METODE BEDA HINGGA dan PENGANTAR PEMROGRAMAN
|
|
|
- Shinta Gunawan
- 10 tahun lalu
- Tontonan:
Transkripsi
1 Praktikum m.k Model dan Simulasi Ekosistem Hari / Tanggal : Nilai METODE BEDA HINGGA dan PENGANTAR PEMROGRAMAN Nama : NIM : Oleh PROGRAM STUDI ILMU KELAUTAN FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS SRIWIJAYA 01
2 Praktikum-1 METODE BEDA HINGGA DAN PENGANTAR PEMROGRAMAN Tujuan Instruksional Khusus: Setelah mengikuti praktikum ini, mahasiswa dapat memahamai dan mendiskritisasi persamaan dengan menggunakan konsep metode beda hingga dalam pemodelan. Sub Pokok Bahasan Pengenalan metode beda hingga Pengantar Pemrograman Diskritisasi persamaan dengan menggunakan konsep metode beda hingga. Tujuan Praktikum: Mahasiswa dapat memahami konsep metode beda hingga dan pemrograman Mahasiswa dapat mendiskritisasi suatu persamaan dengan menggunakan konsep metode beda hingga. PENDAHULUAN 1.1 METODE BEDA HINGGA (FINITE DIFFERENCE) Metode ini digunakan untuk memecahkan persamaan dierensial parsial secara numerik, dengan menggunakan deret Taylor yang diputus pada orde tertentu sesuai kebutuhan yang ada. Sebagai contoh uraian deret Taylor adalah: ( x x) ( x x) x ( x) 1! x ( x) 1! x! x! x 3! x 3! 3 3 '''( x)... '''( x)... (1.1)
3 pendekatan dari x dapat ditulis sebagai: a. Beda maju (orward dierence) ( x x) ( x) '( x) (1.) x b. Beda mundur (backward dierence) ( x) ( x x) '( x) (1.3) x c. Selisih pusat (Centre dierence) ( x x) ( x x) '( x) (1.4) x Bila dierensialnya sampai orde, maka uraian x deret Taylor sampai orde kemudian dijumlahkan: x x ( x x) ( x) 1!! x x ( x x) ( x) 1!! ( x x) ( x x) ( x) x ( x x) ( x) ( x x) x (1.5) 1. DISKRITISASI Pemodelan numerik membutuhkan grid yang menggambarkan daerah yang ditinjau. Bila kita akan menghitung (x) dan (x), maka digunakan grid dan notasi berikut:
4 j dy dx i ''( x, y) i1 i1, j i x x i1 i, j i1, j 1.3 KESALAHAN MEMUTUS Dalam metode beda hingga ini, pendekatan untuk turunan pertama dan kedua berdasarkan deret Taylor yang diputus sesuai dengan keperluan. Pemutusan ini merupakan salah satu sumber kesalahan dalam pendekatan numerik. Sebagai contoh, tinjau turunan pertama dengan menggunakan metode beda pusat: ( x x) ( x x) x misal (x) = A sin kx ; k = /L dimana: A=amplitudo; k = bilangan gelombang; L = panjang gelombang. Secara analitik dapat diturunkan (x) = A k cos kx. Namun dengan pendekatan beda pusat diperoleh: sin k( x x) sin k( x x) A x = A (cos kx. sin kx)/x sin kx = A k cos kx kx
5 Jadi terlihat adanya aktor sin kx yang menyimpang dari kx solusi analitik. Pendekatan akan baik bila aktor sin kx kx mendekati nilai 1 atau kx mendekati 0, karena lim0 kx sin kx kx 1. Artinya semakin kecil x yang digunakan, maka pendekatan numerik akan lebih baik. 1.4 PENGANTAR PEMROGRAMAN Salah satu tahapan penting dalam pemrograman adalah pembuatan bagan dan struktur penyelesaian permasalahan. Dalam tahapan ini dibuat bagan penyelesaian secara global, mendeskripsikan tugas serta sub-tugas dari masing-masing bagian dalam bagan tersebut. Setelah dilakukan, maka dipilih metode penyelesaian dari tiap tugas. Uraian metode penyelesaian masalah yang lengkap tersebut disebut algoritma. Algoritma inilah yang kemudian diterjemahkan dalam bahasa pemrograman tertentu. Ada dua cara penulisan algoritma: 1. Menggunakan bagan-bagan/simbol-simbol tertentu, biasa disebut diagram alir (lowchart).. Menggunakan kata-kata/kalimat, mirip dengan bahasa pemrograman tertentu (mis: Fortran). Diagram alir terdiri dari dua jenis: 1. Diagram alir sistem. Diagram alir program. Simbol-simbol dasar yang umum dipakai dalam pembuatan diagram alir program diantaranya:
6 Terminal awal/akhir Proses/pengolahan ` Proses terdeinisi/prosedur/ungsi Penghubung Pilihan untuk memenuhi kondisi ya/tidak Operasi masukan/keluaran akhir untuk pencacah. Memberi harga awal, penambahan/pengurangan, harga Penunjuk arah aliran proses Tugas: Jika diketahui Persamaan adveksi 1 dimensi: F t F u x, diskritisasi persamaan tersebut dengan beda maju (orward dierence) untuk turunan waktu dan ruang. beda mundur (backward dierence) untuk turunan waktu dan ruang. selisih pusat (Centre dierence) untuk turunan waktu dan ruang. beda maju (orward dierence) untuk turunan waktu, beda mundur (backward dierence) untuk turunan ruang
7 beda maju (orward dierence) untuk turunan ruang, beda mundur (backward dierence) untuk turunan waktu beda maju (orward dierence) untuk turunan waktu, beda pusat (Centre dierence) untuk turunan ruang beda maju (orward dierence) untuk turunan ruang, beda pusat (Centre dierence) untuk turunan waktu beda mundur (backward dierence) untuk turunan waktu, beda pusat (Centre dierence) untuk turunan ruang beda mundur (backward dierence) untuk turunan ruang, beda pusat (Centre dierence) untuk turunan waktu. DAFTAR PUSTAKA Homann, K. A Computational Fluid Dynamics or Engineers. The University o Texas at Austin, Texas. Kowalik, Z. and Murty, T. S Numerical Modeling o Ocean Dynamics. World Scientiic Publishing Co. Pte. Ltd. London
1.1 Latar Belakang dan Identifikasi Masalah
BAB I PENDAHULUAN Seiring dengan pertumbuhan kebutuhan dan intensifikasi penggunaan air, masalah kualitas air menjadi faktor yang penting dalam pengembangan sumberdaya air di berbagai belahan bumi. Walaupun
Metode Beda Hingga untuk Penyelesaian Persamaan Diferensial Parsial
Metode Beda Hingga untuk Penyelesaian Persamaan Diferensial Parsial Ikhsan Maulidi Jurusan Matematika,Universitas Syiah Kuala, [email protected] Abstract Artikel ini membahas tentang salah satu
Solusi Numerik Persamaan Gelombang Dua Dimensi Menggunakan Metode Alternating Direction Implicit
Vol. 11, No. 2, 105-114, Januari 2015 Solusi Numerik Persamaan Gelombang Dua Dimensi Menggunakan Metode Alternating Direction Implicit Rezki Setiawan Bachrun *,Khaeruddin **,Andi Galsan Mahie *** Abstrak
Persamaan Diferensial Parsial CNH3C3
Persamaan Diferensial Parsial CNH3C3 Week 11-12: Finite Dierence Method for PDE Wave Eqs Tim Ilmu Komputasi Coordinator contact: Dr. Putu Harry Gunawan [email protected] 1 Masalah Gelombang
BAB I PENDAHULUAN Latar Belakang Masalah
BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Matematika merupakan suatu ilmu pengetahuan yang sering disebut sebagai induk dari ilmu-ilmu pengetahuan yang lain. Hal ini karena, matematika banyak diterapkan
GARIS BESAR PROGRAM PEMBELAJARAN (GBPP) UNIVERSITAS DIPONEGORO
GARIS BESAR PROGRAM PEMBELAJARAN (GBPP) UNIVERSITAS DIPONEGORO SPMI- UNDIP GBPP 10.09.04 PAF220 Revisi ke - Tanggal 13 September 2013 Dikaji Ulang Oleh Ketua Program Studi Fisika Dikendalikan Oleh GPM
Hendra Gunawan. 26 Februari 2014
MA1201 MATEMATIKA 2A Hendra Gunawan Semester II, 2013/2014 26 Februari 2014 9.6 Deret Pangkat Kuliah yang Lalu Menentukan selang kekonvergenan deret pangkat 9.7 Operasi pada Deret Pangkat Mlkk Melakukan
METODE BEDA HINGGA DALAM PENENTUAN DISTRIBUSI TEKANAN, ENTALPI DAN TEMPERATUR RESERVOIR PANAS BUMI FASA TUNGGAL
METODE BEDA HINGGA DALAM PENENTUAN DISTRIBUSI TEKANAN, ENTALPI DAN TEMPERATUR RESERVOIR PANAS BUMI FASA TUNGGAL TUGAS AKHIR Diajukan untuk melengkapi persyaratan dalam menyelesaikan tahap sarjana pada
METODA NUMERIK (3 SKS)
METODA NUMERIK (3 SKS) Dosen Dr. Julan HERNADI Program Studi Pendidikan Matematika FKIP Unmuh Ponorogo Masa Perkuliahan Semester Ganjil 2013/2014 Deskripsi dan Tujuan Perkuliahan Mata kuliah ini berisi
CNH2B4 / KOMPUTASI NUMERIK
CNH2B4 / KOMPUTASI NUMERIK TIM DOSEN KK MODELING AND COMPUTATIONAL EXPERIMENT 1 REVIEW KALKULUS & KONSEP ERROR Fungsi Misalkan A adalah himpunan bilangan. Fungsi f dengan domain A adalah sebuah aturan
BAB I PENDAHULUAN Latar Belakang Masalah
BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Matematika merupakan suatu ilmu pengetahuan yang sering disebut sebagai induk dari ilmu-ilmu pengetahuan yang lain. Di antara beberapa disiplin ilmu, fisika
Pemodelan Penjalaran Gelombang Tsunami Melalui Pendekatan Finite Difference Method
SEMINAR NASIONAL MATEMATIKA DAN PENDIDIKAN MATEMATIKA UNY 2016 T - 4 Pemodelan Penjalaran Gelombang Tsunami Melalui Pendekatan Finite Difference Method Yulian Fauzi 1, Jose Rizal 1, Fachri Faisal 1, Pepi
BAB I PENDAHULUAN. Tahap-tahap memecahkan masalah dengan metode numeric : 1. Pemodelan 2. Penyederhanaan model 3.
BAB I PENDAHULUAN Tujuan Pembelajaran: Mengetahui apa yang dimaksud dengan metode numerik. Mengetahui kenapa metode numerik perlu dipelajari. Mengetahui langkah-langkah penyelesaian persoalan numerik.
Pemodelan Tsunami Sederhana dengan Menggunakan Persamaan Differensial Parsial
ISSN:2089 0133 Indonesian Journal of Applied Physics (2018) Vol.8 No.1 halaman 26 April 2018 Pemodelan Tsunami Sederhana dengan Menggunakan Persamaan Differensial Parsial Indriati Retno Palupi *, Wiji
Solusi Persamaan Laplace Menggunakan Metode Crank-Nicholson. (The Solution of Laplace Equation Using Crank-Nicholson Method)
Prosiding Seminar Nasional Matematika, Universitas Jember, 19 November 2014 320 Persamaan Laplace Menggunakan Metode Crank-Nicholson (The Solution of Laplace Equation Using Crank-Nicholson Method) Titis
PENYELESAIAN PERSAMAAN PANAS BALIK (BACKWARD HEAT EQUATION) Oleh: RICHA AGUSTININGSIH
TUGAS AKHIR PENYELESAIAN PERSAMAAN PANAS BALIK (BACKWARD HEAT EQUATION) Oleh: RICHA AGUSTININGSIH 1204100019 JURUSAN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM INSTITUT TEKNOLOGI SEPULUH
Bab 2. Landasan Teori. 2.1 Persamaan Air Dangkal (SWE)
Bab 2 Landasan Teori Dalam bab ini akan dibahas mengenai Persamaan Air Dangkal dan dasar-dasar teori mengenai metode beda hingga untuk menghampiri solusi dari persamaan diferensial parsial. 2.1 Persamaan
PROJEK 2 PENCARIAN ENERGI TERIKAT SISTEM DI BAWAH PENGARUH POTENSIAL SUMUR BERHINGGA
PROJEK PENCARIAN ENERGI TERIKAT SISTEM DI BAWAH PENGARUH POTENSIAL SUMUR BERHINGGA A. PENDAHULUAN Ada beberapa metode numerik yang dapat diimplementasikan untuk mengkaji keadaan energi terikat (bonding
Solusi Penyelesaian Persamaan Laplace dengan Menggunakan Metode Random Walk Gapar 1), Yudha Arman 1), Apriansyah 2)
Solusi Penyelesaian Persamaan Laplace dengan Menggunakan Metode Random Walk Gapar 1), Yudha Arman 1), Apriansyah 2) 1) Program Studi Fisika Jurusan Fisika Universitas Tanjungpura 2)Program Studi Ilmu Kelautan
Pengantar Metode Perturbasi Bab 1. Pendahuluan
Pengantar Metode Perturbasi Bab 1. Pendahuluan Mahdhivan Syafwan Jurusan Matematika FMIPA Universitas Andalas PAM 454 KAPITA SELEKTA MATEMATIKA TERAPAN II Semester Ganjil 2016/2017 Review Teori Dasar Terkait
METODE PSEUDOSPEKTRAL CHEBYSHEV PADA APROKSIMASI TURUNAN FUNGSI
Jurnal Matematika UNAND Vol. VI No. 1 Hal. 50 57 ISSN : 2303 2910 c Jurusan Matematika FMIPA UNAND METODE PSEUDOSPEKTRAL CHEBYSHEV PADA APROKSIMASI TURUNAN FUNGSI ILHAM FEBRI RAMADHAN Program Studi Matematika
BAB I PENDAHULUAN 1.1 Latar Belakang dan Permasalahan
BAB I PENDAHULUAN 1.1 Latar Belakang dan Permasalahan Ilmu fisika merupakan ilmu yang mempelajari berbagai macam fenomena alam dan berperan penting dalam kehidupan sehari-hari. Salah satu peran ilmu fisika
BAB III METODE BINOMIAL
BAB III METODE BINOMIAL Metode Binomial ialah metode sederhana yang banyak digunakan untuk menghitung harga saham. Metode ini berdasarkan pada percabangan pohon yang menerapkan aturan binomial pada tiap-tiap
Triyana Muliawati, S.Si., M.Si.
SI 2201 - METODE NUMERIK Triyana Muliawati, S.Si., M.Si. Prodi Matematika Institut Teknologi Sumatera Lampung Selatan 35365 Hp. +6282260066546, Email. [email protected] 1. Pengenalan Metode
BAB I PENDAHULUAN Latar Belakang Masalah
BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Matematika merupakan suatu ilmu pengetahuan yang sering disebut sebagai induk dari ilmu-ilmu pengetahuan yang lain. Hal ini karena, matematika banyak diterapkan
BAB 4 ANALISIS DAN BAHASAN
BAB 4 ANALISIS DAN BAHASAN 4.1 Model LWR Pada skripsi ini, model yang akan digunakan untuk memodelkan kepadatan lalu lintas secara makroskopik adalah model LWR yang dikembangkan oleh Lighthill dan William
SEMINAR TUGAS AKHIR. Penerapan Metode Ensemble Kalman Filter untuk Estimasi Kecepatan dan Ketinggian Gelombang Non Linear pada Pantai
SEMINAR TUGAS AKHIR Penerapan Metode Ensemble Kalman Filter untuk Estimasi Kecepatan dan Ketinggian Gelombang Non Linear pada Pantai Oleh: Fadila Rahmana 1208 100 044 Abstrak Gelombang laut telah menjadi
Modul Praktikum Analisis Numerik
Modul Praktikum Analisis Numerik (Versi Beta 1.2) Mohammad Jamhuri UIN Malang December 2, 2013 Mohammad Jamhuri (UIN Malang) Modul Praktikum Analisis Numerik December 2, 2013 1 / 18 Praktikum 1: Deret
Persamaan Diferensial Parsial CNH3C3
Persamaan Diferensial Parsial CNH3C3 Week 10: Finite Dierence Method for PDE Heat Eqs Tim Ilmu Komputasi Coordinator contact: Dr. Putu Harry Gunawan [email protected] 1 Masalah Persamaan
BAB I PENDAHULUAN Latar Belakang Masalah
BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Dalam kehidupan sehari-hari banyak permasalahan yang muncul di lingkungan sekitar. Hal tersebut dapat dikembangkan melalui pemodelan matematika. Sehingga dengan
Setiap mahasiswa yang pernah mengambil kuliah kalkulus tentu masih ingat dengan turunan fungsi yang didefenisikan sebagai
Bab 7 Turunan Numerik Lebi banyak lagi yang terdapat di langit dan di bumi, Horatio, daripada yang kau mimpikan di dalam ilosoimu. (Hamlet) Setiap maasiswa yang perna mengambil kulia kalkulus tentu masi
BAB 2 TINJAUAN PUSTAKA
BAB TINJAUAN PUSTAKA.1 Model Aliran Dua-Fase Nonekulibrium pada Media Berpori Penelitian ini merupakan kajian ulang terhadap penelitian yang telah dilakukan oleh Juanes (008), dalam tulisannya yang berjudul
MATA KULIAH ANALISIS NUMERIK
BAHAN AJAR MATA KULIAH ANALISIS NUMERIK Oleh: M. Muhaemin Muhammad Saukat JURUSAN TEKNIK DAN MANAJEMEN INDUSTRI PERTANIAN FAKULTAS TEKNOLOGI INDUSTRI PERTANIAN UNIVERSITAS PADJADJARAN 2009 Bahan Ajar Analisis
Bab 2. Landasan Teori. 2.1 Persamaan Air Dangkal Linier (Linier Shallow Water Equation)
Bab 2 Landasan Teori Dalam bab ini akan dijelaskan mengenai Persamaan Air Dangkal linier (Linear Shallow Water Equation), metode beda hingga, metode ekspansi asimtotik biasa, dan metode ekspansi asimtotik
Differensiasi Numerik
Dierensiasi Numerik Yuliana Setiowati Politeknik Elektronika Negeri Surabaya 2007 1 Topik DIFFERENSIASI NUMERIK Mengapa perlu Metode Numerik? Dierensiasi dg MetNum Metode Selisi Maju Metode Selisi Tengaan
Bab 4 DINDING SINUSOIDAL SEBAGAI REFLEKTOR GELOMBANG
Bab 4 DINDING SINUSOIDAL SEBAGAI REFLEKTOR GELOMBANG Pada bab sebelumnya telah dibahas mengenai dasar laut sinusoidal sebagai reflektor gelombang. Persamaan yang digunakan untuk memodelkan masalah dasar
I. PENDAHULUAN. dan kotoran manusia atau kotoran binatang. Semua polutan tersebut masuk. ke dalam sungai dan langsung tercampur dengan air sungai.
I. PENDAHULUAN 1.1 Latar Belakang dan Masalah Dalam kehidupan, polusi yang ada di sungai disebabkan oleh limbah dari pabrikpabrik dan kotoran manusia atau kotoran binatang. Semua polutan tersebut masuk
LEMBAR AKTIVITAS SISWA INDUKSI MATEMATIKA
Nama Siswa Kelas : : LEMBAR AKTIVITAS SISWA INDUKSI MATEMATIKA Latihan 1 1. A. NOTASI SIGMA 1. Pengertian Notasi Sigma Misalkan jumlah n suku pertama deret aritmatika adalah S n = U 1 + U 2 + U 3 + + U
STUDI PERPINDAHAN PANAS DENGAN MENGGUNAKAN SISTEM KOORDINAT SEGITIGA
STUDI PERPINDAHAN PANAS DENGAN MENGGUNAKAN SISTEM KOORDINAT SEGITIGA Oleh : Farda Nur Pristiana 1208 100 059 JURUSAN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM INSTITUT TEKNOLOGI SEPULUH
Program Studi Pendidikan Matematika UNTIRTA. 10 Maret 2010
Metode Program Studi Pendidikan Matematika UNTIRTA 10 Maret 2010 (Program Studi Pendidikan Matematika UNTIRTA) Metode 10 Maret 2010 1 / 16 Ekspansi Taylor Misalkan f 2 C [a, b] dan x 0 2 [a, b], maka untuk
Metode Numerik & Lab. Muhtadin, ST. MT. Metode Numerik & Komputasi. By : Muhtadin
Metode Numerik & Lab Muhtadin, ST. MT. Agenda Intro Rencana Pembelajaran Ketentuan Penilaian Deret Taylor & McLaurin Analisis Galat Metode Numerik & Lab - Intro 3 Tujuan Pembelajaran Mahasiswa memiliki
bila limitnya ada. Dengan penggantian x = c+ h, jika x c h 0 dan x c h turunan fungsi f di c dapat dituliskan dalam bentuk: x c
Misalkan fungsi f terdefinisi pada selang terbuka I yang memuat c. Turunan pertama dari fungsi f di titik c ditulis f '( c ) didefinisikan sebagai: ( ) ( ) f x f '( c) = lim f c x c x c bila limitnya ada.
PENYELESAIAN MASALAH NILAI EIGEN UNTUK PERSAMAAN DIFERENSIAL STURM-LIOUVILLE DENGAN METODE NUMEROV
Buletin Ilmiah Mat. Stat. dan Terapannya (Bimaster) Volume 04, No. 3 (2015), hal 415-422 PENYELESAIAN MASALAH NILAI EIGEN UNTUK PERSAMAAN DIFERENSIAL STURM-LIOUVILLE DENGAN METODE NUMEROV Iyut Riani, Nilamsari
APLIKASI METODE CELLULAR AUTOMATA UNTUK MENENTUKAN DISTRIBUSI TEMPERATUR KONDISI TUNAK
APLIKASI METODE CELLULAR AUTOMATA UNTUK MENENTUKAN DISTRIBUSI TEMPERATUR KONDISI TUNAK APPLICATION OF CELLULAR AUTOMATA METHOD TO DETERMINATION OF STEADY STATE TEMPERATURE DISTRIBUTION Apriansyah 1* 1*
Modul Praktikum Analisis Numerik
Modul Praktikum Analisis Numerik (Versi Beta 1.2) Mohammad Jamhuri UIN Malang September 27, 2013 Mohammad Jamhuri (UIN Malang) Modul Praktikum Analisis Numerik September 27, 2013 1 / 12 Praktikum 1: Deret
BAB II PENGANTAR SOLUSI PERSOALAN FISIKA MENURUT PENDEKATAN ANALITIK DAN NUMERIK
BAB II PENGANTAR SOLUSI PERSOALAN FISIKA MENURUT PENDEKATAN ANALITIK DAN NUMERIK Tujuan Instruksional Setelah mempelajari bab ini pembaca diharapkan dapat: 1. Menjelaskan cara penyelesaian soal dengan
PENGANTAR MATEMATIKA TEKNIK 1. By : Suthami A
PENGANTAR MATEMATIKA TEKNIK 1 By : Suthami A MATEMATIKA TEKNIK 1??? MATEMATIKA TEKNIK 1??? MATEMATIKA TEKNIK Matematika sebagai ilmu dasar yang digunakan sebagai alat pemecahan masalah di bidang keteknikan
BAB I PENDAHULUAN Latar Belakang Masalah
BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Matematika merupakan salah satu ilmu pengetahuan yang sudah lama dipelajari dan berkembang pesat. Perkembangan ilmu matematika tidak terlepas dari perkembangan
BAB I PENDAHULUAN 1.1. Latar Belakang dan Permasalahan
BAB I PENDAHULUAN Pada Bab I akan dibahas latar belakang dan permasalahan penulisan tesis. Berdasarkan latar belakang, akan disusun tujuan dan manfaat dari penulisan tesis. Selain itu, literatur-literatur
MA1201 KALKULUS 2A (Kelas 10) Bab 8: Bentuk Tak Tentu d
MA1201 KALKULUS 2A (Kelas 10) Bab 8: dan Do maths and you see the world ? Pengantar Bentuk tak tentu? Bentuk apa? Bentuk tak tentu yang dimaksud adalah bentuk limit dengan nilai seolah-olah : 0 0 ; ; 0
PEMODELAN ARUS LALU LINTAS ROUNDABOUT
Jurnal Matematika UNAND Vol. 3 No. 1 Hal. 43 52 ISSN : 2303 2910 c Jurusan Matematika FMIPA UNAND PEMODELAN ARUS LALU LINTAS ROUNDABOUT NANDA ARDIELNA, MAHDHIVAN SYAFWAN Program Studi Matematika, Fakultas
ANALISIS MODEL MATEMATIKA PROSES PENYEBARAN LIMBAH CAIR PADA AIR TANAH
ANALISIS MODEL MATEMATIKA PROSES PENYEBARAN LIMBAH CAIR PADA AIR TANAH Oleh: 1 Arif Fatahillah, 2 M. Gangga D. F. F. P 1,2 Program Studi Pendidikan Matematika FKIP Universitas Jember e-mail: [email protected]
BAB 2 TINJAUAN PUSTAKA
BAB 2 TINJAUAN PUSTAKA 2.1 Umum Perpindahan panas adalah perpindahan energi yang terjadi pada benda atau material yang bersuhu tinggi ke benda atau material yang bersuhu rendah, hingga tercapainya kesetimbangan
PENYELESAIAN NUMERIK PERSAMAAN ADVEKSI DIFUSI 2-D UNTUK TRANSFER POLUTAN DENGAN MENGGUNAKAN METODE BEDA HINGGA DUFORT FRANKEL
1 PENYELESAIAN NUMERIK PERSAMAAN ADVEKSI DIFUSI 2-D UNTUK TRANSFER POLUTAN DENGAN MENGGUNAKAN METODE BEDA HINGGA DUFORT FRANKEL NUMERICAL SOLUTION OF 2-D ADVECTION DIFFUSION EQUATION FOR POLLUTANT TRANSFER
MODEL POLA LAJU ALIRAN FLUIDA DENGAN LUAS PENAMPANG YANG BERBEDA MENGGUNAKAN METODE BEDA HINGGA
MODEL POLA LAJU ALIRAN FLUIDA DENGAN LUAS PENAMPANG YANG BERBEDA MENGGUNAKAN METODE BEDA HINGGA Vira Marselly, Defrianto, Rahmi Dewi Mahasiswa Program S1 Fisika Fakultas Matematika Dan Ilmu Pengetahuan
BUKU RANCANGAN PENGAJARAN MATA AJAR METODE NUMERIK. oleh. Tim Dosen Mata Kuliah Metode Numerik
BUKU RANCANGAN PENGAJARAN MATA AJAR METODE NUMERIK oleh Tim Dosen Mata Kuliah Metode Numerik Fakultas Teknik Universitas Indonesia Maret 2016 1 DAFTAR ISI hlm. PENGANTAR BAB 1 BAB 2 INFORMASI UMUM KOMPETENSI
BAB I ARTI PENTING ANALISIS NUMERIK
BAB I ARTI PENTING ANALISIS NUMERIK Pendahuluan Di dalam proses penyelesaian masalah yang berhubungan dengan bidang sains, teknik, ekonomi dan bidang lainnya, sebuah gejala fisis pertama-tama harus digambarkan
BAB I PENDAHULUAN. keadaan energi (energy state) dari sebuah sistem potensial sumur berhingga. Diantara
BAB I PENDAHULUAN Latar Belakang Masalah Ada beberapa metode numerik yang dapat diimplementasikan untuk mengkaji keadaan energi (energy state) dari sebuah sistem potensial sumur berhingga. Diantara metode-metode
Sidang Tugas Akhir - Juli 2013
Sidang Tugas Akhir - Juli 2013 STUDI PERBANDINGAN PERPINDAHAN PANAS MENGGUNAKAN METODE BEDA HINGGA DAN CRANK-NICHOLSON COMPARATIVE STUDY OF HEAT TRANSFER USING FINITE DIFFERENCE AND CRANK-NICHOLSON METHOD
MASALAH SYARAT BATAS (MSB)
Program Studi Pendidikan Matematika FKIP Unmuh Ponorogo PENDAHULUAN MODEL KABEL MENGGANTUNG DEFINISI MSB Persamaan diferensial (PD) dikatakan berdimensi 1 jika domainnya berupa himpunan bagian pada R 1.
BAB I PENDAHULUAN. ada dua pendekatan yang dapat digunakan, pendekatan yang pertama adalah
BAB I PENDAHULUAN I.1. Latar Belakang Seiring dengan perkembangan teknologi informasi yang sangat pesat, saat ini dapat ditemui berbagai macam media dan sarana untuk menyampaikan pengetahuan dan informasi.
III PEMBAHASAN. 3.1 Analisis Metode. dan (2.52) masing-masing merupakan penyelesaian dari persamaan
6, 1 (2.52) Berdasarkan persamaan (2.52), maka untuk 0 1 masing-masing memberikan persamaan berikut:, 0,0, 0, 1,1, 1. Sehingga menurut persamaan (2.51) persamaan (2.52) diperoleh bahwa fungsi, 0, 1 masing-masing
PENCARIAN AKAR-AKAR PERSAMAAN NONLINIER SATU VARIABEL DENGAN METODE ITERASI BARU HASIL DARI EKSPANSI TAYLOR
Jurnal Matematika UNAND Vol. 4 No. 1 Hal. 93 98 ISSN : 2303 2910 c Jurusan Matematika FMIPA UNAND PENCARIAN AKAR-AKAR PERSAMAAN NONLINIER SATU VARIABEL DENGAN METODE ITERASI BARU HASIL DARI EKSPANSI TAYLOR
EFEK DISKRITASI METODE GALERKIN SEMI DISKRET TERHADAP AKURASI DARI SOLUSI MODEL RAMBATAN PANAS TANPA SUKU KONVEKSI
JURNAL MATEMATIKA DAN KOMPUTER EFEK DISKRITASI METODE GALERKIN SEMI DISKRET TERHADAP AKURASI DARI SOLUSI MODEL RAMBATAN PANAS TANPA SUKU KONVEKSI Kushartantya dan Awalina Kurniastuti Jurusan Matematika
Pengantar Persamaan Differensial (1)
Program Studi Modul Mata Kuliah Kode MK Disusun Oleh Sistem Komputer 01 Persamaan Differensial MKK103 Albaar Rubhasy, S.Si, MTI Pengantar Persamaan Differensial (1) Materi Pembahasan: Deskripsi Perkuliahan
ISBN. PT SINAR BARU ALGENSINDO
Drs. HERI SUTARNO, M. T. DEWI RACHMATIN, S. Si., M. Si. METODE NUMERIK DENGAN PENDEKATAN ALGORITMIK ISBN. PT SINAR BARU ALGENSINDO PRAKATA Segala puji dan syukur penulis panjatkan kepada Alloh SWT yang
UJI KONVERGENSI. Januari Tim Dosen Kalkulus 2 TPB ITK
UJI KONVERGENSI Januari 208 Tim Dosen Kalkulus 2 TPB ITK Uji Integral Teorema 3 Jika + k= u k adalah deret dengan suku-suku tak negatif, dan jika ada suatu konstanta M sedemikian hingga s n = u + u 2 +
BAB 1 PENDAHULUAN 1.1 Latar Belakang
BAB 1 PENDAHULUAN 1.1 Latar Belakang Suhu merupakan salah satu dimensi pengukuran. Nilai dari suhu dapat diukur pada suatu lingkungan dan suhu mengalami kenaikan dan penurunan karena adanya perambatan
METODE FINITEDIFFERENCE INTERVAL UNTUK MENYELESAIKAN PERSAMAAN PANAS
METODE FINITEDIFFERENCE INTERVAL UNTUK MENYELESAIKAN PERSAMAAN PANAS Aziskhan, Mardhika W.A, Syamsudhuha Jurusan MatematikaFMIPA Universitas Riau Abstract. The aim of this paper is to solve a heat equation
Bab 3 MODEL DAN ANALISIS MATEMATIKA
Bab 3 MODEL DAN ANALISIS MATEMATIKA Pada bab ini akan dimodelkan permasalahan penyebaran virus flu burung yang bergantung pada ruang dan waktu. Pada bab ini akan dibahas pula analisis dari model hingga
DERET FOURIER. n = bilangan asli (1,2,3,4,5,.) L = pertemuan titik. Bilangan-bilangan untuk,,,, disebut koefisien fourier dari f(x) dalam (-L,L)
DERET FOURIER Bila f adalah fungsi periodic yang berperioda p, maka f adalah fungsi periodic. Berperiode n, dimana n adalah bilangan asli positif (+). Untuk setiap bilangan asli positif fungsi yang didefinisikan
Reflektor Gelombang 1 balok
Bab 3 Reflektor Gelombang 1 balok Setelah diperoleh persamaan yang menggambarkan gerak gelombang air setiap saat yaitu SWE, maka pada bab ini akan dielaskan mengenai pengaruh 1 balok terendam sebagai reflektor
Estimasi Solusi Model Pertumbuhan Logistik dengan Metode Ensemble Kalman Filter
Jurnal ILMU DASAR, Vol.14, No,2, Juli 2013 : 85-90 85 Estimasi Solusi Model Pertumbuhan Logistik dengan Metode Ensemble Kalman Filter Solution Estimation of Logistic Growth Model with Ensemble Kalman Filter
BAB 1 PENDAHULUAN. 1.1 Latar Belakang
BAB 1 PENDAHULUAN 1.1 Latar Belakang Persamaan diferensial berperan penting dalam kehidupan, sebab banyak permasalahan pada dunia nyata dapat dimodelkan dengan bentuk persamaan diferensial. Ada dua jenis
BAB I PENDAHULUAN. digunakan untuk masalah-masalah dalam kehidupan sehari-hari, diantaranya
BAB I PENDAHULUAN A. Latar Belakang Masalah Persamaan Diferensial merupakan ilmu matematika yang dapat digunakan untuk masalah-masalah dalam kehidupan sehari-hari, diantaranya dalam ilmu kesehatan yaitu
SKEMA NUMERIK UNTUK MENYELESAIKAN PERSAMAAN BURGERS MENGGUNAKAN METODE CUBIC B-SPLINE QUASI-INTERPOLANT DAN MULTI-NODE HIGHER ORDER EXPANSIONS
PRESENTASI TUGAS AKHIR KI091391 SKEMA NUMERIK UNTUK MENYELESAIKAN PERSAMAAN BURGERS MENGGUNAKAN METODE CUBIC B-SPLINE QUASI-INTERPOLANT DAN MULTI-NODE HIGHER ORDER EXPANSIONS (Kata kunci:persamaan burgers,
BAB III PEMODELAN DENGAN METODE VOLUME HINGGA
BAB III PEMODELAN DENGAN METODE VOLUME HINGGA 3.1 Teori Dasar Metode Volume Hingga Computational fluid dynamic atau CFD merupakan ilmu yang mempelajari tentang analisa aliran fluida, perpindaan panas dan
Mutawafaq Haerunnazillah 15B08011
GELOMBANG STASIONER Gelombang stasioner merupakan perpaduan dua gelombang yang mempunyai frekuensi, cepat rambat, dan amplitudo yang sama besar namun merambat dalam arah yang berlawanan. Singkatnya, gelombang
MODIFIKASI METODE NEWTON-RAPHSON UNTUK MENCARI SOLUSI PERSAMAAN LINEAR DAN NONLINEAR
Buletin Ilmiah Mat. Stat. dan Terapannya (Bimaster) Volume 6 No. 02 (2017), hal 69 76. MODIFIKASI METODE NEWTON-RAPHSON UNTUK MENCARI SOLUSI PERSAMAAN LINEAR DAN NONLINEAR Mahmul, Mariatul Kiftiah, Yudhi
APLIKASI METODE BEDA HINGGA PADA PERSAMAAN SCHRöDINGER MENGGUNAKAN MATLAB ABSTRAK
APLIKASI METODE BEDA HINGGA PADA PERSAMAAN SCHRöDINGER MENGGUNAKAN MATLAB Odaligo Ziduhu Lombu 1, Tua Raja Simbolon 2, Tenang Ginting 3 1 Mahasiswa FISIKA FMIPA USU 2,3 Dosen Pembimbing FISIKA FMIPA USU
PENYELESAIAN PERSAMAAN DIFFERENSIAL ORDE 1 - I
PENYELESAIAN PERSAMAAN DIFFERENSIAL ORDE 1 - I 1. Pendahuluan Pengertian Persamaan Diferensial Metoda Penyelesaian -contoh Aplikasi 1 1.1. Pengertian Persamaan Differensial Secara Garis Besar Persamaan
BAB I PENDAHULUAN. 1.1 Latar Belakang Masalah
BAB I PENDAHULUAN 1.1 Latar Belakang Masalah Pada metode numerik, dikenal suatu metode untuk menaksir atau mencari solusi pendekatan nilai eksak dari suatu ordinat y n+1 dengan diketahui nilai dari y n,
SOLUSI PERSAMAAN LAPLACE MENGGUNAKAN METODE CRANK-NICHOLSON SKRIPSI
SOLUSI PERSAMAAN LAPLACE MENGGUNAKAN METODE CRANK-NICHOLSON SKRIPSI Oleh Titis Miranti NIM 101810101012 JURUSAN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS JEMBER 2014 HALAMAN
Perbandingan Model Black Scholes dan Brennan Schwartz untuk Menentukan Harga American Option
J. Math. and Its Appl. ISSN: 829-605X Vol. 4, No., May 2007, 47 58 Perbandingan Model Black Scholes dan Brennan Schwartz untuk Menentukan Harga American Option Endah Rokhmati MP, Lukman Hanafi, Supriati
SEDIMENTASI AKIBAT PEMBANGUNAN SHEET PILE BREAKWATER TELUK BINTUNI, PAPUA BARAT
SEDIMENTASI AKIBAT PEMBANGUNAN SHEET PILE BREAKWATER TELUK BINTUNI, PAPUA BARAT Jundana Akhyar 1 dan Muslim Muin 2 Program Studi Teknik Kelautan Fakultas Teknik Sipil dan Lingkungan, Institut Teknologi
Metode Numerik. Muhtadin, ST. MT. Metode Numerik. By : Muhtadin
Metode Numerik Muhtadin, ST. MT. Agenda Intro Rencana Pembelajaran Ketentuan Penilaian Deret Taylor & McLaurin Analisis Galat 2 Metode Numerik & Teknik Komputasi - Intro 3 Tujuan Pembelajaran Mahasiswa
DASAR SINUSOIDAL SEBAGAI REFLEKTOR GELOMBANG
h Bab 3 DASAR SINUSOIDAL SEBAGAI REFLEKTOR GELOMBANG 3.1 Persamaan Gelombang untuk Dasar Sinusoidal Dasar laut berbentuk sinusoidal adalah salah satu bentuk dasar laut tak rata yang berupa fungsi sinus
BAB 1 PENDAHULUAN. menimbulkan permasalahan baru seputar arus kepadatan jalan. Sebagai
BAB 1 PENDAHULUAN 1.1 Latar Belakang Transportasi merupakan sarana penting sebagai salah satu faktor pendukung berkembangnya suatu kota. Oleh karena itu kebutuhan akan jalur transportasi semakin bertambah.
Modul 1: Analisis Galat (error) dan Masalah-masalah Mendasar Dalam Komputasi Numeris (dengan Turbo Pascal dan FORTRAN 77/90/95)
Modul 1: Analisis Galat (error) dan Masalah-masalah Mendasar Dalam Komputasi Numeris (dengan Turbo Pascal dan FORTRAN 77/90/95) A. Kendala Dalam Sistem Komputasi Numerik Dalam komputasi numerik, yaitu
Pemodelan Lintasan Benda Titik Pada Wall of Death (Tong Setan)
Pemodelan Lintasan Benda Titik Pada Wall of Death (Tong Setan) Wenny Wahyuni1,a), ustan1,b), Erika L. Y. Nasution,c), Miftahul Husnah,d) dan Sparisoma Viridi3,e) 1 Laboratorium Fisika Bumi, Kelompok Keilmuan
Algoritma Pemrograman Fery Updi,M.Kom
Algoritma Pemrograman Fery Updi,M.Kom 1 Kompetensi Detail Mampu menjelaskan Prinsip-prinsip Algoritma Mampu menjelaskan Konsep Bahasa Pemrograman Mampu membuat Flowchart dan Pseudocode Mampu menjelaskan
Hampiran turunan menggunakan metoda numerik
Hampiran turunan menggunakan metoda numerik Kie Van Ivanky Saputra March 31, 2009 K V I Saputra (Analisis Numerik) Turunan Numerik March 31, 2009 1 / 9 Tujuan 1 mengerti apa itu dari turunan numerik, 2
PENERAPAN METODE ELEMEN HINGGA UNTUK SOLUSI PERSAMAAN STURM-LIOUVILLE
PENERAPAN METODE ELEMEN HINGGA UNTUK SOLUSI PERSAMAAN STURM-LIOUVILLE Viska Noviantri Mathematics & Statistics Department, School of Computer Science, Binus University Jln. K.H. Syahdan No. 9, Palmerah,
BAB I PENDAHULUAN. 1.1 Latar Belakang
BAB I PENDAHULUAN 1.1 Latar Belakang Persamaan diferensial adalah suatu persamaan diantara derivatif-derivatif yang dispesifikasikan pada suatu fungsi yang tidak diketahui nilainya dan diketahui jumlah
BAB I PENDAHULUAN Latar Belakang Masalah
BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Air merupakan kebutuhan penting bagi pertumbuhan tanaman. Namun, pada saat musim kemarau tiba atau di daerah dengan intensitas hujan rendah, ketersediaan air
PENENTUAN HARGA OPSI DENGAN MODEL BLACK-SCHOLES MENGGUNAKAN METODE BEDA HINGGA CENTER TIME CENTER SPACE (CTCS)
Eksakta Vol. 18 No. 2, Oktober 2017 http://eksakta.ppj.unp.ac.id E-ISSN : 2549-7464 P-ISSN : 1411-3724 PENENTUAN HARGA OPSI DENGAN MODEL BLACK-SCHOLES MENGGUNAKAN METODE BEDA HINGGA CENTER TIME CENTER
BAB 4 BAB 3 HASIL DAN PEMBAHASAN METODE PENELITIAN. 3.2 Peralatan
4 3.2 Peralatan..(9) dimana,, dan.(10) substitusi persamaan (10) ke persamaan (9) maka diperoleh persamaan gelombang soliton DNA model PBD...(11) agar persamaan (11) dapat dipecahkan sehingga harus diterapkan
SKRIPSI. Diajukan sebagai salah satu syarat untuk memperoleh gelar Sarjana Teknik. Oleh : JOKO SUPRIYANTO NIM. I
SIMULASI NUMERIK PERPINDAHAN PANAS 2 DIMENSI PADA PROSES PENDINGINAN TEMBAGA MURNI DENGAN VARIASI CETAKAN PASIR DAN MULLITE MENGGUNAKAN PENDEKATAN BEDA HINGGA SKRIPSI Diajukan sebagai salah satu syarat
METODE NUMERIK 3SKS-TEKNIK INFORMATIKA-S1. Mohamad Sidiq PERTEMUAN-1
METODE NUMERIK 3SKS-TEKNIK INFORMATIKA-S1 Mohamad Sidiq PERTEMUAN-1 KONTRAK KULIAH METODE NUMERIK TEKNIK INFORMATIKA S1 3 SKS Mohamad Sidiq MATERI PERKULIAHAN SEBELUM-UTS Pengantar Metode Numerik Sistem
