Metode Elemen Batas (MEB) untuk Model Konduksi Panas

dokumen-dokumen yang mirip
Metode Elemen Batas (MEB) untuk Model Perambatan Gelombang

Model Perpindahan dan Penyebaran Pollutan

Metode Elemen Batas (MEB) untuk Model Konduksi-Konveksi dalam Media Anisotropik

METODE ELEMEN BATAS UNTUK MASALAH TRANSPORT

PERPINDAHAN PANAS DAN MASSA

Suatu Metode Numerik Untuk Komputasi Perembesan Air Ke Dalam Tanah Pada Sistim Irigasi

Metode elemen batas untuk menyelesaikan masalah perpindahan panas

Solusi Persamaan Helmholtz untuk Material Komposit

BAB I PENDAHULUAN Latar Belakang Masalah

Simulasi Perpindahan Panas pada Lapisan Tengah Pelat Menggunakan Metode Elemen Hingga

BAB 2 TINJAUAN PUSTAKA

BAB 3 METODOLOGI PENELITIAN

BAB III HASIL DAN PEMBAHASAN. analitik dengan metode variabel terpisah. Selanjutnya penyelesaian analitik dari

Pemodelan Matematika dan Metode Numerik

METODE ELEMEN BATAS (MEB) UNTUK SOLUSI NUMERIK MASALAH STATIK DARI MATERIAL ELASTIS ISOTROPIK TAK-HOMOGEN

Pemodelan Distribusi Suhu pada Tanur Carbolite STF 15/180/301 dengan Metode Elemen Hingga

BAB II PENGANTAR SOLUSI PERSOALAN FISIKA MENURUT PENDEKATAN ANALITIK DAN NUMERIK

I. PENDAHULUAN. dan kotoran manusia atau kotoran binatang. Semua polutan tersebut masuk. ke dalam sungai dan langsung tercampur dengan air sungai.

BAB I PENDAHULUAN Latar Belakang Masalah

ANALISA NUMERIK DISTRIBUSI PANAS TAK TUNAK PADA HEATSINK MENGGUNAKAN METODA FINITE DIFFERENT

Sidang Tugas Akhir - Juli 2013

Modul 05 Persamaan Linear dan Persamaan Linear Simultan

PDP linear orde 2 Agus Yodi Gunawan

BAB II TINJAUAN PUSTAKA

Bab II Konsep Dasar Metode Elemen Batas

Menentukan Distribusi Temperatur dengan Menggunakan Metode Crank Nicholson

1.1 Latar Belakang dan Identifikasi Masalah

PEMBENTUKAN POLINOMIAL ORTOGONAL MENGGUNAKAN PERSAMAAN INTEGRAL NONLINEAR. Susilawati 1 ABSTRACT

PENGANTAR MATEMATIKA TEKNIK 1. By : Suthami A

BAB II DASAR TEORI. 2.1 Persamaan Kontinuitas dan Persamaan Gerak

BAB III PEMODELAN PERSAMAAN INTEGRAL PADA ALIRAN FLUIDA

Pertemuan 1 dan 2 KONSEP DASAR PERSAMAAN DIFERENSIAL

Aplikasi Persamaan Bessel Orde Nol Pada Persamaan Panas Dua dimensi

TRANSPORT MOLEKULAR TRANSFER MOMENTUM, ENERGI DAN MASSA RYN. Hukum Newton - Viskositas RYN

steady/tunak ( 0 ) tidak dipengaruhi waktu unsteady/tidak tunak ( 0) dipengaruhi waktu

II. TINJAUAN PUSTAKA. Turunan fungsi f adalah fungsi lain f (dibaca f aksen ) yang nilainya pada ( ) ( ) ( )

KONSEP DASAR PERSAMAAN DIFERENSIAL

Kalkulus 2. Teknik Pengintegralan ke - 3. Tim Pengajar Kalkulus ITK. Institut Teknologi Kalimantan. Januari 2018

BERBAGAI MODEL MATEMATIKA BERBENTUK PERSAMAAN DIFERENSIAL BIASA TINGKAT SATU

Studi Analitik dan Numerik Perpindahan Panas pada Fin Trapesium (Studi Kasus pada Finned Tube Heat Exchanger)

PERPINDAHAN KALOR J.P. HOLMAN. BAB I PENDAHULUAN Perpindahan kalor merupakan ilmu yang berguna untuk memprediksi laju perpindahan

Bab 2 TEORI DASAR. 2.1 Model Aliran Panas

Solusi Numerik Persamaan Gelombang Dua Dimensi Menggunakan Metode Alternating Direction Implicit

BAB II TINJAUAN PUSTAKA

Bab IV Persamaan Integral Batas

METODE BERTIPE NEWTON UNTUK AKAR GANDA DENGAN KONVERGENSI KUBIK ABSTRACT

BAB II KABEL DAN PERPINDAHAN PANAS

SOLUSI PENYEBARAN PANAS PADA BATANG KONDUKTOR MENGGUNAKAN METODE CRANK-NICHOLSON

MA1201 KALKULUS 2A Do maths and you see the world

KARAKTERISTIK ALIRAN PANAS DALAM LOGAM PENGHANTAR LISTRIK THE CHARACTERISTICS OF HEAT FLOW IN AN ELECTRICAL METAL CONDUCTOR

Bab II Fungsi Kompleks

Ayundyah Kesumawati. April 29, Prodi Statistika FMIPA-UII. Deret Tak Terhingga. Ayundyah. Barisan Tak Hingga. Deret Tak Terhingga

Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Riau Kampus Binawidya Pekanbaru (28293), Indonesia.

Persamaan Diferensial Biasa

PEMILIHAN KOEFISIEN TERBAIK KUADRATUR KUADRAT TERKECIL DUA TITIK DAN TIGA TITIK. Nurul Ain Farhana 1, Imran M. 2 ABSTRACT

BAB II PERSAMAAN DIFERENSIAL BIASA

BAB III KONDUKSI ALIRAN STEDI - DIMENSI BANYAK

PENERAPAN METODE ELEMEN HINGGA UNTUK SOLUSI PERSAMAAN STURM-LIOUVILLE

BAB 1 PERSAMAAN. a) 2x + 3 = 9 a) 5 = b) x 2 9 = 0 b) = 12 c) x = 0 c) 2 adalah bilangan prima genap d) 3x 2 = 3x + 5

Konduksi Mantap 2-D. Shinta Rosalia Dewi

BAB I DASAR-DASAR PEMODELAN MATEMATIKA DENGAN PERSAMAAN DIFERENSIAL

BAB II LANDASAN TEORI. dalam penulisan skripsi ini. Teori-teori yang digunakan berupa definisi-definisi serta

Bab V Prosedur Numerik

Matematika Teknik I. Prasyarat : Kalkulus I, Kalkulus II, Aljabar Vektor & Kompleks

SOLUSI ANALITIK MASALAH KONDUKSI PANAS PADA TABUNG

Solusi Problem Dirichlet pada Daerah Persegi dengan Metode Pemisahan Variabel

Catatan Kuliah KALKULUS II BAB V. INTEGRAL

Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Riau Kampus Binawidya Pekanbaru (28293), Indonesia.

digunakan untuk menyelesaikan integral seperti 3

BANK SOAL METODE KOMPUTASI

INTEGRASI NUMERIK DENGAN METODE KUADRATUR GAUSS-LEGENDRE MENGGUNAKAN PENDEKATAN INTERPOLASI HERMITE DAN POLINOMIAL LEGENDRE

METODE DEKOMPOSISI ADOMIAN UNTUK MENYELESAIKAN PERMASALAHAN NILAI BATAS PADA PERSAMAAN DIFERENSIAL PARSIAL NONLINEAR ABSTRACT

Perpindahan Panas. Perpindahan Panas Secara Konduksi MODUL PERKULIAHAN. Fakultas Program Studi Tatap Muka Kode MK Disusun Oleh 02

Persamaan Diferensial

UJI KONVERGENSI. Januari Tim Dosen Kalkulus 2 TPB ITK

I PENDAHULUAN 1.1 Latar Belakang dan Perumusan Masalah

BAB II LANDASAN TEORI. selanjutnya sebagai bahan acuan yang mendukung tujuan penulisan. Materi-materi

Bab 2. Landasan Teori. 2.1 Persamaan Air Dangkal Linier (Linier Shallow Water Equation)

FORMULA PENGGANTI METODE KOEFISIEN TAK TENTU ABSTRACT

UJIAN AKHIR SEMESTER METODE NUMERIS I

BAB 2 TINJAUAN PUSTAKA

PENYELESAIAN PERSAMAAN DIFERENSIAL BIASA NONLINIER ORDE DUA DENGAN MENGGUNAKAN METODE DEKOMPOSISI ADOMIAN LAPLACE

BAB I PENDAHULUAN Latar Belakang Masalah

BAB I PENDAHULUAN Latar Belakang Masalah

FUNGSI BESSEL. 1. PERSAMAAN DIFERENSIAL BESSEL Fungsi Bessel dibangun sebagai penyelesaian persamaan diferensial.

BAB II LANDASAN TEORI

MODIFIKASI METODE RUNGE-KUTTA ORDE-4 KUTTA BERDASARKAN RATA-RATA HARMONIK TUGAS AKHIR. Oleh : EKA PUTRI ARDIANTI

HUBUNGAN ANTARA DIFFERENSIAL DAN INTEGRAL

Kalkulus Multivariabel I

Aplikasi Aljabar Lanjar pada Metode Numerik

BAB I PENDAHULUAN Latar Belakang Masalah

PERCOBAAN PENENTUAN KONDUKTIVITAS TERMAL BERBAGAI LOGAM DENGAN METODE GANDENGAN

BAB I INTEGRAL TAK TENTU

BAB 4 ANALISIS DAN BAHASAN

FENOMENA PERPINDAHAN. LUQMAN BUCHORI, ST, MT JURUSAN TEKNIK KIMIA FAKULTAS TEKNIK UNDIP

Integral Tak Tentu. Modul 1 PENDAHULUAN

Department of Mathematics FMIPAUNS

Estimasi Solusi Model Pertumbuhan Logistik dengan Metode Ensemble Kalman Filter

PEMBUATAN ALAT UKUR KONDUKTIVITAS PANAS BAHAN PADAT UNTUK MEDIA PRAKTEK PEMBELAJARAN KEILMUAN FISIKA

AB = c, AC = b dan BC = a, maka PQ =. 1

Transkripsi:

Metode Elemen Batas MEB) untuk Model Konduksi Panas Moh. Ivan Azis October 14, 011 Abstrak Metode Elemen Batas untuk masalah konduksi panas pada media ortotropik berhasil ditemukan pada tulisan ini. Solusi numerik yang diperoleh memperlihatkan kecocokan dan keakuratan pemakaian metode elemen batas untuk masalah ini. Daftar Isi 1 Persamaan pembangun 1 Masalah nilai batas 3 3 Solusi fundamental 4 4 Persamaan integral batas 5 5 Diskritisasi 5 6 Hasil numerik 8 7 Konklusi 9 1 Persamaan pembangun Di pasal ini akan ditunjukkan penurunan persamaan pembangun untuk model konduksi panas dalam media anisotropik. Lihat Holman 4] untuk penjelasan lebih detail. Ketika gradien suhu terjadi dalam suatu medium, maka pengalaman menunjukkan bahwa akan terdapat perpindahan energi dari daerah dengan suhu tinggi ke daerah dengan suhu rendah. Kita katakan bahwa energi dipindahkan secara konduksi, dan Dipublikasikan pada Jurnal Fisika FUSI Jurusan Fisika FMIPA Unhas, Vol. 6, Nomor 8, 00, Halaman 35-43 Jurusan Matematika Universitas Hasanuddin, Indonesia. mailto:mohivanazis@hotmail.com 1

bahwa laju perpindahan panas heat-transfer rate) per satuan area sebanding dengan gradien suhu dalam arah normal: q A Bila konstanta kesebandingan dimasukkan, q = ka dimana q adalah laju perpindahan panas dan / gradien suhu dalam arah aliran panas. Konstanta positif k disebut konduktivitas panas dari material, dan tanda minus - disisipkan sehingga prinsip kedua dari thermodynamics terpenuhi; yakni bahwa panas pasti berpindah dalam arah menurun dalam skala ukuran suhu. Persamaan 1) disebut hukum Fourier untuk konduksi panas. Dan dalam 1) k memiliki satuan watt per meter per derajat Celcius untuk suatu sistem satuan tertentu dimana q bersatuan watt. Bila suhu dapat berubah dengan waktu dan terdapat suatu sumber panas dalam medium, maka untuk elemen dengan ketebalan dx kesetimbangan energi berikut dapat diperlakukan: Energi masuk + panas yang dibangkitkan dalam elemen = perubahan energi dalam + energy keluar Kwantitas energi-energi ini diberikan sebagai berikut: Energi masuk = q x = ka Energi dibangkitkan dalam elemen = qa dx Perubahan energi dalam = ρca Energi keluar = ] q x+dx = ka = A k + k x+dx ) dx ] dimana q = energi dibangkitkan per satuan volume W/m 3 ), c = panas spesifik dari material J/kg. C), ρ = kepadatan kg/m 3 ). Penggabungan relasi-relasi di atas memberikan atau ka + qadx = ρca dx A k + k ) + q = ρc k ) ] dx Persamaan ini adalah persamaan konduksi panas satu-dimensi. Untuk kasus tiga-dimensi, persamaan kesetimbangan energi dapat dituliskan sebagai q x + q y + q z + q gen = q x+dx + q y+dy + q z+dz + E 1) )

dan kuantitas-kuantitas energi diberikan sebagai q x = k dy dz q x+dx = k + k ) ] dx dy dz q y = k dx dz q y+dy = y k y + y k ) ] dy dx dz y q z = k dx dy z q z+dz = k z + z q gen = qdx dy dz E = ρc dx dy dz k ) ] dz dx dy z sehingga bentuk umum dari persamaan konduksi panas tiga-dimensi adalah k ) + k ) + k ) + q = ρc y y z z 3) Perhatikan bahwa pada penurunan dari persamaan di atas, ekspresi derivatif pada x + dx telah ditulis dalam bentuk ekspansi deret Taylor dengan pengambilan dua suku pertama saja. Untuk media yang anisotropik nilai konduktivitas ke arah x, y dan z tidak semuanya sama. Namakan konduktivitas ke arah x, y dan z masing-masing sebagai k x, k y dan k z. Sehingga 3) dapat ditulis sebagai k x ) + y k y y ) + z ) k z + q = ρc z Pembicaraan selanjutnya dibatasi hanya untuk kasus steady suhu tidak berubah dengan waktu τ, sehingga / = 0) dan dengan asumsi bahwa di dalam medium tak terdapat suatu sumber atau pembangkit panas, q = 0). Lebih jauh diasumsikan bahwa medianya homogen konduktivitas panas konstan), serta kita hanya akan memandang kasus untuk dua-dimensi saja. Sehingga persamaan yang akan kita hadapi adalah Masalah nilai batas 4) T k x + k T y y = 0 5) Dengan merujuk pada sistim kordinat Cartesian Oxy solusi dari 5) dicari dimana solusi tersebut valid dalam daerah Ω di R dengan batas Γ yang terdiri dari sejumlah 3

berhingga kurva muls bagian demi bagian. Pada Γ salah satu dari suhu T x, y) atau flux P x, y) = n = k x n x + k y y n y diberikan, dimana n = n x, n y ) melambangkan vektor normal satuan mengarah ke luar di batas Γ. Metode solusi yang dipakai akan bekerja dengan cara menurunkan suatu persamaan integral batas yang relevan dengan 5), darimana nilai numerik T dan P dapat ditentukan untuk semua titik dalam daerah Ω. 3 Solusi fundamental Persamaan integral batas yang disebutkan pada Pasal melibatkan suatu fungsi solusi fundamental T yang didefinisikan sebagai k x T + k T y = δx ξ) 6) y dimana x = x, y), ξ = a, b) dan δ adalah fungsi delta Dirac. Solusi fundamental T ini dapat dituliskan sebagai berikut lihat Azis ] untuk penurunan T ) dimana D = k x + k y ρρ]/ K = ρ/d T x, ξ) = K ln R 7) π Ṙ = x + ρy a ρb) + ρy ρb) ρ dan ρ berturut-turut merupakan bagian real dan imajiner positif dari akar kompleks ρ dari persamaan kuadrat k x + k y ρ = 0 dan tanda bar.) melambangkan operasi konjugat untuk bilangan kompleks. Selain T kita juga memerlukan fungsi P, yang didefinisikan sebagai P = n k x /)n x +k y y)n y, untuk evaluasi persamaan integral batas tersebut di atas. Fungsi P ini adalah P x, ξ) = K ) 1 R k x π R n R x + k y y n y 8) Turunan R/ dan R/ y yang diperlukan untuk evaluasi nilai P diberikan oleh R = 1 x + ρy a ρb) R R y = 1 ρx + ρy a ρb) + ρ ρy ρb)] R Perlu dicatat bahwa P memiliki titik singular pada x = ξ. 4

4 Persamaan integral batas Identitas Green kedua memberikan T Γ n T ) ) )] dγ = T k T x n Ω + k T y T T k y x + k T y dω y 9) Sebagai salah satu sifat dari fungsi delta Dirac, persamaan berikut berlaku T x) δx ξ) dωx) = ηξ) T ξ) 10) Ω dimana η = 1 bila ξ berada pada batas domain Γ dan Γ mempunyai kemiringan yang berubah secara kontinyu pada ξ, η = 1 bila ξ berada di dalam domain Ω, η = 0 bila ξ berada di luar domain Ω. Substitusi persamaan 5), 6), 10) ke dalam persamaan 9) akan diperoleh ηξ) T ξ) = P x, ξ) T x) P x) T x, ξ)] dγx) 11) Γ Persamaan 11) dapat digunakan untuk menentukan solusi T dan P di setiap titik x di batas Γ dan di dalam domain Ω. Dan kalkulasi solusi ini sepenuhnya hanya memerlukan kalkulasi integral batas pada ruas kanan persamaan 11). Tetapi secara umum integral batas ini tidak mudah dikalkulasi secara analitik, karena bentuk geometri dari Γ tidak beraturan atau kelakuan dari fungsi T dan P sangat bervariasi. Untuk itu, nilai integral batas ini lalu diapproksimasi dengan cara memenggal-menggal batas domain Γ menjadi segmen-segmen kecil berupa garis lurus dan kelakuan dari fungsi T dan P pada setiap segmen juga didekati dengan mengasumsikan bahwa fungsi-fungsi ini konstan, atau bervariasi secara linear, kuadratik dan seterusnya. Lalu integral dihitung untuk setiap segmen dan kemudian menjumlahkannya. Dengan kata lain batas domain Γ diapproksimasi oleh suatu poligon yang jumlah sisinya diambil sebanyak mungkin sehingga nilai pendekatan akurat dapat diperoleh. 5 Diskritisasi Misalkan batas domain Γ didekati oleh suatu poligon dengan sejumlah J sisi, sehingga Γ terdiri atas segmen-segmen garis lurus Γ j, q j ], j = 1,,..., J dimana dan q j adalah titik-titik ujung awal dan akhir dari segmen Γ j, maka persamaan 11) dapat ditulis sebagai ηξ) T ξ) = P x, ξ) T x) P x) T x, ξ)] dγx) 1) Γ j Selanjutnya, bila kita mengasumsikan bahwa pada setiap segmen Γ j nilai T dan P konstan, dan masing-masing diwakili oleh nilainya pada titik-tengah q j = +q j )/ dari segmen tertentu Γ j, maka persamaan 1) dapat ditulis sebagai ] qj ηξ) T ξ) = T q j ) P x, ξ) dγx) P q j ) T x, ξ) dγx) 13) 5

Hasil penelitian telah menunjukkan bahwa pengambilan nilai T dan P pada titiktengah q j untuk setiap segmen Γ j menghasilkan keakuratan maksimal. Sebagaimana disebutkan pada Pasal, pada suatu segmen Γ j hanya salah satu dari T dan P diketahui. Bila nilai T q j ) diberikan maka nilai P q j ) menjadi unknown di Γ j. Sebaliknya, bila pada segmen Γ j nilai P q j ) diberikan maka nilai T q j ) menjadi unknown. Untuk penentuan nilai unknown di batas domain Γ, hanya ada dua kemungkinan pengambilan posisi titik ξ, yakni diletakkan di batas domain Γ yang mengimplikasikan bahwa η = 1 ) atau di luar domain Ω mengimplikasikan η = 0). Kita tidak dapat meletakkan ξ di dalam domain Ω untuk mana η = 1) untuk penentuan nilai unknown di batas domain Γ, kecuali bila kita mempunyai informasi tambahan mengenai nilai T di titik dalam ξ ini. Sementara itu, peletakan titik ξ di luar domain Ω akan menghindari titik singular dari P di x = ξ dan hal ini tentu akan memiliki advantage untuk hasil evaluasi integral. Dan telah ada beberapa kajian di dalam beberapa paper yang telah terpublish, yang memakai analisis peletakan titik ξ di luar domain Ω. Umumnya kajian-kajian ini telah berhasil menentukan jarak ideal dari titik ξ ke batas domain Γ untuk tingkat keakuratan yang cukup bagus. Namun penentuan jarak optimal ini masih sebatas cara coba-coba trial and error), dan belum dilandasi oleh dan belum dibuktikan keabsahannya secara analitik matematik. Untuk itu, pada tulisan ini kita akan memposisikan titik ξ pada batas domain Γ. Sehingga untuk penentuan nilai unknown di batas domain Γ, nilai T ξ) pada ruas kiri 13) akan mengambil nilai T q l ) dan ηξ) = 1. Persamaan 13) kemudian dapat dituliskan sebagai 1 T q l) = T q j ) P x, q l ) dγx) P q j ) T x, q l ) dγx) untuk l = 1,,..., J. Persamaan ini dapat dituliskan dalam bentuk matriks ] 14) 1 T l + Ĥ lj T j = G lj P j 15) dimana T j = T q j ), P j = P q j ), dan Ĥ lj = G lj = P x, q l ) dγx) 16) T x, q l ) dγx) 17) Evaluasi integral pada persamaan 16) dan 17) dapat dilakukan secara analitik maupun numerik. Tentunya evaluasi analitik eksak) akan memberikan hasil yang lebih memuaskan akurat) daripada evaluasi numerik pendekatan). Namun perlu diperhatikan bahwa untuk j = l selang integral dalam 16) memuat titik singular q l dari integran P x, q l ). Untuk itu nilai prinsipal Cauchy Cauchy principal value) dari integral ini biasanya diambil untuk evaluasi analitik. Di lain hal, dangan evaluasi 6

numerik dari kedua integral ini, strategi pemilihan metode kuadratur pengintegralan numerik) sangatlah penting, sebab terdapat beberapa metode kuadratur yang melibatkan dan ada pula yang tidak melibatkan misalnya aturan trapezoidal) kalkulasi nilai fungsi integran pada titik tengah dari selang integral. Dan metode kuadratur yang terakhir inilah yang dikehendaki. Pada tulisan ini, untuk hasil numerik dari setiap contoh masalah yang akan dibicarakan pada Pasal 6, evaluasi integral dilakukan secara numerik dengan menggunakan aturan trapezoidal termodifikasi enam titik lihat Abramowitz and Stegun 1]). Lebih kompak, persamaan 15) dapat ditulis sebagai H lj T j = G lj P j 18) dimana { Ĥlj bila l j H lj = Ĥ lj 1 bila l = j Persamaan matriks 18) dapat diurutkan ulang dengan meletakkan unknown di ruas kiri dan known-nya di ruas kanan, dalam bentuk AX = B 19) dimana X adalah vektor unknown T dan/atau P. Persamaan ini merupakan suatu sistem persamaan aljabar linear dengan J persamaan dan J unknown. Penyelesian sistem persamaan aljabar linear 19) dapat dilakukan dengan berbagai metode, antara lain dengan metode eliminasi Gauss. Namun, pada tulisan ini, untuk hasil numerik dari setiap contoh masalah yang akan dibicarakan pada Pasal 6, solusi sistem persamaan aljabar linear 19) ditentukan dengan menggunakan metode gradien konjugat lihat Coleman 3]), yang secara empiris telah diketahui lebih stabil ketimbang metode eliminasi Gauss. Solusi dari persamaan 19) ini dapat ditentukan untuk unknown T dan P di batas domain Γ. Sekali nilai T dan P pada batas domain Γ telah diketahui, maka kita bisa menentukan nilai T dan P pada sebarang titik dalam ξ dengan menggunakan persamaan 13), yakni ] qj T ξ) = T q j ) P x, ξ) dγx) P q j ) T x, ξ) dγx) 0) Selain itu dapat pula ditentukan nilai turunan / a dan / b melalui persamaan berikut a ξ) = P ] x, ξ) qj x, ξ) T q j ) dγx) P q a j ) dγx) 1) a b ξ) = T q j ) P x, ξ) b x, ξ) dγx) P q j ) b dγx) ] ) 7

y D0, 1) C1, 1) x A0, 0) B1, 0) Gambar 1: Geometri dari masalah uji 6 Hasil numerik Pada pasal ini beberapa contoh masalah konduksi panas dalam media anisotropik akan diselesaikan secara numerik dengan menggunakan persamaan integral batas yang telah diturunkan pada Pasal 4. Contoh 1 : Masalah Uji Perhatikan solusi analitik untuk 5) berikut T = k x x + k y y P = k xn x + k yn y Geometri medium dan syarat batas dari masalahnya adalah lihat Gambar 1) P diketahui pada sisi AB, BC dan CD, T diketahui pada sisi AD. Kofisien konduktivitas k x = k y = 1. Tabel 1 memperlihatkan perbandingan antara solusi MEB dan solusi analitik. Dapat diamati bahwa solusi MEB konvergen ke solusi analitik sejalan dengan meningkatnya jumlah segmen dari 80, 160 dan 30. Hasil ini sesuai dengan yang diharapkan, dengan alasan bahwa semakin kecil selang integral yang digunakan maka semakin akurat pendekatan integrasi numerik yang akan diperoleh. Contoh Perhatikan masalah konduksi panas yang dibangun oleh persamaan 5) untuk suatu medium isotropik k x = k y = 1) homogen yang memiliki geometri seperti diperlihatkan dalam Gambar??. 8

7 Konklusi Table 1: Solusi MEB dan analitik untuk Contoh 1 Posisi MEB Analitik x, y) T / / y T / / y J = 80 segmen.1,.5).5977.9959.9994.6000 1.0000 1.0000.3,.5).7970.9965.9985.8000 1.0000 1.0000.5,.5).9963.9969.9980 1.0000 1.0000 1.0000.7,.5) 1.1957.997.9976 1.000 1.0000 1.0000.9,.5) 1.395.9978.9976 1.4000 1.0000 1.0000 J = 160 segmen.1,.5).5989.998.9997.6000 1.0000 1.0000.3,.5).7986.9985.9993.8000 1.0000 1.0000.5,.5).9983.9986.9991 1.0000 1.0000 1.0000.7,.5) 1.1980.9987.9989 1.000 1.0000 1.0000.9,.5) 1.3978.9989.9989 1.4000 1.0000 1.0000 J = 30 segmen.1,.5).5995.999.9999.6000 1.0000 1.0000.3,.5).7993.9993.9997.8000 1.0000 1.0000.5,.5).999.9994.9996 1.0000 1.0000 1.0000.7,.5) 1.1991.9994.9995 1.000 1.0000 1.0000.9,.5) 1.3989.9995.9995 1.4000 1.0000 1.0000 Suatu MEB untuk solusi masalah nilai batas untuk model konduksi panas steady dalam suatu medium anisotropik telah ditemukan. MEB ini secara umum cukup mudah untuk diimplementasikan untuk memperoleh solusi numerik untuk masalah tertentu. Hasil numerik yang diperoleh dengan menggunakan MEB ini mengindikasikan bahwa MEB ini dapat menghasilkan solusi numerik yang cukup akurat. Evaluasi integral secara analitik, penerapan proses refinement untuk penyelesaian sistim persamaan aljabar linear, dan strategi peletakan titik ξ di luar domain Ω akan memberikan hasil yang lebih akurat. References 1] Abramowitz, M. and Stegun, A. Handbook of Mathematical Functions, Dover, New York, 1970. ] Azis, M. I. On the boundary integral equation method for the solution of some problems for inhomogeneous media PhD Thesis). Department of Applied Mathematics, University of Adelaide, 001. 3] Coleman, C. J. University of Wollonggong, Australia. 9

4] Holman, J. P. Heat Transfer, 8th edition. Mc. Graw Hill pp. 7, 1999. 10