Perumusan Ensembel Mekanika Statistik Kuantum. Part-1

Ukuran: px
Mulai penontonan dengan halaman:

Download "Perumusan Ensembel Mekanika Statistik Kuantum. Part-1"

Transkripsi

1 Perumusan Ensembel Mekanika Statistik Kuantum Part-1

2 Latar Belakang Untuk system yang distinguishable maka teori ensemble mekanika statistic klasik dapat dipergunakan. Tetapi bilamana system partikel bersifat indistinguishable maka penerapan teori ensemble klasik mesti dilakukan hati-hati, bahkan bisa memberikan kesimpulan yang salah dalam kasus tertentu. Oleh karena itu, agar mampu menangani kasus system partikel yang indistinguishable diperlukan perumusan ulang teori ensemble dalam kerangka mekanika kuantum. Dalam limit suhu tinggi, kerapatan partikel rendah systemsystem akan kembali berlaku seperti system klasik.

3 Teori Ensembel Mekanika Kuantum Misal ada N buah system identik, N >>1. Semua system ini dikarakterisasi oleh Hamiltonian yang sama, dinyatakan oleh operator Hamiltonian H Tiap saat t, setiap system tsb dikarakterisasi oleh fungsi gelombang ψ r i, t. Misalkan ψ k r i, t adalah fungsi gelombang ternormalisasi system ke k. Perilaku ψ k r i, t akan tunduk pada pers. Schrodinger : Hψ k r i, t = iħ ψ k r i, t (1)* Misalkan kita punya basis set orthonormal yang lengkap (di ruang Hilbert) *) dalam notasi Bra-Ket, H k > = iħ t k >

4 Teori Ensembel Mekanika Kuantum φ n sehingga ψ k tsb dapat dinyatakan dalam φ n *): ψ k t = n a n k t φ n Koefisien a n k dapat diperioleh melalui sifat orthonormal **) a n k (t) = φ n ψ k (t) dτ Dengan dτ adalah elemen volume di ruang spatial terkait. Sehingga jika a n k bisa diperoleh berarti kita peroleh ungkapan bagi fungsi gelombang system tsb ψ k (t). Evolusi koefisien a n k (t) diberikan oleh: *) dalam notasi Bra-Ket, k > = n a n k n > **) a n k =< n k >

5 Teori Ensembel Mekanika Kuantum iħ a k n (t) = iħ φ n ψ k (t) dτ iħ a k n (t) = φ n H ψ k (t) dτ iħ a k n (t) = φ n H iħ a k n (t) = m m a m k t φ m dτ H nm a m k Dengan H nm adalah elemen matrix operator H : H nm = φ n Hφ m dτ t

6 Teori Ensembel Mekanika Kuantum Arti fisis a n k t 2 dikaitkan dengan probabilitas menemukan system ke-k pada saat t berada dalam keadaan φ n. Karena tiap saat system mesti berada di salah satu keadaan-n tsb maka mestilah: n a n k 2 = 1 Dalam notasi Dirac, n > φ n, maka nilai rata-rata (ekspektasi) suatu observable A yg dinyatakan oleh operator A berada dalam status keadaan terkait ψ k k > diberikan oleh :

7 Rata-rata Besaran Fisis < A > k =< k A k > = < A > k = m n m n a n k a m k < m A n > < n k >< k m > < m A n > Ini adalah perata-rattan thd status keadaan kuantum. Selanjutnya dihitung rata-rata statistic (ensemble) dari besaran A diberikan oleh < A > = N k=1 W k < A > k Dengan W k adalah bobot statistic (probabilitas) ditemukan system berada dalam keadaan k ini. Tentu saja :

8 Density Operator Sehingga : < A > = N k=1 0 W k 1 dan k=1 N W k = 1 n m < n k > W k < k m > < m A n > Sekarang kita definisikan operator kerapatan (density operator) ρ: ρ = N k=1 k > W k < k Elemen matrix dari density operator ini di ruang { n>} adalah:

9 Elemen Density Matrix ρ nm =< n ρ m > = N N k=1 < n k > W k < k m > = W k ak m a k n = 1 N k=1 k=1 Untuk hasil terakhir telah diasumsikan bobot W k sama untuk seluruh k. Terlihat ρ nm =rata-rata ensemble a k m a k n. N a m k a n k Nilai ρ nn adalah probabilitas menemukan suatu system berada dalam keadaan n>. N Jika dipakai definisi: ρ nn = k=1 ak 2 n yg terkait dengan operator ρ = N k=1 k >< k, maka ρ adalah jumlah status keadaan.

10 Rata-Rata Besaran Fisika dan Density Operator Dengan hasil terakhir ini maka ungkapan <A> dapat dituliskan: < A > = < n ρ m > < m A n > n m < A > = < n ρa n > = Tr(ρA) Tr : trace(a)! Jika A=I (identitas), jelas bahwa : n Tr ρ = ρ nn = 1 Catatan: jika fungsi gelombang ψ k tidak ternormalisasi maka: n

11 Rata-Rata Besaran Fisika dan Density Operator < A > = Tr ρa Tr ρ Dalam representasi ruang vector yang terkait dengan Hamiltonian (energy) matrix density akan berupa diagonal matrix. Dalam ruang representasi yg lain, umumnya tetap simmetrik karena kebutuhan akan sifat detailed balanced agar menjamin tercapainya kesetimbangan dalam system mekanika statistic.

12 Perumusan Ensembel Mikrokanonik Ensembel memiliki N dan V tetap, dengan energy H=E atau E 1 Δ < H < E + 1 ΔE (atau bahkan H < E). 2 2 Γ(E): banyaknya status keadaan (microstate) yg aksesible yang terkait! Asumsinya tiap microstate ini memiliki probabilitas yg sama untuk terpilih. Hal ini dikenal sbg prinsip equal apriori probabilities. Maka komponen density matrix (dlm representasi energy diagonal): ρ nm = δ nm ρ n

13 Perumusan Ensembel Mikrokanonik ρ n = 1 atau 1 untuk tiap aksesible state Γ 0 lainnya 1/Γ : jika ρ n yg dipakai adalah probabilitas. Hubungan dengan Thermodinamika sama spt perumusan klasik yaitu melalui entropi : S = k ln Γ Dengan Γ adalah banyak status keadaan mikro berbeda (distinct) yg aksesible! Dalam menghitung Γ mesti dilakukan secara mekanika kuantum yaitu memperhitungkan sifat indistinguishability dari partikel yg terlibat. Jadi tidak akan terjadi Paradox Gibbs!

14 Banyak Status Keadaan Jika dipakai ρ n = 1 maka, Γ E = Tr ρ = n ρ nn Untuk system makroskopik, jarak antar status keadaan di skala energy sangat kecil shg bisa dianggap kontinum, maka : Γ(E) = ω E Δ Jadi dari perumusan klasik untuk Γ(E) menjadi perumusan kuantum : 1 Γ E = N! h 3N dp dq n Dari menghitung volum di ruang fasa menjadi menjumlah status keadaan microstate.

15 Fungsi Partisi Kanonik Seperti di mikrokanonik: 1 Γ E = N! h 3N dp dq n Untuk ensemble kanonik maka komponen density matrix-nya diberikan oleh: ρ nm = δ nm e βe n Dengan ρ nn menyatakan probabilitas menemukan system dalam status keadaan microstate n yg memiliki energy E n. Fungsi partisi Kanonik adalah: Q N V, T = Tr ρ = n e βe n = E g E e βe Penjumlahan thd n adalah thd seluruh n yg distinct! Bukan thd energy!

16 Fungsi Partisi dan Operator Density Operator density dinyatakan oleh: ρ = n n > e βe n < n = e β H n n >< n Dengan H adalah operator Hamiltonian. Karena sifat completeness dari fungsi basis { n>}, maka : ρ = e β H Jadi secara formal fungsi partisi Kanonik dapat dituliskan: Q N V, T = Tr(e β H ) Rata-rata ensemble suatu besaran : < A > = Tr Ae β H = Tr e β H Tr e β H Q N

17 Perumusan Ensembel Grand Kanonik Seperti di Klasik fungsi partis Grand Kanonik : ζ z, V, T = N=0 z N Q N (V, T) Dengan Q N (V,T) adalah fungsi partisi kanonik system N partikel. Rata-rata ensemble besaran A diberikan oleh : < A > = 1 z N < A > ζ N N=0 Dengan <A> N : rata-rata ensemble kanonik. Sehingga boleh juga dituliskan: ζ z, V, T = Tr(e β H μn ) < A > = 1 ζ Tr (A e β H μn )

18 Penerapan Mikrokanonik: Gas Ideal Tak Berinteraksi Model gas ideal : N partikel identic tak saling interaksi dalam volum V. Hamiltonian system : Dengan p i 2 = p i. p i. H = N pi 2 i=1 2m Di alam ini N partikel identic ada 2 jenis : system Fermi atau system Bose. Untuk system Fermi : fungsi gelombang system bersifat antisimetrik thd pertukaran posisi partikel. Untuk system Bose: fungsi gelombang system bersifat simetrik thd pertukaran posisi partikel

19 Penerapan Mikrokanonik: Gas IDeal Partikel yg memenuhi kaidah Fermi disebut Fermion dan yg memenuhi kaidah Bose disebut Boson. Untuk keperluan model matematik, didefinisikan partikel memenuhi kaidah Boltzmann, yaitu system dengan fungsi eigennya = fungsi eigen fermion + boson + lainnya. Di alam tak ada partikel spt ini, tapi pada suhu tinggi dan density rendah Fermion dan Boson mendekati system Boltzmann. Jadi sekarang kita bahas tiga model non interacting partikel: Fermion Boson Boltzon

20 Ilustrasi Perbedaan Counting Fermion-Boson-Boltzon Kasus 1: Dua medali hadiah : 1Medali Newton dan 1Medali Faraday. Rule : Satu orang bisa menerima keduanya, atau 1 atau tidak sama sekali. Akan dibagikan kepada 3 orang : Andi, Bayu dan Caca. Berapa cara berbeda membagikan medali tsb? No Andi Bayu Caca Ada =9 cara berbeda mendistribusikannya. Hadiah : adalah jenis partikel Orang : adalah status keadaan ( bilangan kuantum ) Berarti dalam contoh ini : Ada 3 status keadaan berbeda dan 2 partikel yg akan menempatinya. Jadi 1 status keadaan bisa menerima lebih dari 1 partikel dan partikelnya berbeda (medali BEDA) Ini distribusi Boltzmann. 1 N,F 2 N F 3 N F 4 NF 5 F N 6 N F 7 NF 8 F N 9 F N

21 Ilustrasi : Distribusi Boson Kasus 2: Dua hadiah berupa 2 koin emas 100 gram (K) masing-masing. Rule: Satu orang bisa menerima keduanya, atau 1 atau tidak sama sekali. Akan dibagikan kepada 3 orang : Andi, Bayu dan Caca. Berapa cara berbeda membagikan medali tsb? Ada =6 cara berbeda mendistribusikannya. Hadiah : adalah jenis partikel (dalam hal ini KOIN tak ada bedanya) Orang : adalah status keadaan ( bilangan kuantum ) Berarti dalam contoh ini : Ada 3 status keadaan berbeda dan 2 partikel tak terbedakan yg akan menempatinya. Jadi 1 status keadaan bisa menerima lebih dari 1 partikel dan partikelnya tak terbedakan Ini distribusi Boson. No Andi Bayu Caca 1 2K 2 K K 3 K K 4 2K 5 K K 6 K K 7 2K 8 K K 9 K K

22 Ilustrasi : Distribusi Fermion Kasus 3: Dua hadiah berupa kesempatan menjadi pemain bola (B) di tim Universitas. Rule : Maka satu orang tentu hanya bisa menerima 1 atau tidak sama sekali. Akan dibagikan kepada 3 orang : Andi, Bayu dan Caca. Berapa cara berbeda membagikan medali tsb? Ada =3 cara berbeda mendistribusikannya. Hadiah : adalah jenis partikel (dalam hal ini 1 orang hanya bisa menerima 1 hadiah) Orang : adalah status keadaan ( bilangan kuantum ) Berarti dalam contoh ini : Ada 3 status keadaan berbeda dan 2 partikel tak terbedakan yg akan menempatinya. Jadi 1 status keadaan hanya bisa menerima max 1 partikel dan partikelnya tak terbedakan Ini distribusi Fermion. No Andi Bayu Caca 1 B 2 B B 3 B B 4 B 5 B B 6 B B 7 B 8 B B 9 B B

Ensembel Kanonik Klasik

Ensembel Kanonik Klasik Ensembel Kanonik Klasik Menghitung Banyak Status Keadaan Sistem Misal ada dua sistem A dan B yang boleh bertukar energi (tapi tidak boleh tukar partikel). Misal status keadaan dan energi masing-masing

Lebih terperinci

Chap. 8 Gas Bose Ideal

Chap. 8 Gas Bose Ideal Chap. 8 Gas Bose Ideal Model: Gas Foton Foton adalah Boson yg tunduk kepada distribusi BE. Model: Foton memiliki frekuensi ω, rest mass=0, spin 1ħ Energi E=ħω dan potensial kimia =0 Momentum p = ħ k, dengan

Lebih terperinci

SOLUTION INSTITUT TEKNOLOGI BANDUNG FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM PROGRAM STUDI FISIKA

SOLUTION INSTITUT TEKNOLOGI BANDUNG FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM PROGRAM STUDI FISIKA INSTITUT TEKNOLOGI BANDUNG FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM PROGRAM STUDI FISIKA FI-5002 Mekanika Statistik SEMESTER/ Sem. 2-2016/2017 QUIZ 2 Waktu : 120 menit (TUTUP BUKU) 1. Misalkan sebuah

Lebih terperinci

FI-5002 Mekanika Statistik SEMESTER/ Sem /2017 PR#1 : Review of Thermo & Microcanonical Ensemble Dikumpulkan :

FI-5002 Mekanika Statistik SEMESTER/ Sem /2017 PR#1 : Review of Thermo & Microcanonical Ensemble Dikumpulkan : ISTITUT TEKOLOGI BADUG FAKULTAS MATEMATIKA DA ILMU PEGETAHUA ALAM PROGRAM STUDI FISIKA FI-500 Mekanika Statistik SEMESTER/ Sem. - 016/017 PR#1 : Review of Thermo & Microcanonical Ensemble Dikumpulkan :

Lebih terperinci

Ensembel Grand Kanonik (Kuantum) Gas IDeal

Ensembel Grand Kanonik (Kuantum) Gas IDeal Ensembel Grand Kanonik (Kuantum) Gas IDeal Fungsi Partisi Grand Kanonik: Gas Ideal Seerti di Klasik fungsi artisi Grand Kanonik : ζ z, V, T = N=0 z N Q N (V, T) dengan Q N adalah fungsi artisi kanonik,

Lebih terperinci

Ensembel Grand Kanonik Klasik. Part-1

Ensembel Grand Kanonik Klasik. Part-1 Ensembel Grand Kanonik Klasik Part-1 Hubungan Thermodinamika Sistem Terbuka Model : Sistem terbuka bisa bertukar partikel dan energi dengan lingkungan. Hukum 1 Thermo: du = dq-pdv atau du= TdS-PdV Jika

Lebih terperinci

2.7 Ensambel Makrokanonik

2.7 Ensambel Makrokanonik 22 BAB 2. TEORI ENSAMBEL 2.7 Ensambel Makrokanonik Dalam bagian ini kita akan menjabarkan rapat ruang fase untuk sistem terbuka, sistem yang berada dalam keadaan kesetimbangan termal dengan lingkungan

Lebih terperinci

Chap 7a Aplikasi Distribusi. Fermi Dirac (part-1)

Chap 7a Aplikasi Distribusi. Fermi Dirac (part-1) Chap 7a Aplikasi Distribusi Fermi Dirac (part-1) Teori Bintang Katai Putih Apakah bintang Katai Putih Bintang yg warnanya pudar/pucat krn hanya memancarkan sedikit cahaya krn supply hidrogennya sudah tinggal

Lebih terperinci

Ensembel Grand Kanonik Klasik. Part-2

Ensembel Grand Kanonik Klasik. Part-2 Ensembel Grand Kanonik Klasik Part-2 Penerapan Ensembel Grand Kanonik Pada Gas Ideal Contoh: Gas ideal dalam volum V sejumlah N partikel dengan temperatur T. Partikel gas tidak saling berinteraksi, dan

Lebih terperinci

SOLUTION QUIZ 1 INSTITUT TEKNOLOGI BANDUNG FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM PROGRAM STUDI FISIKA

SOLUTION QUIZ 1 INSTITUT TEKNOLOGI BANDUNG FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM PROGRAM STUDI FISIKA ISTITUT TEKOLOGI BADUG FAKULTAS MATEMATIKA DA ILMU PEGETAHUA ALAM PROGRAM STUDI FISIKA PR 1 - FI-52 Mekanika Statistik SEMESTER/ Sem. 2-216/217 Waktu : 9 menit (Closed Book) 1. Tinjau dipol identik yang

Lebih terperinci

PERSAMAAN SCHRÖDINGER TAK BERGANTUNG WAKTU DAN APLIKASINYA PADA SISTEM POTENSIAL 1 D

PERSAMAAN SCHRÖDINGER TAK BERGANTUNG WAKTU DAN APLIKASINYA PADA SISTEM POTENSIAL 1 D PERSAMAAN SCHRÖDINGER TAK BERGANTUNG WAKTU DAN APLIKASINYA PADA SISTEM POTENSIAL 1 D Keadaan Stasioner Pada pembahasan sebelumnya mengenai fungsi gelombang, telah dijelaskan bahwa potensial dalam persamaan

Lebih terperinci

Teori Ensambel. Bab Rapat Ruang Fase

Teori Ensambel. Bab Rapat Ruang Fase Bab 2 Teori Ensambel 2. Rapat Ruang Fase Dalam bagian sebelumnya, kita telah menghitung sifat makroskopis dari suatu sistem terisolasi dengan nilai E, V dan N tertentu. Sekarang kita akan membangun suatu

Lebih terperinci

VIII. Termodinamika Statistik

VIII. Termodinamika Statistik VIII. Termodinamika Statistik 8.1. Pendahuluan Mereka yang mengembangkan termodinamika statistik: - Boltzmann - Gibbs dan setelah kemauan teori kuantum: - Satyendra Bose - lbert Einstein - Enrico Fermi

Lebih terperinci

Ensembel Grand Kanonik Klasik. Part-2

Ensembel Grand Kanonik Klasik. Part-2 Ensembel Grand Kanonik Klasik Part-2 Penerapan Ensembel Grand Kanonik Pada Gas Ideal monoatomik Contoh: Gas ideal dalam volum V sejumlah N partikel dengan temperatur T. Partikel gas tidak saling berinteraksi,

Lebih terperinci

Atau dengan menginverse S = S(U), menjadi U=U(S), kemudian menghitung:

Atau dengan menginverse S = S(U), menjadi U=U(S), kemudian menghitung: ISTITUT TEKOLOGI BADUG FAKULTAS MATEMATIKA DA ILMU PEGETAHUA ALAM PROGRAM STUDI FISIKA UJIA TEGAH SEMESTER - FI-5 Mekanika Statistik SEMESTER/ Sem. - 6/7 Hari/Tgl. : Senin 3 Maret 7 Waktu :.-3. Sifat :

Lebih terperinci

Chap 7. Gas Fermi Ideal

Chap 7. Gas Fermi Ideal Chap 7. Gas Fermi Ideal Gas Fermi pada Ground State Distribusi Fermi Dirac pada kondisi Ground State (T 0) memiliki perilaku: n p = e β ε p μ +1 1 ε p < μ 1 0 jika ε p > μ Hasil ini berarti: Seluruh level

Lebih terperinci

n i,n,v = N (1) i,n,v Kedua, untuk nilai termperatur tertentu, terdapat energi rerata n i,n,v E i = N < E i >= N U (2) V i,n,v n i,n,v N = N N (3)

n i,n,v = N (1) i,n,v Kedua, untuk nilai termperatur tertentu, terdapat energi rerata n i,n,v E i = N < E i >= N U (2) V i,n,v n i,n,v N = N N (3) HW week 4 solution. Setelah anda mempelajari empat jenis ensambel, cobalah untuk membuat ensambel baru yang terkait dengan suatu sistem, yang mana sistem dapat: bertukar energi dengan lingkungan dan berada

Lebih terperinci

2.11 Penghitungan Observabel Sebagai Rerata Ensambel

2.11 Penghitungan Observabel Sebagai Rerata Ensambel 2.11. PENGHITUNGAN OBSERVABEL SEBAGAI RERATA ENSAMBEL33 2.11 Penghitungan Observabel Sebagai Rerata Ensambel Dalam pendahuluan ke teori ensambel, kita mengasumsikan bahwa semua observabel dapat dituliskan

Lebih terperinci

Teori Ensambel. Bab Rapat Ruang Fase

Teori Ensambel. Bab Rapat Ruang Fase Bab 2 Teori Ensambel 2.1 Rapat Ruang Fase Dalam bagian sebelumnya, kita telah menghitung sifat makroskopis dari suatu sistem terisolasi dengan nilai E, V dan N tertentu. Sekarang kita akan membangun suatu

Lebih terperinci

= = =

= = = = + + + = + + + = + +.. + + + + + + + + = + + + + ( ) + ( ) + + = + + + = + = 1,2,, = + + + + = + + + =, + + = 1,, ; = 1,, =, + = 1,, ; = 1,, = 0 0 0 0 0 0 0...... 0 0 0, =, + + + = 0 0 0 0 0 0 0 0 0....

Lebih terperinci

DESKRIPSI, SILABUS DAN SAP MATA KULIAH FI-472 FISIKA STATISTIK

DESKRIPSI, SILABUS DAN SAP MATA KULIAH FI-472 FISIKA STATISTIK DESKRIPSI, SILABUS DAN SAP MATA KULIAH FI-472 FISIKA STATISTIK I. DESKRIPSI Mata kuliah ini merupakan mata kuliah wajib. Kompetensi yang diharapkan adalah mahasiswa dapat memiliki pemahaman terhadap hubungan

Lebih terperinci

KB.2 Fisika Molekul. Hal ini berarti bahwa rapat peluang untuk menemukan kedua konfigurasi tersebut di atas adalah sama, yaitu:

KB.2 Fisika Molekul. Hal ini berarti bahwa rapat peluang untuk menemukan kedua konfigurasi tersebut di atas adalah sama, yaitu: KB.2 Fisika Molekul 2.1 Prinsip Pauli. Konsep fungsi gelombang-fungsi gelombang simetri dan antisimetri berlaku untuk sistem yang mengandung partikel-partikel identik. Ada perbedaan yang fundamental antara

Lebih terperinci

ANALISA KELAKUAN PARTIKEL BERDASARKAN STATISTIK MAXWELL-BOLZTMANN BOSE-EINSTEIN DAN FERMI-DIRAC SKRIPSI. Rio Tambunan

ANALISA KELAKUAN PARTIKEL BERDASARKAN STATISTIK MAXWELL-BOLZTMANN BOSE-EINSTEIN DAN FERMI-DIRAC SKRIPSI. Rio Tambunan i ANALISA KELAKUAN PARTIKEL BERDASARKAN STATISTIK MAXWELL-BOLZTMANN BOSE-EINSTEIN DAN FERMI-DIRAC SKRIPSI Diajukan Sebagai Salah Satu Syarat Untuk Memperoleh Gelar Sarjana Sains Rio Tambunan 040801024

Lebih terperinci

2. Deskripsi Statistik Sistem Partikel

2. Deskripsi Statistik Sistem Partikel . Deskripsi Statistik Sistem Partikel Formulasi statistik Interaksi antara sistem makroskopis.1. Formulasi Statistik Dalam menganalisis suatu sistem, kombinasikan: ide tentang statistik pengetahuan hukum-hukum

Lebih terperinci

= (2) Persamaan (2) adalah persamaan diferensial orde dua dengan akar-akar bilangan kompleks yang berlainan, solusinya adalah () =sin+cos (3)

= (2) Persamaan (2) adalah persamaan diferensial orde dua dengan akar-akar bilangan kompleks yang berlainan, solusinya adalah () =sin+cos (3) 2. Osilator Harmonik Pada mekanika klasik, salah satu bentuk osilator harmonik adalah sistem pegas massa, yaitu suatu beban bermassa m yang terikat pada salah satu ujung pegas dengan konstanta pegas k.

Lebih terperinci

TERMODINAMIKA & FISIKA STATISTIK (Tes 3)

TERMODINAMIKA & FISIKA STATISTIK (Tes 3) OLIMPIADE NASIONAL MATEMATIKA DAN ILMU PENGETAHUAN ALAM PERGURUAN TINGGI 2017 (ONMIPA-PT) Bidang Fisika: TERMODINAMIKA & FISIKA STATISTIK (Tes 3) 16 Mei 2017 Waktu: 120 menit KETENTUAN UMUM Petunjuk Pengerjaan

Lebih terperinci

FUNGSI GELOMBANG DAN RAPAT PROBABILITAS PARTIKEL BEBAS 1D DENGAN MENGGUNAKAN METODE CRANK-NICOLSON

FUNGSI GELOMBANG DAN RAPAT PROBABILITAS PARTIKEL BEBAS 1D DENGAN MENGGUNAKAN METODE CRANK-NICOLSON FUNGSI GELOMBANG DAN RAPAT PROBABILITAS PARTIKEL BEBAS 1D DENGAN MENGGUNAKAN METODE CRANK-NICOLSON Rif ati Dina Handayani 1 ) Abstract: Suatu partikel yang bergerak dengan momentum p, menurut hipotesa

Lebih terperinci

POK O O K K O - K P - OK O O K K O K MAT A ERI R FISIKA KUANTUM

POK O O K K O - K P - OK O O K K O K MAT A ERI R FISIKA KUANTUM POKOK-POKOK MATERI FISIKA KUANTUM PENDAHULUAN Dalam Kurikulum Program S-1 Pendidikan Fisika dan S-1 Fisika, hampir sebagian besar digunakan untuk menelaah alam mikro (= alam lelembutan micro-world): Fisika

Lebih terperinci

Pendahuluan. Bab Keadaan mikro dan keadaan makro. 1.2 Ruang Fase

Pendahuluan. Bab Keadaan mikro dan keadaan makro. 1.2 Ruang Fase Bab 1 Pendahuluan 1.1 Keadaan mikro dan keadaan makro Kuantitas makro keadaan fisis suatu sistem merupakan perwujudan rerata kuantitas mikro sistem tersebut. Sebagai contoh, tekanan dari suatu gas merupakan

Lebih terperinci

PENDAHULUAN FISIKA KUANTUM. Asep Sutiadi (1974)/( )

PENDAHULUAN FISIKA KUANTUM. Asep Sutiadi (1974)/( ) PENDAHULUAN FISIKA KUANTUM FI363 / 3 sks Asep Sutiadi (1974)/(0008097002) TUJUAN PERKULIAHAN Selesai mengikuti mata kuliah ini mahasiswa diharapkan mampu menjelaskan pada kondisi seperti apa suatu permasalahan

Lebih terperinci

Efek de Haas-Van Alphen

Efek de Haas-Van Alphen Efek de Haas-Van Alphen Diagmagnetisasi Landau pada suhu rendah menimbulkan efek osilasi dari susceptibilitas magnetik ketika medan magnet luar diturunkan, efek ini disebut efek de Haas-Van Alphen. Secara

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA 1.4. Hipotesis 1. Model penampang hamburan Galster dan Miller memiliki perbedaan mulai kisaran energi 0.3 sampai 1.0. 2. Model penampang hamburan Galster dan Miller memiliki kesamaan pada kisaran energi

Lebih terperinci

3. Termodinamika Statistik

3. Termodinamika Statistik 3. Termodinamika Statistik Pada bagian ini akan dibahas pemanfaatan postulat statistik yang berdasarkan sistem dalam keadaan keseimbangan untuk menjelaskan besaran makroskopis. Disiplin ini disebut Mekanika

Lebih terperinci

Nama Anggota Kelompok: 1. Ahmad Samsudin 2. Aisyah Nur Rohmah 3. Dudi Abdu Rasyid 4. Ginanjar 5. Intan Dwi 6. Ricky

Nama Anggota Kelompok: 1. Ahmad Samsudin 2. Aisyah Nur Rohmah 3. Dudi Abdu Rasyid 4. Ginanjar 5. Intan Dwi 6. Ricky Nama Anggota Kelompok: 1. Ahmad Samsudin 2. Aisyah Nur Rohmah 3. Dudi Abdu Rasyid 4. Ginanjar 5. Intan Dwi 6. Ricky A. Aplikasi Statistik Bose-Einstein 1.1. Kondensasi Bose-Einstein Gambar 1.1 Salah satu

Lebih terperinci

DAFTAR SIMBOL. : permeabilitas magnetik. : suseptibilitas magnetik. : kecepatan cahaya dalam ruang hampa (m/s) : kecepatan cahaya dalam medium (m/s)

DAFTAR SIMBOL. : permeabilitas magnetik. : suseptibilitas magnetik. : kecepatan cahaya dalam ruang hampa (m/s) : kecepatan cahaya dalam medium (m/s) DAFTAR SIMBOL n κ α R μ m χ m c v F L q E B v F Ω ħ ω p K s k f α, β s-s V χ (0) : indeks bias : koefisien ekstinsi : koefisien absorpsi : reflektivitas : permeabilitas magnetik : suseptibilitas magnetik

Lebih terperinci

FUNGSI GELOMBANG. Persamaan Schrödinger

FUNGSI GELOMBANG. Persamaan Schrödinger Persamaan Schrödinger FUNGSI GELOMBANG Kuantitas yang diperlukan dalam mekanika kuantum adalah fungsi gelombang partikel Ψ. Jika Ψ diketahui maka informasi mengenai kedudukan, momentum, momentum sudut,

Lebih terperinci

BA B B B 2 Ka K ra r kt k eri r s i tik i k S is i tem Ma M kr k o r s o ko k p o i p k i Oleh Endi Suhendi

BA B B B 2 Ka K ra r kt k eri r s i tik i k S is i tem Ma M kr k o r s o ko k p o i p k i Oleh Endi Suhendi BAB Karakteristik Sistem Makroskopik Dalam termodinamika dibahas perilaku dan dinamika temperatur sistem makroskopik. Sistem diparameterisasi oleh volume, tekanan, temperatur dan kapasitas panas jenis

Lebih terperinci

tak-hingga. Lebar sumur adalah 4 angstrom. Berapakah simpangan gelombang elektron

tak-hingga. Lebar sumur adalah 4 angstrom. Berapakah simpangan gelombang elektron Tes Formatif 1 Petunjuk: Jawablah semua soal di bawah ini pada lembar jawaban yang disediakan! =============================================================== 1. Sebuah elektron ditempatkan dalam sebuah

Lebih terperinci

BAB IV OSILATOR HARMONIS

BAB IV OSILATOR HARMONIS Tinjauan Secara Mekanika Klasik BAB IV OSILATOR HARMONIS Osilator harmonis terjadi manakala sebuah partikel ditarik oleh gaya yang besarnya sebanding dengan perpindahan posisi partikel tersebut. F () =

Lebih terperinci

Simulasi Struktur Energi Elektronik Atom, Molekul, dan Nanomaterial dengan Metode Ikatan Terkuat

Simulasi Struktur Energi Elektronik Atom, Molekul, dan Nanomaterial dengan Metode Ikatan Terkuat Simulasi Struktur Energi Elektronik Atom, Molekul, dan Nanomaterial dengan Metode Ikatan Terkuat Ahmad Ridwan Tresna Nugraha (NIM: 10204001), Pembimbing: Sukirno, Ph.D KK FisMatEl, Institut Teknologi Bandung

Lebih terperinci

Statistik + konsep mekanika. Hal-hal yang diperlukan dalam menggambarkan keadaan sistem partikel adalah:

Statistik + konsep mekanika. Hal-hal yang diperlukan dalam menggambarkan keadaan sistem partikel adalah: Bab 4 Deskripsi Statistik Sistem Partikel Bagaimana gambaran secara statistik dari sistem partikel? Statistik + konsep mekanika Hal-hal yang diperlukan dalam menggambarkan keadaan sistem partikel adalah:

Lebih terperinci

Oleh: Widya Wati, M.Pd 1

Oleh: Widya Wati, M.Pd 1 Aplikasi Distribusi Maxwell-Boltzmann dalam Menentukan Kecepatan Molekular Oleh: Widya Wati, M.Pd 1 Abstrak Distribusi Maxwell-Boltzmann adalah salah satu dari tiga distribusi partikel yang dikenal pada

Lebih terperinci

peroleh. SEcara statistika entropi didefinisikan sebagai

peroleh. SEcara statistika entropi didefinisikan sebagai BAB 5 Entropi 5.1 Entropi (S) Pertama-tama mari kita definisikan sebuah besaran termodinamika yang bernama entropi secara statistika. Secara termodinamika, entropi telah didefinisikan melalui hubungan

Lebih terperinci

Teori Relativitas. Mirza Satriawan. December 7, Fluida Ideal dalam Relativitas Khusus. M. Satriawan Teori Relativitas

Teori Relativitas. Mirza Satriawan. December 7, Fluida Ideal dalam Relativitas Khusus. M. Satriawan Teori Relativitas Teori Relativitas Mirza Satriawan December 7, 2010 Fluida Ideal dalam Relativitas Khusus Quiz 1 Tuliskan perumusan kelestarian jumlah partikel dengan memakai vektor-4 fluks jumlah partikel. 2 Tuliskan

Lebih terperinci

PENDAHULUAN. Di dalam modul ini Anda akan mempelajari Gas elektron bebas yang mencakup: Elektron

PENDAHULUAN. Di dalam modul ini Anda akan mempelajari Gas elektron bebas yang mencakup: Elektron PENDAHUUAN Di dalam modul ini Anda akan mempelajari Gas elektron bebas yang mencakup: Elektron bebas dalam satu dimensi dan elektron bebas dalam tiga dimensi. Oleh karena itu, sebelum mempelajari modul

Lebih terperinci

Teori Kinetik & Interpretasi molekular dari Suhu. FI-1101: Teori Kinetik Gas, Hal 1

Teori Kinetik & Interpretasi molekular dari Suhu. FI-1101: Teori Kinetik Gas, Hal 1 FI-1101: Kuliah 13 TEORI KINETIK GAS Teori Kinetik Gas Suhu Mutlak Hukum Boyle-Gay y Lussac Gas Ideal Teori Kinetik & Interpretasi molekular dari Suhu FI-1101: Teori Kinetik Gas, Hal 1 FISIKA TERMAL Cabang

Lebih terperinci

KONDENSASI BOSE-EINSTEIN. Korespondensi Telp.: , Abstrak

KONDENSASI BOSE-EINSTEIN. Korespondensi Telp.: ,   Abstrak KONDENSASI BOSE-EINSTEIN Wipsar Sunu Brams Dwandaru Laboratorium Fisika Teori dan Komputasi, Jurusan Pendidikan Fisika, F MIPA UNY, Karangmalang, Yogyakarta, 55281 Korespondensi Telp.: 082160580833, Email:

Lebih terperinci

Pembimbing : Agus Purwanto, D.Sc.

Pembimbing : Agus Purwanto, D.Sc. Oleh : YOHANES DWI SAPUTRA 1105 100 051 Pembimbing : Agus Purwanto, D.Sc. JURUSAN FISIKA Fakultas Matematika dan Ilmu Pengetahuan Alam Institut Teknologi Sepuluh Nopember Surabaya 010 PENDAHULUAN Latar

Lebih terperinci

16 Mei 2017 Waktu: 120 menit

16 Mei 2017 Waktu: 120 menit OLIMPIADE NASIONAL MATEMATIKA DAN ILMU PENGETAHUAN ALAM PERGURUAN TINGGI 2017 (ONMIPA-PT) Tingkat Nasional Bidang Fisika: FISIKA MODERN & MEKANIKA KUANTUM (Tes 4) 16 Mei 2017 Waktu: 120 menit Petunjuk

Lebih terperinci

BAB II DASAR TEORI. 2.1 Teori Relativitas Umum Einstein

BAB II DASAR TEORI. 2.1 Teori Relativitas Umum Einstein BAB II DASAR TEORI Sebagaimana telah diketahui dalam kinematika relativistik, persamaanpersamaannya diturunkan dari dua postulat relativitas. Dua kerangka inersia yang bergerak relatif satu dengan yang

Lebih terperinci

KETENTUAN AGUNG ( THE GOLDEN RULE ) Suparno Satira

KETENTUAN AGUNG ( THE GOLDEN RULE ) Suparno Satira KETENTUAN AGUNG ( THE GOLDEN RULE ) Suparn Satira Suparn_satira@yah.cm 1 JENJANG / HIRARKI Falsafah Visi Idelgi / Dktrin Misi Aturan / Knsep Dasar Anggaran Dasar / ART Perumusan dinamika / Gejala Peraturan

Lebih terperinci

VI. Teori Kinetika Gas

VI. Teori Kinetika Gas VI. Teori Kinetika Gas 6.1. Pendahuluan dan Asumsi Dasar Subyek termodinamika berkaitan dengan kesimpulan yang dapat ditarik dari hukum-hukum eksperimen tertentu, dan memanfaatkan kesimpulan ini untuk

Lebih terperinci

Elektron Bebas. 1. Teori Drude Tentang Elektron Dalam Logam

Elektron Bebas. 1. Teori Drude Tentang Elektron Dalam Logam Elektron Bebas Beberapa teori tentang panas jenis zat padat yang telah dibahas dapat dengan baik menjelaskan sifat-sfat panas jenis zat padat yang tergolong non logam, akan tetapi untuk golongan logam

Lebih terperinci

Kriptografi Kuantum dengan gagasan Bennet dan Bassard

Kriptografi Kuantum dengan gagasan Bennet dan Bassard Kriptografi Kuantum dengan gagasan Bennet dan Bassard Anwari Ilman (13506030) Jurusan Teknik Informatika ITB, Bandung 40132. Email: if16030@students.if.itb.ac.id Abstract Makalah ini membahas tentang penggunaan

Lebih terperinci

Analisis Energi Osilator Harmonik Menggunakan Metode Path Integral Hypergeometry dan Operator

Analisis Energi Osilator Harmonik Menggunakan Metode Path Integral Hypergeometry dan Operator ISSN:089 033 Indonesian Journal of Applied Physics (0) Vol. No. halaman 6 April 0 Analisis Energi Osilator Harmonik Menggunakan Metode Path Integral Hypergeometry dan Operator Fuzi Marati Sholihah, Suparmi,

Lebih terperinci

PROBABILITAS PARTIKEL DALAM KOTAK TIGA DIMENSI PADA BILANGAN KUANTUM n 5. Indah Kharismawati, Bambang Supriadi, Rif ati Dina Handayani

PROBABILITAS PARTIKEL DALAM KOTAK TIGA DIMENSI PADA BILANGAN KUANTUM n 5. Indah Kharismawati, Bambang Supriadi, Rif ati Dina Handayani PROBABILITAS PARTIKEL DALAM KOTAK TIGA DIMENSI PADA BILANGAN KUANTUM n 5 Indah Kharismawati, Bambang Supriadi, Rif ati Dina Handayani Program Studi Pendidikan Fisika FKIP Universitas Jember email: schrodinger_risma@yahoo.com

Lebih terperinci

Silabus dan Rencana Perkuliahan

Silabus dan Rencana Perkuliahan Silabus dan Rencana Perkuliahan Mata kuliah : PEND.FISIKA KUANTUM Kode : FI 363 SKS : 3 Nama Dosen : Team Dosen Pend fisika Kuantum Yuyu R.T, Parlindungan S. dan Asep S Standar Kompetensi : Setelah mengikuti

Lebih terperinci

Mesin Carnot Kuantum Berbasis Partikel Dua Tingkat di dalam Kotak Potensial Satu Dimensi

Mesin Carnot Kuantum Berbasis Partikel Dua Tingkat di dalam Kotak Potensial Satu Dimensi JURNAL FISIKA DAN APLIKASINYA VOLUME 6, NOMOR 1 JANUARI,010 Mesin Carnot Kuantum Berbasis Partikel Dua Tingkat di dalam Kotak Potensial Satu Dimensi Yohanes Dwi Saputra dan Agus Purwanto Laboratorium Fisika

Lebih terperinci

III. SATUAN ACARA PERKULIAHAN Mata kuliah : FISIKA KUANTUM Kode : FI 363 SKS : 3 Nama Dosen : Yuyu R.T, Parlindungan S. dan Asep S

III. SATUAN ACARA PERKULIAHAN Mata kuliah : FISIKA KUANTUM Kode : FI 363 SKS : 3 Nama Dosen : Yuyu R.T, Parlindungan S. dan Asep S III. SATUAN ACARA PERKULIAHAN Mata kuliah : FISIKA KUANTUM Kode : FI 363 SKS : 3 Nama Dosen : Yuyu R.T, Parlindungan S. dan Asep S Standar : Setelah mengikuti perkuliahan ini mahasiswa diharapkan memiliki

Lebih terperinci

DAFTAR ISI LEMBAR PENGESAHAN ABSTRAK ABSTRACT

DAFTAR ISI LEMBAR PENGESAHAN ABSTRAK ABSTRACT DAFTAR ISI LEMBAR PENGESAHAN ABSTRAK i ABSTRACT ii DAFTAR ISI iii DAFTAR GAMBAR iv DAFTAR TABEL v BAB 1 PENDAHULUAN 1.1 Latar Belakang 1 1.2 Perumusan Masalah 3 1.3 Tujuan Penelitian 4 1.4 Manfaat Penelitian

Lebih terperinci

BAB III OPERATOR 3.1 Pengertian Operator Dan Sifat-sifatnya

BAB III OPERATOR 3.1 Pengertian Operator Dan Sifat-sifatnya 1 BAB III OPERATOR 3.1 Pengertian Operator Dan Sifat-sifatnya Perhatikan persamaan Schrodinger satu dimensi bebas waktu yaitu: d + V (x) ( x) E( x) m dx d ( x) m + (E V(x) ) ( x) 0 dx (3-1) (-4) Suku-suku

Lebih terperinci

Referensi: 1) Smith Van Ness Introduction to Chemical Engineering Thermodynamic, 6th ed. 2) Sandler Chemical, Biochemical adn

Referensi: 1) Smith Van Ness Introduction to Chemical Engineering Thermodynamic, 6th ed. 2) Sandler Chemical, Biochemical adn Referensi: 1) Smith Van Ness. 001. Introduction to Chemical Engineering Thermodynamic, 6th ed. ) Sandler. 006. Chemical, Biochemical adn Engineering Thermodynamics, 4th ed. 3) Prausnitz. 1999. Molecular

Lebih terperinci

Chap 6 Model-Gas Real dan Ekspansi Virial. 1. Ekspansi Virial 2. Gugus Mayer

Chap 6 Model-Gas Real dan Ekspansi Virial. 1. Ekspansi Virial 2. Gugus Mayer Chap 6 Model-Gas Real dan Ekspansi Viial. Ekspansi Viial. Gugus Maye Fungsi Patisi Kanonik Untuk Gas Dengan Inteaksi Lemah Misalkan tedapat inteaksi (potensial) anta patikel : u ij, sehingga Hamiltonian

Lebih terperinci

WUJUD ZAT. 1. Fasa, Komponen dan Derajat Bebas

WUJUD ZAT. 1. Fasa, Komponen dan Derajat Bebas WUJUD ZAT 1. Fasa, Komponen dan Derajat Bebas 1.1 Jumlah Fasa (P) Fasa adalah bagian dari sistem yang bersifat homogen, dan dipisahkan dari bagian sistem yang lain dengan batas yang jelas. Jumlah Fasa

Lebih terperinci

BAB II DASAR TEORI. A. Kemagnetan Bahan. Secara garis besar, semua bahan dapat dikelompokkan ke dalam bahan magnet. seperti terlihat pada Gambar 2.

BAB II DASAR TEORI. A. Kemagnetan Bahan. Secara garis besar, semua bahan dapat dikelompokkan ke dalam bahan magnet. seperti terlihat pada Gambar 2. BAB II DASAR TEORI A. Kemagnetan Bahan Secara garis besar, semua bahan dapat dikelompokkan ke dalam bahan magnet seperti terlihat pada Gambar 2. Gambar 2: Diagram pengelompokan bahan magnet (Stancil &

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA.1 Atom Pion Atom pion sama seperti atom hidrogen hanya elektron nya diganti menjadi sebuah pion negatif. Partikel ini telah diteliti sekitar empat puluh tahun yang lalu, tetapi

Lebih terperinci

Pertemuan 4 Aljabar Linear & Matriks

Pertemuan 4 Aljabar Linear & Matriks Pertemuan 4 Aljabar Linear & Matriks 1 Notasi : huruf besar tebal misalnya A, B, C Merupakan array dari bilangan, setiap bilangan disebut elemen matriks (entri matriks) Bentuk umum : m : jumlah baris (mendatar)

Lebih terperinci

IX. Aplikasi Mekanika Statistik

IX. Aplikasi Mekanika Statistik IX. Aplikasi Mekanika Statistik 9.1. Gas Ideal Monatomik Sebagai test case termodinamika statistik, kita coba terapkan untuk gas ideal monatomik. Mulai dengan fungsi partisi: ε j Z = g j exp j k B T Energi

Lebih terperinci

Perumusan Ensembel Mekanika Statistik Kuantum. Part-2

Perumusan Ensembel Mekanika Statistik Kuantum. Part-2 Perumusan Ensembel Mekanka Statstk Kuantum Part-2 Menghtung Banyak Status Keadaan Asums : partkel tak punya spn (spnless!)-> apa konsekuensnya? Karena TAK ADA INTERAKSI maka tngkat-tngkat energy yg bsa

Lebih terperinci

Setelah Anda mempelajari KB-1 di atas, simaklah dan hafalkan beberapa hal penting di. dapat dihitung sebagai beriktut: h δl l'

Setelah Anda mempelajari KB-1 di atas, simaklah dan hafalkan beberapa hal penting di. dapat dihitung sebagai beriktut: h δl l' Rangkuman: bawah ini! Setelah Anda mempelajari KB-1 di atas, simaklah dan hafalkan beberapa hal penting di 1. Elemen-elemen matrik L lm,l'm' = h l ( l +1) δ ll' L l m, l 'm' dapat dihitung sebagai beriktut:

Lebih terperinci

Fisika Matematika II 2011/2012

Fisika Matematika II 2011/2012 Fisika Matematika II 2/22 diterjemahkan dari: Mathematical Methods for Engineers and Scientists, 2, dan 3 K. T. Tang Penterjemah: Imamal Muttaqien dibantu oleh: Adam, Ma rifatush Sholiha, Nina Yunia, Yudi

Lebih terperinci

R = matriks pembobot pada fungsi kriteria. dalam perancangan kontrol LQR

R = matriks pembobot pada fungsi kriteria. dalam perancangan kontrol LQR DAFTAR NOTASI η = vektor orientasi arah x = posisi surge (m) y = posisi sway (m) z = posisi heave (m) φ = sudut roll (rad) θ = sudut pitch (rad) ψ = sudut yaw (rad) ψ = sudut yaw frekuensi rendah (rad)

Lebih terperinci

DAFTAR ISI. ABSTRAK... i. KATA PENGANTAR... ii. UCAPAN TERIMA KASIH... iii. DAFTAR ISI... v. DAFTAR GAMBAR... viii. DAFTAR SINGKATAN DAN LAMBANG...

DAFTAR ISI. ABSTRAK... i. KATA PENGANTAR... ii. UCAPAN TERIMA KASIH... iii. DAFTAR ISI... v. DAFTAR GAMBAR... viii. DAFTAR SINGKATAN DAN LAMBANG... DAFTAR ISI ABSTRAK... i KATA PENGANTAR... ii UCAPAN TERIMA KASIH... iii DAFTAR ISI... v DAFTAR GAMBAR... viii DAFTAR SINGKATAN DAN LAMBANG... x BAB I PENDAHULUAN... 1 1.1 Latar Belakang... 1 1.2 Rumusan

Lebih terperinci

PARTIKEL DALAM SUATU KOTAK SATU DIMENSI

PARTIKEL DALAM SUATU KOTAK SATU DIMENSI PARTIKEL DALAM SUATU KOTAK SATU DIMENSI Atom terdiri dari inti atom yang dikelilingi oleh elektron-elektron, di mana elektron valensinya bebas bergerak di antara pusat-pusat ion. Elektron valensi geraknya

Lebih terperinci

Cacat dalam Mekanika Kuantum dan Beberapa Kesalahan Konsep dalam Buku Teks Mekanika Kuantum

Cacat dalam Mekanika Kuantum dan Beberapa Kesalahan Konsep dalam Buku Teks Mekanika Kuantum Cacat dalam Mekanika Kuantum dan Beberapa Kesalahan Konsep dalam Buku Teks Mekanika Kuantum M. Ardhi K. email : muhammad ardhi@walisongo.ac.id web : http://abu-khadijah.web.id 2 Mei 2013 However, if you

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Latar Belakang

BAB I PENDAHULUAN. 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Di dalam dunia mikroskopik, fisika klasik mengalami kegagalan untuk menjelaskan setiap fenomena yang ada. Spektrum khas yang dimiliki oleh atom, teramatinya dua komponen

Lebih terperinci

Teori Atom Mekanika Klasik

Teori Atom Mekanika Klasik Teori Atom Mekanika Klasik -Thomson -Rutherford -Bohr -Bohr-Rutherford -Bohr-Sommerfeld Kelemahan Teori Atom Bohr: -Bohr hanya dapat menjelaskan spektrum gas hidrogen, tidak dapat menjelaskan spektrum

Lebih terperinci

PENDAHULUAN. Di dalam modul ini Anda akan mempelajari Kristal Semikonduktor yang mencakup:

PENDAHULUAN. Di dalam modul ini Anda akan mempelajari Kristal Semikonduktor yang mencakup: PENDAHULUAN Di dalam modul ini Anda akan mempelajari Kristal Semikonduktor yang mencakup: kristal semikonduktor intrinsik dan kristal semikonduktor ekstrinsik. Oleh karena itu, sebelum mempelajari modul

Lebih terperinci

FUNGSI-FUNGSI TERMODINAMIKA SISTEM STATISTIKA FUZZY

FUNGSI-FUNGSI TERMODINAMIKA SISTEM STATISTIKA FUZZY SKRIPSI FUNGSI-FUNGSI TERMODINAMIKA SISTEM STATISTIKA FUZZY Frenky Suseno Manik 03/167928/PA/09509 Departemen Pendidikan Nasional Universitas Gadjah Mada Fakultas Matematika dan Ilmu Pengetahuan Alam Yogyakarta

Lebih terperinci

MODUL 05 SPEKTRUM ATOM

MODUL 05 SPEKTRUM ATOM MODUL 05 SPEKTRUM ATOM dari DUA ELEKTRON : He, Hg Indah Darapuspa, Rizky Budiman,Tisa I Ariani, Taffy Ukhtia P, Dimas M Nur 10211008, 10211004, 1021354, 10213074, 10213089 Program Studi Fisika, Institut

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Metode Beda Hingga Metode perbedaan beda hingga adalah metode yang sangat popular. Pada intinya metode ini mengubah masalah Persamaan Differensial Biasa (PDB) nilai batas dari

Lebih terperinci

Achmad Subeqan( ) Matematika FMIPA-ITS. Dosen Pembimbing: 1. Dra.Sri Suprapti H, MSi

Achmad Subeqan( ) Matematika FMIPA-ITS. Dosen Pembimbing: 1. Dra.Sri Suprapti H, MSi ABSTRAK SOLUSI GELOMBANG BERJALAN UNTUK PERSAMAAN SCHRÖDINGER DENGAN PENUNDAAN TERDISTRIBUSI Achmad Subeqan( 1206 100 062) Matematika FMIPA-ITS Dosen Pembimbing: 1. Dra.Sri Suprapti H, MSi 2. Drs.IGN Rai

Lebih terperinci

Fisika Statistik. I Wayan Sudiarta

Fisika Statistik. I Wayan Sudiarta Fisika Statistik I Wayan Sudiarta Program Studi Fisika Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Mataram Agustus 21, 2012 ii Buat anakku Arvin dan Istriku Tami Daftar Isi Pengantar..............................

Lebih terperinci

PARTIKEL DALAM BOX. Bentuk umum persamaan orde dua adalah: ay" + b Y' + cy = 0

PARTIKEL DALAM BOX. Bentuk umum persamaan orde dua adalah: ay + b Y' + cy = 0 1 PARTIKEL DALAM BOX Elektron dalam atom dan molekul dapat dibayangkan mirip partikel dalam box. daerah di dalam box tempat partikel tersebut bergerak berpotensial nol, sedang daerah diluar box berpotensial

Lebih terperinci

HUBUNGAN ALJABAR TRILINIER UMUM OPERATOR KREASI DAN ANIHILASI DENGAN TIPE SIMETRI KEADAAN KUANTUM MULTIPARTIKEL IDENTIK TAK TERBEDAKAN

HUBUNGAN ALJABAR TRILINIER UMUM OPERATOR KREASI DAN ANIHILASI DENGAN TIPE SIMETRI KEADAAN KUANTUM MULTIPARTIKEL IDENTIK TAK TERBEDAKAN SKRIPSI HUBUNGAN ALJABAR TRILINIER UMUM OPERATOR KREASI DAN ANIHILASI DENGAN TIPE SIMETRI KEADAAN KUANTUM MULTIPARTIKEL IDENTIK TAK TERBEDAKAN Didik Pramono 01/147265/PA/08580 Departemen Pendidikan Nasional

Lebih terperinci

BAB V PERAMBATAN GELOMBANG OPTIK PADA MEDIUM NONLINIER KERR

BAB V PERAMBATAN GELOMBANG OPTIK PADA MEDIUM NONLINIER KERR A V PERAMATAN GELOMANG OPTIK PADA MEDIUM NONLINIER KERR 5.. Pendahuluan erkas (beam) optik yang merambat pada medium linier mempunyai kecenderungan untuk menyebar karena adanya efek difraksi; lihat Gambar

Lebih terperinci

INFORMASI PENTING Massa electron NAMA:.. ID PESERTA:.. m e = 9, kg Besar muatan electron. e = 1, C Bilangan Avogadro

INFORMASI PENTING Massa electron NAMA:.. ID PESERTA:.. m e = 9, kg Besar muatan electron. e = 1, C Bilangan Avogadro PETUNJUK UMUM 1. Tuliskan NAMA dan ID peserta di setiap lembar soal. 2. Tuliskan jawaban akhir di kotak yang disediakan untuk Jawaban. 3. Peserta boleh menggunakan kalkulator sewaktu mengerjakan soal.

Lebih terperinci

ILMU FISIKA. Fisika Dasar / Fisika Terapan Program Studi Teknik Sipil Salmani, ST., MS., MT.

ILMU FISIKA. Fisika Dasar / Fisika Terapan Program Studi Teknik Sipil Salmani, ST., MS., MT. ILMU FISIKA Fisika Dasar / Fisika Terapan Program Studi Teknik Sipil Salmani, ST., MS., MT. DEFINISI ILMU FISIKA? Ilmu Fisika dalam Bahasa Yunani: (physikos), yang artinya alamiah, atau (physis), Alam

Lebih terperinci

Mata Kuliah GELOMBANG OPTIK TOPIK I OSILASI. andhysetiawan

Mata Kuliah GELOMBANG OPTIK TOPIK I OSILASI. andhysetiawan Mata Kuliah GELOMBANG OPTIK TOPIK I OSILASI HARMONIK PENDAHULUAN Gerak dapat dikelompokan menjadi: Gerak di sekitar suatu tempat contoh: ayunan bandul, getaran senar dll. Gerak yang berpindah tempat contoh:

Lebih terperinci

LOGAM DAN PADUAN LOGAM

LOGAM DAN PADUAN LOGAM LOGAM DAN PADUAN LOGAM SATU KOMPONEN digunakan luas, kawat, kabel, alat RT LEBIH SATU KOMPONEN, utk memperbaiki sifat PADUAN FASA TUNGGAL, MRPKAN LARUTAN PADAT, KUNINGAN (Tembaga + Seng) perunggu (paduan

Lebih terperinci

KONTRAK PERKULIAHAN. Kode Mata Kuliah/SKS : FI 3412/3 (tiga) Semester/Tahun Akademi : Genap/2016/2017 : Telah mengikuti kuliah Fisika Modern

KONTRAK PERKULIAHAN. Kode Mata Kuliah/SKS : FI 3412/3 (tiga) Semester/Tahun Akademi : Genap/2016/2017 : Telah mengikuti kuliah Fisika Modern KONTRAK PERKULIAHAN Mata Kuliah : Fisika Kuantum Kode Mata Kuliah/SKS : FI 3412/3 (tiga) Semester/Tahun Akademi : Genap/2016/2017 Prasyarat : Telah mengikuti kuliah Fisika Modern Kelas : A Jumlah Pertemuan

Lebih terperinci

ANALISIS DAN VISUALISASI PERSAMAAN KLEIN-GORDON PADA ELEKTRON DALAM SUMUR POTENSIAL DENGAN MENGGUNAKAN PROGRAM MATHEMATIC 10

ANALISIS DAN VISUALISASI PERSAMAAN KLEIN-GORDON PADA ELEKTRON DALAM SUMUR POTENSIAL DENGAN MENGGUNAKAN PROGRAM MATHEMATIC 10 ANALISIS DAN VISUALISASI PERSAMAAN KLEIN-GORDON PADA ELEKTRON DALAM SUMUR POTENSIAL DENGAN MENGGUNAKAN PROGRAM MATHEMATIC 1 Syahrul Humaidi 1,a), Tua Raja Simbolon 1,b), Russell Ong 1,c), Widya Nazri Afrida

Lebih terperinci

KOMUNIKASI KOHEREN. Ref : Keiser

KOMUNIKASI KOHEREN. Ref : Keiser KOMUNIKAI KOHEREN Ref : Keiser 1 Pengertian iskom optik koheren : siskom yg menggunakan deteksi heterodyne atau homodyne yi cahaya diperlakukan sebagai media pembawa spt sistem radio gel mikro dpt menggunakan

Lebih terperinci

Persamaan Schrödinger dalam Matriks dan Uraian Fungsi Basis

Persamaan Schrödinger dalam Matriks dan Uraian Fungsi Basis Bab 2 Persaaan Schrödinger dala Matriks dan Uraian Fungsi Basis 2.1 Matriks Hailtonian dan Fungsi Basis Tingkat-tingkat energi yang diizinkan untuk sebuah elektron dala pengaruh operator Hailtonian Ĥ dapat

Lebih terperinci

Mekanika Kuantum dalam Koordinat Bola dan Atom Hidrogen

Mekanika Kuantum dalam Koordinat Bola dan Atom Hidrogen Mekanika Kuantum dalam Koordinat Bola dan Atom Hidrogen David J. Griffiths diterjemahkan dari Introduction to Quantum Mechanics Edisi 2) physics.translation@gmail.com Persamaan Schrödinger dalam Koordinat

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar Belakang Masalah

BAB I PENDAHULUAN 1.1 Latar Belakang Masalah BAB I PENDAHULUAN 1.1 Latar Belakang Masalah Dalam perkembangan dunia sains, ilmu fisika mempunyai peran penting untuk memahami fenomena alam dari yang sederhana sampai yang kompleks. Hal itu dapat dilihat

Lebih terperinci

DIKTAT KULIAH. FISIKA STATISTIK. OLEH. TASRIEF SURUNGAN. JURUSAN FISIKA FMIPA UNIVERSITAS HASANUDDIN

DIKTAT KULIAH. FISIKA STATISTIK. OLEH. TASRIEF SURUNGAN. JURUSAN FISIKA FMIPA UNIVERSITAS HASANUDDIN DIKTAT KULIAH. FISIKA STATISTIK. OLEH. TASRIEF SURUNGAN. JURUSAN FISIKA FMIPA UNIVERSITAS HASANUDDIN Diktat Kuliah Fisika Statistik Oleh Tasrief Surungan Jurusan Fisika FMIPA Universitas Hasanuddin 2011

Lebih terperinci

BAB IV MODEL HIDDEN MARKOV

BAB IV MODEL HIDDEN MARKOV BAB IV MODEL HIDDEN MARKOV 4.1 State dan Proses Observasi Semua proses didefinisikan pada ruang peluang (Ω, F, P). Misalnya X = {X : k N} adalah rantai Markov dengan state berhingga yang bersifat homogen

Lebih terperinci

BAB II DASAR TEORI. dibuat melingkar (loop) dengan luasan sebesar da, maka arus I dalam luasan yang

BAB II DASAR TEORI. dibuat melingkar (loop) dengan luasan sebesar da, maka arus I dalam luasan yang BAB II DASAR TEORI A. Momen Magnet Di sekitar kawat berarus listrik terdapat medan magnet. Jika kawat tersebut dibuat melingkar (loop) dengan luasan sebesar da, maka arus I dalam luasan yang ditutup loop

Lebih terperinci

:: MATERI MUDAH :: Persamaan Gas Ideal Pertemuan ke 1

:: MATERI MUDAH :: Persamaan Gas Ideal Pertemuan ke 1 A. ARGE PEMBELAJARAN : No :: MAERI MUDAH :: Persamaan Gas Ideal Pertemuan ke arget yang diharapkan Menyebutkan ciri dan sifat konsep gas ideal. Menuliskan persamaan umum gas ideal. 3 Menentukan besaran

Lebih terperinci