Catatan Kuliah. AK5161 Matematika Keuangan Aktuaria Insure and Invest. Dosen: Khreshna I.A. Syuhada, MSc. PhD.

dokumen-dokumen yang mirip
Catatan Kuliah. AK5161 Matematika Keuangan Aktuaria Insure and Invest. Dosen: Khreshna I.A. Syuhada, MSc. PhD.

Catatan Kuliah. AK5161 Matematika Keuangan Aktuaria Insure and Invest. Dosen: Khreshna I.A. Syuhada, MSc. PhD.

Catatan Kuliah. AK5161 Matematika Keuangan Aktuaria Insure and Invest. Dosen: Khreshna I.A. Syuhada, MSc. PhD.

Catatan Kuliah. AK5161 Matematika Keuangan Aktuaria Insure and Invest. Dosen: Khreshna I.A. Syuhada, MSc. PhD.

Catatan Kuliah. AK5161 Matematika Keuangan Aktuaria Insure and Invest. Dosen: Khreshna I.A. Syuhada, MSc. PhD.

Catatan Kuliah. AK5161 Matematika Keuangan Aktuaria Insure and Invest. Dosen: Khreshna I.A. Syuhada, MSc. PhD.

Catatan Kuliah AK5161 Matematika Keuangan Aktuaria Insure and Invest! Dosen: Khreshna I.A. Syuhada, MSc. PhD.

AK5161 Matematika Keuangan Aktuaria

Catatan Kuliah. MA5181 Proses Stokastik

Catatan Kuliah AK5161 Matematika Keuangan Aktuaria Insure and Invest! Dosen: Khreshna I.A. Syuhada, MSc. PhD.

AK5161 Matematika Keuangan Aktuaria

AK5161 Matematika Keuangan Aktuaria

Catatan Kuliah. MA5181 Proses Stokastik

Catatan Kuliah AK5161 Matematika Keuangan Aktuaria Insure and Invest! Dosen: Khreshna I.A. Syuhada, MSc. PhD.

Catatan Kuliah AK5161 MATEMATIKA KEUANGAN AKTUARIA. Insure and Invest! Khreshna I.A. Syuhada, MSc. PhD.

Catatan Kuliah. MA5181 Proses Stokastik

Catatan Kuliah MA4181 Pengantar Proses Stokastik Precise and Stochastic. Dosen: Khreshna I.A. Syuhada, MSc. PhD.

Catatan Kuliah. MA4183 Model Risiko

Catatan Kuliah. MA4181 PENGANTAR PROSES STOKASTIK Smart and Stochastic. disusun oleh Khreshna I.A. Syuhada, MSc. PhD.

Catatan Kuliah. MA4183 Model Risiko Forecast, assess, and control your risk. Dosen: Khreshna I.A. Syuhada, MSc. PhD.

MA6281 PREDIKSI DERET WAKTU DAN COPULA. Forger The Past(?), Do Forecasting

/ /16 =

Catatan Kuliah. MA4181 Pengantar Proses Stokastik Stochastics: Precise and Prospective. Dosen: Khreshna I.A. Syuhada, MSc. PhD.

MA4181 MODEL RISIKO Risk is managed, not avoided

Pengantar Statistika Matematik(a)

MA4181 MODEL RISIKO Risk is managed, not avoided

Catatan Kuliah. MA4183 Model Risiko Risk: Quantify and Control. Dosen: Khreshna I.A. Syuhada, MSc. PhD.

MA4183 MODEL RISIKO Control your Risk!

Catatan Kuliah. MA4183 Model Risiko

MA5181 PROSES STOKASTIK

Minggu 4-5 Analisis Model MA, AR, ARMA. Minggu 6-7 Model Diagnostik dan Forecasting. Minggu 8-9 Analisi Model ARI, IMA, ARIMA

Pengantar Proses Stokastik

MA4181 MODEL RISIKO Risk is managed, not avoided

MA4183 MODEL RISIKO Control your Risk!

MA4081 PENGANTAR PROSES STOKASTIK Bab 4 Proses Po

Pengantar Proses Stokastik

Pengantar Proses Stokastik

Catatan Kuliah. MA4183 Model Risiko

AK6083 Manajemen Risiko Kuantitatif. Referensi: McNeil, Frey, Embrechts (2005), Quantitative Risk Management: Concepts, Techniques and Tools.

Minggu 4-5 Analisis Model MA, AR, ARMA. Minggu 6-7 Model Diagnostik dan Forecasting. Minggu 8-9 Analisi Model ARI, IMA, ARIMA

Minggu 1 Review Peubah Acak; Karakteristik Time Series. Minggu 4-6 Model Moving Average (MA), Autoregressive (AR)

BAB II LANDASAN TEORI

MA4183 MODEL RISIKO Control your Risk!

Pengantar Statistika Matematik(a)

Catatan Kuliah. MA4183 Model Risiko Forecast, assess, and control your risk. Dosen: Khreshna I.A. Syuhada, MSc. PhD.

BAB III PROSES POISSON MAJEMUK

Bab 7 Ekspektasi dan Fungsi Pembangkit Momen: Cintailah Mean

BAB IV HASIL PENELITIAN DAN PEMBAHASAN

MA4181 MODEL RISIKO Enjoy the Risks

Definisi: Nilai harapan/ekspektasi (expected value/expectation) atau ekspektasi dari peubah acak diskrit/kontinu X adalah

Catatan Kuliah. MA4181 PENGANTAR PROSES STOKASTIK Smart and Stochastic. disusun oleh Khreshna I.A. Syuhada, MSc. PhD.

MA3081 STATISTIKA MATEMATIKA We love Statistics

Pengantar Proses Stokastik

Bab 9 Peluang dan Ekspektasi Bersyarat: Harapan Tanpa Syarat

Pengantar Proses Stokastik

Kuis 1 MA5181 Proses Stokastik Precise. Prospective. Tanggal 24 Agustus 2016, Waktu: suka-suka menit Dosen: Khreshna I.A. Syuhada, MSc. PhD.

TEORI DASAR DERET WAKTU M A T O P I K D A L A M S T A T I S T I K A II 22 J A N U A R I 2015 U T R I W E N I M U K H A I Y A R

Catatan Kuliah. MA4283 Teori Risiko dan Kredibilitas Forecasting Risk: Precise and Prospective. Dosen: Khreshna I.A. Syuhada, MSc. PhD.

Catatan Kuliah. MA4283 Teori Risiko dan Kredibilitas Forecasting Risk: Precise and Prospective. Dosen: Khreshna I.A. Syuhada, MSc. PhD.

MA4183 MODEL RISIKO Bab 5 Teori Kebangkrutan

BAB I PENDAHULUAN. yang telah go public. Perusahaan yang tergolong perusahan go public ialah

MA4181 PENGANTAR PROSES STOKASTIK Bab 5 Proses Poisson

BAB II LANDASAN TEORI

Bab 2. Landasan Teori. 2.1 Fungsi Convex

BAB I PENDAHULUAN 1.1 Latar Belakang dan Permasalahan

BAB II KAJIAN TEORI. hasil percobaan yang berbeda dan masing-masing mempunyai. itu menyusun kejadian, maka probabilitas kejadian

Uji Hipotesis dan Aturan Keputusan

MA4181 MODEL RISIKO Enjoy the Risks

MA2081 Statistika Dasar

BAB I PENDAHULUAN. Salah satu formula dalam teori bunga telah diusulkan pada abad

Pengantar Proses Stokastik

MA5181 PROSES STOKASTIK

Pengantar Proses Stokastik

MINGGU KE-8 HARGA HARAPAN DAN BEBERAPA KETAKSAMAAN DALA

Pengantar Proses Stokastik

MA6281 Analisis Data dengan Copula Bab 1: Fungsi distribus. Bab 2: Data dan volatilitas Bab 3: Konsep Copula

MA6281 Topik Statistika IV: Analisis Deret Waktu Keuangan

BAB II LANDASAN TEORI

MA5181 PROSES STOKASTIK

Catatan Kuliah. MA4181 Pengantar Proses Stokastik Stochastics: Precise and Prospective. Dosen: Khreshna I.A. Syuhada, MSc. PhD.

Bab 8 Fungsi Peluang Bersama: Bersama Kita Berpisah

Catatan Kuliah. MA4183 Model Risiko Risk: Quantify and Control. Dosen: Khreshna I.A. Syuhada, MSc. PhD.

BAB II TINJAUAN PUSTAKA. return, mean, standard deviation, skewness, kurtosis, ACF, korelasi, GPD, copula,

BAB III PENILAIAN OPSI PUT AMERIKA

PENDUGAAN PARAMETER MODEL AUTOREGRESSIVE PADA DERET WAKTU

BAB 2 PROGRAM STOKASTIK

Pengantar Statistika Matematika II

Analisis Deret Waktu Keuangan

PERSATUAN AKTUARIS INDONESIA

Pengantar Statistika Matematika II

Pengantar Proses Stokastik

Peubah Acak dan Distribusi

ISSN: JURNAL GAUSSIAN, Volume 4, Nomor 3, Tahun 2015, Halaman Online di:

PENERAPAN KALKULUS STOKASTIK PADA MODEL OPSI

BAB I PENDAHULUAN. 1.1 Latar Belakang

Pengantar Statistika Matematika II

Catatan Kuliah. MA4183 Model Risiko Forecast, assess, and control your risk. Dosen: Khreshna I.A. Syuhada, MSc. PhD.

Bab 7. Minggu 12 Formula Black Scholes untuk Opsi Call

Misalkan X peubah acak dengan fungsi distribusi berikut: + x, 0 x < 1. , 1 x < 2. , 2 x < 3. 1, x 3

Pengantar Statistika Matematika II

Transkripsi:

Catatan Kuliah AK5161 Matematika Keuangan Aktuaria Insure and Invest Dosen: Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan Statistika - FMIPA Institut Teknologi Bandung 2018 1

Tentang AK5161 Matematika Keuangan Aktuaria Jadwal kuliah: Rabu, 7- (R. Sem 5.4); Kamis, 13- (R. Sem 5.1) Penilaian: Ujian: 13/09/18, 20/09/18; 25/10/18; 21/11/18 (@ 25%) Kuis (10-15%) Tugas/Pemodelan (10-15%) Minggu Tanggal Pertemuan Kuliah M1 20.08.18 1-2 Kuliah M2 27.08.18 1,2 Kuliah M3 03.09.18 1 Kuliah M4 10.09.18 1-2 Ujian 1, 13.09.18 M5 17.09.18 1,2 Kuliah 3 Ujian 1, 20.09.18 M6 24.09.18 1,2 Kuliah M7 01.10.18 - - M8 08.10.18 1,2 Kuliah M9 15.10.18 1,2 Kuliah M10 22.10.18 1-2 Ujian 2, 25.10.18 M11 29.10.18 1,2 Kuliah M12 05.11.18 1,2 Kuliah M13 12.11.18 1 Kuliah M14 19.11.18 1 Ujian 3, 21.11.18 M15 26.11.18 1,2 Tugas/Pemodelan Buku teks: Sheldon Ross, 2011, Introduction to Mathematical Finance - 2

Risiko versus Nilai Uang: Matematika versus Stokastik Keuangan Risiko adalah sistem yang dapat dikendalikan. Salah satu kegiatan penting dalam (men)transfer risiko adalah berasuransi; pemegang polis (insured) menitipkan atau memindahkan risiko kepada pihak lain yaitu perusahaan asuransi (insurer) dan sebaliknya. Kedua subyek memiliki risiko, pemegang polis membayar premi sedangkan perusahaan asuransi membayar klaim. Kegiatan lain yang juga berisiko adalah investasi atau bermain uang. Jika kita ingin menggandakan uang untuk mendapatkan nilai yang lebih besar maka kita dapat melakukan kegiatan investasi baik kepada individu atau institusi. Adakah hubungan antara investasi dan asuransi dan investasi? Saat ini praktik asuransi mulai digabungkan dengan investasi. Hal ini dimaksudkan untuk menumbuhkan iklim (atau minat) asuransi dengan keuntungan dari investasi. Kuliah Matematika Keuangan Aktuaria mengajak kita untuk memahami konsep dan menghitung nilai uang, opsi dan, secara umum, bermain peluang (memahami kejadian dan peubah acak serta menghitung peluang atas keduanya) menjadi sangat krusial. Return Nilai Uang: Matematik vs Stokastik Misalkan saya meminjamkan uang kepada Laila, pada waktu t 0, sebesar U. Saya ingin Laila mengembalikan, pada waktu t 1, sebesar U + ru, dengan r suku bunga per waktu t 1, atau U(t 1 ) = U(t 0 ) + r U(t 0 ) = U(t 0 ) (1 + r). Perhatikan: r = U(t 1) U(t 0 ) 1 = U(t 1) U(t 0 ), U(t 0 ) yang sering dikatakan sebagai imbal hasil (return). Adakah formula imbal hasil yang lain? Dapatkah imbal hasil berubah menurut waktu? 3

Bab 1,2 - Imbal hasil, Nilau Uang dan PVA/ANS (Diskusi-1) Model harga aset memiliki formula S t = f t +g(b t ), dengan {B t } merupakan suatu proses stokastik tertentu (baca: Gerak Brown standar). Perubahan harga saat t, S t, relatif terhadap saat t 1, S t 1, dapat diperoleh (antara lain) melalui S t S t 1 ; S t S t 1 S t ; ; ln S t S t 1 S t 1 S t 1 yang dapat kita tentukan distribusi dan modelnya. (Diskusi-2) Misalkan S t harga saat t. Harga saat t + 1, S t+1 = S t + r S t, dengan r suatu pengali (yang menyatakan keuntungan) atau sering dikatakan sebagai suku bunga. Formula harga diatas mengasumsikan bahwa harga/nilai aset akan terus naik. Perhatikan S t+1 S t S t+1 = (1 + r) S t S t+1 S t 1 = r = 1 + r S t+1 S t S t = r. Apakah r akan kita pandang sebagai suku bunga (tetap, setiap waktu) atau imbal hasil (return? Mungkinkah return akan bernilai tetap setiap waktu? r t? (Diskusi-3) Pandang kembali masalah nilai aset pada waktu t dan t + 1. Jika kita ingin nilai aset S t+1, yang diperoleh dengan suku bunga r, maka saat ini nilainya adalah S t = S t+1 1 + r = S t+1(1 + r) 1. Bagaimana kita memandang nilai (aset) saat ini atau present value? Dapatkah kita gunakan ini untuk melakukan analisis (prediksi) nilai aset saat ini dan akan datang? 4

Latihan: 1. Tentukan rate of return (tahunan) jika saya melakukan investasi: 100, 110 (setelah dua tahun) 2. Tentukan ekspektasi dari rate of return (tahunan) jika saya melakukan investasi: 100, 120 atau 100 (setelah dua tahun) 3. Perhatikan barisan return berikut: 20, 20, 20, 15, 10, 5; 10, 10, 15, 20, 20, 20. Tentukan barisan return yang baik jika suku bunga majemuk tahunan-nya 5%. 4. Saya membeli HP yang dijual dengan harga 4.2 (juta). Saya memberi uang muka 1 dan mencicil selama 24 bulan dengan cicilan 0.16 setiap bulannya (terhitung mulai awal bulan depan). Tentukan suku bunga efektif-nya. 5. Saya mempertimbangkan membayar pinjaman di bank dengan dua cara. Pertama, membayar lunas 16 (juta). Kedua, membayar 10 sekarang dan 10 lagi di akhir tahun kesepuluh (suku bunga 10%). Tentukan pilihan cicilan yang baik. 6. Untuk investasi awal 100, diperoleh return X i pada akhir periode i, untuk i = 1, 2. Diketahui X 1 dan X 2 peubah acak normal saling bebas dengan mean 60 dan variansi 25. Tentukan peluang bahwa rate of return dari investasi ini lebih dari 10 prosen? 7. Saya mau membeli mesin cuci baru untuk lima tahun ke depan. Saat ini saya punya mesin cuci juga sih, bernilai 6, tapi kemudian berkurang 2 setiap tahun untuk tiga tahun ke depan. Biaya operasional mesin cuci 9, naik 1 setiap tahun. Mesin cuci baru yang akan dibeli harganya 22 dengan masa hidup 6 tahun. Nilai mesin cuci baru akan berkurang 3 setiap tahun untuk dua tahun ke depan, lalu berkurang 4 setiap tahunnya. Biaya operasional 6, naik 1 setiap tahunnya. Kapan sebaiknya saya membeli mesin cuci baru? 5

Bab 3,4 - Peluang Nilai Uang, Distribusi Normal Apa yang dapat kita lakukan terhadap perilaku nilai uang? Dapatkah kajian peluang atau stokastik membantu kita memahami hal tersebut? Misalkan X peubah acak. Kita dapat menghitung peluang nilai peubah acak secara (i) langsung atau (ii) melalui kejadian. Perhatikan contoh berikut: Ayo berjudi! Saya bertaruh 1 untuk Merah (yang akan muncul dengan peluang 18/38). Jika Merah muncul, saya dapat 1 dan berhenti. Atau, Saya tambah 1 untuk Merah untuk dua putaran/taruhan berikutnya lalu berhenti. Misalkan X nilai kemenangan saya saat saya berhenti. Tentukan nilai X yang mungkin dan peluangnya. Hitung P (X > 0). Distribusi Normal Peubah acak normal merupakan salah satu kajian menarik dalam berbagai bidang, termasuk keuangan, karena pola yang dikenal dan dianggap dapat dipahami dengan mudah. Suatu peubah acak X dikatakan normal apabila memiliki fungsi peluang f(x) = ( ) 1 exp (x µ)2, < x <. 2πσ 2 2σ 2 Catatan: Untuk µ = 0 dan σ 2 = 1, peubah acak X dikatakan sebagai peubah acak normal standar/unit; fungsi peluangnya dinotasikan ϕ(x) sedangkan fungsi distribusinya Φ(x). Perhatikan pertaksamaan berikut yang merupakan salah satu hasil teoritis penting untuk peubah acak normal: ( 1 1 2π x 1 ) exp( x 2 /2) < 1 Φ(x) < 1 1 x 3 2π x exp( x2 /2), x > 0. Akibatnya, untuk x yang besar, 1 Φ(x) 1 x 2π exp( x2 /2). Diskusi: Bagaimana untuk x (relatif) kecil? Formula pendekatan apa yang dapat digunakan? (lihat butir (iii) dibawah) 6

Apa yang dapat kita lakukan terhadap X atau f(x) tersebut? (i) membuat plot f untuk berbagai nilai µ dan σ 2 (ii) menentukan sifat-sifat statistik peubah acak normal (iii) menghitung peluang; termasuk dengan akurasi yang lebih tinggi (hal 25-26) (iv) mengkaji hubungan dengan peubah acak lognormal: Y = exp(x) Latihan: 1. Misalkan X peubah acak normal dengan parameter (µ, σ 2 ). Misalkan Y = exp(x). Tentukan mean dan variansi Y. 2. Lakukan simulasi data berdistribusi normal dan lognormal. Plot kedua data. Tepatkah perilaku harga aset dimodelkan dengan distribusi normal/lognormal? Misalkan X 1, X 2,..., X n sampel acak normal dengan parameter (µ, σ 2 ). Misalkan S n = n X i. i=1 Apakah yang kita dapat dapatkan (perilaku S n ) untuk n besar? Adakah ukuran/statistik lain selain S n? Dapatkah kita melakukan hal yang sama diatas untuk peubah acak lain yang berdistribusi Binomial? Poisson? tanpa asumsi distribusi? (Jelaskan!) Latihan: 1. Suatu model pergerakan harga aset harian memiliki perilaku sebagai berikut. Jika harga aset saat ini adalah s maka setelah satu periode waktu akan menjadi τs dengan peluang p atau λs dengan peluang 1 p. Misalkan pergerakan harga saling bebas. Diketahui τ = 1.012, λ = 0.990, p = 0.52. Tentukan peluang bahwa harga aset akan naik setidaknya 30% setelah 1000 hari. 2. Nilai penjualan mingguan di suatu perusahaan adalah peubah acak normal dengan mean 2200 dan deviasi standar 230. Hitung peluang bahwa total penjualan pada 2 minggu kedepan melampaui 5000. Hitung peluang bahwa penjualan mingguan melampaui 2000 pada setidaknya 2 dari 3 minggu kedepan. 7

3. Sebagai pedagang baru dibidang valas, Yeni dan Yena bersaing dalam mendapatkan poin penjualan. Poin Yeni adalah peubah acak normal dengan mean 170 dan variansi 400; Poin Yena adalah peubah acak normal dengan mean 160 dan deviasi standar 15. Jika pada hari ini keduanya sama-sama berjualan valas (asumsikan kedua poin saling bebas), hitung peluang (a) nilai Yena lebih tinggi (b) poin total keduanya lebih dari 350. 8

Bab 5,6 - Gerak Brown and GB Geometrik Sebelum kita membahas Gerak Brown (GB) lebih jauh, perhatikan kembali definisi koleksi peubah acak {X t } atau lebih dikenal dengan proses stokastik. Proses atau model stokastik melibatkan beberapa peubah acak dengan indeks waktu. Kalau kita mempunyai satu peubah acak, maka nilai yang mungkin dari peubah acak tersebut akan mengikuti distribusi peluang yang bersesuaian. Kini, kita akan melihat peubah acak setiap waktu. Akibatnya, tingkat kesulitan akan menjadi lebih tinggi. Misalkan kita punyai proses stokastik {X t, t 0}. Proses stokastik atau deret waktu (sederhana) yang bergantung pada observasi sebelumnya adalah: X t = α X t 1 + ε t, dengan asumsi-asumsi yang ditentukan. Catatan: Proses ini dikenal dengan nama Autoregressive (AR) Pada Bab ini, proses stokastik diatas kita sederhanakan sebagai berikut: X t i.i.d. N(0, 1) Jelaskan! Kita dapat menuliskan proses ini sebagai X t = ε t, dengan {ε t } barisan peubah acak saling bebas dan berdistribusi identik (normal/gauss) dengan mean nol dan variansi satu; atau dikenal dengan proses Gaussian WN (white noise) X t N(0, σt 2 ). Apa perbedaan dengan model sebelumnya? Jika X 1, X 2,... dari proses ini saling (tidak) bebas, dapatkah kita menentukan fungsi peluang bersamanya? Mungkinkah X t dan X t+s X s yang bersifat saling bebas? Pandang koleksi peubah acak {X t, t 0} dengan sifat-sifat: (i) X 0 = 0 (atau konstanta tidak nol ) (ii) t > 0, X t berdistribusi normal dengan mean µt dan variansi σ 2 t 9

(iii) X tn X tn 1, X tn 1 X tn 2,..., X t2 X t1, X t1 saling bebas (memiliki kenaikan bebas atau independent increments) (iv) X t+s X t tidak bergantung pada t (memiliki kenaikan stasioner atau stationary increments). Proses stokastik tersebut dikatakan sebagai Gerak Brown atau GB dengan parameter drift µ dan parameter variansi σ 2. Misalkan dipunyai proses stokastik GB dengan µ = 0, σ 2 = 1 atau dikenal dengan GB standar. Perhatikan kasus t = 1, 2. Fungsi peluang X t adalah f Xt (x t ) = 1 ( exp 1 ) 2πt 2t x2 t, < x t <. Fungsi peluang bersama dari X 1 dan X 2 adalah... Fungsi peluang bersama dari X 1 X 0 dan X 2 X 1 adalah f X1 0,X 2 X 1 (x 1 0, x 2 x 1 ) = f(x 1 )f(x 2 x 1 ), (1) karena sifat kenaikan saling bebas. Persamaan (1) tersebut sama dengan ( 1 exp 1 ( x 2 1 (2π) 2/2 ((1 0)(2 1)) 1/2 2 1 0 + (x )) 2 x 1 ) 2, 2 1 dengan t 1 = 1, t 2 = 2 dan sifat kenaikan stasioner X 2 X 1 N(0, 2 1). Kita dapat menentukan fungsi peluang bersyarat dengan memanfaatkan fungsi peluang bersama diatas. Untuk t 1 = 1 < t 2 = 2 diatas, fungsi peluang bersyarat X t1, diberikan X t2 = x t2 adalah... f X1 X 2 (x 1 x 2 ) = f X 1,X 2 X 1 (x 1, x 2 x 1 ) f X2 (x 2 ) = f X 1 (x 1 ) f X2 X 1 (x 2 x 1 ) f X2 (x 2 ) = Dengan kata lain, distribusi dari X 1 X 2 = x 2 adalah normal dengan mean dan variansi E(X 1 X 2 = x 2 ) = ; V ar(x 1 X 2 = x 2 ) = 10

Latihan: 1. Dapatkah kita menentukan distribusi dari X 2 X 1 = x 1? Jelaskan! 2. Pandang {X t, 0 t 1} sebagai proses stokastik yang mengikuti GB dengan parameter variansi σ 2. Misalkan X t menyatakan lama (detik) kompetitor 1 memimpin saat 100t persen dari suatu kompetisi telah diselesaikan. Jika kompetitor 1 memimpin σ detik di tengah kompetisi, berapa peluang dia adalah pemenang? Jika kompetitor 1 memenangkan kompetisi dengan margin σ detik, berapa peluang dia memimpin di tengah kompetisi? Proses stokastik GB dapat bernilai negatif yang dianggap tidak tepat untuk memodelkan harga saham. Untuk itu, diusulkan model stokastik S t = S 0 e Xt, dengan nilai awal S 0 ; S t berdistribusi lognormal. Tentu saja ln S t ln S 0 = X t berdistribusi normal dengan mean µt dan variansi σ 2 t. Model ini dikenal sebagai GB geometrik. Sifat mean dan variansi dari S t dapat diturunkan dengan memanfaatkan sifat distribusi lognormal. Kita dapatkan E(S t ) = V ar(s t ) = Latihan: 1. Pandang GB dengan µ = 3, σ 2 = 9. Diketahui X 0 = 10. Hitung E(X 2 ), V ar(x 2 ), P (X 2 > 20), P (X 0.5 > 10). 2. Pandang GB geometrik {S t, t 0} dengan µ = 0.1, σ 2 = 0.4. Hitung P (S 1 > S 0 ), P (S 3 < S 1 > S 0 ). 3. Pandang GB geometrik {S t, t 0}; µ = 0.1, σ 2 = 0.16, S 0 = 2. Tentukan E(S 3 ) dan V ar(s 3 ). 11

Pandang proses stokastik GB, {X t }. Misalkan n = 2. Vektor peubah acak (X 1, X 2 ) berdistribusi normal bivariat dalam versi yang lain karena kejadian {X 1 = x 1, X 2 = x 2 } dapat dinyatakan dalam kejadian-kejadian kenaikan saling bebas {X 1 = x 1, X 2 X 1 = x 2 x 1 }, sehingga kita peroleh fungsi distribusi bersama f(x 1, x 2 ) = f 1 (x 1 )f 2 1 (x 2 x 1 ). Untuk proses berukuran n, kita dapat memperoleh distribusi multivariat. Dengan demikian, GB adalah Proses Gaussian, proses yang memiliki realisasi kontinu dengan distribusi hingganya adalah normal multivariat. Distribusi normal multivariat ditentukan pula melalui mean dan kovariansinya. Jadi, suatu proses Gaussian juga ditentukan melalui mean dan kovariansinya. Sebagai contoh, untuk proses GB standar, B t, meannya adalah E(B t ) = 0 dan kovariansinya, untuk s < t, Cov(B s, B t ) = Cov(B s, B s + B t B s ) = Cov(B s, B s ) + Cov(B s, B t B s ) yang sama dengan V ar(b s ) = s = min{s, t}. Apakah GB atau GB geometrik merupakan Proses Markov? Misalkan S t+h, yang saling bebas dengan proses {S u, 0 u < t}, diberikan S t, S t+h = S 0 e X t+h = S 0 e X t+x t+h X t = S 0 e X t e X t+h X t = S t e X t+h X t. Jadi, S t+h, diberikan S t, hanya bergantung pada kenaikan X t+h X t. Kita ketahui bahwa GB memiliki kenaikan saling bebas, jadi saling bebas dengan data lampau. Proses {X t+h X t, h 0} merupakan GB dengan parameter drift dan variansi yang sama. Jadi, proses {S t e X t+h X t, h 0} mendefinisikan proses GB geometrik dengan nilai awal S t yang baru. Apakah GB atau GB geometrik merupakan martingale? 12