PERSATUAN AKTUARIS INDONESIA
|
|
|
- Ridwan Widjaja
- 8 tahun lalu
- Tontonan:
Transkripsi
1 PERSATUAN AKTUARIS INDONESIA Komisi Penguji PERSATUAN AKTUARIS INDONESIA UJIAN PROFESI AKTUARIS MATA UJIAN : A70 Pemodelan dan Teori Risiko TANGGAL : 24 Juni 2014 JAM : WIB LAMA UJIAN : 180 Menit SIFAT UJIAN : Tutup Buku 2014
2 PERSATUAN AKTUARIS INDONESIA Komisi Penguji TATA TERTIB UJIAN 1. Setiap Kandidat harus berada di ruang ujian selambat-lambatnya 15 (lima belas) menit sebelum ujian dimulai. 2. Kandidat yang datang 1 (satu) jam setelah berlangsungnya ujian dilarang memasuki ruang ujian dan mengikuti ujian. 3. Kandidat dilarang meninggalkan ruang ujian selama 1 (satu) jam pertama berlangsungnya ujian. 4. Setiap kandidat harus menempati bangku yang telah ditentukan oleh Komisi Penguji. 5. Buku-buku, diktat, dan segala jenis catatan harus diletakkan di tempat yang sudah ditentukan oleh Pengawas, kecuali alat tulis yang diperlukan untuk mengerjakan ujian dan kalkulator. 6. Setiap kandidat hanya berhak memperoleh satu set bahan ujian. Kerusakan lembar jawaban oleh kandidat, tidak akan diganti. Dalam memberikan jawaban, lembar jawaban harus dijaga agar tidak kotor karena coretan. Lembar jawaban pilihan ganda tidak boleh diberi komentar selain pilihan jawaban yang benar. 7. Kandidat dilarang berbicara dengan/atau melihat pekerjaan kandidat lain atau berkomunikasi langsung ataupun tidak langsung dengan kandidat lainnya selama ujian berlangsung. 8. Kandidat dilarang menanyakan makna pertanyaan kepada Pengawas ujian. 9. Kandidat yang terpaksa harus meninggalkan ruang ujian untuk keperluan mendesak (misalnya ke toilet) harus meminta izin kepada Pengawas ujian dan setiap kali izin keluar diberikan hanya untuk 1 (satu) orang. Setiap kandidat yang keluar tanpa izin dari pengawas maka lembar jawaban akan diambil oleh pengawas dan dianggap telah selesai mengerjakan ujian. 10. Alat komunikasi (telepon seluler, pager, dan lain-lain) harus dimatikan selama ujian berlangsung. 11. Pengawas akan mencatat semua jenis pelanggaran atas tata tertib ujian yang akan menjadi pertimbangan diskualifikasi. 12. Kandidat yang telah selesai mengerjakan soal ujian, harus menyerahkan lembar jawaban langsung kepada Pengawas ujian dan tidak meninggalkan lembar jawaban tersebut di meja ujian. 13. Kandidat yang telah menyerahkan lembar jawaban harus meninggalkan ruang ujian. 14. Kandidat dapat mengajukan keberatan terhadap soal ujian yang dinilai tidak benar dengan penjelasan yang memadai kepada komisi penguji selambat-lambatnya 10 (sepuluh) hari setelah akhir periode ujian. Periode Juni 2014 Halaman 2 dari 24
3 PERSATUAN AKTUARIS INDONESIA Komisi Penguji PETUNJUK MENGERJAKAN SOAL Ujian Pilihan Ganda 1. Setiap soal akan mempunyai 5 (lima) pilihan jawaban di mana hanya 1 (satu) jawaban yang benar. 2. Setiap soal mempunyai bobot nilai yang sama dengan tidak ada pengurangan nilai untuk jawaban yang salah. 3. Berilah tanda silang pada jawaban yang Saudara anggap benar di lembar jawaban. Jika Saudara telah menentukan jawaban dan kemudian ingin merubahnya dengan yang lain, maka coretlah jawaban yang salah dan silang jawaban yang benar. 4. Jangan lupa menuliskan nomor ujian Saudara pada tempat yang sediakan dan tanda tangani lembar jawaban tersebut tanpa menuliskan nama Saudara. Ujian Soal Esay 1. Setiap soal dapat mempunyai lebih dari 1 (satu) pertanyaan, Setiap soal mempunyai bobot yang sama kecuali terdapat keterangan pada soal. 2. Tuliskan jawaban Saudara pada Buku Jawaban Soal dengan jelas, rapi dan terstruktur sehingga akan mempermudah pemeriksaan hasil ujian. 3. Saudara bisa mulai dengan soal yang anda anggap mudah dan tuliskan nomor jawaban soal dengan soal dengan jelas. 4. Jangan lupa menuliskan nomor ujian Saudara pada tempat yang disediakan dan tanda tangani Buku Ujian tanpa menuliskan nama Saudara. KETENTUAN DAN PROSEDUR KEBERATAN SOAL UJIAN PAI 1. Peserta dapat memberikan sanggahan soal, jawaban atau keluhan kepada Komisi Ujian dan Kurikulum selambat-lambatnya 10 hari setelah akhir periode ujian. 2. Semua pengajuan keberatan soal dialamatkan ke [email protected]. 3. Pengajuan keberatan soal setelah tanggal tersebut (Poin No 1) tidak akan diterima dan ditanggapi. Periode Juni 2014 Halaman 3 dari 24
4 1. Variabel acak non negatif X, memiliki fungsi hazard rate h(x). Jika diketahui (x + 1)h (x) = h(x), x 0, h(0) = A, dan S(2) = 0,5, maka nilai A sama dengan.. A. ln(2) B. ln(2)/2 C. ln(2)/4 D. ln(2)/8 E. ln(2)/16 2. Diketahui X berdistribusi lognormal dengan parameter dan, dimana nilai meannya sama dengan e 3 dan variansi e 10 e 6. Maka nilai dari SX(e 2 ) sama dengan.. A. 0,42 B. 0,31 C. 0,25 D. 0,18 E. 0,11 3. Diketahui X berdistribusi gamma dengan mean 8 dan skewness 1. Maka nilai dari variansi X sama dengan.. A. 4 B. 8 C. 16 D. 32 E Diketahui f X (x) = e 1/x x 2, x > 0, dan Y = X, maka f Y(y) sama dengan.. A. e θ/x x 2 B. θe θ/x x 2 C. θ2 e θ/x x 2 D. e θ/x θx 2 E. e θ/x θ 2 Periode Juni 2014 Halaman 4 dari 24
5 5. Diketahui X adalah variabel acak kontinu yang berdistribusi uniform pada interval (0,c), dan Y = 2X. Maka distribusi dari variabel acak kontinu Y adalah.. A. Uniform pada (0,c/2) B. Uniform pada (0,c) C. Uniform pada (0,2c) D. Uniform pada (c,2c) E. Uniform pada (2c,4c) 6. Diketahui X variabel acak yang berdistribusi Weibull dengan parameter dan. Jika Y = g(x) berdistribusi eksponensial dengan mean. Maka fungsi g(x) adalah.. A. e - X B. ln( X) C. X D. X/ E. X 7. Pada polis asuransi kesehatan kumpulan dengan masa pertanggungan 1 tahun, perusahaan asuransi ABCDE setuju untuk membayarkan 100% manfaat asuransi kesehatan kepada seluruh karyawan suatu perusahaan PQRST sampai dengan total klaim maksimum sebesar Rp 1 milyar. Jika X variabel acak dari total klaim asuransi kesehatan dari perusahaan PQRST, yang memiliki fungsi probabilitas densitas sebagai berikut : x(4 x), 0 < x < 3 f(x) = { 9 0, lainnya dimana x dalam satuan miliyar rupiah Maka nilai ekspektasi dari total klaim amount (dalam milyar rupiah) yang akan dibayarkan oleh perusahaan asuransi ABCDE sama dengan.. A. 0,120 B. 0,301 C. 0,765 D. 0,935 E. 2,338 Periode Juni 2014 Halaman 5 dari 24
6 8. Severity klaim berdistribusi Weibull dengan parameter = 2 dan tidak diketahui. Jika policy limit sebesar 100 dan 50% klaim terjadi di bawah policy limit. Setelah adjustment dari inflasi uniform sebesar 10% untuk seluruh klaim, maka besarnya presentase klaim yang akan terjadi di bawah policy limit sama dengan.. A. 44% B. 46% C. 48% D. 50% E. 52% 9. Perusahaan asuransi XYZ akan membayar klaim yang melebihi deductible. Misalkan klaim berdistribusi uniform kontinu pada interval (0,C) dimana C >. Jika klaim terjadi, nilai ekspektasi klaim yang dibayarkan pada polis adalah f( ). Maka f ( ) adalah A. /C B. /C C. ( /C) + 1 D. ( /C) 1 E. 1 ( /C) 10. Diberikan informasi sebagai berikut : (i) Klaim berdistribusi eksponensial dengan mean yang sama setiap tahun (ii) Loss Elimination Ratio (LER) untuk tahun ini 70% (ii) Ordinary deductible untuk tahun depan sama dengan 4/3 dari deductible tahun ini Maka besarnya LER untuk tahun depan sama dengan A. 70% B. 75% C. 80% D. 85% E. 90% Periode Juni 2014 Halaman 6 dari 24
7 11. Klaim berdistribusi eksponensial dengan mean Terdapat deductible sebesar 500. Jika perusahaan asuransi ingin menaikan nilai LER menjadi dua kali lipat, maka nilai deductible baru untuk mencapai nilai LER sebesar dua kali lipat sama dengan A. 219 B. 693 C D E Diketahui informasi tentang suatu klaim yang berdistribusi Pareto : parameter > 1 expected cost per loss (dengan deductible d) sama dengan 1105 expected cost per payment (dengan deductible d) sama dengan 1778 LER (untuk deductible d) sama dengan 0,2633 Maka nilai dari expected cost per payment jika deductible digandakan menjadi 2d, sama dengan A B C D E Klaim berdistribusi eksponensial dengan mean. Franchise deductible d dipilih untuk diaplikasikan pada klaim, maka expected cost per loss sama dengan 75% dari expected cost per payment. Jika deductible digandakan menjadi 2d, maka nilai expected cost per loss yang baru dalam persentase terhadap expected cost per payment yang baru sama dengan A. 12,5% B. 25% C. 37,5% D. 52,88% E. 56,25% Periode Juni 2014 Halaman 7 dari 24
8 14. Klaim di tahun 2012 berdistribusi Pareto dua parameter = 2 dan = 5. Klaim di tahun 2013 lebih tinggi (secara uniform) 20% dari klaim tahun Suatu polis asuransi yang mencover klaim tersebut dengan ordinary deductible 10. Maka nilai LER untuk tahun 2013 sama dengan A. 5/9 B. 5/8 C. 2/3 D. 3/4 E. 4/5 15. Perusahaan asuransi ABC mencatat data atas produk asuransi tertentu, yaitu ketika klaim di atas 1000, nilai rata-rata dimana klaim yang melebihi 1000 (nilai klaim dikurang 1000) sama dengan 500. Perusahaan asuransi ABC mengasumsikan bahwa severity klaim berdistribusi uniform pada interval [0, c], dimana c > Maka nilai c sama dengan A B C D E Distribusi survival memiliki mean residual lifetime (pada usia x) sama dengan e -x, x 0. Maka fungsi survival S(x) sama dengan A. exp[x exp(x)] B. exp[1 exp(x)] C. exp[x + 1 exp(x)] D. exp[exp( x) 1] E. exp[exp( x) 1 x] Periode Juni 2014 Halaman 8 dari 24
9 17. Misal X berdistribusi uniform pada interval [0, 1000], dan diketahui : deductible d d mean excess loss per payment e(d) e(d ) Jika e(d ) = e(d) / 2, maka deductible d sama dengan A d B. 500 d C. 500 d/2 D d E. 500 d/2 18. Diketahui variabel acak X, dan perbandingan dua polis asuransi sebagai berikut : Polis A memiliki franchise deductibel d, dan tanpa policy limit Polis B memiliki ordinary deductibel d, dan maksimum klaim yang dicover u > d YA dan YB berturut-turut adalah cost per payment dari Polis A dan Polis B. Maka nilai dari E[YA] E[YB] sama dengan... A. E(X u) E(X d) 1 F X (d) B. E(X) E(X u) 1 F X (d) C. E(X) E(X d) 1 F X (d) D. E(X u) E(X d) 1 F X (d) E. E(X) E(X u) 1 F X (d) + d + d + d 19. Variabel acak X berdistribusi uniform pada interval [0, 1000], rate inflasi r = 0,05, deductible d = 100 dan maksimum klaim yang dicover u = 500 (sebelum inflasi). Maka nilai expected loss per payment setelah inflasi sama dengan A. 286 B. 301 C. 316 D. 331 E. 346 Periode Juni 2014 Halaman 9 dari 24
10 20. Suatu polis asuransi kesehatan group dental, frekuensi klaimnya berdistribusi negatif binomial dengan mean 300 dan variansi 800. Distribusi severity klaim dasar diketahui sebagai berikut : Severity Klaim Probabilitas % 25% 25% 25% Jika diharapkan severity naik 50% dengan tidak ada perubahan dalam frekuensinya, dan diberlakukan deductibel sebesar 100. Maka nilai ekspekasi total klaim yang dibayarkan setelah dilakukan perubahan tersebut sama dengan A B C D E Frekuensi berdistribusi Poisson dengan mean 20 dan severity berdistribusi eksponensial dengan mean 100. Jika deductibel sebesar 20 diberlakukan untuk setiap klaim individual. Maka nilai mean dari pembayaran klaim aggregat sama dengan A B C D E Periode Juni 2014 Halaman 10 dari 24
11 22. Frekuensi N berdistribusi negatif binomial dengan r = 3 dan = 2. Severity X berdistribusi Pareto dengan parameter = 3 dan = 200. Jika deductibel sebesar 100 diberlakukan untuk setiap klaim individual. Maka nilai mean dari pembayaran klaim aggregat sama dengan A. 160 B. 200 C. 267 D. 400 E Suatu portfolio polis menghasilkan klaim sebagai berikut : 100 ; 100 ; 100 ; 200 ; 300 ; 300 ; 300 ; 400 ; 500 ; 600 Maka nilai estimasi empiris dari H(300) sama dengan A. 0,5 B. 0,7 C. 1,0 D. 1,2 E. 1,4 24. Sampel terdiri atas 7 individu yang meninggal dan keluar (+) pada waktu sebagai berikut : 1 ; 1 + ; 3 + ; 4 ; 5 ; 6 + ; 8. Dengan menggunakan product limit estimator untuk mengestimasi nilai S(t), maka nilai estimasi dari mean waktu sampai dengan meninggal (time until death) sama dengan A. 2,5 B. 3,5 C. 4,5 D. 5,5 E. 6,5 Periode Juni 2014 Halaman 11 dari 24
12 25. Data klaim berikut dihasilkan dari distribusi Pareto : 130 ; 20 ; 350 ; 218 ; 1822 Dengan menggunakan metode moment untuk mengestimasi parameter dari distribusi Pareto, maka nilai dari E(X 500) sama dengan A. 296 B. 315 C. 324 D. 352 E Data sampel yang terdiri dari 5 data diambil dari populasi dimana f(x; t) = 2(t 1)t x maka maksimum likelihood estimator untuk t sama dengan A x B. 1 1 x C. D. E. 5x 1 5x x 1 x x 1+x 27. Misal X1, X2,..., Xn adalah veriabel acak yang memiliki fungsi probabilitas densitas sebagai berikut : f(x) = σ 2 e σ x μ Jika diasumsikan diketahui, maka maksimum likelihood estimator untuk sama dengan A. X n X 1 2 B. [ (X i μ) 2 ] 1/2 n C. X i μ n D. X i μ E. 2n n X i μ Periode Juni 2014 Halaman 12 dari 24
13 28. Total klaim per periode (S) berdistribusi compound Poisson. Jika telah ditentukan ukuran sampel dari klaim yang diperlukan untuk full kredibilitas dari total klaim per periode jika distribusi severity adalah konstan. Jika severity berdistribusi lognormal dengan mean 1000 dan variansi , maka banyaknya klaim yang diperlukan untuk full kredibilitas dari total klaim per periode sama dengan A B C D E Severity X memiliki fungsi probabilitas densitas sebagai berikut : f(x θ) = θ 2 x exp( θx), x > 0 dimana memiliki fungsi probabilitas densitas sebagai berikut : π(θ) = θ exp( θ), θ > 0 maka nilai mean bersyarat dari X diberikan sama dengan A. 1/ B. 2/ C. 1/ 2 D. 2/ 2 E. 1/ Dari data pada soal nomor 29 di atas, maka nilai mean dari distribusi marginal X sama dengan A. 5 B. 4 C. 3 D. 2 E. 1 Periode Juni 2014 Halaman 13 dari 24
14 PERSATUAN AKTUARIS INDONESIA LAMPIRAN TABEL & FORMULA MATA UJIAN A70 Pemodelan dan Teori Risiko Periode Juni 2014 Halaman 14 dari 24
15 Periode Juni 2014 Halaman 15 dari 24
16 Periode Juni 2014 Halaman 16 dari 24
17 Periode Juni 2014 Halaman 17 dari 24
18 Periode Juni 2014 Halaman 18 dari 24
19 Periode Juni 2014 Halaman 19 dari 24
20 Periode Juni 2014 Halaman 20 dari 24
21 Periode Juni 2014 Halaman 21 dari 24
22 Periode Juni 2014 Halaman 22 dari 24
23 Periode Juni 2014 Halaman 23 dari 24
24 Periode Juni 2014 Halaman 24 dari 24
PERSATUAN AKTUARIS INDONESIA
PERSATUAN AKTUARIS INDONESIA Komisi Penguji PERSATUAN AKTUARIS INDONESIA UJIAN PROFESI AKTUARIS MATA UJIAN : A70 Pemodelan dan Teori Risiko TANGGAL : 25 Juni 2013 JAM : 13.30 16.30 WIB LAMA UJIAN : 180
PERSATUAN AKTUARIS INDONESIA
PERSATUAN AKTUARIS INDONESIA Komisi Penguji PERSATUAN AKTUARIS INDONESIA UJIAN PROFESI AKTUARIS MATA UJIAN : A60 Matematika Aktuaria TANGGAL : 25 Juni 204 JAM : 09.00-2.00 WIB LAMA UJIAN : 80 Menit SIFAT
UJIAN A70 PERIODE JUNI 2014 SOLUSI UJIAN PAI A70. A70-Pemodelan dan Teori Risiko 9/14/2014
SOLUSI UJIAN PAI A70 UJIAN A70 PERIODE JUNI 2014 A70-Pemodelan Teori Risiko 9/14/2014 Berikut merupakan solusi ujian PAI yang saya buat secara khusus untuk teman-teman PT Padma Radya Aktuaria, secara umum
MA4183 MODEL RISIKO Control your Risk!
Catatan Kuliah MA4183 MODEL RISIKO Control your Risk! disusun oleh Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan STATISTIKA - FMIPA Institut Teknologi Bandung 2014 Tentang MA4183 Model Risiko A. Jadwal
Catatan Kuliah. MA4183 Model Risiko
Catatan Kuliah MA4183 Model Risiko Forecast and control your risk Dosen: Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan Statistika - FMIPA Institut Teknologi Bandung 2015 1 Tentang MA4183 Model Risiko
MA4181 MODEL RISIKO Risk is managed, not avoided
Catatan Kuliah MA4181 MODEL RISIKO Risk is managed, not avoided disusun oleh Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan STATISTIKA - FMIPA Institut Teknologi Bandung 2013 Tentang MA4181 Model Risiko
MA4183 MODEL RISIKO Control your Risk!
Catatan Kuliah MA4183 MODEL RISIKO Control your Risk! disusun oleh Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan STATISTIKA - FMIPA Institut Teknologi Bandung 2014 Tentang MA4183 Model Risiko A. Jadwal
Pengantar Statistika Matematik(a)
Catatan Kuliah Pengantar Statistika Matematik(a) Statistika Lebih Dari Sekadar Matematika disusun oleh Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan STATISTIKA - FMIPA Institut Teknologi Bandung 2014
Catatan Kuliah. MA4183 Model Risiko
Catatan Kuliah MA4183 Model Risiko Forecast and control your risk Dosen: Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan Statistika - FMIPA Institut Teknologi Bandung 2015 1 Tentang MA4183 Model Risiko
Catatan Kuliah. MA4283 Teori Risiko dan Kredibilitas Forecasting Risk: Precise and Prospective. Dosen: Khreshna I.A. Syuhada, MSc. PhD.
Catatan Kuliah MA4283 Teori Risiko dan Kredibilitas Forecasting Risk: Precise and Prospective Dosen: Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan Statistika - FMIPA Institut Teknologi Bandung 2018
Catatan Kuliah. MA4183 Model Risiko Risk: Quantify and Control. Dosen: Khreshna I.A. Syuhada, MSc. PhD.
Catatan Kuliah MA4183 Model Risiko Risk: Quantify and Control Dosen: Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan Statistika - FMIPA Institut Teknologi Bandung 2017 1 Tentang MA4183 Model Risiko
Catatan Kuliah. MA4283 Teori Risiko dan Kredibilitas Forecasting Risk: Precise and Prospective. Dosen: Khreshna I.A. Syuhada, MSc. PhD.
Catatan Kuliah MA4283 Teori Risiko dan Kredibilitas Forecasting Risk: Precise and Prospective Dosen: Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan Statistika - FMIPA Institut Teknologi Bandung 2018
Catatan Kuliah. MA4183 Model Risiko Forecast, assess, and control your risk. Dosen: Khreshna I.A. Syuhada, MSc. PhD.
Catatan Kuliah MA4183 Model Risiko Forecast, assess, and control your risk Dosen: Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan Statistika - FMIPA Institut Teknologi Bandung 2016 1 Tentang MA4183
Catatan Kuliah. MA4183 Model Risiko Forecast, assess, and control your risk. Dosen: Khreshna I.A. Syuhada, MSc. PhD.
Catatan Kuliah MA4183 Model Risiko Forecast, assess, and control your risk Dosen: Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan Statistika - FMIPA Institut Teknologi Bandung 2016 1 Tentang MA4183
BEBERAPA DISTRIBUSI KHUSUS DKINTINU DIKENAL
BEBERAPA DISTRIBUSI KHUSUS DKINTINU DIKENAL Dalam hal ini akan dibahas beberapa distribusi yang mempunyai bentuk fungsi densitas dan nama tertentu dari peubah acak kontinu, yaitu: distribusi seragam, distribusi
BAB 2 LANDASAN TEORI DAN KAJIAN PUSTAKA
BAB 2 LANDASAN TEORI DAN KAJIAN PUSTAKA 2.1 Estimasi Bayes Definisi 1 Estimasi Bayes yang paling mungkin dari suatu nilai kebenaran θ 0 yang tidak diketahui pada parameter θ adalah nila ˆθ yang meminimumkan
MA4183 MODEL RISIKO Control your Risk!
Catatan Kuliah MA4183 MODEL RISIKO Control your Risk! disusun oleh Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan STATISTIKA - FMIPA Institut Teknologi Bandung 2014 Tentang MA4183 Model Risiko A. Jadwal
BAB 1 PENDAHULUAN Latar Belakang
BAB 1 PENDAHULUAN 1.1. Latar Belakang Dalam pembicaraan statistik, jawaban yang diinginkan adalah jawaban untuk ruang lingkup yang lebih luas, yakni populasi. Tetapi objek dari studi ini menggunakan sampel
Catatan Kuliah. MA4183 Model Risiko
Catatan Kuliah MA4183 Model Risiko Forecast and control your risk Dosen: Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan Statistika - FMIPA Institut Teknologi Bandung 2015 1 Tentang MA4183 Model Risiko
Kuis 1 MA5181 Proses Stokastik Precise. Prospective. Tanggal 24 Agustus 2016, Waktu: suka-suka menit Dosen: Khreshna I.A. Syuhada, MSc. PhD.
Kuis Selamat Datang MA5181 Proses Stokastik Precise. Prospective. Tanggal 23 Agustus 2016, Waktu: suka-suka menit 1. Mahasiswa yang datang ke ruang kuliah mengikuti suatu proses dengan laju kedatangan
Catatan Kuliah. MA5181 Proses Stokastik
Catatan Kuliah MA5181 Proses Stokastik Precise. Prospective. Dosen: Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan Statistika - FMIPA Institut Teknologi Bandung 2016 1 Tentang MA5181 Proses Stokastik
Catatan Kuliah. AK5161 Matematika Keuangan Aktuaria Insure and Invest. Dosen: Khreshna I.A. Syuhada, MSc. PhD.
Catatan Kuliah AK5161 Matematika Keuangan Aktuaria Insure and Invest Dosen: Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan Statistika - FMIPA Institut Teknologi Bandung 017 1 Tentang AK5161 Matematika
P (A c B c ) = P [(A B) c ] = 1 P (A B) = 1 P (A) P (B) + P (AB)
Diskusi 1 Tanggal 29 Januari 2014, Waktu: suka-suka menit Peluang suatu kejadian; sifat-sifat peluang (termasuk kejadian-kejadian saling asing dan saling bebas); peluang bersyarat; peluang total; 1. Buktikan
Sumbu X (horizontal) memiliki range (rentang) dari minus takhingga. ( ) hingga positif takhingga (+ ). Kurva normal memiliki puncak pada X
Sumbu X (horizontal) memiliki range (rentang) dari minus takhingga ( ) hingga positif takhingga (+ ). Kurva normal memiliki puncak pada X = 0. Perlu diketahui bahwa luas kurva normal adalah satu (sebagaimana
Mata Kuliah Pemodelan & Simulasi. Riani Lubis Program Studi Teknik Informatika Universitas Komputer Indonesia
Mata Kuliah Pemodelan & Simulasi Riani Lubis Program Studi Teknik Informatika Universitas Komputer Indonesia Pokok Bahasan Variabel Acak Pola Distribusi Masukan Pendugaan Pola Distribusi Uji Distribusi
Pengantar Statistika Matematika II
Bab 2: Sifat-Sifat Estimator Statistika FMIPA Universitas Islam Indonesia Statistik Cukup Dalam kondisi real, kita tidak mengetahui parameter dari populasi data yang akan kita teliti Informasi dalam sampel
Catatan Kuliah. MA4183 Model Risiko Risk: Quantify and Control. Dosen: Khreshna I.A. Syuhada, MSc. PhD.
Catatan Kuliah MA4183 Model Risiko Risk: Quantify and Control Dosen: Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan Statistika - FMIPA Institut Teknologi Bandung 2017 1 Tentang MA4183 Model Risiko
Catatan Kuliah. AK5161 Matematika Keuangan Aktuaria Insure and Invest. Dosen: Khreshna I.A. Syuhada, MSc. PhD.
Catatan Kuliah AK5161 Matematika Keuangan Aktuaria Insure and Invest Dosen: Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan Statistika - FMIPA Institut Teknologi Bandung 2017 1 Tentang AK5161 Matematika
DISTRIBUSI PROBABILITAS DISKRIT TEORITIS 2. Distribusi Hipergeometrik
DISTRIBUSI PROBABILITAS DISKRIT TEORITIS 2 TI2131 TEORI PROBABILITAS MINGGU KE-10 Distribusi Hipergeometrik Eksperimen hipergeometrik memiliki karakteristik sebagai berikut: 1. sebuah sampel random berukuran
Bab 9 Peluang dan Ekspektasi Bersyarat: Harapan Tanpa Syarat
MA38 Teori Peluang - Khreshna Syuhada Bab 9 Bab 9 Peluang dan Ekspektasi Bersyarat: Harapan Tanpa Syarat Ilustrasi 9. Misalkan banyaknya kecelakaan kerja rata-rata per minggu di suatu pabrik adalah empat.
MA4181 MODEL RISIKO Risk is managed, not avoided
Catatan Kuliah MA4181 MODEL RISIKO Risk is managed, not avoided disusun oleh Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan STATISTIKA - FMIPA Institut Teknologi Bandung 2013 Tentang MA4181 Model Risiko
Pengantar Statistika Matematika II
Pengantar a Matematika II - Estimator Atina Ahdika, S.Si., M.Si. Prodi a FMIPA Universitas Islam Indonesia April 17, 2017 atinaahdika.com Dalam kondisi real, kita tidak mengetahui parameter dari populasi
Catatan Kuliah. MA4183 Model Risiko Forecast, assess, and control your risk. Dosen: Khreshna I.A. Syuhada, MSc. PhD.
Catatan Kuliah MA4183 Model Risiko Forecast, assess, and control your risk Dosen: Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan Statistika - FMIPA Institut Teknologi Bandung 2016 1 Tentang MA4183
Catatan Kuliah. AK5161 Matematika Keuangan Aktuaria Insure and Invest. Dosen: Khreshna I.A. Syuhada, MSc. PhD.
Catatan Kuliah AK5161 Matematika Keuangan Aktuaria Insure and Invest Dosen: Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan Statistika - FMIPA Institut Teknologi Bandung 2016 1 Tentang AK5161 Matematika
MA4181 MODEL RISIKO Risk is managed, not avoided
Catatan Kuliah MA4181 MODEL RISIKO Risk is managed, not avoided disusun oleh Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan STATISTIKA - FMIPA Institut Teknologi Bandung 2013 Tentang MA4181 Model Risiko
Pemodelan Data Besar Klaim Asuransi Kendaraan Bermotor Menggunakan Distribusi Mixture Erlang
Statistika, Vol. 17 No. 1, 45 51 Mei 2017 Pemodelan Data Besar Klaim Asuransi Kendaraan Bermotor Menggunakan Distribusi Mixture Erlang Indah permatasari, aceng komarudin mutaqin, lisnur wachidah Program
MA4183 MODEL RISIKO Control your Risk!
Catatan Kuliah MA4183 MODEL RISIKO Control your Risk! disusun oleh Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan STATISTIKA - FMIPA Institut Teknologi Bandung 2014 Tentang MA4183 Model Risiko A. Jadwal
Catatan Kuliah. AK5161 Matematika Keuangan Aktuaria Insure and Invest. Dosen: Khreshna I.A. Syuhada, MSc. PhD.
Catatan Kuliah AK5161 Matematika Keuangan Aktuaria Insure and Invest Dosen: Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan Statistika - FMIPA Institut Teknologi Bandung 2016 1 Tentang AK5161 Matematika
Catatan Kuliah. AK5161 Matematika Keuangan Aktuaria Insure and Invest. Dosen: Khreshna I.A. Syuhada, MSc. PhD.
Catatan Kuliah AK5161 Matematika Keuangan Aktuaria Insure and Invest Dosen: Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan Statistika - FMIPA Institut Teknologi Bandung 2017 1 Tentang AK5161 Matematika
Setiap karakteristik dari distribusi populasi disebut dengan parameter. Statistik adalah variabel random yang hanya tergantung pada harga observasi
ESTIMASI TITIK Setiap karakteristik dari distribusi populasi disebut dengan parameter. Statistik adalah variabel random yang hanya tergantung pada harga observasi sampel. Statistik merupakan bentuk dari
BAB I PENDAHULUAN. 1.1 Latar Belakang Masalah
BAB I PENDAHULUAN 1.1 Latar Belakang Masalah Perkembangan teori statistika telah mempengaruhi hampir semua aspek kehidupan. Hal ini disebabkan statistika merupakan salah satu disiplin ilmu yang berperan
Catatan Kuliah. MA4183 Model Risiko
Catatan Kuliah MA4183 Model Risiko Forecast and control your risk Dosen: Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan Statistika - FMIPA Institut Teknologi Bandung 2015 1 Tentang MA4183 Model Risiko
MA4183 MODEL RISIKO Bab 5 Teori Kebangkrutan
MA4183 MODEL RISIKO Bab 5 Teori Kebangkrutan Control your risk! Konsep Surplus 1 Perusahaan asuransi memiliki modal awal atau initial surplus 2 Perusahaan menerima premi dan membayarkan klaim 3 Premi bersifat
Misalkan X peubah acak dengan fungsi distribusi berikut: + x, 0 x < 1. , 1 x < 2. , 2 x < 3. 1, x 3
Kuis Selamat Datang MA4183 Model Risiko Tanggal 22 Agustus 2015, Waktu: suka-suka menit Misalkan X peubah acak dengan fungsi distribusi berikut: 0, x < 0 1 + x, 0 x < 1 3 5 F (x = 3, 1 x < 2 5 9, 2 x
P (A c B c ) = P [(A B) c ] = 1 P (A B) = 1 P (A) P (B) + P (AB)
Diskusi 1 Tanggal 29 Januari 2014, Waktu: suka-suka menit Peluang suatu kejadian; sifat-sifat peluang (termasuk kejadian-kejadian saling asing dan saling bebas); peluang bersyarat; peluang total; 1. Buktikan
BAB I PENDAHULUAN 1.1. Latar Belakang
BAB I PENDAHULUAN 1.1. Latar Belakang Asuransi merupakan suatu kegiatan pemindahan atau pengalihan risiko untuk mencegah terjadinya kerugian besar yang disebabkan oleh risiko-risiko tertentu. Risiko-risiko
BAB II TINJAUAN PUSTAKA
BAB II TINJAUAN PUSTAKA 2.1 Pendahuluan Pada bab ini akan diuraikan mengenai beberapa teori dan metode yang mendukung serta mempermudah dalam melakukan perhitungan dan dapat membantu di dalam pembahasan
BAB II TINJAUAN PUSTAKA. return, mean, standard deviation, skewness, kurtosis, ACF, korelasi, GPD, copula,
BAB II TINJAUAN PUSTAKA Pada bab ini akan dibahas semua konsep yang mendasari penelitian ini yaitu return, mean, standard deviation, skewness, kurtosis, ACF, korelasi, GPD, copula, VaR, estimasi VaR dengan
MODEL DISTRIBUSI TOTAL KERUGIAN AGGREGAT MANFAAT RAWAT JALAN BERDASARKAN SIMULASI
MODEL DISTRIBUSI TOTAL KERUGIAN AGGREGAT MANFAAT RAWAT JALAN BERDASARKAN SIMULASI Puspitaningrum Rahmawati, Bambang Susanto, Leopoldus Ricky Sasongko Program Studi Matematika (Fakultas Sains dan Matematika,
/ /16 =
Kuis Selamat Datang MA4181 Pengantar Proses Stokastik Stochastics: Precise and Prospective Tanggal 22 Agustus 2017, Waktu: suka-suka menit Dosen: Khreshna I.A. Syuhada, MSc. PhD. 1. Widya (akan) memenangkan
MODUL II DISTRIBUSI PELUANG DISKRIT DAN KONTINU
DISTRIBUSI PELUANG DISKRIT DAN KONTINU A. TUJUAN PRAKTIKUM Melalui praktikum Modul II ini diharapkan praktikan dapat: 1. Mengenal jenis dan karakteristik dari beberapa distribusi peluang. 2. Menguji dan
MA4081 PENGANTAR PROSES STOKASTIK Bab 4 Proses Po
MA4081 PENGANTAR PROSES STOKASTIK Bab 4 Proses Poisson: Suatu Pengantar Orang Pintar Belajar Stokastik Tentang Kuliah Proses Stokastik Bab 1 : Tentang Peluang Bab 2 : Peluang dan Ekspektasi Bersyarat*
AK5161 Matematika Keuangan Aktuaria
Catatan Kuliah AK5161 Matematika Keuangan Aktuaria Insure and Invest Dosen: Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan Statistika - FMIPA Institut Teknologi Bandung 2015 1 Tentang AK5161 Matematika
DISTRIBUSI KONTINU. Uniform Normal Gamma & Eksponensial. MA3181 Teori Peluang 3 November 2014 Utriweni Mukhaiyar
DISTRIBUSI KONTINU Uniform Normal Gamma & Eksponensial MA3181 Teori Peluang 3 November 2014 Utriweni Mukhaiyar Distribusi Uniform 2 Distribusi kontinu yang paling sederhana Notasi: X ~ U (a,b) f.k.p: f(x)
Kumpulan pasangan nilai-nilai dari variabel acak X dengan probabilitas nilai-nilai variabel random X, yaitu P(X=x) disebut distribusi probabilitas X
Kumpulan pasangan nilai-nilai dari variabel acak X dengan probabilitas nilai-nilai variabel random X, yaitu P(X=) disebut distribusi probabilitas X (distribusi X) Diskrit Seragam Binomial Hipergeometrik
MA4181 PENGANTAR PROSES STOKASTIK Bab 5 Proses Poisson
MA4181 PENGANTAR PROSES STOKASTIK Bab 5 Proses Poisson SMART AND STOCHASTIC MA4181 PENGANTAR PROSES STOKASTIK Bab 5 Proses Poisson SMART AND STOCHASTIC Pengantar Seperti sudah disampaikan sebelumnya, analog
BAB 4 ANALISIS DAN PEMBAHASAN
BAB 4 ANALISIS DAN PEMBAHASAN Pada bab ini akan dianalisis dan dibahas tentang pengukuran risiko operasional klaim asuransi kesehatan pada PT. XYZ menggunakan metode EVT. Pengukuran risiko operasional
BAB I PENDAHULUAN. sewajarnya untuk mempelajari cara bagaimana variabel-variabel itu dapat
BAB I PENDAHULUAN 1.1 Latar Belakang Jika kita mempunyai data yang terdiri dari dua atau lebih variabel maka sewajarnya untuk mempelajari cara bagaimana variabel-variabel itu dapat berhubungan, hubungan
Definisi: Nilai harapan/ekspektasi (expected value/expectation) atau ekspektasi dari peubah acak diskrit/kontinu X adalah
BAB 1 Peluang dan Ekspektasi Bersyarat 1.1 EKSPEKTASI Definisi: Nilai harapan/ekspektasi (expected value/expectation) atau ekspektasi dari peubah acak diskrit/kontinu X adalah E(X) x x p X (x) dan E(X)
BAB 2 LANDASAN TEORI
BAB LANDASAN TEORI.1 Manajemen Risiko Operasional.1.1 Definisi Manajemen risiko operasional merupakan serangkaian prosedur dan metodologi yang digunakan untuk mengidentifikasi, mengukur, memantau dan mengendalikan
Catatan Kuliah. MA4181 Pengantar Proses Stokastik Stochastics: Precise and Prospective. Dosen: Khreshna I.A. Syuhada, MSc. PhD.
Catatan Kuliah MA4181 Pengantar Proses Stokastik Stochastics: Precise and Prospective Dosen: Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan Statistika - FMIPA Institut Teknologi Bandung 2017 1 Tentang
BILANGAN ACAK. Metode untuk mendapatkan bilangan acak : 1. Metode Kongruen Campuran Rumus :
BILANGAN ACAK Bilangan acak adalah bilangan sembarang tetapi tidak sembarangan. Kriteria yang harus dipenuhi, yaitu : Bilangan acak harus mempunyai distribusi serba sama (uniform) Beberapa bilangan acak
SATUAN ACARA PERKULIAHAN MATA KULIAH : ANALISIS DATA UJI HIDUP KODE MATA KULIAH : MAA SKS
SATUAN ACARA PERKULIAHAN MATA KULIAH : ANALISIS DATA UJI HIDUP KODE MATA KULIAH : MAA 516 3 SKS MINGGU 1 Pendahuluan dan - Pengertian Dasar soal-soal 2 Konsep-Konsep Dasar untuk Hidup Model Kontinu 1.
MA5181 PROSES STOKASTIK
Catatan Kuliah MA5181 PROSES STOKASTIK disusun oleh Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan STATISTIKA - FMIPA Institut Teknologi Bandung 2013 Tentang MA5181 Proses Stokastik A. Jadwal kuliah:
BAB 3 METODE PENELITIAN
BAB 3 METODE PENELITIAN 3.1 Flowchart Penelitian Gambar 3.1 Flowchart Diagram 36 37 3.2 Langkah-Langkah Penelitian Metodologi penelitian merupakan tahapan yang harus ditetapkan sebelum melakukan penelitian,
Catatan Kuliah AK5161 Matematika Keuangan Aktuaria Insure and Invest! Dosen: Khreshna I.A. Syuhada, MSc. PhD.
Catatan Kuliah AK5161 Matematika Keuangan Aktuaria Insure and Invest! Dosen: Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan Statistika - FMIPA Institut Teknologi Bandung 2014 1 Tentang AK5161 Matematika
PEDOMAN UJIAN PROFESI & SERTIFIKASI
PEDOMAN UJIAN PROFESI & SERTIFIKASI UJIAN REGULER TAHUN 2016 PERSATUAN AKTUARIS INDONESIA I. PENDAHULUAN Sebagai organisasi profesi Persatuan Aktuaris Indonesia ( PAI ) ingin memastikan anggotanya memiliki
MA4181 MODEL RISIKO Enjoy the Risks
Catatan Kuliah MA4181 MODEL RISIKO Enjoy the Risks disusun oleh Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan STATISTIKA - FMIPA Institut Teknologi Bandung 2011 Tentang MA4181 Model Risiko A. Jadwal
BAB I PENDAHULUAN. Waktu hidup adalah waktu terjadinya suatu peristiwa. Peristiwa yang
BAB I PENDAHULUAN 1.1 Latar Belakang Waktu hidup adalah waktu terjadinya suatu peristiwa. Peristiwa yang dimaksud di sini adalah peristiwa kegagalan yang dapat berupa tidak berfungsinya benda tersebut
BAB III MODEL REGRESI BINOMIAL NEGATIF UNTUK MENGATASI OVERDISPERSI PADA MODEL REGRESI POISSON
BAB III MODEL REGRESI BINOMIAL NEGATIF UNTUK MENGATASI OVERDISPERSI PADA MODEL REGRESI POISSON 3.1 Regresi Poisson Regresi Poisson merupakan salah satu model regresi dengan variabel responnya tidak berasal
Catatan Kuliah. MA5181 Proses Stokastik
Catatan Kuliah MA5181 Proses Stokastik Precise. Prospective. Dosen: Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan Statistika - FMIPA Institut Teknologi Bandung 2016 1 Tentang MA5181 Proses Stokastik
Distribusi Probabilitas : Gamma & Eksponensial
Distribusi Probabilitas : Gamma & Eksponensial 11 Debrina Puspita Andriani E-mail : [email protected] / [email protected] 2 Outline Distribusi Gamma Distribusi Eksponensial 3 Distribusi Gamma Tidak selamanya
Pengantar Statistika Matematika II
Bab 6: Statistika FMIPA Universitas Islam Indonesia Inferensi Statistik Pendahuluan Inferensi Statistik Inferensi statistik adalah metode untuk menarik kesimpulan mengenai suatu populasi. Inferensi statistik
BAB I PENDAHULUAN 1.1 Latar Belakang Masalah
BAB I PENDAHULUAN 1.1 Latar Belakang Masalah Data antar kejadian (time-to-event data) adalah data lama waktu sampai suatu peristiwa terjadi atau sering disebut data survival. Untuk memperoleh data antar
BAB 3 METODOLOGI DAN DATA PENELITIAN
BAB 3 METODOLOGI DAN DATA PENELITIAN 3.1 Pengantar Dalam penelitian ini digunakan rancangan penelitian kasus karena dengan rancangan ini diharapkan dapat memberikan informasi yang mendalam, akurat, lengkap
BAB III LANDASAN TEORI. analisis kesintasan bertujuan menaksir probabilitas kelangsungan hidup, kekambuhan,
17 BAB III LANDASAN TEORI 3.1 Data Analisis Survival (Survival Analysis) Analisis survival (survival analysis) atau analisis kelangsungan hidup atau analisis kesintasan bertujuan menaksir probabilitas
ESTIMASI TOTAL DAYA LISTRIK YANG HILANG MELALUI PROSES POISSON TERPANCUNG MAJEMUK
ESTIMASI TOTAL DAYA LISTRIK YANG HILANG MELALUI PROSES POISSON TERPANCUNG MAJEMUK Adri Arisena 1, Anna Chadidjah 2, Achmad Zanbar Soleh 3 Departemen Statistika Universitas Padjadjaran 1 Departemen Statistika
MA2181 Analisis Data - U. Mukhaiyar 1
DISTRIBUSI KONTINU Uniform Normal Gamma & Eksponensial MA 2181 Analisis Data Utriweni Mukhaiyar September 20 By NN 2008 DISTRIBUSI UNIFORM Distribusi kontinu yang paling sederhana Notasi: X ~ U (a,b) f.k.p:
Mata Kuliah Pemodelan & Simulasi
Mata Kuliah Pemodelan & Simulasi Riani Lubis Program Studi Teknik Informatika Universitas Komputer Indonesia 1 Pendahuluan (1) Sifat probabilitistik pada sistem nyata mempunyai pola distribusi probabilistik
DISTRIBUSI KONTINU. Utriweni Mukhaiyar
DISTRIBUSI KONTINU Uniform Normal Gamma & Eksponensial MA 2081 Statistika ti tik Dasar Utriweni Mukhaiyar Maret 2012 By NN 2008 Distribusi Uniform Distribusi kontinu yang paling sederhana Notasi: X ~ U
Catatan Kuliah. MA5181 Proses Stokastik
Catatan Kuliah MA5181 Proses Stokastik Precise. Prospective. Dosen: Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan Statistika - FMIPA Institut Teknologi Bandung 2016 1 Tentang MA5181 Proses Stokastik
KULIAH ANALISIS STATISTIK DATA SIMULASI Tipe-tipe simulasi berdasarkan analisis output:
KULIAH ANALISIS STATISTIK DATA SIMULASI Tipe-tipe simulasi berdasarkan analisis output: 1. Terminating simulation 2. Nonterminating simulation: a. Steady-state parameters b. Steady-state cycle parameters
Catatan Kuliah MA4181 Pengantar Proses Stokastik Precise and Stochastic. Dosen: Khreshna I.A. Syuhada, MSc. PhD.
Catatan Kuliah MA4181 Pengantar Proses Stokastik Precise and Stochastic Dosen: Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan Statistika - FMIPA Institut Teknologi Bandung 2015 Tentang MA4181 (Pengantar)
Haryoso Wicaksono, S.Si., M.M., M.Kom. 26
Distribusi probabilita kontinu, yaitu apabila random variabel yang digunakan kontinu. Probabilita dihitung untuk nilai dalam suatu interval tertentu. Probabilita di suatu titik = 0. Probabilita untuk random
Konsep Dasar Statistik dan Probabilitas
Konsep Dasar Statistik dan Probabilitas Pengendalian Kualitas Statistika Ayundyah Kesumawati Prodi Statistika FMIPA-UII September 30, 2015 Ayundyah (UII) Konsep Dasar Statistik dan Probabilitas September
LANDASAN TEORI. menyatakan hubungan antara variabel respon Y dengan variabel-variabel
5 II. LANDASAN TEORI 2.1 Model Regresi Poisson Analisis regresi merupakan metode statistika yang populer digunakan untuk menyatakan hubungan antara variabel respon Y dengan variabel-variabel prediktor
Bagian 2. Probabilitas. Struktur Probabilitas. Probabilitas Subyektif. Metode Frekuensi Relatif Kejadian untuk Menentukan Probabilitas
Probabilitas Bagian Probabilitas A) = peluang (probabilitas) bahwa kejadian A terjadi 0 < A) < 1 A) = 0 artinya A pasti terjadi A) = 1 artinya A tidak mungkin terjadi Penentuan nilai probabilitas: Metode
BAB 2 LANDASAN TEORI. Definisi 1 Himpunan semua hasil yang mungkin dari suatu percobaan disebut ruang sampel dan dinyatakan dengan S.
BAB 2 LANDASAN TEORI 2.1 Ruang Sampel dan Kejadian Definisi 1 Himpunan semua hasil yang mungkin dari suatu percobaan disebut ruang sampel dan dinyatakan dengan S. Tiap hasil dalam ruang sampel disebut
terdefinisi. Oleh karena itu, estimasi resiko kematian pasien dapat diperoleh berdasarkan nilai hazard ratio. Model hazard proporsional parametrik
BAB I PENDAHULUAN 1.1 Latar Belakang Waktu tahan hidup (survival) merupakan waktu tunggu hingga terjadinya suatu kejadian (event) tertentu. Pada bidang kesehatan, event dapat dianggap sebagai suatu kegagalan
BAB 2 LANDASAN TEORI
BAB 2 LANDASAN TEORI Pada bab ini diberikan beberapa konsep dasar seperti teorema dan beberapa definisi sebagai landasan dalam penelitian ini. Konsep dasar ini berkaitan dengan masalah yang dibahas dalam
BAB III ESTIMASI BIAYA GARANSI TV. Pada bab ini akan dibahas tahapan-tahapan yang dilakukan untuk
BAB III ESTIMASI BIAYA GARANSI TV Pada bab ini akan dibahas tahapan-tahapan yang dilakukan untuk mengestimasi biaya garansi satu dimensi pada TV. Adapun tahapan-tahapan yang dilakukan seperti terlihat
MA2082 BIOSTATISTIKA Bab 3 Peubah Acak dan Distribusi
MA2082 BIOSTATISTIKA Bab 3 Peubah Acak dan Distribusi Orang Biologi Tidak Anti Statistika Silabus Silabus dan Tujuan Konsep peubah acak, fungsi peluang (probability density function), fungsi distribusi
BAB 1 PENDAHULUAN. 1.1 Latar Belakang
BAB 1 PENDAHULUAN 1.1 Latar Belakang Distribusi eksponensial tergenaralisir (Generalized Eponential Distribution) pertama kali diperkenalkan oleh Gupta dan Kundu pada tahun 1999. Distribusi ini diambil
AK5161 Matematika Keuangan Aktuaria
Catatan Kuliah AK5161 Matematika Keuangan Aktuaria Insure and Invest Dosen: Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan Statistika - FMIPA Institut Teknologi Bandung 2015 1 Tentang AK5161 Matematika
Seri Pendidikan Aktuaris Indonesia Ruhiyat
Seri Pendidikan Aktuaris Indonesia Ruhiyat 5+ Soal & Matematika Aktuaria DRAF JAWABAN UJIAN PAI A6 - MATEMATIKA AKTUARIA 26 NOVEMBER 24 Ruhiyat Departemen Matematika FMIPA IPB Bogor, 25 . Sebuah variable
Distribusi Peluang Kontinyu STATISTIK INDUSTRI 1. Distribusi Peluang Kontinyu. Distribusi Diskrit Uniform. Distribusi Diskrit Uniform 17/12/2014
STATISTIK INDUSTRI 1 Agustina Eunike, ST., MT., MBA Rata-rata dan Variansi Rumus Umum: Distribusi Peluang Diskrit dan Kontinyu UNIFORM Distribusi Diskrit Uniform Distribusi Diskrit Uniform Contoh: Suatu
Distribusi Peluang Kontinyu STATISTIK INDUSTRI 1. Distribusi Peluang Kontinyu. Distribusi Diskrit Uniform. Distribusi Diskrit Uniform 13/11/2013
3//203 STATISTIK INDUSTRI Agustina Eunike, ST., MT., MBA Rata-rata dan Variansi Rumus Umum: Distribusi Peluang Diskrit dan Kontinyu UNIFORM Distribusi Diskrit Uniform Distribusi Diskrit Uniform Contoh:
BAB II LANDASAN TEORI
15 BAB II LANDASAN TEORI Pada bab ini diberikan tinjauan pustaka, teori penunjang dan kerangka pemikiran. Tinjauan pustaka terdiri dari penelitian-penelitian sebelumnya yang mendasari skripsi ini, teori
