BAB 1 PENDAHULUAN. 1.1 Latar Belakang
|
|
|
- Yohanes Sasmita
- 9 tahun lalu
- Tontonan:
Transkripsi
1 BAB 1 PENDAHULUAN 1.1 Latar Belakang Zaman yang semakin berkembang membuat persoalan semakin kompleks, tidak terkecuali persoalan yang melibatkan persoalan matematika. Dalam pemecahannya, matematika memegang peranan cukup penting terutama dalam perkembangan ilmu pengetahuan dan teknologi baik secara matematika murni maupun matematika terapan. Matematika terapan misalnya dijumpai dalam perkembangan bidang industri yang menghendaki tercapainya suatu kondisi yang optimal yang sebelumnya hanya persoalan sederhana yang berbentuk linear karena perkembangan zaman, kompleksitas semakin meningkat sehingga memunculkan persoalan yang berbentuk nonlinear. Hal tersebut disebabkan karena munculnya faktor-faktor yang membuat ketaklinearan suatu fungsi. Selain itu, banyak faktor-faktor yang menjadi penghambat dalam optimisasi sehingga memunculkan satu atau lebih kendala dalam mengoptimalkan suatu fungsi. Banyak metode yang telah dikembangkan untuk memecahkan persoalan nonlinear di antaranya seperti Metode Pengali Lagrange, Metode Karush-Kuhn Tucker. Akan tetapi, metode-metode tersebut sering tidak dapat digunakan untuk persoalan program nonlinear berskala besar. Oleh karena itu, penulis menggunakan metode Sequential Quadratic Programming (SQP) untuk memecahkan persoalan nonlinear berkendala dimana metode ini menggunakan pendekatan Lagrange dan metode Newton tanpa harus
2 mengkonversikan ke barisan persoalan minimimisasi yang tidak berkendala. Metode ini mengkonversi persoalan nonlinear menjadi bentuk persoalan pemrograman kuadratis. Berdasarkan uraian di atas maka penulis memberi judul tulisan ini dengan Metode Sequential Quadratic Programming (SQP) untuk Menyelesaikan Persoalan Nonlinear Berkendala. 1.2 PERUMUSAN MASALAH Permasalahan yang akan dibahas adalah menyelesaikan persoalan nonlinear berkendala dengan metode Sequential Quadratic Programming (SQP). 1.3 TINJAUAN PUSTAKA Menurut Bradley dkk (1976), persoalan umum optimisasi adalah memilih n variabel keputusan dari daerah fisibel yang diberikan untuk mengoptimasi (maksimum atau minimum) fungsi tujuan yang diberikan dari variabel keputusan. Persoalan ini disebut persoalan pemrograman nonlinear jika fungsi tujuannya nonlinear dan atau daerah fisibelnya ditentukan oleh kendala nonlinear. Bentuk umumnya: subject to: Untuk beberapa keadaan, maksimum dan minimum lokal disebut global. Fungsi yang minimum lokal merupakan global disebut konveks. Fungsi yang maksimum lokal merupakan maksimum global disebut konkaf. Karena alasan ini fungsi konveks selalu diminimumkan sedangkan fungsi konkaf selalu dimaksimumkan (Bradley dkk, 1976). Menurut Luenberger (1984), fungsi konveks
3 adalah dimana untuk setiap dua titik y dan z, dapat ditarik garis yang menghubungkan f(y) dan f(z) pada fungsi tersebut. Kekonvergenan untuk barisan bilangan riil (Dennis dan Schnabel, 1983): Diberikan sebuah metode iterasi sehingga menghasilkan barisan titik dari sebuah titik awal, ingin diketahui apakah iterasi konvergen ke solusi. Jika diasumsikan bahwa menyatakan barisan bilangan riil, maka definisi berikut menyatakan sifat yang dibutuhkan: Jika maka barisan dikatakan konvergen ke jika Jika dalam tambahan, ada sebuah konstanta sehingga untuk setiap dan sebuah bilangan bulat Richard Bronson (1996) dalam bukunya yang berjudul Teori dan Soal-soal Operation Research, menyatakan bahwa persamaan Lagrange dari persoalan nonlinear seperti yang telah dipaparkan yaitu sebagai berikut: dimana adalah tetapan-tetapan (yang tidak diketahui) yang disebut pengali Lagrange. Kemudian kita pecahkan sistem n+m persamaan Syarat Kuhn-Tucker: (Winston dan Venkataramanan, 2003) 1. Andaikan persoalan nonlinear di atas adalah persoalan maksimisasi. Jika adalah solusi optimal dari persoalan tersebut, maka harus memenuhi m kendala dan harus ada pengali yang memenuhi
4 2. Andaikan persoalan nonlinear di atas adalah persoalan minimisasi. Jika adalah solusi optimal dari persoalan tersebut, maka harus memenuhi m kendala dan harus ada pengali yang memenuhi S.S Rao (1977) dalam bukunya yang berjudul Optimization Theory and Application menjelaskan bahwa pemrograman kuadratis merupakan persoalan optimasi nonlinear dimana fungsi tujuannya adalah fungsi minimisasi yang konveks dan semua kendalanya berbentuk persamaan atau pertidaksamaan linear. Bentuk umum persoalan pemrograman kuadaratis adalah sebagai berikut: Min. s.t dimana d d d d d d d d d n n n1 n2 nn Pada fungsi tujuan di atas yaitu suku A = a a a a a a a a a n n m1 m2 mn menyatakan bagian kuadratis dari fungsi tujuan dengan D adalah matriks definit positif simetri. Jika D=0 maka menjadi
5 persoalan linear. Karena D adalah matriks definit positif maka f(x) adalah fungsi strictly convex. Menurut Winston dan Venkataramanan (2003), metode untuk menyelesaikan persoalan pemrograman kuadratis yaitu metode Wolfe. Pertama, semua fungsi tujuan dan kendala harus ditambahkan variabel buatan pada masing-masing kendala dengan kondisi Kuhn-Tucker dan variabel basis belum jelas kemudian minimumkan jumlah variabel buatan. Metode wolfe merupakan versi modifikasi dari fase I pada metode simplex dua fase. Untuk menjamin bahwa solusi akhir (dengan variabel buatan sama dengan nol) memenuhi kondisi complementary slackness, metode Wolfe memodifikasi pilihan variabel simplex yang masuk: 1. Tidak diperbolehkan dari kendala ke-i dan kedua-duanya sebagai variabel basis. 2. Tidak diperbolehkan variabel slack atau excess dari kendala ke-i dan kedua-duanya sebagai variabel basis. Dimitri P Bertsekas (2007) dalam jurnalnya yang berjudul SQP and PDIP Algorithms for Nonlinear Programming dikatakan bahwa metode Sequential Quadratic Programming digunakan untuk menyelesaikan persoalan nonlinear yang memiliki kendala dalam bentuk persamaan dengan bentuk umum : Min. f(x) s.t. h(x)=0 Metode Sequential Quadratic Programming menyerupai metode Newton yang digunakan untuk mencari penyelesaian pada optimisasi tidak berkendala. Ide utama dari SQP adalah memodelkan persoalan kendala yang berbentuk persamaan pada titik awal kemudian mencari pendekatan dengan subpersoalan pemrograman kuadratis berbentuk: dimana
6 Metode Sequential Quadratic Programming atau yang juga dikenal sebagai metode Lagrange-Newton karena metode SQP merupakan penggabungan dari kedua metode tersebut. Algoritmanya adalah sebagai berikut: 1. Tentukan 2. Atur k=0 3. Ulang 4. Pecahkan sistem Langrange-Newton untuk menemukan Sampai konvergen Metode SQP merupakan aplikasi dari metode Newton dengan memenuhi kondisi optimal KKT. Menurut Mark S. Gockenbach dalam jurnalnya yang berjudul Introduction to Sequential Quadratic Programming, metode SQP mencoba untuk memecahkan persoalan nonlinear secara langsung daripada mengubahnya ke barisan persoalan minimisasi yang tidak berkendala. Ide dasar analog dengan metode Newton untuk persoalan minimisasi yang tidak berkendala. Metode SQP dapat digunakan untuk menyelesaikan persoalan aplikasi yang kompleksitasnya tinggi (Schittkowski dan Yuan, 2010) 1.4 TUJUAN PENELITIAN Tujuan dari penelitian ini adalah untuk mendapatkan penyelesaian dari persoalan nonlinear berkendala. 1.5 KONTRIBUSI PENELITIAN Manfaat dari penelitian ini adalah 1. Setiap mahasiswa dapat menemukan jawab optimal dari persoalan nonlinear berkendala persamaan maupun pertidaksamaan dengan menggunakan metode Sequential Quadratic Programming
7 2. Digunakan sebagai tambahan informasi dan referensi bacaan untuk mahasiswa matematika, terlebih bagi mahasiswa yang hendak melakukan penelitian serupa. 1.6 METODE PENELITIAN Penelitian ini adalah penelitian literatur yang disusun dengan langkah-langkah sebagai berikut: 1. Membaca dan memahami persoalan pemrograman nonlinear dari buku dan jurnal. 2. Mengambil contoh soal untuk dikerjakan sesuai dengan langkah-langkah yang telah didapat dari jurnal-jurnal. 3. Menjelaskan tentang penyelesaian persoalan nonlinear berkendala persamaan dan pertidaksamaan dengan menggunakan metode Sequential Quadratic Programming (SQP).
BAB 2 LANDASAN TEORI
BAB 2 LANDASAN TEORI Pada bab ini akan dijelaskan mengenai teori teori yang berhubungan dengan pembahasan ini sehingga dapat dijadikan sebagai landasan berpikir dan akan mempermudah dalam hal pembahasan
METODE SEQUENTIAL QUADRATIC PROGRAMMING (SQP) UNTUK MENYELESAIKAN PERSOALAN NONLINEAR BERKENDALA SKRIPSI YANI
METODE SEQUENTIAL QUADRATIC PROGRAMMING (SQP) UNTUK MENYELESAIKAN PERSOALAN NONLINEAR BERKENDALA SKRIPSI YANI 070803040 DEPARTEMEN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS SUMATERA
BAB II KAJIAN PUSTAKA. Pada bab ini akan diberikan landasan teori tentang optimasi, fungsi, turunan,
BAB II KAJIAN PUSTAKA Pada bab ini akan diberikan landasan teori tentang optimasi, fungsi, turunan, pemrograman linear, metode simpleks, teorema dualitas, pemrograman nonlinear, persyaratan karush kuhn
METODE SEQUENTIAL QUADRATIC PROGRAMMING (SQP) PADA OPTIMASI NONLINIER BERKENDALA SKRIPSI
METODE SEQUENTIAL QUADRATIC PROGRAMMING (SQP) PADA OPTIMASI NONLINIER BERKENDALA SKRIPSI Diajukan sebagai salah satu syarat untuk memperoleh gelar Sarjana Program Strata Satu (S1) pada Program Studi Matematika
BAB II KAJIAN PUSTAKA. pemrograman nonlinear, fungsi konveks dan konkaf, pengali lagrange, dan
BAB II KAJIAN PUSTAKA Kajian pustaka pada bab ini akan membahas tentang pengertian dan penjelasan yang berkaitan dengan fungsi, turunan parsial, pemrograman linear, pemrograman nonlinear, fungsi konveks
BAB 2 TINJAUAN PUSTAKA
BAB 2 TINJAUAN PUSTAKA 2.1 Optimasi Non-Linier Suatu permasalahan optimasi disebut nonlinier jika fungsi tujuan dan kendalanya mempunyai bentuk nonlinier pada salah satu atau keduanya. Optimasi nonlinier
BAB 2 TINJAUAN PUSTAKA. ini sehingga dapat dijadikan sebagai landasan berpikir dan akan mempermudah. dalam hal pembahasan hasil utama berikutnya.
BAB 2 TINJAUAN PUSTAKA Pada bab ini akan dijelaskan mengenai teori-teori yang berhubungan dengan pembahasan ini sehingga dapat dijadikan sebagai landasan berpikir dan akan mempermudah dalam hal pembahasan
BAB II KAJIAN PUSTAKA
BAB II KAJIAN PUSTAKA A. Efektivitas Efektivitas berasal dari kata efektif, yang merupakan kata serapan dari bahasa Inggris yaitu effective yang artinya berhasil. Menurut kamus ilmiah popular, efektivitas
OPTIMASI TANAMAN PANGAN DI KOTA MAGELANG DENGAN PEMROGRAMAN KUADRATIK DAN METODE FUNGSI PENALTI EKSTERIOR
40 Jurnal Matematika Vol 6 No 2 Tahun 2017 OPTIMASI TANAMAN PANGAN DI KOTA MAGELANG DENGAN PEMROGRAMAN KUADRATIK DAN METODE FUNGSI PENALTI EKSTERIOR OPTIMIZATION OF FOOD CROPS IN MAGELANG WITH QUADRATIC
BAB III PEMBAHASAN. digunakan untuk membentuk fungsi tujuan dari masalah pemrograman nonlinear
BAB III PEMBAHASAN Pada bab ini akan dijelaskan tentang konsep dasar metode kuadrat terkecil yang digunakan untuk membentuk fungsi tujuan dari masalah pemrograman nonlinear dan langkah-langkah penyelesaiannya
BAB IV PEMBAHASAN. optimasi biaya produksi pada home industry susu kedelai Pak Ahmadi
BAB IV PEMBAHASAN Pada bab ini akan dipaparkan tentang penerapan model nonlinear untuk optimasi biaya produksi pada home industry susu kedelai Pak Ahmadi menggunakan pendekatan pengali lagrange dan pemrograman
KOMBINASI PERSYARATAN KARUSH KUHN TUCKER DAN METODE BRANCH AND BOUND PADA PEMROGRAMAN KUADRATIK KONVEKS BILANGAN BULAT MURNI
Jurnal LOG!K@ Jilid 7 No 1 2017 Hal 52-60 ISSN 1978 8568 KOMBINASI PERSYARATAN KARUSH KUHN TUCKER DAN METODE BRANCH AND BOUND PADA PEMROGRAMAN KUADRATIK KONVEKS BILANGAN BULAT MURNI Khoerunisa dan Muhaza
BAB 2 LANDASAN TEORI
BAB 2 LANDASAN TEORI 2.1 Pemrograman Non Linier Pemrograman Non linier merupakan pemrograman dengan fungsi tujuannya saja atau bersama dengan fungsi kendala berbentuk non linier yaitu pangkat dari variabelnya
BAB II KAJIAN TEORI. berkaitan dengan optimasi, pemrograman linear, pemrograman nonlinear, quadratic
BAB II KAJIAN TEORI Kajian teori pada bab ini membahas tentang pengertian dan penjelasan yang berkaitan dengan optimasi, pemrograman linear, pemrograman nonlinear, quadratic programming dan algoritma genetika.
Teori Dualitas dan Penerapannya (Duality Theory and Its Application)
Teori Dualitas dan Penerapannya (Duality Theory and Its Application) Kuliah 6 TI2231 Penelitian Operasional I 1 Materi Bahasan 1 Teori dualitas 2 Metode simpleks dual TI2231 Penelitian Operasional I 2
BAB 1 PENDAHULUAN Latar Belakang
BAB 1 PENDAHULUAN 1.1. Latar Belakang Pengoptimalan merupakan ilmu Matematika terapan dan bertujuan untuk mencapai suatu titik optimum. Dalam kehidupan sehari-hari, baik disadari maupun tidak, sebenarnya
BAB 2 KAJIAN PUSTAKA. Menurut Asghar (2000), secara garis besar masalah optimisasi terbagi dalam beberapa tipe berikut:
BAB 2 KAJIAN PUSTAKA 2.1 Masalah Optimisasi dan Program Non Linier Menurut Asghar (2000), secara garis besar masalah optimisasi terbagi dalam beberapa tipe berikut: 1. Masalah optimisasi tanpa kendala.
III RELAKSASI LAGRANGE
III RELAKSASI LAGRANGE Relaksasi Lagrange merupakan salah satu metode yang terus dikembangkan dalam aplikasi pemrograman matematik. Sebagian besar konsep teoretis dari banyak aplikasi menggunakan metode
BAB 2 PROGRAM LINIER DAN TAK LINIER. Program linier (Linear programming) adalah suatu masalah matematika
BAB 2 PROGRAM LINIER DAN TAK LINIER 2.1 Program Linier Program linier (Linear programming) adalah suatu masalah matematika yang mempunyai fungsi objektif dan kendala berbentuk linier untuk meminimalkan
OPTIMASI FUNGSI MULTIVARIABLE TANPA KENDALA DENGAN METODE NEWTON
OPTIMASI FUNGSI MULTIVARIABLE TANPA KENDALA DENGAN METODE NEWTON Susi Ranangga [M008067], Aeroni Dwijayanti [M008078] Hamdani Citra P. [M0003], Nafi Nur Khasana [M00058]. Pendahuluan Dalam kehidupan sehari-hari
BAB I PENDAHULUAN 1.1. Latar Belakang
BAB I PENDAHULUAN 1.1. Latar Belakang Saat ini semakin banyak permasalahan pada kehidupan sehari-hari yang memerlukan pendekatan optimisasi dalam penyelesaiannya. Sebagai contoh, misalkan sebuah perusahaan
BAB II TINJAUAN PUSTAKA. operasi yang mampu menyelesaikan masalah optimasi sejak diperkenalkan di
BAB II TINJAUAN PUSTAKA 2.1 Pemrograman Linier (Linear Programming) Pemrograman linier (linear programming) merupakan salah satu teknik riset operasi yang mampu menyelesaikan masalah optimasi sejak diperkenalkan
Syarat Fritz John pada Masalah Optimasi Berkendala Ketaksamaan. Caturiyati 1 Himmawati Puji Lestari 2. Abstrak
Syarat Fritz John pada Masalah Optimasi Berkendala Ketaksamaan Caturiyati 1 Himmawati Puji Lestari 2 1,2 Jurusan Pendidikan Matematika FMIPA UNY 1 [email protected] 2 [email protected] Abstrak
SYARAT FRITZ JOHN PADA MASALAH OPTIMASI BERKENDALA KETAKSAMAAN. Caturiyati 1 Himmawati Puji Lestari 2. Abstrak
Syarat Fritz John... (Caturiyati) SYARAT FRITZ JOHN PADA MASALAH OPTIMASI BERKENDALA KETAKSAMAAN Caturiyati 1 Himmawati Puji Lestari 2 1,2 Jurusan Pendidikan Matematika FMIPA UNY 1 [email protected]
OPTIMASI BIAYA PRODUKSI PADA HOME INDUSTRY SUSU KEDELAI MENGGUNAKAN PENDEKATAN PENGALI LAGRANGE DAN PEMROGRAMAN KUADRATIK TUGAS AKHIR SKRIPSI
OPTIMASI BIAYA PRODUKSI PADA HOME INDUSTRY SUSU KEDELAI MENGGUNAKAN PENDEKATAN PENGALI LAGRANGE DAN PEMROGRAMAN KUADRATIK TUGAS AKHIR SKRIPSI Diajukan kepada Fakultas Matematika dan Ilmu Pengetahuan Alam
BAB I PENDAHULUAN. Riset Operasi, dalam artian sempit merupakan penerapan dari model-model
BAB I PENDAHULUAN A. LATAR BELAKANG Riset Operasi, dalam artian sempit merupakan penerapan dari model-model ilmiah khususnya dalam bidang matematika dan statistika (Kandiller, 2007 : 1). Riset Operasi
PLAGIAT MERUPAKAN TINDAKAN TIDAK TERPUJI
METODE TITIK-INTERIOR PADA PEMROGRAMAN KUADRATIK KONVEKS Skripsi Diajukan untuk Memenuhi Salah Satu Syarat Memperoleh Gelar Sarjana Sains Program Studi Matematika Oleh: Fenny Basuki NIM: 831143 PROGRAM
OPTIMASI FUNGSI MULTI VARIABEL DENGAN METODE UNIVARIATE. Dwi Suraningsih (M ), Marifatun (M ), Nisa Karunia (M )
OPTIMASI FUNGSI MULTI VARIABEL DENGAN METODE UNIVARIATE Dwi Suraningsih (M2, Marifatun (M53, Nisa Karunia (M6 I. Pendahuluan Latar Belakang. Dalam kehidupan sehari-hari disa maupun tidak, sebenarnya manusia
I PENDAHULUAN II LANDASAN TEORI
1 I PENDAHULUAN 1.1 Latar Belakang Kamar darurat (Emergency Room/ER) adalah tempat yang sangat penting peranannya pada rumah sakit. Aktivitas yang cukup padat mengharuskan kamar darurat selalu dijaga oleh
METODE SIMPLEKS DALAM PROGRAM LINIER
METODE SIMPLEKS DALAM PROGRAM LINIER Dian Wirdasari Abstrak Metode simpleks merupakan salah satu teknik penyelesaian dalam program linier yang digunakan sebagai teknik pengambilan keputusan dalam permasalahan
kita menggunakan variabel semu untuk memulai pemecahan, dan meninggalkannya setelah misi terpenuhi
Lecture 4: (B) Supaya terdapat penyelesaian basis awal yang fisibel, pada kendala berbentuk = dan perlu ditambahkan variabel semu (artificial variable) pada ruas kiri bentuk standarnya, untuk siap ke tabel
BAB II METODE SIMPLEKS
BAB II METODE SIMPLEKS 2.1 Pengantar Salah satu teknik penentuan solusi optimal yang digunakan dalam pemrograman linier adalah metode simpleks. Penentuan solusi optimal menggunakan metode simpleks didasarkan
II LANDASAN TEORI. suatu fungsi dalam variabel-variabel. adalah suatu fungsi linear jika dan hanya jika untuk himpunan konstanta,.
II LANDASAN TEORI Pada pembuatan model penjadwalan pertandingan sepak bola babak kualifikasi Piala Dunia FIFA 2014 Zona Amerika Selatan, diperlukan pemahaman beberapa teori yang digunakan di dalam penyelesaiannya,
BAB 1 PENDAHULUAN. 1.1 Latar Belakang
BAB 1 PENDAHULUAN 1.1 Latar Belakang Dalam kehidupan sehari-hari baik disadari maupun tidak, sebenarnya orang selalu melakukan optimasi untuk memenuhi kebutuhannya. Tetapi optimasi yang dilakukan masyarakat
Prosiding Matematika ISSN:
Prosiding Matematika ISSN: 2460-6464 Optimisasi Fungsi Nonlinier Dua Variabel Bebas dengan Satu Kendala Pertidaksamaan Menggunakan Syarat Kuhn-Tucker Optimization of Nonlinear Function of Two Independent
BAB I PENDAHULUAN. berkembang sejak Perang Dunia II (Simarmata, 1982: ix). Model-model Riset. sebagainya, maka timbullah masalah optimasi.
BAB I PENDAHULUAN A. LATAR BELAKANG MASALAH Riset Operasi adalah suatu cabang ilmu pengetahuan baru yang berkembang sejak Perang Dunia II (Simarmata, 1982: ix). Model-model Riset Operasi adalah teknik-teknik
I PENDAHULUAN II LANDASAN TEORI
I PENDAHULUAN 1.1 Latar Belakang Semakin tingginya mobilitas penduduk di suatu negara terutama di kota besar tentulah memiliki banyak permasalahan, mulai dari kemacetan yang tak terselesaikan hingga moda
OPTIMASI TANAMAN PANGAN DI KOTA MAGELANG DENGAN PEMROGRAMAN KUADRATIK DAN METODE FUNGSI PENALTI EKSTERIOR SKRIPSI
OPTIMASI TANAMAN PANGAN DI KOTA MAGELANG DENGAN PEMROGRAMAN KUADRATIK DAN METODE FUNGSI PENALTI EKSTERIOR SKRIPSI Diajukan kepada Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Negeri Yogyakarta
BAB I PENDAHULUAN. adalah optimasi digunakan untuk memaksimalkan keuntungan yang akan diraih
BAB I PENDAHULUAN 1.1 Latar Belakang Masalah Dalam kehidupan sehari-hari, baik disadari maupun tidak disadari, manusia sebenarnya telah melakukan upaya optimasi untuk memenuhi kebutuhan hidupnya. Akan
METODE REDUCED-GRADIENT PADA OPTIMASI NONLINIER BERKENDALA PERTIDAKSAMAAN NONLINIER SKRIPSI. Oleh : Normayati Sumanto J2A
METODE REDUCED-GRADIENT PADA OPTIMASI NONLINIER BERKENDALA PERTIDAKSAMAAN NONLINIER SKRIPSI Oleh : Normayati Sumanto J2A 005 037 PROGRAM STUDI MATEMATIKA JURUSAN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU
BAB II LANDASAN TEORI
BAB II LANDASAN TEORI Berikut ini adalah beberapa definisi dan teorema yang menjadi landasan dalam penentuan harga premi, fungsi permintaan, dan kesetimbangannya pada portfolio heterogen. 2.1 Percobaan
Bab 2 LANDASAN TEORI. 2.1 Pengantar Proses Stokastik
Bab 2 LANDASAN TEORI Pada bab ini akan diberikan penjelasan singkat mengenai pengantar proses stokastik dan rantai Markov, yang akan digunakan untuk analisis pada bab-bab selanjutnya. 2.1 Pengantar Proses
I PENDAHULUAN II LANDASAN TEORI
I PENDAHULUAN 1.1 Latar Belakang Sukarelawan adalah seseorang atau sekelompok orang yang secara ikhlas karena panggilan nuraninya memberikan apa yang dimilikinya tanpa mengharapkan imbalan. Sukarelawan
Penerapan Pemrograman Kuadratik Metode Wolfe untuk Optimasi Rata-Rata Produksi Padi dan Ketela Pohon di Kota Magelang
SEMINAR NASIONAL MATEMATIKA DAN PENDIDIKAN MATEMATIKA UNY 2016 T - 13 Penerapan Pemrograman Kuadratik Metode Wolfe untuk Optimasi Rata-Rata Produksi Padi dan Ketela Pohon di Kota Magelang Sativa Nurin
BAB 2 LANDASAN TEORI
BAB 2 LANDASAN TEORI Pada bab ini akan dibahas beberapa pengertian dari optimasi bersyarat dengan kendala persamaan menggunakan multiplier lagrange serta penerapannya yang akan digunakan sebagai landasan
I PENDAHULUAN II LANDASAN TEORI
I PENDAHULUAN 1.1 Latar Belakang Salah satu observasi yang berguna dalam bidang komputasi di tahun 1970 adalah observasi terhadap permasalahan relaksasi Lagrange. Josep Louis Lagrange merupakan tokoh ahli
BAB 1 PENDAHULUAN. 1.1 Latar Belakang
BAB 1 PENDAHULUAN 1.1 Latar Belakang Zaman yang semakin berkembang membuat persoalan semakin kompleks, tidak terkecuali persoalan yang melibatkan persoalan matematika. Kompleksitas yang semakin meningkat
OPTIMISASI PEMROGRAMAN CEMBUNG MENGGUNAKAN SYARAT KUHN-TUCKER SKRIPSI
OPTIMISASI PEMROGRAMAN CEMBUNG MENGGUNAKAN SYARAT KUHN-TUCKER SKRIPSI Diajukan kepada Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Negeri Yogyakarta untuk Memenuhi Sebagian Persyaratan Guna
Bab 2 LANDASAN TEORI
Bab 2 LANDASAN TEORI 2.1 Program Linear Menurut Sitorus, Parlin (1997), Program Linier merupakan suatu teknik penyelesaian optimal atas suatu problema keputusan dengan cara menentukan terlebih dahulu suatu
I PENDAHULUAN II LANDASAN TEORI
I PENDAHULUAN. Latar Belakang Masalah penentuan rute bus karyawan mendapat perhatian dari para peneliti selama lebih kurang 30 tahun belakangan ini. Masalah optimisasi rute bus karyawan secara matematis
I PENDAHULUAN II LANDASAN TEORI
1 I PENDAHULUAN 1.1 Latar elakang Sepak bola merupakan olahraga yang populer di seluruh dunia termasuk di Indonesia. Sepak bola sebenarnya memiliki perangkat-perangkat penting yang harus ada dalam penyelenggaraannya,
PENERAPAN METODE BRANCH AND BOUND DALAM PENYELESAIAN MASALAH PADA INTEGER PROGRAMMING
Jurnal Manajemen Informatika dan Teknik Komputer Volume, Nomor, Oktober 05 PENERAPAN METODE BRANCH AND BOUND DALAM PENYELESAIAN MASALAH PADA INTEGER PROGRAMMING Havid Syafwan Program Studi Manajemen Informatika
BAB 2 OPTIMISASI KOMBINATORIAL. Masalah optimisasi merupakan suatu proses pencarian varibel bebas yang
BAB 2 OPTIMISASI KOMBINATORIAL 2.1 Masalah Model Optimisasi Kombinatorial Masalah optimisasi merupakan suatu proses pencarian varibel bebas yang memenuhi kondisi atau batasan yang disebut kendala dari
BAB II KAJIAN PUSTAKA. Berikut diberikan landasan teori mengenai Teori Portofolio, Turunan
BAB II KAJIAN PUSTAKA Berikut diberikan landasan teori mengenai Teori Portofolio, Turunan Parsial, Supremum dan Infimum, Himpunan Konveks, Program Nonlinear, Matriks Definit Positif dan Definit Negatif,
OPTIMASI (Pemrograman Non Linear)
OPTIMASI (Pemrograman Non Linear) 3 SKS PILIHAN Arrival Rince Putri, 013 1 Silabus I. Pendahuluan 1. Perkuliahan: Silabus, Referensi, Penilaian. Pengantar Optimasi 3. Riview Differential Calculus II. Dasar-Dasar
BAB I PENDAHULUAN Latar Belakang Masalah
BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Derivatif memegang peranan penting dalam syarat optimalitas fungsi, yaitu untuk mencapai ekstrim, derivatif order satu fungsi tersebut harus bernilai nol.
BAB I PENDAHULUAN Latar Belakang Masalah
BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Pada suatu eksperimen atau pengamatan terhadap suatu keadaan, pengambilan data merupakan salah satu bagian terpenting, agar hasil dari eksperimen dapat lebih
METODE STEEPEST DESCENT
METODE STEEPEST DESCENT DENGAN UKURAN LANGKAH BARU UNTUK PENGOPTIMUMAN NIRKENDALA D. WUNGGULI 1, B. P. SILALAHI 2, S. GURITMAN 3 Abstrak Metode steepest descent adalah metode gradien sederhana untuk pengoptimuman.
BAB II. PEMROGRAMAN LINEAR
BAB II. PEMROGRAMAN LINEAR KARAKTERISTIK PEMROGRAMAN LINEAR Sifat linearitas suatu kasus dapat ditentukan menggunakan beberapa cara. Secara statistik, kita dapat memeriksa kelinearan menggunakan grafik
OPTIMASI PEMROGRAMAN KUADRATIK KONVEKS DENGAN MENGGUNAKAN METODE PRIMAL-DUAL PATH-FOLLOWING
OPIMASI PEMROGRAMAN KUADRAIK KONVEKS DENGAN MENGGUNAKAN MEODE PRIMAL-DUAL PAH-FOLLOWING Raras yasnurita ), Wiwik Anggraeni ), Rully Soelaiman 3) ) Jurusan Sistem Informasi 3) Jurusan eknik Informatika
BAB 3 METODE PENELITIAN
BAB 3 METODE PENELITIAN Pada bab ini, akan dijelaskan metode-metode yang penulis gunakan dalam penelitian ini. Adapun metode yang akan digunakan dalam penelitian ini adalah Metode Simpleks dan Metode Branch
OPERATION RESEARCH-1
OPERATION RESEARCH-1 Prof.Dr.H.M.Yani Syafei,MT MATERI PERKULIAHAN 1.Pemrograman Linier (Linear Programming) Formulasi Model Penyelesaian dengan Metode Grafis Penyelesaian dengan Algoritma Simplex Penyelesaian
DUALITAS. Obyektif 1. Memahami penyelesaian permasalahan dual 2. Mengerti Interpretasi Ekonomi permasalahan dual
DUALITAS 3 Obyektif 1. Memahami penyelesaian permasalahan dual 2. Mengerti Interpretasi Ekonomi permasalahan dual Istilah dualitas menunjuk pada kenyataan bahwa setiap Program Linier terdiri atas dua bentuk
Aplikasi Integer Linear Programming (Ilp) untuk Meminimumkan Biaya Produksi pada Siaputo Aluminium
Aplikasi Integer Linear Programming (Ilp) untuk Meminimumkan Biaya Produksi pada Siaputo Aluminium Hikmah *1, Nusyafitri Amin 2 *1 Program Studi Matematika FMIPA Universitas Sulawesi Barat, 2 Program Studi
RENCANA PEMBELAJARAN SEMESTER (RPS)
RENCANA PEMBELAJARAN SEMESTER (RPS) IKG3M3 OPTIMASI DAN KONTROL Disusun oleh: Dede Tarwidi, M.Si., M.Sc. PROGRAM STUDI S1 ILMU KOMPUTASI FAKULTAS INFORMATIKA TELKOM UNIVERSITY LEMBAR PENGESAHAN Rencana
Model umum metode simpleks
Model umum metode simpleks Fungsi Tujuan: Z C X C 2 X 2 C n X n S S 2 S n = NK FungsiPembatas: a X + a 2 X 2 + + a n X n + S + S 2 + + S n = b a 2 X + a 22 X 2 + + a 2n X n + S + S 2 + + S n = b 2 a m
BAB II TINJAUAN PUSTAKA. berhubungan dengan pendistribusian barang dari sumber (misalnya, pabrik) ke
BAB II TINJAUAN PUSTAKA 2.1 Masalah Transportasi Masalah transportasi merupakan pemrograman linear jenis khusus yang berhubungan dengan pendistribusian barang dari sumber (misalnya, pabrik) ke tujuan (misalnya,
BAB 1 PENDAHULUAN Latar Belakang
BAB 1 PENDAHULUAN 1.1. Latar Belakang Optimasi (Optimization) adalah aktivitas untuk mendapatkan hasil terbaik di dalam suatu keadaan yang diberikan. Tujuan akhir dari semua aktivitas tersebut adalah meminimumkan
Pemrograman Linier (3)
Pemrograman Linier () Metode Big-M Ahmad Sabri Universitas Gunadarma, Indonesia Pada model PL di mana semua kendala memiliki relasi, variabel basis pada solusi awal (tabel simpleks awal) adalah Z dan semua
PENYELESAIAN MODEL NONLINEAR MENGGUNAKAN SEPARABLE PROGRAMMING DENGAN ALGORITMA GENETIKA PADA PRODUKSI TEMPE
Penyelesaian Model Nonlinear... (Asep Iindriana) 1 PENYELESAIAN MODEL NONLINEAR MENGGUNAKAN SEPARABLE PROGRAMMING DENGAN ALGORITMA GENETIKA PADA PRODUKSI TEMPE SOLUTION OF NONLINEAR MODEL USING SEPARABLE
BAB III. SOLUSI GRAFIK
BAB III. SOLUSI GRAFIK Salah satu metode pengoptimalan yang dapat digunakan adalah grafik. Fungsi tujuan dan kendala permasalahan digambarkan menggunakan bantuan sumbu absis (horizontal) dan ordinat (vertikal)
ALGORITMA METODE SIMPLEKS (PRIMAL)
ALGORITMA METODE SIMPLEKS (PRIMAL) Artificial Variable Algoritma Simpleks Metode M (Method of penalty) Metode dua fase Tabel Simpleks dalam bentuk matriks Artificial Variable (AV) Apabila terdapat satu
BAB 2 LANDASAN TEORI
BAB 2 LANDASAN TEORI 2.1 Program Linier Program linier adalah suatu cara untuk menyelesaikan persoalan pengalokasian sumber-sumber yang terbatas di antara beberapa aktivitas yang bersaing, dengan cara
OPTIMISASI NONLINEAR MULTIVARIABEL TANPA KENDALA DENGAN METODE DAVIDON FLETCHER POWELL
OPTIMISASI NONLINEAR MULTIVARIABEL TANPA KENDALA DENGAN METODE DAVIDON FLETCHER POWELL SKRIPSI Untuk Memenuhi Sebagian Persyaratan Guna Memperoleh Derajat Sarjana S-1 Program Studi Matematika Disusun oleh
Konvergensi Global Metode Spectral Conjugate Descent yang Baru Menggunakan Pencarian Garis Armijo yang Termodifikasi
42 ISSN 2302-7290 Vol. 2 No. 2, April 2014 Konvergensi Global Metode Spectral Conjugate Descent yang Baru Menggunakan Pencarian Garis Armijo yang Termodifikasi Global Convergence of the New Spectral Conjugate
PROGRAM LINEAR: METODE SIMPLEX
PROGRAM LINEAR: METODE SIMPLEX Latar Belakang Sulitnya menggambarkan grafik berdimensi banyak atau kombinasi lebih dari dua variabel. Metode grafik tidak mungkin dapat dilakukan untuk menyelesaikan masalah
SILABUS MATA KULIAH. Tujuan
SILABUS MATA KULIAH NAMA MATAKULIAH KODE MATAKULIAH KREDIT/SKS SEMESTER DESKRIPSI TUJUAN UMUM PERKULIAHAN Matematika Ekonomi EKO 500 3 (3-0) 1 Kuliah ini terdiri dari tiga bagian pokok, yakni aljabar matriks,
ALGORITMA MODIFIKASI BROYDEN-FLETCHER-GOLDFARB-SHANNO (MBFGS) PADA PERMASALAHAN OPTIMASI
ALGORITMA MODIFIKASI BROYDEN-FLETCHER-GOLDFARB-SHANNO (MBFGS) PADA PERMASALAHAN OPTIMASI Nama Mahasiswa : Rahmawati Erma.S. NRP : 1208100030 Jurusan : Matematika Dosen Pembimbing : 1. Subchan, M.Sc, Ph.D
GARIS-GARIS BESAR PROGRAM PEMBELAJARAN. Kode Komputer : 068 Kode Mata Kuliah : MMP Dosen Pengampu : Sisca Octarina, M.Sc Eka Susanti, M.
GARIS-GARIS BESAR PROGRAM PEMBELAJARAN Mata Kuliah : Optimasi Kode Komputer : 068 Kode Mata Kuliah : MMP 33308 SKS : 3 sks Dosen Pengampu : Sisca Octarina, M.Sc Eka Susanti, M.Sc I. Deskripsi Mata Kuliah
BENTUK DUAL MASALAH SOCP NORMA SATU
BENTUK DUAL MASALAH SOCP NORMA SATU Caturiyati 1, Ch. Rini Indrati 2, Lina Aryati 3 1 Mahasiswa Program Doktor Matematika FMIPA UGM dan Dosen Jurusan Pendidikan Matematika FMIPA UNY, 2,3 Dosen Jurusan
Jurnal Matematika Murni dan Terapan Epsilon Juni 2014 Vol. 8 No. 1 METODE KARMARKAR SEBAGAI ALTERNATIF PENYELESAIAN MASALAH PEMROGRAMAN LINEAR
Jurnal Matematika Murni dan Terapan Epsilon Juni 204 Vol. 8 No. METODE KARMARKAR SEBAGAI ALTERNATIF PENYELESAIAN MASALAH PEMROGRAMAN LINEAR Bayu Prihandono, Meilyna Habibullah, Evi Noviani Program Studi
PROGRAM LINEAR DENGAN METODE SIMPLEX
PROGRAM LINEAR DENGAN METODE SIMPLEX PENDAHULUAN Metode simpleks ini adalah suatu prosedur aljabar yang bukan secara grafik untuk mencari nilai optimal dari fungsi tujuan dalam masalah-masalah optimisasi
BAB II KAJIAN TEORI. untuk membahas bab berikutnya. Dasar teori yang akan dibahas pada bab ini
BAB II KAJIAN TEORI Pembahasan pada bagian ini akan menjadi dasar teori yang akan digunakan untuk membahas bab berikutnya. Dasar teori yang akan dibahas pada bab ini adalah optimisasi, fungsi, pemrograman
Berikut merupakan alur penyelesaian masalah nyata secara matematik. pemodelan. penyelesaian
Lecture I: Introduction of NonLinear Programming A. Masalah Optimisasi Dalam kehidupan sehari-hari, manusia cenderung untuk berprinsip ekonomi, yaitu dengan sumber daya sedikit mungkin dapat memperoleh
PENYELESAIAN MASALAH PEMROGRAMAN LINIER BILANGAN BULAT MURNI DENGAN METODE REDUKSI VARIABEL
Jurnal Matematika UNAND Vol. 3 No. 3 Hal. 17 5 ISSN : 303 910 c Jurusan Matematika FMIPA UNAND PENYELESAIAN MASALAH PEMROGRAMAN LINIER BILANGAN BULAT MURNI DENGAN METODE REDUKSI VARIABEL PESTI NOVTARIA
OPTIMISASI KONVEKS: KONSEP-KONSEP
Prosiding Seminar Nasional Penelitian, Pendidikan dan Penerapan MIPA, Fakultas MIPA, Universitas Negeri Yogyakarta, 14 Mei 2011 OPTIMISASI KONVEKS: KONSEP-KONSEP Caturiyati 1 dan Himmawati Puji Lestari
APLIKASI PROGRAM INTEGER PADA PERUMAHAN BUMI SERGAI DI SEI RAMPAH
Saintia Matematika Vol. 2, No. 1 (2014), pp. 13 21. APLIKASI PROGRAM INTEGER PADA PERUMAHAN BUMI SERGAI DI SEI RAMPAH ERLINA, ELLY ROSMAINI, HENRY RANI SITEPU Abstrak. Kebutuhan akan rumah merupakan salah
BAB I PENDAHULUAN. dilakukan masyarakat awam lebih banyak dilandasi oleh insting daripada teori
1 BAB I PENDAHULUAN 1.1 Latar Belakang Masalah Dalam kehidupan sehari-hari disadari atau tidak, sebenarnya orang selalu melakukan optimasi untuk memenuhi kebutuhannya. Tetapi optimasi yang dilakukan masyarakat
Masalah maksimisasi dapat ditinjau dari metode minimisasi, karena
Lecture 2: Optimization of Function of One Variable A. Pendahuluan Ide dasar dari masalah optimisasi adalah mengoptimumkan (memaksimumkan/ meminimumkan) suatu besaran skalar yang merupakan harga suatu
BAB II LANDASAN TEORI. A. Sistem Persamaan Linear dan Sistem Pertidaksamaan Linear
5 BAB II LANDASAN TEORI A Sistem Persamaan Linear dan Sistem Pertidaksamaan Linear Persamaan linear adalah bentuk kalimat terbuka yang memuat variabel dengan derajat tertinggi adalah satu Sedangkan sistem
MATEMATIKA SISTEM INFORMASI 2 [KODE/SKS : IT / 2 SKS]
MATA KULIAH MATEMATIKA SISTEM INFORMASI 2 [KODE/SKS : IT011215 / 2 SKS] LINIER PROGRAMMING Formulasi Masalah dan Pemodelan Pengertian Linear Programming Linear Programming (LP) adalah salah satu teknik
BAB I PENDAHULUAN 1.1. Latar Belakang dan Rumusan Masalah
1 BAB I PENDAHULUAN Pada bagian ini akan dijelaskan latar belakang dan rumusan masalah, tujuan dan manfaat penelitian, tinjauan pustaka, metode penelitian, serta sistematika penulisan. 1.1. Latar Belakang
BAB 2 LANDASAN TEORI
BAB 2 LANDASAN TEORI 2. Program linier (Linier Programming) Pemrograman linier merupakan metode matematik dalam mengalokasikan sumber daya yang terbatas untuk mencapai suatu tujuan seperti memaksimumkan
PENGEMBANGAN ALGORITMA ITERATIF UNTUK MINIMISASI FUNGSI NONLINEAR
PENGEMBANGAN ALGORITMA ITERATIF UNTUK MINIMISASI FUNGSI NONLINEAR TESIS Oleh FADHILAH JULI YANTI HARAHAP 127021019/MT FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS SUMATERA UTARA MEDAN 2014
BAB 2 LANDASAN TEORI
BAB 2 LANDASAN TEORI 2.1 Pemrograman Non linier Pemrograman non linier adalah suatu bentuk pemrograman yang berhubungan dengan suatu perencanaan aktivitas tertentu yang dapat diformulasikan dalam model
