah x i, sebuah garis singgung dapat ditarik dari titik [x i, (f(x i )]. Titik dimana garis singgung ini memotong sumbu x, menyatakan taksiran akar yang lebih baik. Turunan pertama di x i setara dengan kemiringan: f(x i )= f(x i) 0 x i x i+1

7 Sehingga, titik pendekatan untuk i +1 adalah dimana i 0. Algoritma metode Newton-Raphson: x i+1 = x i f(x i) f (x i ) 1. Definisikan fungsi f(x) dan f (x) 2. Tentukan toleransi error (e) dan iterasi maksimum (n) 3. Tentukan nilai pendekatan awal x 0 4. Hitung f(x 0 ) dan f (x 0 ) 5. Untuk iterasi i = 1, 2,...,n atau f(x i ) e x i+1 = x i (f(x i )/f (x i )) Hitung f(x 0 ) dan f (x 0 ) 6. Akar persamaan adalah nilai x i terakhir yang diperoleh. Permasalahan pada penggunaan metode Newton-Raphson adalah: 1. Metode ini tidak dapat digunakan ketika pendekatannya berada pada titik ekstrim atau titik puncak karena pada titik ini f (x) = 0, sehingga nilai penyebut dari (f(x)/f (x))f (x) sama dengan nol, secara grafis dapat dilihat sebagai berikut : Bila titik pendekatan berada pada titik puncak, maka titik selanjutnya akan berada di tak berhingga. 2. Metode ini menjadi sulit atau lama mendapat penyelesaian, ketika titik pendekatannya berada diantara dua titik stasioner.

8 Gambar 2.2 Pendekatan pada titik puncak Gambar 2.3 Pendekatan pada 2 titik puncak Bila titik pendekatan berada pada dua titik puncak, maka akan dapat mengakibatkan hilangnya penyelesaian (divergensi). Hal ini disebabkan titik selanjutnya berada pada salah satu titik puncak atau arah pendekatannya berbeda. Untuk dapat menyelesaikan kedua permasalahan pada metode Newton-Raphson ini, maka metode Newton-Raphson perlu dimodifikasi yaitu: 1. Bila titik pendekatan berada pada titik puncak, maka titik pendekatan tersebut harus digeser sedikit x i = x i + δ, dimana δ adalah konstanta yang di-

9 tentukan. Dengan demikian f (x i ) 0 dan metode Newton-Raphson tetap dapat berjalan. 2. Untuk menghindari titik-titik pendekatan yang berada jauh, ada baiknya metode Newton-Raphson ini didahului oleh metode tabel, sehingga dapat dijamin konvergensinya. 2.2.2 Metode pengali Lagrange Permasalahanpermasalahan nonlinier yang tidak dalam bentuk standar diselesaikan dengan mengubahnya ke dalam bentuk standar. Untuk menyelesaikan permasalahan ini, maka perlu dibentuk fungsi pengali Lagrange. Fungsi pengali Lagrange didefinisikan sebagai L(x 1,x 2,..., x n,λ 1,λ 2,..., λ m )=f(x) m i=1 λ ig i (x). Dimana λ i =(i =1, 2,..., m) adalah tetapan yang disebut pengali Lagrange. Kemudian dibentuk kembali persamaan berikut: δl δx i =0, (j =1, 2,..., n) δl δx i =0, L(i =1, 2,..., m). Metode pengali Lagrange ini ekuivalen dengan menggunakan persamaan kendala untuk menghilangkan beberapa variabel x tertentu dari fungsi objektif dan kemudian menyelesaikan persoalan maksimasi tanpa kendala dalam variabel-variabel x yang tersisa. 2.2.3 Vektor gradien dan matriks Hessian Dalam penyelesaian optimasi multivariabel dengan kendala persamaan yang diselesaikan dengan metode Newton-Raphson, terdapat istilah Vektor Gradien dan matriks Hessian. 1. Vektor Gradien Vektor Gradien adalah turunan parsial pertama dari fungsi pengali Lagrange

10 terhadap variable x i dan λ i dimana (i = 1, 2,..., n) dan (j = 1, 2,..., m). Secara matematis Vektor Gradien dapat dituliskan: [ δl L =, δl,..., δl, δl, δl,..., δl ] δx 1 δx 2 δx n δλ 1 δλ 2 δλ m 2. Matriks Hessian Matriks Hessian adalah turunan parsial kedua dari fungsi pengali Lagrange terhadap variabel x i = (I = 1, 2,..., n) dilanjutkan dengan turunan parsial terhadap x 1,x 2,..., x n,λ 1,λ 2,..., λ m dan variabel λ j (j =1, 2,..., m) dilanjutkan dengan turunan parsial terhadap x 1,x 2,..., x n,λ 1,λ 2,..., λ m. Matriks Hessian didefinisikan sebagai: H L = δx 1 δx 1 δx nδx 1 δλ 1 δx 1 δλ mδx 1 δx 1 δx 2 δx nδx 2 δλ 1 δx 2 δx 1 δx n δx nδx n δλ 1 δx n δ δλ mδx 2 2 L δλ mδx n δx 1 δλ 1 δx nδλ 1 δλ 1 δλ 1 δλ mδλ 1 δx 1 δλ 2 δx nδλ 2 δλ 1 δλ 2 δx 1 δλ m δx nδλ m δλ 1 δλ m δ δλ mδλ 2 2 L δλ mδλ m 2.3 Kondisi Karush-Kuhn Tucker Tabel 2.1 Kondisi Karush-Kuhn Tucker Persoalan Kondisi Perlu Untuk Optimalitas Juga Cukup Jika df Satu variabel dx tidak berkendala f(x) konkaf df Banyak variabel dx j =0(j =1, 2,..., n) f(x) konkaf tidak berkendala df Berkendala, hanya dx j =0(j =1, 2,..., n) f(x) konkaf kendala nonnegatif atau 0 jika x j =0 Persoalan umum Kondisi Karush-Kuhn f(x) konkaf dan g i (x) berkendala Tucker konveks (i = 0,1,...,m) Dari tabel 2.1 terlihat bahwa untuk kondisi persoalan umum disebut kondisi Karush- Kuhn Tucker (Hillier dan Lieberman, 2005). Kondisi perlu dan cukup untuk x =( x 1, x 2,..., x n ) sebagai solusi optimal untuk persoalan nonlinear berikut: max (or min) f(x 1,x 2,..., x n )

11 Subject to : g 1 (x 1,x 2,..., x n ) b 1 g 1 (x 1,x 2,..., x n ) b m. Untuk menggunakan hasil, semua kendala persoalan nonlinear harus kendalakendala dalam bentuk h(x 1,x 2,..., x n ) b harus ditulis sebagai h(x 1,x 2,..., x n ) b harus diganti dengan h(x 1,x 2,..., x n ) b dan h(x 1,x 2,..., x n ) b (Winston dan Venkataramanan, 2003). Teorema 2.1 memberikan kondisi Kuhn-Tucker yang cukup bagi titik x =( x 1, x 2,..., x n ) untuk memecahkan persoalan nonlinear. Teorema 2.1 Andaikan persoalan nonlinear adalah persoalan maksimisasi. Jika x =( x 1, x 2,..., x n ) adalah solusi optimal dari persoalan tersebut maka x =( x 1, x 2,..., x n ) yang memenuhi δf( x) δx j i=m i=1 i=1 λ i δg i ( x) δx j 0 (j =1, 2,..., n) λ i [b i g i ( x)] = 0 (j =1, 2,..., n) [ ] δf i=m δg i λ i = 0 (j =1, 2,..., n) δx j δx j λ i 0 (j =1, 2,..., 3) Teorema 2.2 Andaikan persoalan nonlinear adalah persoalan minimisasi. Jika x =( x 1, x 2,..., x n ) adalah solusi optimal dari persoalan tersebut maka harus memenuhi m kendala dan harus ada pengali λ 1, λ 2,..., λ m yang memenuhi: δf( x) δx j i=m i=1 i=1 λ i δg i ( x) δx j 0 (j =1, 2,..., n) λ i [b i g i ( x)] = 0 (j =1, 2,..., n) [ ] δf i=m δg i λ i = 0 (j =1, 2,..., n) δx j δx j λ i 0 (j =1, 2,..., 3) Skalar λ i,i =1,..., m disebut kondisi complementary slackness yang menyatakan dua kemungkinan yaitu:

12 1. Jika g i (x) < 0 maka λ i =0 2. Jika λ i < 0 maka g i (x) =0 2.4 Metode Biseksi Kelebihan Metode Biseksi adalah selalu berhasil menemukan akar (solusi) yang dicari, atau dengan kata lain selalu konvergen. Sedangkan kekurangan metode biseksi adalah: 1. Metode biseksi hanya dapat dilakukan apabila ada akar persamaan pada interval yang diberikan. 2. Jika ada beberapa akar pada interval yang diberikan maka hanya satu akar saja yang dapat ditemukan. 3. Memiliki proses iterasi yang banyak sehingga memperlama proses penyelesaian. Tidak memandang bahwa sebenarnya akar atau solusi yang dicari dekat sekali dengan batas interval yang digunakan. 2.5 Metode Scant Kelebihan metode scant adalah: 1. Dapat digunakan untuk mencari akar-akar persamaan dari persamaan polinomial kompleks, atau persamaan yang turunan pertamanya sangat sulit didapatkan. 2. Laju konvergen cepat. 3. Cukup satu terkaan awal. Sedangkan kekurangan metode secant adalah: 1. Turunan harus di cari secara analitis. 2. Bisa divergen.