Fadly Ramadhan, Thresye, Akhmad Yusuf

Ukuran: px
Mulai penontonan dengan halaman:

Download "Fadly Ramadhan, Thresye, Akhmad Yusuf"

Transkripsi

1 ISSN: Vol.0 No. (06) Hal.8-7 DETERMINAN MATRIKS DENGAN ELEMEN BILANGAN FIBONACCI ORDER- YANG DIGENERALISASI Fadly Ramadhan, Thresye, Akhmad Yusuf Program Studi Matematika Fakultas MIPA Universitas Lambung Mangkurat fadlyramadhan04@gmail.com ABSTRAK Bilangan Fibonacci didefinisikan sebagai barisan bilangan yang suku-sukunya merupakan penjumlahan dua suku sebelumnya. Penelitian sebelumnya menjelaskan tentang bilangan Fibonacci yang digeneralisasi hingga order-. Selanjutnya bilangan Fibonacci tersebut dibentuk dalam matriks berukuran yang akan ditentukan nilai determinannya. Tujuan dari penelitian ini adalah untuk mengetahui bentuk barisan Fibonacci order- yang digeneralisasi, kemudian mengetahui bentuk matriks persegi yang elemennya berupa bilangan Fibonacci order- yang digeneralisasi dan membuktikan teorema untuk menentukan determinan dari matriks persegi yang elemennya berupa bilangan Fibonacci order- yang digeneralisasi. Hasil dari penelitian ini adalah diperoleh bentuk barisan dari bilangan Fibonacci order- yang digeneralisasi, diperoleh bentuk matriks persegi yang elemennya berupa bilangan Fibonacci order- yang digeneralisasi dan diperoleh determinan dengan 4 kondisi yang berbeda. Kata Kunci : Bilangan Fibonacci, bilangan Fibonacci order- yang digeneralisasi, matriks. ABTRACT Fibonacci numbers are defined as a sequence of numbers that of his family is the sum of the previous two terms. Previous research describes the generalized order-k Fibonacci numbers. Furthermore, Fibonacci numbers are formed in a matrix of size k k to be determined the value of the determinant. The purpose of this study was to determine the shape ranks of the generalized order-k Fibonacci numbers, then knowing the form of a square matrix whose elements form Fibonacci numbers of order-k generalized and proving theorems to determine the determinant of a square matrix whose elements form of the generalized order-k Fibonacci numbers. The results of this study are obtained form the sequence of the generalized order-k Fibonacci numbers, obtained form a square matrix whose elements form of the generalized order-k Fibonacci numbers and the determinant obtained with 4 different conditions. Keywords: Fibonacci numbers, the generalized order-k Fibonacci numbers, matrix.. PENDAHULUAN Karaduman [] menjelaskan tentang bilangan Fibonacci yang digeneralisasi hingga order-. Dalam penelitian tersebut, bilangan Fibonacci yang digeneralisasi hingga order- hanya ditunjukaan untuk kondisi nn > 0, dengan syarat batas yang telah ditentukan. Karaduman [] mengembangkan penelitiannya mengenai bilangan Fibonacci yang digeneralisasi hingga order-. Dalam penelitian ini, bilangan Fibonacci yang digeneralisasi hingga order- tidak hanya ditunjuan untuk kondisi nn > 0, dengan syarat batas yang telah ditentukan. Selanjutnya bilangan Fibonacci tersebut dibentuk dalam matriks berukuran yang akan ditentukan nilai determinannya. 8

2 ISSN: Vol.0 No. (06) Hal.8-7. TINJAUAN PUSTAKA. Matriks Berikut diberikan definisi matriks : Definisi. [] Sebuah matriks adalah susunan segiempat siku-siku dari bilangan-bilangan. Bilangan-bilangan dalam susunan tersebut dinamakan entri dalam matriks.. Determinan Matriks Berikut diberikan definisi dari determinan matriks, dan beberapa teorema mengenai determinan. Definisi.. [] Misalkan AA adalah matriks persegi. Fungsi determinan dinyatakan oleh det, dan didefinisikan dddddd(aa) sebagai jumlah semua hasil kali elementer bertanda dari AA. Jumlah dddddd (AA) dinamakan determinan AA. Teorema.. Anggap AA adalah suatu matriks nn nn. a) Jika BB adalah matriks yang dihasilkan ketika suatu baris tunggal atau kolom tunggal dari AA dikalikan dengan suatu skalar, maka dddddd(bb) = (AA). b) Jika BB adalah matriks yang dihasilkan ketika dua baris atau dua kolom dari AA dipertukarkan, maka dddddd(bb) = dddddd (AA). c) Jika BB adalah matriks yang dihasilkan ketika suatu penggandaan dari suatu baris AA ditambahkan pada baris lainnya atau jika suatu penggandaan suatu kolom ditambahkan pada kolom lainnya, maka dddddd(bb) = dddddd (AA). Bilangan Fibonacci Order- yang Digeneralisasi Karaduman [] mendefinisikan barisan dari bilangan Fibonacci order- yang digeneralisasi dengan bentuk gg nn = cc jj jj jj= uuuuuuuuuu nn > 0 dddddd () Bentuk diatas hanya berlaku untuk nn > 0, sedangkan untuk nn 0 dapat menggunakan syarat batas, berikut: ; = nn gg nn = uuuuuuuuuu nn 0 0 ; uuuuuuuuuu yyyyyyyy llllllll dimana cc jj, jj adalah koefisien konstan dengan, nn bilangan bulat dan merupakan bentuk ke-nn dari barisan ke-.. METODE PENELITIAN Metode penelitian yang digunakan dalam penelitian ini adalah studi literatur. Adapun prosedur pada penelitian ini adalah mengumpulkan dan mengkaji bahan-bahan yang berkaitan dengan matriks, determinan, bilangan Fibonacci, dan barisan dari bilangan Fibonacci order- yang digeneralisasi. Kemudian memahami bentuk barisan dari bilangan Fibonacci order- yang digeneralisasi. Selanjutnya, memahami bentuk matriks persegi yang elemennya 9

3 ISSN: Vol.0 No. (06) Hal.8-7 berupa barisan dari bilangan Fibonacci order- yang digeneralisasi. Kemudian membuktikan teorema untuk menentukan determinan dari matriks persegi yang elemennya berupa bilangan Fibonacci order- yang digeneralisassi dan membuat kesimpulan penelitian. 4. HASIL DAN PEMBAHASAN Karaduman [] mendefinisikan bentuk matrik GG nn berukuran dengan elemennya berupa bilangan Fibonacci order- yang digeneralisasi,sebagai berikut GG nn = () Bentuk matriks GG nn pada persamaan () dapat disederhanakan ke dalam bentuk matriks yang berukuran, yaitu GG nn = + + untuk Berdasarkan bentuk matriks GG nn pada persamaan () dapat dibentuk suatu matriks yang lebih besar dari GG nn yaitu matriks GG nn+, yang merupakan perkalian antara matriks GG nn dengan matriks AA sebagai berikut cc cc cc cc cc GG nn+ = () cc cc cc cc cc dengan AA = Persamaan () dapat digeneralisasi ke dalam persamaan matriks dengan bentuk GG nn+ = AAGG nn (4) 0

4 ISSN: Vol.0 No. (06) Hal.8-7 Dengan melakukan ekspansi pada persamaan (4) diperoleh GG nn = AA nn (5) Teorema 4. Jika cc jj = dan GG nn berbentuk Maka dengan GG nn = dddddd GG nn = ( )nn ; jjjjjjjj ggeeeeeeee ; jjjjjjjj gggggggggggg gg nn = cc jj jj jj= uuuuuuuuuu nn > 0 dddddd + + dan syarat batas ; = nn gg nn = uuuuuuuuuu nn 0. 0 ; uuuuuuuuuu yyyyyyyy llllllll Bukti: Diketahui GG nn = AA nn pada persamaan (5), maka untuk menentukan determinan dari matriks GG nn maka cukup ditunjuan dengan menentukan determinan dari matriks AA nn. Diketahui matriks AA sebagai berikut cc cc cc cc cc AA = Selanjutnya akan ditentukan determinan dari matriks AA, cc cc cc cc cc AA = = cc cc cc cc cc dddddd (AA) = ( ) c k Diketahui bahwa cc jj = maka dddddd (AA) = ( ) Sedemikian sehingga dddddd GG nn = (ddddddaa) nn = ( ) nn untuk genap dddddd GG nn = (ddddddaa) nn = untuk ganjil sehingga terbukti bahwa

5 ISSN: Vol.0 No. (06) Hal.8-7 dddddd GG nn = ( )nn ; jjjjjjjj gggggggggg ; jjjjjjjj gggggggggggg Selanjutnnya berdasarkan persamaan () jika kondisi nn > 0 diabaikan dimisalkan sebagai gg mm, maka barisan dari bilangan Fibonacci order- yang digeneralisasi menjadi = cc jj jj jj= uuuuuuuuuu (6) dengan syarat batas ; = mm = uuuuuuuuuu mm 0 0 ; uuuuuuuuuu yyyyyyyy llllllll dengan syarat awal gg 0 =, gg =, dan, mm merupakan bilangan bulat. Bentuk pada persamaan (6) berlaku jika mm. Karaduman [] berdasarkan bentuk matriks GG nn pada persamaan (), maka bentuk matriks GG mm memilik bentuk yang serupa dengan matriks GG nn, sebagai berikut gg mm GG mm = (7) Bentuk matriks GG mm pada persamaan (7) dapat disederhanakan ke dalam bentuk matriks yang berukuran, yaitu GG mm = + + untuk (8) Berdasarkan bentuk matriks GG mm pada persamaan (8) dapat dibentuk suatu matriks yang lebih besar dari GG mm yaitu matriks GG mm+, GG mm+ = GG mm+ + + untuk (9) Matriks GG mm+ pada persamaan (9) dapat dituliskan sebagai perkalian matriks AA dengan matriks GG mm pada persamaan (8)

6 ISSN: Vol.0 No. (06) Hal.8-7 cc cc cc cc cc GG mm+ = untuk (0) cc cc cc cc cc dengan AA = Persamaan (0) dapat digeneralisasi ke dalam persamaan matriks dengan bentuk GG mm+ = AAGG mm () Dengan melakukan ekspansi pada persamaan () diperoleh GG mm = AA mm GG () Teorema 4. Jika cc jj = dan GG mm berbentuk gg mm GG mm = Maka dddddd GG mm = ( )mm ; jjjjjjjj gggggggggg ; jjjjjjjj gggggggggggg Bukti: Diketahui GG mm = AA mm GG pada persamaan (), untuk menentukan determinan dari matriks GG mm maka cukup ditunjuan dengan menentukan determinan dari matriks AA mm dan determinan dari matriks GG. Berdasarkan bukti dari teorema (.) diketahui bahwa dddddd (AA) = ( ) c k, sehinggga dddddd (AA mm ) = (dddddd (AA)) mm = (( ) c k ) mm. Selanjutnya akan dibuktikan determinan dari matriks GG.

7 gg gg gg gg gg gg 0 gg 0 gg 0 gg 0 gg 0 GG = gg gg gg gg gg gg gg gg gg gg gg gg gg gg gg gg gg gg gg gg gg 0 gg 0 gg 0 gg 0 = 0 gg gg gg gg gg gg Determinan dari matriks GG adalah sebagai berikut gg gg gg gg gg gg 0 gg 0 gg 0 gg 0 GG = 0 gg gg gg gg gg gg dddddd(gg ) = ( ) cc Diketahui bahwa cc jj = maka (dddddd (AA)) mm = (( ) ) mm dan dddddd(gg ) = ( ) sehingga terbukti bahwa dddddd GG mm = ( )mm ; jjjjjjjj gggggggggg ; jjjjjjjj gggggggggggg Teorema 4. Jika GG nn berbentuk GG nn = maka dimana dddddd GG nn = ( )nn (cc ) nn (cc ) nn Jurnal Matematika Murni dan Terapan εpsilon ISSN: Vol.0 No. (06) Hal ; jjjjjjjj gggggggggg ; jjjjjjjj gggggggggggg 4

8 dengan syarat batas = gg nn = cc jj jj jj= ; = nn 0 ; uuuuuuuuuu yyyyyyyy llllllll Jurnal Matematika Murni dan Terapan εpsilon ISSN: Vol.0 No. (06) Hal.8-7 uuuuuuuuuu nn > 0 dddddd uuuuuuuuuu nn 0. Bukti: Diketahui GG nn = AA nn pada persamaan (5), untuk menentukan determinan dari matriks GG nn maka cukup ditunjuan dengan menentukan determinan dari matriks AA nn. Diketahui matriks AA sebagai berikut cc cc cc cc cc AA = Selanjutnya akan ditentukan determinan dari matriks AA, cc cc cc cc cc AA = = cc cc cc cc cc dddddd (AA) = ( ) c k Sehingga, dddddd GG nn = (ddddddaa) nn = ( ) nn (cc ) nn untuk genap dddddd GG nn = (ddddddaa) nn = (cc ) nn untuk ganjil sehingga terbukti bahwa dddddd GG nn = ( )nn (cc ) nn (cc ) nn Teorema 4.4 Jika GG mm berbentuk GG mm = ; jjjjjjjj gggggggggg ; jjjjjjjj gggggggggggg

9 ISSN: Vol.0 No. (06) Hal.8-7 Maka dddddd GG mm = ( )mm (cc ) mm (cc ) mm ; jjjjjjjj gggggggggg ; jjjjjjjj gggggggggggg Bukti: Diketahui GG mm = AA mm GG pada persamaan (), untuk menentukan determinan dari matriks GG mm maka cukup ditunjuan dengan menentukan determinan dari matriks AA mm dan determinan dari matriks GG. Berdasarkan bukti dari teorema (.) diketahui bahwa dddddd (AA) = ( ) c k, sehinggga dddddd (AA mm ) = (dddddd (AA)) mm = (( ) c k ) mm. Selanjutnya akan dibuktikan determinan dari matriks GG. gg gg gg gg gg gg 0 gg 0 gg 0 gg 0 gg 0 GG = gg gg gg gg gg gg gg gg gg gg gg gg gg gg gg gg gg gg gg gg gg 0 gg 0 gg 0 gg 0 = 0 gg gg gg gg gg gg Determinan dari matriks GG adalah sebagai berikut gg gg gg gg gg gg 0 gg 0 gg 0 gg 0 GG = 0 gg gg gg gg gg gg dddddd(gg ) = ( ) cc Karena diketahui GG mm = AA mm GG, maka dddddd (GG mm ) = (( ) cc ) mm (( ) cc ) dddddd (GG mm ) = (( ) cc ) mm dddddd (GG mm ) = (( ) ) mm (cc ) mm sehingga terbukti bahwa dddddd GG mm = ( )mm (cc ) mm ; jjjjjjjj gggggggggg (cc ) mm ; jjjjjjjj gggggggggggg 6

10 ISSN: Vol.0 No. (06) Hal KESIMPULAN Kesimpulan dari penelitian ini adalah sebagai berikut:. Bentuk barisan dari bilangan Fibonacci order- yang digeneralisasi adalah gg nn = cc jj jj jj= uuuuuuuuuu nn > 0 dddddd dengan syarat batas ; = nn gg nn = uuuuuuuuuu nn 0 0 ; uuuuuuuuuu yyyyyyyy llllllll dimana cc jj, jj adalah koefisien konstan dengan, nn bilangan bulat dan merupakan bentuk ke-nn dari barisan ke-.. Bentuk matriks persegi yang elemennya berupa bilangan Fibonacci order- yang digeneralisasi adalah gg nn GG nn = gg nn Determinan yang ditentukan dari 4 teorema dalam penelitian ini dengan beberapa kasus sebagai berikut a. Untuk matriks GG nn dengan cc jj = diperoleh dddddd GG nn = ( )nn ; jjjjjjjj gggggggggg ; jjjjjjjj gggggggggggg b. Untuk matriks GG mm dengan cc jj = diperoleh dddddd GG mm = ( )mm ; jjjjjjjj gggggggggg ; jjjjjjjj gggggggggggg c. Untuk matriks GG nn dengan cc jj diperoleh dddddd GG nn = ( )nn (cc ) nn ; jjjjjjjj gggggggggg (cc ) nn ; jjjjjjjj gggggggggggg d. Untuk matriks GG mm dengan cc jj diperoleh dddddd GG mm = ( )mm (cc ) mm ; jjjjjjjj gggggggggg (cc ) mm ; jjjjjjjj gggggggggggg 5. DAFTAR PUSTAKA [] Anton, Howard Dasar-dasar Aljabar Linier. Edisi 7 Jilid. Interaksara, Batam. [] Karaduman, Erdal An Aplication of Fibonacci Numbers in Matrices. Applied Mathematics and Computation. 47: [] Karaduman, Erdal On Determinants of Matrices With General Fibonacci Numbers Entries. Applied Mathematics and Computation. 67:

Herlyn Basrina, Yuni Yulida, Thresye Program Studi Matematika Fakultas MIPA Universitas Lambung Mangkurat

Herlyn Basrina, Yuni Yulida, Thresye Program Studi Matematika Fakultas MIPA Universitas Lambung Mangkurat Jurnal Matematika Murni dan Terapan εpsilon SOLUSI DARI PERSAMAAN DIFERENSIAL BIASA LINIER ORDE 2 DALAM BENTUK POLINOMIAL TAYLOR Herlyn Basrina, Yuni Yulida, Thresye Program Studi Matematika Fakultas MIPA

Lebih terperinci

KAJIAN METODE KONDENSASI CHIO PADA DETERMINAN MATRIKS

KAJIAN METODE KONDENSASI CHIO PADA DETERMINAN MATRIKS Buletin Ilmiah Mat. Stat. dan Terapannya (Bimaster) Volume 04, No. 3 (2015), hal 279 284. KAJIAN METODE KONDENSASI CHIO PADA DETERMINAN MATRIKS Adrianus Sumitro, Nilamsari Kusumastuti, Shantika Martha

Lebih terperinci

Edy Sarwo Agus Wibowo, Yuni Yulida, Thresye

Edy Sarwo Agus Wibowo, Yuni Yulida, Thresye Jurnal Matematika Murni dan Terapan εpsilon Vol.7 No.2 (2013) Hal. 12-19 PENYELESAIAN SISTEM PERSAMAAN DIFERENSIAL LINIER MELALUI DIAGONALISASI MATRIKS Edy Sarwo Agus Wibowo, Yuni Yulida, Thresye Program

Lebih terperinci

MENGHITUNG DETERMINAN MATRIKS MENGGUNAKAN METODE SALIHU

MENGHITUNG DETERMINAN MATRIKS MENGGUNAKAN METODE SALIHU MENGHITUNG DETERMINAN MATRIKS MENGGUNAKAN METODE SALIHU DENGAN Andi Bahota 1*, Aziskhan 2, Musraini M. 2 1 Mahasiswa Program Studi S1 Matematika 2 Dosen JurusanMatematika Fakultas Matematika dan Ilmu Pengetahuan

Lebih terperinci

Generalized Inverse Pada Matriks Atas

Generalized Inverse Pada Matriks Atas Jurnal Sains Matematika dan Statistika, Vol., No., Juli ISSN 6 - Generalized Inverse Pada Matriks Atas Corry Corazon Marzuki, Yulia Rosita, Jurusan Matematika, Fakultas Sains dan Teknologi, UIN Sultan

Lebih terperinci

Invers Tergeneralisasi Matriks atas Z p

Invers Tergeneralisasi Matriks atas Z p SEMINAR NASIONAL MATEMATIKA DAN PENDIDIKAN MATEMATIKA UNY 2016 Invers Tergeneralisasi Matriks atas Z p Evi Yuliza 1 1 Fakultas MIPA Universitas Sriwijaya evibc3@yahoocom PM A-1 - Abstrak Sebuah matriks

Lebih terperinci

MATRIKS BUJUR SANGKAR AJAIB ORDE GENAP KELIPATAN EMPAT MENGGUNAKAN METODE DURER

MATRIKS BUJUR SANGKAR AJAIB ORDE GENAP KELIPATAN EMPAT MENGGUNAKAN METODE DURER MATRIKS BUJUR SANGKAR AJAIB ORDE GENAP KELIPATAN EMPAT MENGGUNAKAN METODE DURER Fitri Aryani, Lutfiatul Ikromah Jurusan Matematika Fakultas Sains Teknologi, UIN SUSKA Riau Email: baihaqi_fatimah78@yahoocom

Lebih terperinci

ALGORITMA PEMBANGUN MATRIKS KORELASI TUGAS AKHIR

ALGORITMA PEMBANGUN MATRIKS KORELASI TUGAS AKHIR ALGORITMA PEMBANGUN MATRIKS KORELASI TUGAS AKHIR Diajukan sebagai Salah Satu Syarat untuk Memperoleh Gelar Sarjana Sains pada Jurusan Matematika oleh HELMAVIRA 0654004474 FAKULTAS SAINS DAN TEKNOLOGI UNIVERSITAS

Lebih terperinci

BAB II KAJIAN PUSTAKA. operasi matriks, determinan dan invers matriks), aljabar max-plus, matriks atas

BAB II KAJIAN PUSTAKA. operasi matriks, determinan dan invers matriks), aljabar max-plus, matriks atas BAB II KAJIAN PUSTAKA Pada bab ini akan diuraikan mengenai matriks (meliputi definisi matriks, operasi matriks, determinan dan invers matriks), aljabar max-plus, matriks atas aljabar max-plus, dan penyelesaian

Lebih terperinci

ALGORITMA ELIMINASI GAUSS INTERVAL DALAM MENDAPATKAN NILAI DETERMINAN MATRIKS INTERVAL DAN MENCARI SOLUSI SISTEM PERSAMAAN INTERVAL LINEAR

ALGORITMA ELIMINASI GAUSS INTERVAL DALAM MENDAPATKAN NILAI DETERMINAN MATRIKS INTERVAL DAN MENCARI SOLUSI SISTEM PERSAMAAN INTERVAL LINEAR Buletin Ilmiah Math. Stat. dan Terapannya (Bimaster) Volume 04, No. 3 (2015), hal 313 322. ALGORITMA ELIMINASI GAUSS INTERVAL DALAM MENDAPATKAN NILAI DETERMINAN MATRIKS INTERVAL DAN MENCARI SOLUSI SISTEM

Lebih terperinci

MENENTUKAN NILPOTENT ORDE 4 PADA MATRIKS SINGULAR MENGGUNAKAN TEOREMA CAYLEY HAMILTON TUGAS AKHIR

MENENTUKAN NILPOTENT ORDE 4 PADA MATRIKS SINGULAR MENGGUNAKAN TEOREMA CAYLEY HAMILTON TUGAS AKHIR MENENTUKAN NILPOTENT ORDE 4 PADA MATRIKS SINGULAR MENGGUNAKAN TEOREMA CAYLEY HAMILTON TUGAS AKHIR Diajukan sebagai Salah Satu Syarat untuk Memperoleh Gelar Sarjana Sains pada Jurusan Matematika Oleh: IRMA

Lebih terperinci

Rizkun As Syirazi, Thresye, Nurul Huda Program Studi Matematika Fakultas MIPA Universitas Lambung Mangkurat

Rizkun As Syirazi, Thresye, Nurul Huda Program Studi Matematika Fakultas MIPA Universitas Lambung Mangkurat ISSN: 978-44 Vol. No. (Juni 07) Hal. 30-37 SIFAT-SIFAT FUNGSI PHI EULER DAN BATAS PRAPETA FUNGSI PHI EULER Rizkun As Syirazi, Thresye, Nurul Huda Program Studi Matematika Fakultas MIPA Universitas Lambung

Lebih terperinci

Aljabar Linear. & Matriks. Evangs Mailoa. Pert. 5

Aljabar Linear. & Matriks. Evangs Mailoa. Pert. 5 Aljabar Linear & Matriks Pert. 5 Evangs Mailoa Pengantar Determinan Menurut teorema 1.4.3, matriks 2 x 2 dapat dibalik jika ad bc 0. Pernyataan ad bc disebut sebagai determinan (determinant) dari matriks

Lebih terperinci

Matriks Leslie dan Aplikasinya dalam Memprediksi Jumlah dan Laju pertumbuhan Penduduk di Kota Makassar

Matriks Leslie dan Aplikasinya dalam Memprediksi Jumlah dan Laju pertumbuhan Penduduk di Kota Makassar Matriks Leslie dan Aplikasinya dalam Memprediksi Jumlah dan Laju pertumbuhan Penduduk di Kota Makassar Wahidah Sanusi 1, Sukarna 1 dan Nur Ridiawati 1, a) 1 Jurusan Matematika, Fakultas Matematika dan

Lebih terperinci

Perluasan Teorema Cayley-Hamilton pada Matriks

Perluasan Teorema Cayley-Hamilton pada Matriks Vol. 8, No.1, 1-11, Juli 2011 Perluasan Teorema Cayley-Hamilton pada Matriks Nur Erawati, Azmimy Basis Panrita Abstrak Teorema Cayley-Hamilton menyatakan bahwa setiap matriks bujur sangkar memenuhi persamaan

Lebih terperinci

Aljabar Linier Elementer. Kuliah 7

Aljabar Linier Elementer. Kuliah 7 Aljabar Linier Elementer Kuliah 7 Materi Kuliah Ekspansi kofaktor Aturan Cramer 2 2.4 Espansi Kofaktor; Aturan Cramer Definisi: Jika A adalah matriks bujur sangkar, maka minor dari entri a ij dinyatakan

Lebih terperinci

BAB 3 : INVERS MATRIKS

BAB 3 : INVERS MATRIKS BAB 3 : INVERS MATRIKS PEMBAGIAN MATRIKS DAN INVERS MATRIKS Pada aljabar biasa, bila terdapat hubungan antara 2 besaran a dengan x sedemikian sehingga ax1, maka dikatakan x adalah kebalikan dari a dan

Lebih terperinci

BAB II DETERMINAN DAN INVERS MATRIKS

BAB II DETERMINAN DAN INVERS MATRIKS BAB II DETERMINAN DAN INVERS MATRIKS A. OPERASI ELEMENTER TERHADAP BARIS DAN KOLOM SUATU MATRIKS Matriks A = berdimensi mxn dapat dibentuk matriks baru dengan menggandakan perubahan bentuk baris dan/atau

Lebih terperinci

Penentuan Nilai Eigen Tak Dominan Matriks Hermit Menggunakan Metode Pangkat Invers Dengan Nilai Shift

Penentuan Nilai Eigen Tak Dominan Matriks Hermit Menggunakan Metode Pangkat Invers Dengan Nilai Shift Penentuan Nilai Eigen Tak Dominan Matriks Hermit Menggunakan Metode Pangkat Invers Dengan Nilai Shift Fitri Aryani 1, Rizka Dini Humairoh 2 1,2 Jurusan Matematika Fakultas Sains dan Teknologi UIN Suska

Lebih terperinci

Aljabar Linier Elementer. Kuliah 1 dan 2

Aljabar Linier Elementer. Kuliah 1 dan 2 Aljabar Linier Elementer Kuliah 1 dan 2 1.3 Matriks dan Operasi-operasi pada Matriks Definisi: Matriks adalah susunan bilangan dalam empat persegi panjang. Bilangan-bilangan dalam susunan tersebut disebut

Lebih terperinci

Interpretasi Geometri Dari Sebuah Determinan

Interpretasi Geometri Dari Sebuah Determinan Jurnal Sains Matematika dan Statistika Vol No Juli 5 ISSN 46-454 Interpretasi Geometri Dari Sebuah Determinan Riska Yeni Syamsudhuha M D H Gamal 3 Jurusan Matematika Fakultas Mipa Universitas Riau Jl HR

Lebih terperinci

Diagonalisasi Matriks Segitiga Atas Ring komutatif Dengan Elemen Satuan

Diagonalisasi Matriks Segitiga Atas Ring komutatif Dengan Elemen Satuan Diagonalisasi Matriks Segitiga Atas Ring komutatif Dengan Elemen Satuan Fitri Aryani 1, Rahmadani 2 Jurusan Matematika Fakultas Sains dan Teknologi UIN Suska Riau e-mail: khodijah_fitri@uin-suskaacid Abstrak

Lebih terperinci

Pasangan Baku Dalam Polinomial Monik

Pasangan Baku Dalam Polinomial Monik SEMINAR NASIONAL MATEMATIKA DAN PENDIDIKAN MATEMATIKA UNY 2015 Pasangan Baku Dalam Polinomial Monik Zulfia Memi Mayasari Jurusan Matematika FMIPA Universitas Bengkulu zulfiamemimaysari@yahoo.com A - 7

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA A. Aljabar Max-Plus Himpunan bilangan riil (R) dengan diberikan opersai max dan plus dengan mengikuti definisi berikut : Definisi II.A.1: Didefinisikan εε dan ee 0, dan untuk himpunan

Lebih terperinci

PENGKONSTRUKSIAN BILANGAN TIDAK KONGRUEN

PENGKONSTRUKSIAN BILANGAN TIDAK KONGRUEN Jurnal Matematika UNAND Vol. 2 No. 4 Hal. 27 33 ISSN : 2303 2910 c Jurusan Matematika FMIPA UNAND PENGKONSTRUKSIAN BILANGAN TIDAK KONGRUEN RATI MAYANG SARI Program Studi Matematika Fakultas Matematika

Lebih terperinci

Part III DETERMINAN. Oleh: Yeni Susanti

Part III DETERMINAN. Oleh: Yeni Susanti Part III DETERMINAN Oleh: Yeni Susanti Perhatikan determinan matriks ukuran 2x2 berikut: Pada masing-masing jumlahan dan Terdapat wakil dari setiap baris dan setiap kolom. Bagaimana dengan tanda + (PLUS)

Lebih terperinci

Jurnal Matematika Murni dan Terapan Epsilon Juni 2014 Vol. 8 No. 1 METODE KARMARKAR SEBAGAI ALTERNATIF PENYELESAIAN MASALAH PEMROGRAMAN LINEAR

Jurnal Matematika Murni dan Terapan Epsilon Juni 2014 Vol. 8 No. 1 METODE KARMARKAR SEBAGAI ALTERNATIF PENYELESAIAN MASALAH PEMROGRAMAN LINEAR Jurnal Matematika Murni dan Terapan Epsilon Juni 204 Vol. 8 No. METODE KARMARKAR SEBAGAI ALTERNATIF PENYELESAIAN MASALAH PEMROGRAMAN LINEAR Bayu Prihandono, Meilyna Habibullah, Evi Noviani Program Studi

Lebih terperinci

(MS.3) SUBRUANG CONINVARIAN DARI MATRIKS KUADRAT KOMPLEKS

(MS.3) SUBRUANG CONINVARIAN DARI MATRIKS KUADRAT KOMPLEKS Seminar Nasional Statistika 2 November 20 Vol 2, November 20 (MS.3) SUBRUANG CONINVARIAN DARI MATRIKS KUADRAT KOMPLEKS Euis Hartini Jurusan Matematika, Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas

Lebih terperinci

KONSEP DETERMINAN PADA MATRIKS NONBUJUR SANGKAR

KONSEP DETERMINAN PADA MATRIKS NONBUJUR SANGKAR MAGISTRA, Volume 2 Nomor 1, Juli 2014 KONSEP DETERMINAN PADA MATRIKS NONBUJUR SANGKAR Andi Saparuddin Nur Jurusan Pendidikan Matematika FKIP Universitas Musamus E-Mail: mei.safar@yahoo.co.id Abstrak: Dalam

Lebih terperinci

Teorema Cayley-Hamilton pada Matriks atas Ring Komutatif

Teorema Cayley-Hamilton pada Matriks atas Ring Komutatif Teorema Cayley-Hamilton pada Matriks atas Ring Komutatif Joko Harianto 1, Nana Fitria 2, Puguh Wahyu Prasetyo 3, Vika Yugi Kurniawan 4 Jurusan Matematika, Universitas Gadjah Mada, Yogyakarta Indonesia

Lebih terperinci

MENENTUKAN NILAI EIGEN DAN VEKTOR EIGEN MATRIKS INTERVAL TUGAS AKHIR

MENENTUKAN NILAI EIGEN DAN VEKTOR EIGEN MATRIKS INTERVAL TUGAS AKHIR MENENTUKAN NILAI EIGEN DAN VEKTOR EIGEN MATRIKS INTERVAL TUGAS AKHIR Diajukan sebagai Salah Satu Syarat untuk Memperoleh Gelar Sarjana Sains pada Jurusan Matematika oleh DEVI SAFITRI 10654004470 FAKULTAS

Lebih terperinci

SOLUSI REFLEKSIF DAN ANTI-REFLEKSIF DARI PERSAMAAN MATRIKS AX = B

SOLUSI REFLEKSIF DAN ANTI-REFLEKSIF DARI PERSAMAAN MATRIKS AX = B SOLUSI REFLEKSIF DAN ANTI-REFLEKSIF DARI PERSAMAAN MATRIKS AX = B Arrohman 1, Sri Gemawati 2, Asli Sirait 2 1 Mahasiswa Program Studi S1 Matematika 2 Dosen Jurusan Matematika Fakultas Matematika dan Ilmu

Lebih terperinci

PEMBUKTIAN RUMUS BENTUK TUTUP BEDA MUNDUR BERDASARKAN DERET TAYLOR

PEMBUKTIAN RUMUS BENTUK TUTUP BEDA MUNDUR BERDASARKAN DERET TAYLOR Jurnal Matematika UNAND Vol. VI No. Hal. 68 76 ISSN : 233 29 c Jurusan Matematika FMIPA UNAND PEMBUKTIAN RUMUS BENTUK TUTUP BEDA MUNDUR BERDASARKAN DERET TAYLOR WIDIA ASTUTI Program Studi Matematika, Fakultas

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA 5 BAB II TINJAUAN PUSTAKA A Matriks 1 Pengertian Matriks Definisi 21 Matriks adalah kumpulan bilangan bilangan yang disusun secara khusus dalam bentuk baris kolom sehingga membentuk empat persegi panjang

Lebih terperinci

EKSISTENSI DAN KONSTRUKSI GENERALISASI

EKSISTENSI DAN KONSTRUKSI GENERALISASI Jurnal Matematika UNAND Vol. V No. Hal. 77 85 SSN : 2303 290 c Jurusan Matematika FMPA UNAND KSSTNS DAN KONSTRUKS GNRALSAS {}-NVRS DAN {, 2}-NVRS ZAHY DL FTR, YANTA, NOVA NOLZA BAKAR Program Studi Matematika,

Lebih terperinci

INVERS SUATU MATRIKS TOEPLITZ MENGGUNAKAN METODE ADJOIN

INVERS SUATU MATRIKS TOEPLITZ MENGGUNAKAN METODE ADJOIN Saintia Matematika ISSN: 2337-997 Vol 02, No 0 (204), pp 85 94 INVERS SUATU MATRIKS TOEPLITZ MENGGUNAKAN METODE ADJOIN Bakti Siregar, Tulus, Sawaluddin Abstrak: Pencarian invers matriks adalah suatu hal

Lebih terperinci

MUH1G3/ MATRIKS DAN RUANG VEKTOR

MUH1G3/ MATRIKS DAN RUANG VEKTOR MUHG3/ MATRIKS DAN RUANG VEKTOR TIM DOSEN Determinan Matriks Determinan Matriks Sub Pokok Bahasan Permutasi dan Determinan Matriks Determinan dengan OBE Determinan dengan Ekspansi Kofaktor Beberapa Aplikasi

Lebih terperinci

Arie Wijaya, Yuni Yulida, Faisal

Arie Wijaya, Yuni Yulida, Faisal Vol.9 No.1 (215) Hal. 12-19 HUBUNGAN ANTARA TRANSFORMASI LAPLACE DENGAN TRANSFORMASI ELZAKI Arie Wijaya, Yuni Yulida, Faisal PS Matematika Fakultas MIPA Universitas Lambung Mangkurat Jl. A. Yani Km. 36

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang Masalah

BAB I PENDAHULUAN Latar Belakang Masalah BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Salah satu cabang ilmu matematika yang sangat penting adalah Aljabar. Aljabar berasal dari Bahasa Arab yaitu al-jabr yang berarti pertemuan atau hubungan atau

Lebih terperinci

METODE PANGKAT DAN METODE DEFLASI DALAM MENENTUKAN NILAI EIGEN DAN VEKTOR EIGEN DARI MATRIKS

METODE PANGKAT DAN METODE DEFLASI DALAM MENENTUKAN NILAI EIGEN DAN VEKTOR EIGEN DARI MATRIKS METODE PANGKAT DAN METODE DEFLASI DALAM MENENTUKAN NILAI EIGEN DAN VEKTOR EIGEN DARI MATRIKS Arif Prodi Matematika, FST- UINAM Wahyuni Prodi Matematika, FST-UINAM Try Azisah Prodi Matematika, FST-UINAM

Lebih terperinci

PERSAMAAN RELASI REKURENSI PADA PERHITUNGAN NILAI DETERMINAN MATRIKS MENGGUNAKAN METODE EKSPANSI LAPLACE DAN METODE CHIO

PERSAMAAN RELASI REKURENSI PADA PERHITUNGAN NILAI DETERMINAN MATRIKS MENGGUNAKAN METODE EKSPANSI LAPLACE DAN METODE CHIO PERSAMAAN RELASI REKURENSI PADA PERHITUNGAN NILAI DETERMINAN MATRIKS MENGGUNAKAN METODE EKSPANSI LAPLACE DAN METODE CHIO Sintia Dewi Ratna Sari Mahasiswa Pendidikan Matematika Universitas Muhammadiyah

Lebih terperinci

3 4y = a. 3x + 5y 1 5 x + 5y 5. c. 5x 6y 30 x + 2y 2. e. 4x + 3y 16 2x 3y 10 y = x x + 9y x + y 100

3 4y = a. 3x + 5y 1 5 x + 5y 5. c. 5x 6y 30 x + 2y 2. e. 4x + 3y 16 2x 3y 10 y = x x + 9y x + y 100 Kunci Jawaban Bab I Program Linear Kuis 40 Daerah penelesaian 20 3 4 = 8 6 0 2 8 3 + 4 = 24 1. berbentuk segiempat Tes Pemahaman 1.1 1. a. 20 40 e. 7 + 5 = 35 7 5 4 3 d. f. 2 0 6 6 + 3 = 6 5 3. a. 3 +

Lebih terperinci

Modul 2.2 Matriks dan Sistem Persamaan Linear (Topik 3) A. Pendahuluan Matriks dan Sistem Persamaan Linear

Modul 2.2 Matriks dan Sistem Persamaan Linear (Topik 3) A. Pendahuluan Matriks dan Sistem Persamaan Linear Modul 2.2 Matriks dan Sistem Persamaan Linear (Topik 3) A. Pendahuluan Salah satu kajian matematika sekolah menengah yang memiliki banyak aplikasinya dalam menyelesaikan permasalahan yang ada dalam kehidupan

Lebih terperinci

Model Penyelesaian Determinan Matriks dengan Metode Eliminasi Gauss Melalui Matrix Laboratory (MATLAB)

Model Penyelesaian Determinan Matriks dengan Metode Eliminasi Gauss Melalui Matrix Laboratory (MATLAB) JURNAL SAINS TERAPAN NO. VOL. ISSN 46-88 Received : March 7 Accepted: March 7 Published :April 7 Model Penyelesaian Matriks dengan Metode Eliminasi Gauss Melalui Matrix Laboratory (MATLAB) Zaini * Teknik

Lebih terperinci

Trihastuti Agustinah

Trihastuti Agustinah TE 467 Teknik Numerik Sistem Linear Trihastuti Agustinah Bidang Studi Teknik Sistem Pengaturan Jurusan Teknik Elektro - FTI Institut Teknologi Sepuluh Nopember O U T L I N E OBJEKTIF 2 3 CONTOH 4 SIMPULAN

Lebih terperinci

Matriks - 1: Beberapa Definisi Dasar Latihan Aljabar Matriks

Matriks - 1: Beberapa Definisi Dasar Latihan Aljabar Matriks Matriks - 1: Beberapa Definisi Dasar Latihan Aljabar Matriks Kuliah Aljabar Linier Semester Ganjil 2015-2016 MZI Fakultas Informatika Telkom University FIF Tel-U Agustus 2015 MZI (FIF Tel-U) Matriks -

Lebih terperinci

Determinan. Untuk menghitung determinan ordo n terlebih dahulu diberikan cara menghitung determinan ordo 2

Determinan. Untuk menghitung determinan ordo n terlebih dahulu diberikan cara menghitung determinan ordo 2 Determinan Determinan Setiap matriks bujur sangkar A yang berukuran (nxn) dapat dikaitkan dengan suatu skalar yang disebut determinan matriks tersebut dan ditulis dengan det(a) atau A. Untuk menghitung

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI A. Matriks 1. Pengertian Matriks Definisi II.A.1 Matriks didefinisikan sebagai susunan persegi panjang dari bilangan-bilangan yang diatur dalam baris dan kolom. Contoh II.A.1: 9 5

Lebih terperinci

BAB II LANDASAN TEORI. yang biasanya dinyatakan dalam bentuk sebagai berikut: =

BAB II LANDASAN TEORI. yang biasanya dinyatakan dalam bentuk sebagai berikut: = BAB II LANDASAN TEORI 2.1 Matriks Definisi 2.1 (Lipschutz, 2006): Matriks adalah susunan segiempat dari skalarskalar yang biasanya dinyatakan dalam bentuk sebagai berikut: Setiap skalar yang terdapat dalam

Lebih terperinci

Gita Sari Adriani, Pardi Affandi, M. Ahsar Karim Program Studi Matematika FMIPA Universitas Lambung Mangkurat

Gita Sari Adriani, Pardi Affandi, M. Ahsar Karim Program Studi Matematika FMIPA Universitas Lambung Mangkurat ANALISIS BIAYA FUZZY DALAM SISTEM TRANSPORTASI FUZZY FUZZY COST ANALYSIS IN FUZZY TRANSPORTATION SYSTEM Gita Sari Adriani, Pardi Affandi, M. Ahsar Karim Program Studi Matematika FMIPA Universitas Lambung

Lebih terperinci

MODUL ALJABAR LINEAR 1 Disusun oleh, ASTRI FITRIA NUR ANI

MODUL ALJABAR LINEAR 1 Disusun oleh, ASTRI FITRIA NUR ANI 214 MODUL ALJABAR LINEAR 1 Disusun oleh, ASTRI FITRIA NUR ANI Astri Fitria Nur ani Aljabar Linear 1 1/1/214 1 DAFTAR ISI DAFTAR ISI... i BAB I MATRIKS DAN SISTEM PERSAMAAN A. Pendahuluan... 1 B. Aljabar

Lebih terperinci

SIFAT-SIFAT KESETARAAN PADA MATRIKS SECONDARY NORMAL ABSTRACT

SIFAT-SIFAT KESETARAAN PADA MATRIKS SECONDARY NORMAL ABSTRACT SIFAT-SIFAT KESETARAAN PADA MATRIKS SECONDARY NORMAL Nursyahlina 1, S. Gemawati, A. Sirait 1 Mahasiswa Program Studi S1 Matematika Laboratorium Matematika Terapan, Jurusan Matematika Fakultas Matematika

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Analisis Regresi Tidak jarang dihadapkan dengan persoalaan yang melibatkan dua atau lebih peubah atau variabel yang ada atau diduga ada dalam suatu hubungan tertentu. Misalnya

Lebih terperinci

BAB 2. DETERMINAN MATRIKS

BAB 2. DETERMINAN MATRIKS BAB. DETERMINAN MATRIKS DETERMINAN MATRIKS . Definisi DETERMINAN Determinan : produk (hasil kali) bertanda dari unsur-unsur matriks sedemikian hingga berasal dari baris dan kolom yang berbeda, kemudian

Lebih terperinci

MATRIKS JORDAN DAN APLIKASINYA PADA SISTEM LINIER WAKTU DISKRIT. Soleha, Dian Winda Setyawati Jurusan Matematika, FMIPA Institut Teknologi Surabaya

MATRIKS JORDAN DAN APLIKASINYA PADA SISTEM LINIER WAKTU DISKRIT. Soleha, Dian Winda Setyawati Jurusan Matematika, FMIPA Institut Teknologi Surabaya MATRIKS JORDAN DAN APLIKASINYA PADA SISTEM LINIER WAKTU DISKRIT Soleha, Dian Winda Setyawati Jurusan Matematika, FMIPA Institut Teknologi Surabaya Abstract. Matrix is diagonalizable (similar with matrix

Lebih terperinci

APLIKASI METODE PANGKAT DALAM MENGAPROKSIMASI NILAI EIGEN KOMPLEKS PADA MATRIKS

APLIKASI METODE PANGKAT DALAM MENGAPROKSIMASI NILAI EIGEN KOMPLEKS PADA MATRIKS Jurnal UJMC, Volume, Nomor, Hal 36-40 pissn : 460-3333 eissn : 579-907X APLIKASI METODE PANGKAT DALAM MENGAPROKSIMASI NILAI EIGEN KOMPLEKS PADA MATRIKS Novita Eka Chandra dan Wiwin Kusniati Universitas

Lebih terperinci

Banyaknya baris dan kolom suatu matriks menentukan ukuran dari matriks tersebut, disebut ordo matriks

Banyaknya baris dan kolom suatu matriks menentukan ukuran dari matriks tersebut, disebut ordo matriks MATRIKS DEFINISI Matriks adalah susunan bilangan real atau bilangan kompleks (atau elemen-elemen) yang disusun dalam baris dan kolom sehinggga membentuk jajaran persegi panjang. Matriks memiliki m baris

Lebih terperinci

DIAGONALISASI MATRIKS PERSEGI (SQUARE MATRIX) MENGGUNAKAN DEKOMPOSISI SCHUR TUGAS AKHIR

DIAGONALISASI MATRIKS PERSEGI (SQUARE MATRIX) MENGGUNAKAN DEKOMPOSISI SCHUR TUGAS AKHIR DIAGONALISASI MATRIKS PERSEGI (SQUARE MATRIX) MENGGUNAKAN DEKOMPOSISI SCHUR (SCHUR DECOMPOSITION) TUGAS AKHIR Diajukan sebagai Salah Satu Syarat untuk Memperoleh Gelar Sarjana Sains pada Jurusan Matematika

Lebih terperinci

PEMBUKTIAN BENTUK TUTUP RUMUS BEDA MAJU BERDASARKAN DERET TAYLOR

PEMBUKTIAN BENTUK TUTUP RUMUS BEDA MAJU BERDASARKAN DERET TAYLOR Jurnal Matematika UAD Vol. 5 o. 4 Hal. 8 ISS : 233 29 c Jurusan Matematika FMIPA UAD PEMBUKTIA BETUK TUTUP RUMUS BEDA MAJU BERDASARKA DERET TAYLOR ADE PUTRI, RADHIATUL HUSA Program Studi Matematika, Fakultas

Lebih terperinci

Teori permainan mula-mula dikembangkan oleh ilmuan Prancis bernama Emile Borel, secara umum digunakan untuk menyelesaikan masalah yang

Teori permainan mula-mula dikembangkan oleh ilmuan Prancis bernama Emile Borel, secara umum digunakan untuk menyelesaikan masalah yang BAB 2 LANDASAN TEORI 2.1 Strategi Pemasaran Strategi pemasaran adalah pola pikir pemasaran yang akan digunakan untuk mencapai tujuan pemasarannya. Strategi pemasaran berisi strategi spesifik untuk pasar

Lebih terperinci

SOLUSI POSITIF DARI PERSAMAAN LEONTIEF DISKRIT

SOLUSI POSITIF DARI PERSAMAAN LEONTIEF DISKRIT Jurnal Matematika UNAND Vol. 2 No. 3 Hal. 103 108 ISSN : 2303 2910 c Jurusan Matematika FMIPA UNAND SOLUSI POSITIF DARI PERSAMAAN LEONTIEF DISKRIT RASITA ANAS Program Studi Matematika, Fakultas Matematika

Lebih terperinci

Pertemuan 8 Aljabar Linear & Matriks

Pertemuan 8 Aljabar Linear & Matriks Pertemuan 8 Aljabar Linear & Matriks 1 Jika A adl matriks nxn yg invertible, untuk setiap matriks b dgn ukuran nx1, maka sistem persamaan linier Ax = b mempunyai tepat 1 penyelesaian, yaitu x = A -1 b

Lebih terperinci

JURUSAN PENDIDIKAN MATEMATIKA FMIPA UNIVERSITAS NEGERI YOGYAKARTA

JURUSAN PENDIDIKAN MATEMATIKA FMIPA UNIVERSITAS NEGERI YOGYAKARTA CATATAN KULIAH ALJABAR LINEAR MUSTHOFA JURUSAN PENDIDIKAN MATEMATIKA FMIPA UNIVERSITAS NEGERI YOGYAKARTA 20 SISTEM PERSAMAAN LINEAR Tujuan : Menyelesaikan sistem persamaan linear. OPERASI BARIS ELEMENTER

Lebih terperinci

PELATIHAN INSTRUKTUR/PENGEMBANG SMU 28 JULI s.d. 12 AGUSTUS 2003 MATRIKS. Oleh: Drs. M. Danuri, M. Pd.

PELATIHAN INSTRUKTUR/PENGEMBANG SMU 28 JULI s.d. 12 AGUSTUS 2003 MATRIKS. Oleh: Drs. M. Danuri, M. Pd. PELATIHAN INSTRUKTUR/PENGEMBANG SMU JULI s.d. AGUSTUS MATRIKS Oleh: Drs. M. Danuri, M. Pd. DEPARTEMEN PENDIDIKAN NASIONAL DIREKTORAT JENDERAL PENDIDIKAN DASAR DAN MENENGAH PUSAT PENGEMBANGAN PENATARAN

Lebih terperinci

Modul Praktikum. Aljabar Linier. Disusun oleh: Machudor Yusman IR., M.Kom. Ucapan Terimakasih:

Modul Praktikum. Aljabar Linier. Disusun oleh: Machudor Yusman IR., M.Kom. Ucapan Terimakasih: Modul Praktikum Aljabar Linier Disusun oleh: Machudor Yusman IR., M.Kom. Ucapan Terimakasih: David Abror Gabriela Minang Sari Hanan Risnawati Ichwan Almaza Nuha Hanifah Riza Anggraini Saiful Anwar Tri

Lebih terperinci

IMPLEMENTASI SANDI HILL UNTUK PENYANDIAN CITRA

IMPLEMENTASI SANDI HILL UNTUK PENYANDIAN CITRA IMLEMENTASI SANDI HILL UNTUK PENYANDIAN CITRA (J.J. Siang, et al.) IMPLEMENTASI SANDI HILL UNTUK PENYANDIAN CITRA J. J. Siang Program Studi Ilmu Komputer, Fakultas MIPA, Universitas Kristen Immanuel Yogyakarta

Lebih terperinci

uiopasdfghjklzxcvbnmqwertyuiopasd fghjklzxcvbnmqwertyuiopasdfghjklzx wertyuiopasdfghjklzxcvbnmqwertyui opasdfghjklzxcvbnmqwertyuiopasdfg

uiopasdfghjklzxcvbnmqwertyuiopasd fghjklzxcvbnmqwertyuiopasdfghjklzx wertyuiopasdfghjklzxcvbnmqwertyui opasdfghjklzxcvbnmqwertyuiopasdfg uiopasdfghjklzxcvbnmqwertyuiopasd Qwertyuiopasdfghjklzxcvbnmqwerty cvbnmqwertyuiopasdfghjklzxcvbnmq fghjklzxcvbnmqwertyuiopasdfghjklzx wertyuiopasdfghjklzxcvbnmqwertyui opasdfghjklzxcvbnmqwertyuiopasdfg

Lebih terperinci

MATRIKS UNITER, SIMILARITAS UNITER DAN MATRIKS NORMAL. Anis Fitri Lestari. Mahasiswa Universitas Muhammadiyah Ponorogo ABSTRAK

MATRIKS UNITER, SIMILARITAS UNITER DAN MATRIKS NORMAL. Anis Fitri Lestari. Mahasiswa Universitas Muhammadiyah Ponorogo ABSTRAK MATRIKS UNITER, SIMILARITAS UNITER DAN MATRIKS NORMAL Anis Fitri Lestari Mahasiswa Universitas Muhammadiyah Ponorogo ABSTRAK Matriks normal merupakan matriks persegi yang entri-entrinya bilangan kompleks

Lebih terperinci

INVERS SUATU MATRIKS TOEPLITZ MENGGUNAKAN METODE ADJOIN MATRIKS SKRIPSI BAKTI SIREGAR

INVERS SUATU MATRIKS TOEPLITZ MENGGUNAKAN METODE ADJOIN MATRIKS SKRIPSI BAKTI SIREGAR INVERS SUATU MATRIKS TOEPLITZ MENGGUNAKAN METODE ADJOIN MATRIKS SKRIPSI BAKTI SIREGAR 090803067 DEPARTEMEN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS SUMATERA UTARA MEDAN 2013

Lebih terperinci

MODEL EKONOMI LEONTIEF DALAM MENENTUKAN EKSPOR IMPOR SUATU NEGARA DENGAN MENGGUNAKAN DEKOMPOSISI Lower Upper (LU)

MODEL EKONOMI LEONTIEF DALAM MENENTUKAN EKSPOR IMPOR SUATU NEGARA DENGAN MENGGUNAKAN DEKOMPOSISI Lower Upper (LU) Jurnal Matematika, Statistika,& Komputasi 1 Vol.... No... 21... MODEL EKONOMI LEONTIEF DALAM MENENTUKAN EKSPOR IMPOR SUATU NEGARA DENGAN MENGGUNAKAN DEKOMPOSISI Lower Upper (LU) Fachrul Islam 1, Jeffry

Lebih terperinci

MENENTUKAN PERPANGKATAN MATRIKS TANPA MENGGUNAKAN EIGENVALUE

MENENTUKAN PERPANGKATAN MATRIKS TANPA MENGGUNAKAN EIGENVALUE MENENTUKAN PERPANGKATAN MATRIKS TANPA MENGGUNAKAN EIGENVALUE Rini Pratiwi 1*, Rolan Pane 2, Asli Sirait 2 1 Mahasiswa Program Studi S1 Matematika 2 Dosen Jurusan Matematika Fakultas Matematika dan Ilmu

Lebih terperinci

II. TINJAUAN PUSTAKA. negatifnya. Yang termasuk dalam bilangan cacah yaitu 0,1,2,3,4, sehingga

II. TINJAUAN PUSTAKA. negatifnya. Yang termasuk dalam bilangan cacah yaitu 0,1,2,3,4, sehingga II. TINJAUAN PUSTAKA 2.1 Bilangan Bulat Bilangan Bulat merupakan bilangan yang terdiri dari bilangan cacah dan negatifnya. Yang termasuk dalam bilangan cacah yaitu 0,1,2,3,4, sehingga negatif dari bilangan

Lebih terperinci

OPERASI MODIFIKASI ARITMATIKA INTERVAL TERHADAP INVERS MATRIKS INTERVAL

OPERASI MODIFIKASI ARITMATIKA INTERVAL TERHADAP INVERS MATRIKS INTERVAL Buletin Ilmiah Mat. Stat. dan Terapannya (Bimaster) Volume 05, No. 1 (2016), hal 9-18 OPERASI MODIFIKASI ARITMATIKA INTERVAL TERHADAP INVERS MATRIKS INTERVAL Dodi Arianto, Helmi, Mariatul Kiftiah INTISARI

Lebih terperinci

Aljabar Linier & Matriks. Tatap Muka 2

Aljabar Linier & Matriks. Tatap Muka 2 Aljabar Linier & Matriks Tatap Muka 2 Matriks Matriks adalah susunan segi empat siku siku dari bilangan yang dibatasi dengan tanda kurung siku. Suatu matriks tersusun atas baris dan kolom, jika matriks

Lebih terperinci

Pembagi Bersama Terbesar Matriks Polinomial

Pembagi Bersama Terbesar Matriks Polinomial Vol. 11, No. 1, 63-70, Juli 2014 Pembagi Bersama Terbesar Matriks Polinomial Indramayanti Syam 1,*, Nur Erawaty 2, Muhammad Zakir 3 ABSTRAK Teori bilangan adalah cabang ilmu Matematika yang mempelajari

Lebih terperinci

Aljabar Matriks. Aljabar Matriks

Aljabar Matriks. Aljabar Matriks Aljabar Matriks No No Unit Unit Kompetensi 1 Menerapkan keamanan web dinamis 2 Membuat halaman web dinamis dasar 3 Membuat halaman web dinamis lanjut 4 Menerapkan web hosting 5 Menerapkan konten web memenuhi

Lebih terperinci

ANALISIS PERMAINAN EMPAT BILANGAN

ANALISIS PERMAINAN EMPAT BILANGAN Jurnal UJMC, Volume 2, Nomor 1, Hal. 22-27 pissn : 2460-3333 eissn : 2579-907X ANALISIS PERMAINAN EMPAT BILANGAN Melisa 1 Universitas Islam Darul Ulum Lamongan, melisa.mathugm@yahoo.com Abstract. The four-number

Lebih terperinci

Karakterisasi Matriks Leslie Ordo Empat

Karakterisasi Matriks Leslie Ordo Empat Karakterisasi Matriks Leslie Ordo Empat Corry Corazon Marzuki 1, Oktomi Malko 2 1,2 Jurusan Matematika Fakultas Sains Teknologi UIN Suska Riau Jl HR Soebrantas No 155 Simpang Baru, Panam, Pekanbaru, 28293

Lebih terperinci

Definisi : det(a) Permutasi himpunan integer {1, 2, 3,, n}:

Definisi : det(a) Permutasi himpunan integer {1, 2, 3,, n}: Definisi : Determinan dari matrik bujursangkar A berorde n adalah jumlah semua permutasi n (n!) hasil kali bertanda dari elemen-elemen matrik. Dituliskan : det(a) atau A (jr j r...j n ).a jr a j r...am

Lebih terperinci

SEMINAR NASIONAL BASIC SCIENCE II

SEMINAR NASIONAL BASIC SCIENCE II ISBN : 978--97-- PROSEDING SEMINAR NASIONAL BASIC SCIENCE II Konstribusi Sains Untuk Pengembangan Pendidikan, Biodiversitas dan Metigasi Bencana Pada Daerah Kepulauan SCIENTIFIC COMMITTEE: Prof. H.J. Sohilait,

Lebih terperinci

DIAGONALISASI MATRIKS HILBERT

DIAGONALISASI MATRIKS HILBERT Jurnal UJMC, Volume 3, Nomor 2, Hal 7-24 pissn : 2460-3333 eissn : 2579-907X DIAGONALISASI MATRIKS HILBERT Randhi N Darmawan Universitas PGRI Banyuwangi, randhinumeric@gmailcom Abstract The Hilbert matrix

Lebih terperinci

& & # = atau )!"* ( & ( ( (&

& & # = atau )!* ( & ( ( (& MATRIKS ======PENGERTIAN====== Matriks merupakan Susunan bilangan-bilangan yang membentuk segi empat siku-siku. Susunan bilangan-bilangan tersebut dinamakan entri dalam matriks. Matriks dinotasikan dengan

Lebih terperinci

PERMANEN DAN DOMINAN SUATU MATRIKS ATAS ALJABAR MAX-PLUS INTERVAL

PERMANEN DAN DOMINAN SUATU MATRIKS ATAS ALJABAR MAX-PLUS INTERVAL PERMANEN DAN DOMINAN SUATU MATRIKS ATAS ALJABAR MAX-PLUS INTERVAL Siswanto Jurusan Matematika FMIPA UNS sis.mipauns@yahoo.co.id Abstrak Misalkan R himpunan bilangan real. Aljabar Max-Plus adalah himpunan

Lebih terperinci

NILAI EIGEN DAN VEKTOR EIGEN disebut vektor eigen dari matriks A =

NILAI EIGEN DAN VEKTOR EIGEN disebut vektor eigen dari matriks A = NILAI EIGEN DAN VEKTOR EIGEN >> DEFINISI NILAI EIGEN DAN VEKTOR EIGEN Jika A adalah sebuah matriks n n, maka sebuah vektor taknol x pada R n disebut vektor eigen (vektor karakteristik) dari A jika Ax adalah

Lebih terperinci

MATRIKS. Definisi: Matriks adalah susunan bilangan-bilangan yang berbentuk segiempat siku-siku yang terdiri dari baris dan kolom.

MATRIKS. Definisi: Matriks adalah susunan bilangan-bilangan yang berbentuk segiempat siku-siku yang terdiri dari baris dan kolom. Page- MATRIKS Definisi: Matriks adalah susunan bilangan-bilangan yang berbentuk segiempat siku-siku yang terdiri dari baris dan kolom. Notasi: Matriks dinyatakan dengan huruf besar, dan elemen elemennya

Lebih terperinci

Matriks adalah susunan segi empat siku-siku dari objek yang diatur berdasarkan baris (row) dan kolom (column). Objek-objek dalam susunan tersebut

Matriks adalah susunan segi empat siku-siku dari objek yang diatur berdasarkan baris (row) dan kolom (column). Objek-objek dalam susunan tersebut Matriks adalah susunan segi empat siku-siku dari objek yang diatur berdasarkan baris (row) dan kolom (column). Objek-objek dalam susunan tersebut dinamakan entri dalam matriks atau disebut juga elemen

Lebih terperinci

BAB I MATRIKS DAN EKSPLORASINYA

BAB I MATRIKS DAN EKSPLORASINYA BAB I MATRIKS DAN EKSPLORASINYA A. Pendahuluan Aplikasi matriks banyak dijumpai dalam kehidupan sehari-hari, disadari atau tidak, penggunaan aplikasi tersebut banyak dimanfaatkan dalam menyelesaikan masalah-masalah

Lebih terperinci

METODE PENELITIAN. Penelitian ini dilakukan pada semester genap tahun ajaran bertempat di

METODE PENELITIAN. Penelitian ini dilakukan pada semester genap tahun ajaran bertempat di III. METODE PENELITIAN 3.1 Waktu dan Tempat Penelitian Penelitian ini dilakukan pada semester genap tahun ajaran 2011-2012 bertempat di Jurusan Matematika, Fakultas Matematika dan Ilmu Pengetahuan Alam

Lebih terperinci

I PENDAHULUAN II LANDASAN TEORI

I PENDAHULUAN II LANDASAN TEORI I PENDAHULUAN 1.1 Latar Belakang Matriks merupakan istilah yang digunakan untuk menunjukkan jajaran persegi panjang dari bilangan-bilangan dan setiap matriks akan mempunyai baris dan kolom. Salah satu

Lebih terperinci

MATRIKS PASCAL DAN SIFAT-SIFATNYA YOGIE BUDHI RANTUNG

MATRIKS PASCAL DAN SIFAT-SIFATNYA YOGIE BUDHI RANTUNG MATRIKS PASCAL DAN SIFAT-SIFATNYA YOGIE BUDHI RANTUNG DEPARTEMEN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM INSTITUT PERTANIAN BOGOR BOGOR 2014 PERNYATAAN MENGENAI SKRIPSI DAN SUMBER INFORMASI

Lebih terperinci

MODUL ATAS RING MATRIKS ( ) Arindia Dwi Kurnia Universitas Jenderal Soedirman Ari Wardayani Universitas Jenderal Soedirman

MODUL ATAS RING MATRIKS ( ) Arindia Dwi Kurnia Universitas Jenderal Soedirman Ari Wardayani Universitas Jenderal Soedirman Prosiding Seminar Nasional Matematika dan Terapannya 2016 p-issn : 2550-0384; e-issn : 2550-0392 MODUL ATAS RING MATRIKS Arindia Dwi Kurnia Universitas Jenderal Soedirman arindiadwikurnia@gmail.com Ari

Lebih terperinci

KAJIAN MATRIKS JORDAN DAN APLIKASINYA PADA SISTEM LINEAR WAKTU DISKRIT

KAJIAN MATRIKS JORDAN DAN APLIKASINYA PADA SISTEM LINEAR WAKTU DISKRIT KAJIAN MATRIKS JORDAN DAN APLIKASINYA PADA SISTEM LINEAR WAKTU DISKRIT Nama Mahasiswa : Aprilliantiwi NRP : 1207100064 Jurusan : Matematika Dosen Pembimbing : 1 Soleha, SSi, MSi 2 Dian Winda Setyawati,

Lebih terperinci

SIFAT DISTRIBUTIF MATRIKS IDEMPOTEN DAN APLIKASINYA PADA DETERMINAN MATRIKS

SIFAT DISTRIBUTIF MATRIKS IDEMPOTEN DAN APLIKASINYA PADA DETERMINAN MATRIKS SIFAT DISTRIBUTIF MATRIKS IDEMPOTEN DAN APLIKASINYA PADA DETERMINAN MATRIKS Nur Cahyo Ari Kusuma Jurusan Matematika, Fakultas Sains dan Matematika, Universitas Dipenegoro ari_lodehgereh@yahoo.com ABSTRAK.Sebuah

Lebih terperinci

Matematika Teknik INVERS MATRIKS

Matematika Teknik INVERS MATRIKS INVERS MATRIKS Dalam menentukan solusi suatu SPL selama ini kita dihadapkan kepada bentuk matriks diperbesar dari SPL. Cara lain yang akan dikenalkan disini adalah dengan melakukan OBE pada matriks koefisien

Lebih terperinci

MATRIKS Nuryanto, ST., MT.

MATRIKS Nuryanto, ST., MT. MateMatika ekonomi MATRIKS TUJUAN INSTRUKSIONAL KHUSUS Setelah mempelajari bab ini, anda diharapkan dapat : 1. Pengertian matriks 2. Operasi matriks 3. Jenis matriks 4. Determinan 5. Matriks invers 6.

Lebih terperinci

ALJABAR LINIER MAYDA WARUNI K, ST, MT ALJABAR LINIER (I)

ALJABAR LINIER MAYDA WARUNI K, ST, MT ALJABAR LINIER (I) ALJABAR LINIER MAYDA WARUNI K, ST, MT ALJABAR LINIER (I) 1 MATERI ALJABAR LINIER VEKTOR DALAM R1, R2 DAN R3 ALJABAR VEKTOR SISTEM PERSAMAAN LINIER MATRIKS, DETERMINAN DAN ALJABAR MATRIKS, INVERS MATRIKS

Lebih terperinci

KEKONVERGENAN SOLUSI PERSAMAAN DIFERENSIAL BIASA ORDE SATU MENGGUNAKAN METODE ITERASI VARIASIONAL

KEKONVERGENAN SOLUSI PERSAMAAN DIFERENSIAL BIASA ORDE SATU MENGGUNAKAN METODE ITERASI VARIASIONAL KEKONVERGENAN SOLUSI PERSAMAAN DIFERENSIAL BIASA ORDE SATU MENGGUNAKAN METODE ITERASI VARIASIONAL Dita Apriliani, Akhmad Yusuf, M. Mahfuzh Shiddiq Program Studi Matematika Fakultas MIPA Universitas Lambung

Lebih terperinci

SATUAN ACARA PERKULIAHAN UNIVERSITAS GUNADARMA

SATUAN ACARA PERKULIAHAN UNIVERSITAS GUNADARMA Mata Kuliah : Matematika Diskrit 2 Kode / SKS : IT02 / 3 SKS Program Studi : Sistem Komputer Fakultas : Ilmu Komputer & Teknologi Informasi. Pendahuluan 2. Vektor.. Pengantar mata kuliah aljabar linier.

Lebih terperinci

METODE BARU UNTUK MENGHITUNG DETERMINAN DARI MATRIKS TUGAS AKHIR YESPI ENDRI

METODE BARU UNTUK MENGHITUNG DETERMINAN DARI MATRIKS TUGAS AKHIR YESPI ENDRI METODE BARU UNTUK MENGHITUNG DETERMINAN DARI MATRIKS TUGAS AKHIR Diajukan sebagai salah Satu Syarat untuk Memperoleh Gelar Sarjana Sains pada Jurusan Matematika oleh: YESPI ENDRI 10854004331 FAKULTAS SAINS

Lebih terperinci

Matriks - Definisi. Sebuah matriks yang memiliki m baris dan n kolom disebut matriks m n. Sebagai contoh: Adalah sebuah matriks 2 3.

Matriks - Definisi. Sebuah matriks yang memiliki m baris dan n kolom disebut matriks m n. Sebagai contoh: Adalah sebuah matriks 2 3. MATRIKS Pokok Bahasan Matriks definisi Notasi matriks Matriks yang sama Panambahan dan pengurangan matriks Perkalian matriks Transpos suatu matriks Matriks khusus Determinan suatu matriks bujursangkar

Lebih terperinci