CHAPTER 6. INNER PRODUCT SPACE

Ukuran: px
Mulai penontonan dengan halaman:

Download "CHAPTER 6. INNER PRODUCT SPACE"

Transkripsi

1 CHAPTER 6. INNER PRODUCT SPACE Inner Prodcts Angle and Orthogonality in Inner Prodct Spaces Orthonormal Bases; Gram-Schmidt Process; QR-Decomposition Best Approximation; Least Sqares Orthogonal Matrices; Change of Basis

2 6.3. Basis Orthogonal Proses Gram-Schmidt; Dekomposisi QR

3 Basis Orthogonal dan Orthonormal Sat himpnan ektor dalam rang hasil kali dalam disebt himpnan ortogonal jika sema pasangan ektor-ektor yang berbeda dalam himpnan tersebt ortogonal. Sat himpnan ortogonal dimana setiap ektor mempnyai norma disebt orthonormal. Da ektor dan dalam sat hasil kali dalam disebt ortogonal jika, = 0. Himpnan W = {,,, n } adalah ortonormal jika: i, j = < i, j > = 0, jika i j, jika i = j

4 Basis Orthogonal dan Orthonormal Contoh: Jika = (0,, 0), = (, 0, ), 3 = (, 0, -) dan R 3 mempnyai hasil kali dalam Eclidean, maka himpnan ektorektor S = {,, 3 } adalah ortogonal karena :, = = 0, 3 = (-) = 0, 3 = (-) = 0, =, 3 =, 3 = 0.

5 Matriks Orthogonal Himpnan ortogonal dalam R n Matriks diagonal. Kolom-kolom matriks Q mxn membentk himpnan yang ortonormal jika dan hanya jika Q T Q = I n. Matriks A nxn yang kolom-kolomnya membentk himpnan yang ortonormal disebt matriks ortogonal. Matriks A nxn adalah matriks ortogonal jika dan hanya jika Q - =Q T (ata dengan kata lain Q T Q=QQ T =I n ) Q - =Q T Q T Q = QQ T = I n

6 Matriks Orthogonal Tnjkkan bahwa matriks berikt merpakan matriks ortogonal:

7 Normalisasi Vektor tak- nol Jika adalah ektor tak nol dalam sat rang hasil kali dalam, maka mempnyai norma, karena; Proses mengalikan sat ektor tak-nol dengan kebalikan panjangnya ntk mendapatkan sat ektor bernorma disebt menormalkan. Sat himpnan ektor-ektor yang orthogonal bisa selal dibah menjadi sat himpnan ortonormal dengan menormalkan masing-masing ektornya.

8 Contoh Menormalkan Vektor Tak-Nol Jika = (0,, 0), = (, 0, ), 3 = (, 0, -) Norma Eclidean :,, 3 Normalisasi,, and 3 : (0,,0), (,0, ), (,0, ) Himpnan S = {,, 3 } orthonormal dimana:

9 Koordinat Relatif Terhadap Basis Ortogonal Rang Hasil Kali Dalam Basis Ortonormal basis yang berisi ektor-ektor ortonormal Contoh: basis standard ntk R3 dengan hasil kali dalam Eclidean : I = (,0,0); j = (0,,0); k = (0,0,) Basis Orthogonal basis yang terdiri dari ektorektor orthogonal. Secara mm, basis standard hasil kali dalam Eclidean R n : e = (,0,0,.., n); e = (0,,0,,n);.. ; e n = (0,0,0,, )

10 Koordinat Relatif Terhadap Basis Ortonormal Teorema: Jika S= {,,, n } adalah sat basis ortonormal ntk sat rang hasil kali dalam V, dan adalah sebarang ektor dalam V, maka =, +, + +, n n,,,,,, n koordinat-koordinat dari relatif terhadap basis ortonormal S = {,,, n } () S = (,,,,,, n ) ektor koordinat dari relatif terhadap basis ini.

11 Contoh Jika = (0,, 0), = (-4/5, 0, 3/5), 3 = (3/5, 0, 4/5), bktikan bahwa S = {,, 3 } adalah sat basis ortonormal ntk R 3 dengan hasil kali dalam Eclidean. Nyatakan ektor = (,, ) sebagai kombinasi linier dari ektor-ektor dalam S dan cari ektor koordinat () s. Jawab:, =,, = -/5,, 3 = 7/5 = /5 + 7/5 3 ortonormal Vektor koordinat relatif terhadap S () s =(,,,,, 3 ) = (, -/5, 7/5)

12 Basis Orthonormal Jika S adalah sat basis ortonormal ntk sat rang hasil kali dalam berdimensi n dan jika () s = (,,, n ) dan () s = (,,, n ) maka: n n n n n d, ) ( ) ( ) ( ), (

13 Basis Orthonormal Contoh: Diketahi = (0,, 0), = (-4/5, 0, 3/5), 3 = (3/5, 0, 4/5), dan S = {,, 3 } adalah sat basis ortonormal ntk R 3 dengan hasil kali dalam Eclidean. Vektor = (,, ) merpakan kombinasi linier dari ektor-ektor dalam S dan ektor koordinat () s =(,,,,, 3 ) = (, -/5, 7/5) Maka norma ektor = (,,) adalah : Norma jga bisa dihitng berdasarkan ektor koordinat () s = (, -/5, 7/5)

14 Kombinasi Linier Vektor dalam Basis Ortogonal S Jika S = {,,, n } adalah sat basis ortogonal ntk sat rang ektor V, maka menormalkan masing-masing ektor ini menghasilkan basis ortonormal: Jika sebarang ektor dari V berlak: ata Rms ini menyatakan sebagai kombinasi linier dari ektorektor dalam basis ortogonal S. n n S,,, ' n n n n,,, n n n,,,

15 Orthonormal Basis Jika S = {,,, n } adalah sat himpnan ektor-ektor tak nol yang ortogonal dalam sat rang hasil kali dalam, maka S bebas linier

16 Proyeksi Ortogonal Dalam R ata R 3 dengan hasil kali dalam Eclidean, secara geometris, jika W adalah sat garis ata bidang yang melali titik asal, maka setiap ektor dalam rang tersebt dinyatakan sebagai: = w + w dimana w berada dalam W dan w tegak lrs terhadap W (W ). w proyeksi ortogonal pada W proy w w komponen yang ortogonal terhadap W proy w

17 Proyeksi Ortogonal w proyeksi ortogonal pada W proy w w komponen yang ortogonal terhadap W proy w Karena w = w = proy w + ( proy w )

18 Basis Orthonormal Anggap W adalah sat sb-rang berdimensi terhingga dari sat rang hasil kali dalam V. a. Jika {,, r } adalah sat basis orthonormal ntk W dan adalah sebarang ektor dalam V, maka proj w =, +, + +, r r b. Jika {,, r } adalah sat basis ortogonal ntk W dan adalah sebarang ektor dalam V, maka proj,,, r W r r

19 Contoh Jika R 3 memiliki hasil kali dalam Eclidean, dan anggap W adalah sb rang yang terentang oleh ektor-ektor ortonormal = (0,, 0) dan = (-4/5, 0, 3/5) maka : Proyeksi ortogonal = (,, ) pada W adalah Komponen ortogonal terhadap W adalah:

20 Basis Ortogonal dan Ortonormal Teori Setiap rang hasil kali dalam tak-nol berdimensi terhingga mempnyai sat basis ortonormal. Proses mengbah sat basis sebarang menjadi sat basis ortonormal disebt Proses Gram-Schmidt

21 Proses Gram-Schmidt Misal V adalah sebarang rang hasil kali dalam tak-nol berdimensi terhingga, {,,, n } adalah sebarang basis ntk V. Untk menghasilkan sat basis ortogonal {,,, n } ntk V dilakkan proses Gram Schmidt berikt: Langkah : Anggap = Langkah : Hitng ortogonal dengan menghitng komponen yang ortogonal terhadap rang W yang terentang :

22 Proses Gram-Schmidt Langkah 3 : Ssn ektor 3 yang ortogonal terhadap dan, dengan menghitng komponen yang ortogonal terhadap rang W yang terentang oleh dan. Langkah 4: Untk menentkan ektor 4 yang ortogonal terhadap, dan 3, hitng komponen 4 yang ortogonal terhadap rang W 3 yang terentang oleh, dan 3. Vektor-ektor basis ortogonal dinormalkan basis ortonormal V

23 Contoh Proses Gram-Schmidt Tinja rang ektor R 3 dengan hasil kali dalam Eclidean. Terapkan proses Gram Schmidt ntk mengbah ektor-ektor basis = (,, ), = (0,, ), 3 = (0, 0, ) Menjadi sat basis ortogonal {,, 3 }; kemdian normalkan ektor basis ortogonal tersebt ntk mendapatkan sat basis ortonormal {q, q, q 3 }. Jawab : Step : Anggap = = = (,, ) Step : Anggap = proj W.

24 = (,, ), = (0,, ), 3 = (0,0, ) Step 3: Anggap 3 = 3 proj W 3., Jadi = (,, ), = (-/3, /3, /3), 3 = (0, -/, /) membentk sat basis ortogonal ntk R 3. Norma ektor-ektor ini adalah: Sehingga basis ortonormal ntk R 3 adalah:

25 Dekomposisi QR Jika A adalah sat matriks nxn dengan ektor-ektor kolom yang bebas secara linier, maka A bisa difaktorkan sebagai : A = QR Q matriks m n dengan ektor-ektor kolom yang ortonormal, dimana Q T Q = I R matriks segitiga atas nxn yang dapat dibalik. Jika Q T Q = I, maka : Q T A = Q T QR = IR Q T A = R

26 Dekomposisi QR

27 Example : QR-Decomposition of a 3 3 Matrix 0 0 Carilah dekomposisi QR dari A 0 Jawab : Vektor-ektor kolom A adalah: Dengan menerapkan proses Gram-Scmidht dengan rangkaian normalisasi seperti contoh sebelmnya didapat: / 3 / 6 0 q / 3, q / 6, q / Q 3 / 3 / 6 /

28 R matriks Dekomposisi QR dari A :

29 6.5. Change of Basis Orthogonal Matrices 0/5/ Elementary Linear Algebra 9

30 Matriks-matriks Orthogonal Definisi: Sat matriks bjrsangkar A dengan sifat A - = A T Disebt sebagai matriks ortogonal, dimana; AA T = A T A = I 30

31 Matriks-matriks Orthogonal Matriks adalah matriks ortogonal, karena; AA T = A T A = I Matriks adalah ortogonal dimana terbkti A T A =, maka ektor baris dan ektor kolomnya membentk himpnan ortogonal.

32 Sifat Dasar Matriks-matriks Orthogonal Teorema: Untk sat matriks A nxn : A ortogonal Vektor-ektor baris dari A membentk sat himpnan ortonormal pada R n dengan hasil kali dalam Eclidean. Vektor-ektor kolom dari A membentk sat himpnan ortonormal pada R n dengan hasil kali dalam Eclidean. Teorema:. Iners dari sat matriks ortogonal adalah ortogonal.. Hasil kali matriks-matriks ortogonal adalah ortogonal. 3. Jika A ortogonal, maka det(a) = ata det(a) = -

33 Matriks Orthogonal Sebagai Operator Linear Teorema: Jika A adalah matriks nxn, maka pernyataan berikt ekialen: A ortogonal. ntk sema x pada R n. Ax. Ay = x. y ntk sema x dan y pada R n.

34 Perbahan Basis

35 Matriks Koordinat Jika S= {,,, n } adalah sat basis ntk sat rang ektor V, maka setiap ektor dalam V dapat dinyatakan sebagai sat kombinasi linear dari ektor-ektor basis: = k + k + + k n n k,k,, k n koordinat relatif terhadap S, dan ektor : s = (k, k, k n ) ektor koordinat relatif terhadap S. Matriks koordinat relatif terhadap S dinyatakan oleh [] s adalah matriks berkran nx yang didefinisikan sebagai: Matriks koordinat relatif terhadap S.

36 Matriks Koordinat Ortonormal Teorema: Jika S= {,,, n } adalah sat basis ortonormal ntk sat rang hasil kali dalam V, dan adalah sebarang ektor dalam V, maka =, +, + +, n n,,,,,, n koordinat-koordinat dari relatif terhadap basis ortonormal S = {,,, n } () S = (,,,,,, n ) ektor koordinat dari relatif terhadap basis ini. Matriks koordinat relatif terhadap S.

37 Contoh Matriks Koordinat

38 Masalah Perbahan Basis Jika kita merbah basis ntk sat rang ektor V dari old basis B to some new basis B, bagaimana matriks koordinat lama [] B dari ektor dikaitkan dengan matriks koordinat bar [] B?

39 Masalah Perbahan Basis matriks koordinat lama [] B matriks koordinat bar [] B Persamaan ini menyatakan bahwa matriks koordinat lama [] B dihasilkan jika kita mengalikan dari kiri matriks koordinat bar [] B dengan matriks:

40 Soltion of the Change-of-Basis Problem Jika kita mengbah basis ntk sat rang ektor V dari sat basis lama B = ( b, b,, b n ) menjadi sat basis B = ( b, b,, b n ), maka matriks koordinat lama [] B dari sat ektor dihbngkan dengan matriks koordinat bar [] B dari sat ektor yang sama dengan persamaan: Dimana kolom-kolom dari P adalah matriks matriks koordinat dari ektor-ektor basis bar relatif terhadap basis lama, yait ektorektor kolom dari P adalah ; Matriks P disebt matriks transisi dari B ke B, dinyatakan dalam bentk ektor-ektor kolomnya sebagai ;

41 Example Consider the bases and for R, where (a) Find the transition matrix from B to B (b) Use to find [] B if Soltion (a) First we mst find the coordinate ectors for the new basis ectors and relatie to the old basis B. Soltion (b)

42 Matriks Transisi Jika P adalah matriks transisi dari sat basis ortonormal ke basis ortonormal lainnya ntk sat rang hasil kali dalam, maka P adalah sat matriks ortogonal, yait : P - = P T Jika P adalah matriks transisi dari sat basis B ke sat basis B, maka ntk setiap ektor berlak:

43 Penerapan Pada Rotasi Smb Koordinat B = (, ) B = (, ) Smb koordinat x dan y didapat dengan merotasi smb xy berlawanan jarm jam terhadap titik asal dengan sdt θ. (x,y) Q (x,y ) P = transisi dari B ke B.

44 Rotasi Smb Koordinat Didapat P matriks ortogonal Komponen pada basis lama:. cos θ. sin θ Komponen pada basis lama:. cos (θ+ π/) = -sin θ. sin (θ+ π/) = cosθ

45 P - = P T Misal smb smb tersebt dirotasikan dengan θ = π/4, maka; Jika (x, y) = (, -), maka koordinat bar dari Q:

Trihastuti Agustinah

Trihastuti Agustinah TE 9467 Teknik Nmerik Sistem Linear Trihastti Agstinah Bidang Stdi Teknik Sistem Pengatran Jrsan Teknik Elektro - FTI Institt Teknologi Seplh Nopember O U T L I N E. Objektif. Teori. Contoh 4. Simplan

Lebih terperinci

3. RUANG VEKTOR. dan jika k adalah sembarang skalar, maka perkalian skalar ku didefinisikan oleh

3. RUANG VEKTOR. dan jika k adalah sembarang skalar, maka perkalian skalar ku didefinisikan oleh . RUANG VEKTOR. VEKTOR (GEOMETRIK) PENGANTAR Jika n adalah sebah bilangan blat positif maka tpel-terorde (ordered-n-tple) adalah sebah rtan n bilangan riil (a a... a n ). Himpnan sema tpel-terorde dinamakan

Lebih terperinci

Bab 5 RUANG HASIL KALI DALAM

Bab 5 RUANG HASIL KALI DALAM Bab 5 RUANG HASIL KALI DALAM 5 Hasil Kali Dalam Untk memotiasi konsep hasil kali dalam diambil ektor di R dan R sebagai anak panah dengan titik awal di titik asal O = ( ) Panjang sat ektor x di R dan R

Lebih terperinci

Bab 5 RUANG HASIL KALI DALAM

Bab 5 RUANG HASIL KALI DALAM Bab 5 RUANG HASIL KALI DALAM 5 Hasil Kali Dalam Untk memotiasi konsep hasil kali dalam diambil ektor di R dan R sebagai anak panah dengan titik awal di titik asal O ( ) Panjang sat ektor x di R dan R dinamakan

Lebih terperinci

ALJABAR LINEAR (Vektor diruang 2 dan 3) Disusun Untuk Memenuhi Tugas Mata Kuliah Aljabar Linear Dosen Pembimbing: Abdul Aziz Saefudin, M.

ALJABAR LINEAR (Vektor diruang 2 dan 3) Disusun Untuk Memenuhi Tugas Mata Kuliah Aljabar Linear Dosen Pembimbing: Abdul Aziz Saefudin, M. ALJABAR LINEAR (Vektor dirang 2 dan 3) Dissn Untk Memenhi Tgas Mata Kliah Aljabar Linear Dosen Pembimbing: Abdl Aziz Saefdin, M.Pd Dissn Oleh : Kelompok 3/3A4 1. Nrl Istiqomah 14144100130 2. Ambar Retno

Lebih terperinci

HASIL KALI TITIK DAN PROYEKSI ORTOGONAL SUATU VEKTOR (Aljabar Linear) Oleh: H. Karso FPMIPA UPI

HASIL KALI TITIK DAN PROYEKSI ORTOGONAL SUATU VEKTOR (Aljabar Linear) Oleh: H. Karso FPMIPA UPI HASIL KALI TITIK DAN PROYEKSI ORTOGONAL SUATU VEKTOR (Aljabar Linear) Oleh: H. Karso FPMIPA UPI A. Hasil Kali Titik (Hasil Kali Skalar) Da Vektor. Hasil Kali Skalar Da Vektor di R Perkalian diantara da

Lebih terperinci

Aljabar Linear Elementer

Aljabar Linear Elementer Aljabar Linear Elementer MA SKS Silabs : Bab I Matriks dan Operasinya Bab II Determinan Matriks Bab III Sistem Persamaan Linear Bab IV Vektor di Bidang dan di Rang Bab V Rang Vektor Bab VI Rang Hasil Kali

Lebih terperinci

PENYELESAIAN LUAS BANGUN DATAR DAN VOLUME BANGUN RUANG DENGAN KONSEP DETERMINAN

PENYELESAIAN LUAS BANGUN DATAR DAN VOLUME BANGUN RUANG DENGAN KONSEP DETERMINAN Bletin Ilmiah Math. Stat. dan Terapannya (Bimaster) Volme xx, No. x (tahn), hal xx xx. PENYELESAIAN LUAS BANGUN DATAR DAN VOLUME BANGUN RUANG DENGAN KONSEP DETERMINAN Doni Saptra, Helmi, Shantika Martha

Lebih terperinci

Trihastuti Agustinah. TE Teknik Numerik Sistem Linear

Trihastuti Agustinah. TE Teknik Numerik Sistem Linear E 09467 eknik Nmerik Sistem Linear rihastti Agstinah Bidang Stdi eknik Sistem Pengatran Jrsan eknik Elektro - FI Institt eknologi Seplh Nopember O U L I N E OBJEKIF EORI 3 CONOH 4 SIMPULAN 5 LAIHAN OBJEKIF

Lebih terperinci

Mata Kuliah: Aljabar Linier Dosen Pengampu: Darmadi, S. Si, M. Pd

Mata Kuliah: Aljabar Linier Dosen Pengampu: Darmadi, S. Si, M. Pd . RUANG BERDIMENSI n EUCLIDIS Mata Kliah: Aljabar Linier Dosen Pengamp: Darmadi S. Si M. Pd Dissn oleh: Kelompok Pendidikan Matematika VA. Abdl Fajar Sidiq (8.). Lilies Prwanti (8.76). Ristinawati (8.)

Lebih terperinci

MA1201 MATEMATIKA 2A Hendra Gunawan

MA1201 MATEMATIKA 2A Hendra Gunawan MA1201 MATEMATIKA 2A Hendra Gnawan Semester II, 2016/2017 3 Maret 2017 Kliah yang Lal 10.1-2 Parabola, Elips, dan Hiperbola 10.4 Persamaan Parametrik Kra di Bidang 10.5 Sistem Koordinat Polar 11.1 Sistem

Lebih terperinci

Hasil Kali Titik. Dua Operasi Vektor. Sifat-sifat Hasil Kali Titik. oki neswan (fmipa-itb)

Hasil Kali Titik. Dua Operasi Vektor. Sifat-sifat Hasil Kali Titik. oki neswan (fmipa-itb) oki neswan (fmipa-itb) Da Operasi Vektor Hasil Kali Titik Misalkan OAB adalah sebah segitiga, O (0; 0) ; A (a 1 ; a ) ; dan B (b 1 ; b ) : Maka panjang sisi OA; OB; dan AB maing-masing adalah q joaj =

Lebih terperinci

CHAPTER 6. Ruang Hasil Kali Dalam

CHAPTER 6. Ruang Hasil Kali Dalam CHAPTER 6. Ruang Hasil Kali Dalam Hasil Kali Dalam Sudut dan Ortogonal dalam Ruang Hasil Kali Dalam Orthonormal Bases; Gram-Schmidt Process; QR-Decomposition Best Approximation; Least Squares Orthogonal

Lebih terperinci

Trihastuti Agustinah

Trihastuti Agustinah TE 9467 Teknik Nmerik Sistem Linear Trihastti Agstinah Bidang Stdi Teknik Sistem Pengatran Jrsan Teknik Elektro - FTI Institt Teknologi Seplh Nopember O U T L I N E OBJEKTIF TEORI CONTOH 4 SIMPULAN 5 LATIHAN

Lebih terperinci

VEKTOR. Oleh : Musayyanah, S.ST, MT

VEKTOR. Oleh : Musayyanah, S.ST, MT VEKTOR Oleh : Msayyanah, S.ST, MT . ESRN SKLR DN VEKTOR Sifat besaran fisis : esaran Skalar Skalar Vektor esaran yang ckp dinyatakan oleh besarnya saja (besar dinyatakan oleh bilangan dan satan). Contoh

Lebih terperinci

Hendra Gunawan. 5 Maret 2014

Hendra Gunawan. 5 Maret 2014 MA101 MATEMATIKA A Hendra Gnawan Semester II, 013/014 5 Maret 014 Kliah yang Lal 10.1 Parabola, aboa, Elips, danhiperbola a 10.4 Persamaan Parametrik Kra di Bidang 10.5 Sistem Koordinat Polar 11.1 Sistem

Lebih terperinci

PANJANG DAN JARAK VEKTOR PADA RUANG HASIL KALI DALAM. V, yang selanjutnya dinotasikan dengan v, didefinisikan:

PANJANG DAN JARAK VEKTOR PADA RUANG HASIL KALI DALAM. V, yang selanjutnya dinotasikan dengan v, didefinisikan: PANJANG DAN JARAK VEKTOR PADA RUANG HASIL KALI DALAM Perl diingat kembali definisi panjang dan jarak sat ektor pada rang hasil kali dalam Eclid, yait rnag ektor yang hasil kali dlamnya didefinisikan sebagai

Lebih terperinci

III PEMODELAN SISTEM PENDULUM

III PEMODELAN SISTEM PENDULUM 14 III PEMODELAN SISTEM PENDULUM Penelitian ini membahas keterkontrolan sistem pendlm, dengan menentkan model matematika dari beberapa sistem pendlm, dan dilakkan analisis dan menyederhanakan permasalahan

Lebih terperinci

Pengembangan Hasil Kali Titik Pada Vektor

Pengembangan Hasil Kali Titik Pada Vektor Pengembangan Hasil Kali Titik Pada Vektor Swandi *, Sri Gemawati 2, Samsdhha 2 Mahasiswa Program Stdi Magister Matematika, Dosen Pendidikan Matematika Uniersitas Pasir Pengaraian 2 Dosen Jrsan Matematika

Lebih terperinci

Latihan 5: Inner Product Space

Latihan 5: Inner Product Space Latihan 5: Inner Product Space Diketahui vektor u v w ϵ R di mana u = v = Hitunglah : a b c d e f Diketahui vektor u v ϵ R di mana u = dan v = Carilah

Lebih terperinci

BAB III LIMIT DAN FUNGSI KONTINU

BAB III LIMIT DAN FUNGSI KONTINU BAB III LIMIT DAN FUNGSI KONTINU Konsep it mempnyai peranan yang sangat penting di dalam kalkls dan berbagai bidang matematika. Oleh karena it, konsep ini sangat perl ntk dipahami. Meskipn pada awalnya

Lebih terperinci

Solusi Sistem Persamaan Linear Fuzzy

Solusi Sistem Persamaan Linear Fuzzy Jrnal Matematika Vol. 16, No. 2, November 2017 ISSN: 1412-5056 / 2598-8980 http://ejornal.nisba.ac.id Diterima: 14/08/2017 Disetji: 20/10/2017 Pblikasi Online: 28/11/2017 Solsi Sistem Persamaan Linear

Lebih terperinci

Yang dibahas : Ortogonal Basis ortogonal Ortonormal Matrik ortogonal Komplemen ortogonal Proyeksi ortogonal Faktorisasi QR

Yang dibahas : Ortogonal Basis ortogonal Ortonormal Matrik ortogonal Komplemen ortogonal Proyeksi ortogonal Faktorisasi QR Ortogonal Yang dibahas : Ortogonal Basis ortogonal Ortonormal Matrik ortogonal Komplemen ortogonal Proyeksi ortogonal Faktorisasi QR Ortogonal Himpunan vektor {v, v,.., v k } dalam R n disebut himpunan

Lebih terperinci

BAB III RUANG VEKTOR R 2 DAN R 3. Bab ini membahas pengertian dan operasi vektor-vektor. Selain

BAB III RUANG VEKTOR R 2 DAN R 3. Bab ini membahas pengertian dan operasi vektor-vektor. Selain BAB III RUANG VEKTOR R DAN R 3 Bab ini membahas pengertian dan operasi ektor-ektor. Selain operasi aljabar dibahas pula operasi hasil kali titik dan hasil kali silang dari ektor-ektor. Tujuan Instruksional

Lebih terperinci

BUKU AJAR METODE ELEMEN HINGGA

BUKU AJAR METODE ELEMEN HINGGA BUKU AJA ETODE EEEN HINGGA Diringkas oleh : JUUSAN TEKNIK ESIN FAKUTAS TEKNIK STUKTU TUSS.. Deinisi Umm Trss adalah strktr yang terdiri atas batang-batang lrs yang disambng pada titik perpotongan dengan

Lebih terperinci

BAB 6 RUANG HASIL KALI DALAM. Dr. Ir. Abdul Wahid Surhim, MT.

BAB 6 RUANG HASIL KALI DALAM. Dr. Ir. Abdul Wahid Surhim, MT. BAB 6 RUANG HASIL KALI DALAM Dr. Ir. Abdul Wahid Surhim, MT. KERANGKA PEMBAHASAN 1. Hasil Kali Dalam 2. Sudut dan Keortogonalan pada Ruang Hasil Kali Dalam 3.Basis Ortogonal, Proses Gram-Schmidt 4.Perubahan

Lebih terperinci

Pengenalan Pola. Ekstraksi dan Seleksi Fitur

Pengenalan Pola. Ekstraksi dan Seleksi Fitur Pengenalan Pola Ekstraksi dan Seleksi Fitr PTIIK - 4 Corse Contents Collet Data Objet to Dataset 3 Ekstraksi Fitr 4 Seleksi Fitr Design Cyle Collet data Choose featres Choose model Train system Evalate

Lebih terperinci

URUNAN PARSIAL. Definisi Jika f fungsi dua variable (x dan y) maka: atau f x (x,y), didefinisikan sebagai

URUNAN PARSIAL. Definisi Jika f fungsi dua variable (x dan y) maka: atau f x (x,y), didefinisikan sebagai 6 URUNAN PARSIAL Deinisi Jika ngsi da ariable maka: i Trnan parsial terhadap dinotasikan dengan ata dideinisikan sebagai ii Trnan parsial terhadap dinotasikan dengan ata dideinisikan sebagai Tentkan trnan

Lebih terperinci

8.1 Transformasi Linier Umum. Bukan lagi transformasi R n R m, tetapi transformasi linier dari

8.1 Transformasi Linier Umum. Bukan lagi transformasi R n R m, tetapi transformasi linier dari 8.1 Transformasi Linier Umum Bukan lagi transformasi R n R m, tetapi transformasi linier dari ruang vektor V vektor W. Definisi Jika T: V W adalah suatu fungsi dari suatu ruang vektor V ke ruang vektor

Lebih terperinci

BEBERAPA SIFAT JARAK ROTASI PADA POHON BINER TERURUT DAN TERORIENTASI

BEBERAPA SIFAT JARAK ROTASI PADA POHON BINER TERURUT DAN TERORIENTASI JRISE, Vol.1, No.1, Febrari 2014, pp. 28~40 ISSN: 2355-3677 BEBERAPA SIFA JARAK ROASI PADA POHON BINER ERURU DAN ERORIENASI Oleh: Hasniati SMIK KHARISMA Makassar hasniati@kharisma.ac.id Abstrak Andaikan

Lebih terperinci

Penyelesaian Sistem Persamaan Linear (SPL) Dengan Dekomposisi QR

Penyelesaian Sistem Persamaan Linear (SPL) Dengan Dekomposisi QR Penyelesaian Sistem Persamaan Linear (SPL) Dengan Dekomposisi QR Shelvia Mandasari #1 M Subhan *2 Meira Parma Dewi *3 # Student of Mathematics Department State University of Padang Indonesia * Lecturers

Lebih terperinci

Aljabar Linier Elementer. Kuliah ke-9

Aljabar Linier Elementer. Kuliah ke-9 Aljabar Linier Elementer Kuliah ke-9 Materi kuliah Hasilkali Titik Proyeksi Ortogonal 7/9/2014 Yanita, FMIPA Matematika Unand 2 Hasilkali Titik dari Vektor-Vektor Definisi Jika u dan v adalah vektor-vektor

Lebih terperinci

BEBERAPA IDENTITAS PADA GENERALISASI BARISAN FIBONACCI ABSTRACT

BEBERAPA IDENTITAS PADA GENERALISASI BARISAN FIBONACCI ABSTRACT BEBERP IDENTITS PD GENERLISSI BRISN FIBONCCI Sri Melati 1, Mashadi, Msraini M 1 Mahasiswa Program Stdi S1 Matematika Dosen Jrsan Matematika Fakltas Matematika dan Ilm Pengetahan lam Universitas Ria Kamps

Lebih terperinci

Vektor di Bidang dan di Ruang

Vektor di Bidang dan di Ruang Vektor di Bidang dan di Ruang 4.1. Pengertian, notasi,dan operasi pada ektor Vektor merupakan istilah untuk menyatakan besaran yang mempunyai arah. Secara geometris, ektor dinyakan dengan segmen-segmen

Lebih terperinci

7. NILAI-NILAI VEKTOR EIGEN. Nilai Eigen dan Vektor Eigen Diagonalisasi Diagonalisasi Ortogonal

7. NILAI-NILAI VEKTOR EIGEN. Nilai Eigen dan Vektor Eigen Diagonalisasi Diagonalisasi Ortogonal 7. NILAI-NILAI VEKTOR EIGEN Nilai Eigen dan Vektor Eigen Diagonalisasi Diagonalisasi Ortogonal Nilai Eigen, Vektor Eigen Diketahui A matriks nxn dan x adalah suatu vektor pada R n, maka biasanya tdk ada

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1. Logika Fzzy Pada awalnya sistem logika fzzy diperkenalkan oleh Profesor Lotfi A. Zadeh pada tahn 1965. Konsep fzzy bermla dari himpnan klasik (crisp) yang bersifat tegas ata

Lebih terperinci

EKONOMETRIKA PERSAMAAN SIMULTAN

EKONOMETRIKA PERSAMAAN SIMULTAN EKONOMETRIKA PERSAMAAN SIMULTAN OLEH KELOMPOK 5 DEKI D. TAPATAB JUMASNI K. TANEO MERSY C. PELT DELFIANA N. ERO GERARDUS V. META ARMY A. MBATU SILVESTER LANGKAMANG FAKULTAS PERTANIAN UNIVERSITAS NUSA CENDANA

Lebih terperinci

Aljabar Linear Elementer

Aljabar Linear Elementer BAB I RUANG VEKTOR Pada kuliah Aljabar Matriks kita telah mendiskusikan struktur ruang R 2 dan R 3 beserta semua konsep yang terkait. Pada bab ini kita akan membicarakan struktur yang merupakan bentuk

Lebih terperinci

PROGRAM STUDI PENDIDIKAN MATEMATIKA FAKULTAS KEGURUAN DAN ILMU PENDIDIKAN UNIVERSITAS VETERAN BANGUN NUSANTARA SUKOHARJO

PROGRAM STUDI PENDIDIKAN MATEMATIKA FAKULTAS KEGURUAN DAN ILMU PENDIDIKAN UNIVERSITAS VETERAN BANGUN NUSANTARA SUKOHARJO PERANGKAT PEMBELAJARAN MATA KULIAH : ALJABAR LINIER 2 KODE : MKK414515 DOSEN PENGAMPU : Annisa Prima Exacta, M.Pd. PROGRAM STUDI PENDIDIKAN MATEMATIKA FAKULTAS KEGURUAN DAN ILMU PENDIDIKAN UNIVERSITAS

Lebih terperinci

lim 0 h Jadi f (x) = k maka f (x)= 0 lim lim lim TURUNAN/DIFERENSIAL Definisi : Laju perubahan nilai f terhadap variabelnya adalah :

lim 0 h Jadi f (x) = k maka f (x)= 0 lim lim lim TURUNAN/DIFERENSIAL Definisi : Laju perubahan nilai f terhadap variabelnya adalah : TURUNAN/DIFERENSIAL Deinisi : Laj perbaan nilai teradap ariabelnya adala : y dy d lim = lim = 0 0 d d merpakan ngsi bar disebt trnan ngsi ata perbandingan dierensial, proses mencarinya disebt menrnkan

Lebih terperinci

V dinamakan ruang vektor jika terpenuhi aksioma : 1. V tertutup terhadap operasi penjumlahan

V dinamakan ruang vektor jika terpenuhi aksioma : 1. V tertutup terhadap operasi penjumlahan RUANG VEKTOR Rang Vetor Umm Misalan dan, l Riil V dinamaan rang vetor jia terpenhi asioma :. V terttp terhadap operasi penjmlahan.., Unt setiap v v v, w V, v V v w v w maa v V. Terdapat V sehingga nt setiap

Lebih terperinci

NAMA : KELAS : theresiaveni.wordpress.com

NAMA : KELAS : theresiaveni.wordpress.com 1 NAMA : KELAS : teresiaeni.wordpress.com TURUNAN/DIFERENSIAL Deinisi : Laj perbaan nilai teradap ariabelnya adala : y dy d ' = = d d merpakan ngsi bar disebt trnan ngsi ata perbandingan dierensial, proses

Lebih terperinci

(a) (b) Gambar 1. garis singgung

(a) (b) Gambar 1. garis singgung BAB. TURUNAN Sebelm membahas trnan, terlebih dahl ditinja tentang garis singgng pada sat krva. A. Garis singgng Garis singgng adalah garis yang menyinggng sat titik tertent pada sat krva. Pengertian garis

Lebih terperinci

Untuk pondasi tiang tipe floating, kekuatan ujung tiang diabaikan. Pp = kekuatan ujung tiang yang bekerja secara bersamaan dengan P

Untuk pondasi tiang tipe floating, kekuatan ujung tiang diabaikan. Pp = kekuatan ujung tiang yang bekerja secara bersamaan dengan P BAB 3 LANDASAN TEORI 3.1 Mekanisme Pondasi Tiang Konvensional Pondasi tiang merpakan strktr yang berfngsi ntk mentransfer beban di atas permkaan tanah ke lapisan bawah di dalam massa tanah. Bentk transfer

Lebih terperinci

BAB RELATIVITAS Semua Gerak adalah Relatif

BAB RELATIVITAS Semua Gerak adalah Relatif BAB RELATIVITAS. Sema Gerak adalah Relatif Sat benda dikatakan bergerak bila keddkan benda it berbah terhadap sat titik aan ata kerangka aan. Seorang penmpang kereta api yang sedang ddk di dalam kereta

Lebih terperinci

Aljabar Linier & Matriks

Aljabar Linier & Matriks Aljabar Linier & Matriks 1 Vektor Orthogonal Vektor-vektor yang saling tegak lurus juga sering disebut vektor orthogonal. Dua vektor disebut saling tegak lurus jika dan hanya jika hasil perkalian titik-nya

Lebih terperinci

Vektor-Vektor. Ruang Berdimensi-2. Ruang Berdimensi-3

Vektor-Vektor. Ruang Berdimensi-2. Ruang Berdimensi-3 Vektor-Vektor dalam Ruang Berdimensi-2 dan Ruang Berdimensi-3 Disusun oleh: Achmad Fachrurozi Albert Martin Sulistio Iffatul Mardhiyah Rifki Kosasih Departemen Matematika Fakultas Matematika dan Ilmu Pengetahuan

Lebih terperinci

Kata Pengantar. Puji syukur kehadirat Yang Maha Kuasa yang telah memberikan pertolongan hingga modul ajar ini dapat terselesaikan.

Kata Pengantar. Puji syukur kehadirat Yang Maha Kuasa yang telah memberikan pertolongan hingga modul ajar ini dapat terselesaikan. i Kata Pengantar Puji syukur kehadirat Yang Maha Kuasa yang telah memberikan pertolongan hingga modul ajar ini dapat terselesaikan. Modul ajar ini dimaksudkan untuk membantu penyelenggaraan kuliah jarak

Lebih terperinci

Euclidean n & Vector Spaces. Matrices & Vector Spaces

Euclidean n & Vector Spaces. Matrices & Vector Spaces Lecture 9 Euclidean n & Vector Spaces Delivered by: Filson Maratur Sidjabat fmsidjabat@president.ac.id Matrices & Vector Spaces #4 th June 05 (90%*score / 0% extra points for HW-Q) Retake Quiz. Compute

Lebih terperinci

Outline Vektor dan Garis Koordinat Norma Vektor Hasil Kali Titik dan Proyeksi Hasil Kali Silang. Geometri Vektor. Kusbudiono. Jurusan Matematika

Outline Vektor dan Garis Koordinat Norma Vektor Hasil Kali Titik dan Proyeksi Hasil Kali Silang. Geometri Vektor. Kusbudiono. Jurusan Matematika Jurusan Matematika 1 Nopember 2011 1 Vektor dan Garis 2 Koordinat 3 Norma Vektor 4 Hasil Kali Titik dan Proyeksi 5 Hasil Kali Silang Definisi Vektor Definisi Jika AB dan CD ruas garis berarah, keduanya

Lebih terperinci

81 Bab 6 Ruang Hasilkali Dalam

81 Bab 6 Ruang Hasilkali Dalam 8 Bab Rang Haslkal Dalam Bab RUANG HASIL KALI DALAM Rang hasl kal dalam merpakan rang ektor yang dlengkap dengan operas hasl kal dalam. Sepert halnya rang ektor rang haslkal dalam bermanfaat dalam beberapa

Lebih terperinci

Aljabar Linear Elementer

Aljabar Linear Elementer Aljabar Linear Elementer MA SKS Silabs : Bab I Matris dan Operasinya Bab II Determinan Matris Bab III Sistem Persamaan Linear Bab IV Vetor di Bidang dan di Rang Bab V Rang Vetor Bab VI Rang Hasil Kali

Lebih terperinci

TRANSFORMASI LINIER (Kajian Fungsi antar Ruang Vektor)

TRANSFORMASI LINIER (Kajian Fungsi antar Ruang Vektor) Outline TRANSFORMASI LINIER (Kajian Fungsi antar Ruang Vektor) Drs. Antonius Cahya Prihandoko, M.App.Sc PS. Pendidikan Matematika PS. Sistem Informasi University of Jember Indonesia Jember, 2009 Outline

Lebih terperinci

BAB 4 RUANG VEKTOR EUCLID. Dr. Ir. Abdul Wahid Surhim, MT.

BAB 4 RUANG VEKTOR EUCLID. Dr. Ir. Abdul Wahid Surhim, MT. BAB 4 RUANG VEKTOR EUCLID Dr. Ir. Abdul Wahid Surhim, MT. KERANGKA PEMBAHASAN 1. Ruang n Euclid 2. Transformasi Linier dari R n dan R m 3. Sifat-sifat Transformasi Linier 4.1 RUANG N EUCLID Jika di bab

Lebih terperinci

Jika titik O bertindak sebagai titik pangkal, maka ruas-ruas garis searah mewakili

Jika titik O bertindak sebagai titik pangkal, maka ruas-ruas garis searah mewakili 4.5. RUMUS PERBANDINGAN VEKTOR DAN KOORDINAT A. Pengertian Vektor Posisi dari Suatu Titik Misalnya titik A, B, C Dan D. adalah titik sebarang di bidang atau di ruang. Jika titik O bertindak sebagai titik

Lebih terperinci

PENELUSURAN LINTASAN DENGAN JARINGAN SARAF TIRUAN

PENELUSURAN LINTASAN DENGAN JARINGAN SARAF TIRUAN Bab 4 PENELUSURAN LINTASAN DENGAN JARINGAN SARAF TIRUAN Tgas mendasar dari robot berjalan ialah dapat bergerak secara akrat pada sat lintasan (trajectory) yang diberikan Ata dengan kata lain galat antara

Lebih terperinci

ALJABAR LINEAR SUMANANG MUHTAR GOZALI KBK ANALISIS

ALJABAR LINEAR SUMANANG MUHTAR GOZALI KBK ANALISIS ALJABAR LINEAR SUMANANG MUHTAR GOZALI KBK ANALISIS UNIVERSITAS PENDIDIKAN INDONESIA BANDUNG 2010 2 KATA PENGANTAR Bismillahirrahmanirrahim Segala puji bagi Allah Rabb semesta alam Shalawat serta salam

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar Belakang

BAB I PENDAHULUAN 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Pembahasan mendasar mengenai matriks terutama yang berkaitan dengan matriks yang dapat didiagonalisasi telah jelas disajikan dalam referensi yang biasanya digunakan

Lebih terperinci

Matematika II : Vektor. Dadang Amir Hamzah

Matematika II : Vektor. Dadang Amir Hamzah Matematika II : Vektor Dadang Amir Hamzah sumber : http://www.whsd.org/uploaded/faculty/tmm/calc front image.jpg 2016 Dadang Amir Hamzah Matematika II Semester II 2016 1 / 24 Outline 1 Pendahuluan Dadang

Lebih terperinci

01-Pengenalan Vektor. Dosen: Anny Yuniarti, M.Comp.Sc Gasal Anny2011 1

01-Pengenalan Vektor. Dosen: Anny Yuniarti, M.Comp.Sc Gasal Anny2011 1 01-Pengenalan Vektor Dosen: Anny Yuniarti, M.Comp.Sc Gasal 2011-2012 Anny2011 1 Agenda Bagian 1: Vektor dan Kombinasi Linier Bagian 2: Panjang Vektor dan Perkalian Titik (Dot Products) Bagian 3: Matriks

Lebih terperinci

Aljabar Linier & Matriks

Aljabar Linier & Matriks Aljabar Linier & Matriks 1 Pendahuluan Ruang vektor tidak hanya terbatas maksimal 3 dimensi saja 4 dimensi, 5 dimensi, dst ruang n-dimensi Jika n adalah bilangan bulat positif, maka sekuens sebanyak n

Lebih terperinci

vektor ( MAT ) Disusun Oleh : Drs. Pundjul Prijono Nip

vektor ( MAT ) Disusun Oleh : Drs. Pundjul Prijono Nip MODUL MATEMATIKA SMA ektr ( MAT..4 ) Dissn Oleh : Drs. Pndjl Prijn Nip. 95807.980..00 PEMERINTAH KOTA MALANG DINAS PENDIDIKAN SMA NEGERI 6 Jalan Mayjen Sngkn N. 58 Telp. (04) 7506 Malang Mdl..4 VEKTOR

Lebih terperinci

Ketaksamaan Cauchy-Schwarz, Ketaksamaan Bessel, dan Kesamaan Parseval di Ruang n-hasilkali Dalam Baku. Hendra Gunawan

Ketaksamaan Cauchy-Schwarz, Ketaksamaan Bessel, dan Kesamaan Parseval di Ruang n-hasilkali Dalam Baku. Hendra Gunawan Ketaksamaan Cauchy-Schwarz, Ketaksamaan Bessel, dan Kesamaan Parseval di Ruang n-hasilkali Dalam Baku Hendra Gunawan Departemen Matematika, ITB, Bandung 40132 hgunawan@dns.math.itb.ac.id 1 Abstrak Beberapa

Lebih terperinci

DIAGONALISASI MATRIKS KOMPLEKS

DIAGONALISASI MATRIKS KOMPLEKS Buletin Ilmiah Mat Stat dan Terapannya (Bimaster) Volume 04, No 3 (2015), hal 337-346 DIAGONALISASI MATRIKS KOMPLEKS Heronimus Hengki, Helmi, Mariatul Kiftiah INTISARI Matriks kompleks merupakan matriks

Lebih terperinci

Soal No. 1 Perhatikan gambar berikut, PQ adalah sebuah vektor dengan titik pangkal P dan titik ujung Q

Soal No. 1 Perhatikan gambar berikut, PQ adalah sebuah vektor dengan titik pangkal P dan titik ujung Q Soal No. 1 Perhatikan gambar berikut, PQ adalah sebuah vektor dengan titik pangkal P dan titik ujung Q a) Nyatakan PQ dalam bentuk vektor kolom b) Nyatakan PQ dalam bentuk i, j (vektor satuan) c) Tentukan

Lebih terperinci

BAB III 3. METODOLOGI PENELITIAN

BAB III 3. METODOLOGI PENELITIAN BAB III 3. METODOLOGI PENELITIAN 3.1. PROSEDUR ANALISA Penelitian ini merpakan sebah penelitian simlasi yang menggnakan bantan program MATLAB. Adapn tahapan yang hars dilakkan pada saat menjalankan penlisan

Lebih terperinci

BAB IV TRANSFORMASI LINEAR. sebuah vektor yang unik di dalam W dengan sebuah vektor di dalam V, maka kita mengatakan F

BAB IV TRANSFORMASI LINEAR. sebuah vektor yang unik di dalam W dengan sebuah vektor di dalam V, maka kita mengatakan F BAB IV TRANSFORMASI LINEAR 4.. Transformasi Linear Jika V dan W adalah ruang vektor dan F adalah sebuah fungsi yang mengasosiasikan sebuah vektor yang unik di dalam W dengan sebuah vektor di dalam V, maka

Lebih terperinci

DIKTAT PERKULIAHAN. EDISI 1 Aljabar Linear dan Matriks

DIKTAT PERKULIAHAN. EDISI 1 Aljabar Linear dan Matriks DIKTAT PERKULIAHAN EDISI 1 Aljabar Linear dan Matriks Penulis : Ednawati Rainarli, M.Si. Kania Evita Dewi, M.Si. JURUSAN TEKNIK INFORMATIKA UNIVERSITAS KOMPUTER INDONESIA BANDUNG 011 IF/011 1 DAFTAR ISI

Lebih terperinci

TE Teknik Numerik Sistem Linear. Bidang Studi Teknik Sistem Pengaturan Jurusan Teknik Elektro - FTI Institut Teknologi Sepuluh Nopember

TE Teknik Numerik Sistem Linear. Bidang Studi Teknik Sistem Pengaturan Jurusan Teknik Elektro - FTI Institut Teknologi Sepuluh Nopember TE9467 Teknik Numerik Sistem Linear Bidang Studi Teknik Sistem Pengaturan Jurusan Teknik Elektro - FTI Institut Teknologi Sepuluh Nopember O U T L I N E OBJEKTIF TEORI 3 CONTOH 4 SIMPULAN 5 LATIHAN OBJEKTIF

Lebih terperinci

Chapter 5 GENERAL VECTOR SPACE 5.1. REAL VECTOR SPACES 5.2. SUB SPACES

Chapter 5 GENERAL VECTOR SPACE 5.1. REAL VECTOR SPACES 5.2. SUB SPACES Chapter 5 GENERAL VECTOR SPACE 5.1. REAL VECTOR SPACES 5.2. SUB SPACES Definisi : VECTOR SPACE Jika V adalah ruang vektor dimana u,v,w merupakan objek dalam V sebagai vektor, dan terdapat skalar k dan

Lebih terperinci

Materi Aljabar Linear Lanjut

Materi Aljabar Linear Lanjut Materi Aljabar Linear Lanjut TRANSFORMASI LINIER DARI R n KE R m ; GEOMETRI TRANSFORMASI LINIER DARI R 2 KE R 2 Disusun oleh: Dwi Lestari, M.Sc email: dwilestari@uny.ac.id JURUSAN PENDIDIKAN MATEMATIKA

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI 8 BAB LANDASAN TEORI. Pasar.. Pengertian Pasar Pasar adalah sebah tempat mm yang melayani transaksi jal - beli. Di dalam Peratran Daerah Khss Ibkota Jakarta Nomor 6 Tahn 99 tentang pengrsan pasar di Daerah

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang Masalah

BAB I PENDAHULUAN Latar Belakang Masalah BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Perkalian skalar perplectic merupakan bagian dari teori perkalian skalar indefinite. Untuk menjelaskan pengertian perkalian skalar perplectic, terlebih dahulu

Lebih terperinci

Ruang Vektor Euclid R 2 dan R 3

Ruang Vektor Euclid R 2 dan R 3 Ruang Vektor Euclid R 2 dan R 3 Kuliah Aljabar Linier Semester Ganjil 2015-2016 MZI Fakultas Informatika Telkom University FIF Tel-U September 2015 MZI (FIF Tel-U) Ruang Vektor R 2 dan R 3 September 2015

Lebih terperinci

METODE SIMPLEKS PRIMAL-DUAL PADA PROGRAM LINIER FUZZY PENUH DENGAN BILANGAN TRAPEZOIDAL

METODE SIMPLEKS PRIMAL-DUAL PADA PROGRAM LINIER FUZZY PENUH DENGAN BILANGAN TRAPEZOIDAL METODE SIMPLEKS PRIMAL-DUAL PADA PROGRAM LINIER FUZZY PENUH DENGAN BILANGAN TRAPEZOIDAL Bambang Irawanto 1,Djwandi 2, Sryoto 3, Rizky Handayani 41,2,3 Departemen Matematika Faktas Sains dan Matematika

Lebih terperinci

Part II SPL Homogen Matriks

Part II SPL Homogen Matriks Part II SPL Homogen Matriks SPL Homogen Bentuk Umum SPL homogen dalam m persamaan dan n variabel x 1, x 2,, x n : a 11 x 1 + a 12 x 2 + + a 1n x n = 0 a 21 x 1 + a 22 x 2 + + a 2n x n = 0 a m1 x 1 + a

Lebih terperinci

SOLUSI PENDEKATAN TERBAIK SISTEM PERSAMAAN LINEAR TAK KONSISTEN MENGGUNAKAN DEKOMPOSISI NILAI SINGULAR

SOLUSI PENDEKATAN TERBAIK SISTEM PERSAMAAN LINEAR TAK KONSISTEN MENGGUNAKAN DEKOMPOSISI NILAI SINGULAR Buletin Ilmiah Math. Stat. dan Terapannya (Bimaster) Volume 03, No. 1 (2014), hal 91 98. SOLUSI PENDEKATAN TERBAIK SISTEM PERSAMAAN LINEAR TAK KONSISTEN MENGGUNAKAN DEKOMPOSISI NILAI SINGULAR Febrianti,

Lebih terperinci

SUMMARY ALJABAR LINEAR

SUMMARY ALJABAR LINEAR SUMMARY ALJABAR LINEAR SUMANANG MUHTAR GOZALI KBK ANALISIS UNIVERSITAS PENDIDIKAN INDONESIA BANDUNG 2010 2 KATA PENGANTAR Bismillahirrahmanirrahim Segala puji bagi Allah Rabb semesta alam. Shalawat serta

Lebih terperinci

PENYELESAIAN SISTEM PERSAMAAN LINEAR KOMPLEKS MENGGUNAKAN METODE DEKOMPOSISI NILAI SINGULAR (SVD) TUGAS AKHIR. Oleh : DEWI YULIANTI

PENYELESAIAN SISTEM PERSAMAAN LINEAR KOMPLEKS MENGGUNAKAN METODE DEKOMPOSISI NILAI SINGULAR (SVD) TUGAS AKHIR. Oleh : DEWI YULIANTI PENYELESAIAN SISTEM PERSAMAAN LINEAR KOMPLEKS MENGGUNAKAN METODE DEKOMPOSISI NILAI SINGULAR (SVD) TUGAS AKHIR Diajukan Sebagai Salah Satu Syarat untuk Memperoleh Gelar Sarjana Sains Pada Jurusan Matematika

Lebih terperinci

VEKTOR. Notasi Vektor. Panjang Vektor. Penjumlahan dan Pengurangan Vektor (,, ) (,, ) di atas dapat dinyatakan dengan: Matriks = Maka = =

VEKTOR. Notasi Vektor. Panjang Vektor. Penjumlahan dan Pengurangan Vektor (,, ) (,, ) di atas dapat dinyatakan dengan: Matriks = Maka = = VEKTOR Notasi Vektor (,, ) (,, ) Vektor atau Matriks Maka di atas dapat dinyatakan dengan: Kombinasi linear vektor basis maka; ( ) + ( ) + ( ) + + (,, ) Panjang Vektor Misalkan + + (,, ), maka panjang

Lebih terperinci

MATEMATIKA. Sesi VEKTOR 2 CONTOH SOAL A. DEFINISI PERKALIAN TITIK

MATEMATIKA. Sesi VEKTOR 2 CONTOH SOAL A. DEFINISI PERKALIAN TITIK MATEMATIKA KELAS XII IPA - KURIKULUM GABUNGAN Sesi NGAN VEKTOR A. DEFINISI PERKALIAN TITIK Misal a a a a dan b b b b dua vektor di R. Perkalian titik dari a dan b, dinotasikan a badalah a b ab + ab + ab

Lebih terperinci

4. VEKTOR-VEKTOR DI RUANG-2 DAN RUANG-3

4. VEKTOR-VEKTOR DI RUANG-2 DAN RUANG-3 Diktt Aljbr Liner Vektor di Rng dn Rng 4. VEKTOR-VEKTOR DI RUANG- DAN RUANG- 4.. PENGANTAR DEFINISI 4.: VEKTOR Vektor dlh st besrn yng memiliki besr dn rh. Vektor yng memiliki pnjng dn rh yng sm diktkn

Lebih terperinci

MATEMATIKA INFORMATIKA 2 TEKNIK INFORMATIKA UNIVERSITAS GUNADARMA FENI ANDRIANI

MATEMATIKA INFORMATIKA 2 TEKNIK INFORMATIKA UNIVERSITAS GUNADARMA FENI ANDRIANI MATEMATIKA INFORMATIKA 2 TEKNIK INFORMATIKA UNIVERSITAS GUNADARMA FENI ANDRIANI SAP (1) Buku : Suryadi H.S. 1991, Pengantar Aljabar dan Geometri analitik Vektor Definisi, Notasi, dan Operasi Vektor Susunan

Lebih terperinci

Vektor di ruang dimensi 2 dan ruang dimensi 3

Vektor di ruang dimensi 2 dan ruang dimensi 3 Vektor di ruang dimensi 2 dan ruang dimensi 3 Maulana Malik 1 (maulana.malik@sci.ui.ac.id) 1 Departemen Matematika FMIPA UI Kampus Depok UI, Depok 16424 2014/2015 1/21 maulana.malik@sci.ui.ac.id Vektor

Lebih terperinci

Penerapan Masalah Transportasi

Penerapan Masalah Transportasi KA4 RESEARCH OPERATIONAL Penerapan Masalah Transportasi DISUSUN OLEH : HERAWATI 008959 JAKA HUSEN 08055 HAPPY GEMELI QUANUARI 00890 INDRA MOCHAMMAD YUSUF 0800 BAB I PENDAHULUAN.. Pengertian Riset Operasi

Lebih terperinci

Persamaan gerak dalam bentuk vektor diberikan oleh: dv dt dimana : (1) v = gaya coriolis. = gaya gravitasi

Persamaan gerak dalam bentuk vektor diberikan oleh: dv dt dimana : (1) v = gaya coriolis. = gaya gravitasi 1 ARUS LAUT Ada gaa ang berperan dalam ars ait: gaa-gaa primer dan gaa-gaa seknder. Gaa primer berperan dalam menggerakkan ars dan menentkan kecepatanna, gaa primer ini antara lain adalah: stress angin,

Lebih terperinci

SIFAT-SIFAT KESETARAAN PADA MATRIKS SECONDARY NORMAL ABSTRACT

SIFAT-SIFAT KESETARAAN PADA MATRIKS SECONDARY NORMAL ABSTRACT SIFAT-SIFAT KESETARAAN PADA MATRIKS SECONDARY NORMAL Nursyahlina 1, S. Gemawati, A. Sirait 1 Mahasiswa Program Studi S1 Matematika Laboratorium Matematika Terapan, Jurusan Matematika Fakultas Matematika

Lebih terperinci

Penggunaan Dekomposisi QR Dalam Estimabilitas Parameter-Parameter Model Linier

Penggunaan Dekomposisi QR Dalam Estimabilitas Parameter-Parameter Model Linier Penggunaan Dekomposisi QR Dalam Estimabilitas Parameter-Parameter Model Linier Sigit Nugroho Jurusan Matematika FMIPA Universitas Bengkulu E-mail: sigit.nugroho.1960@gmail.com Abstrak.Artikel ini membahas

Lebih terperinci

TINJAUAN PUSTAKA Analisis Biplot Biasa

TINJAUAN PUSTAKA Analisis Biplot Biasa TINJAUAN PUSTAKA Analisis Biplot Biasa Analisis biplot merupakan suatu upaya untuk memberikan peragaan grafik dari matriks data dalam suatu plot dengan menumpangtindihkan vektor-vektor dalam ruang berdimensi

Lebih terperinci

03-Pemecahan Persamaan Linier (2)

03-Pemecahan Persamaan Linier (2) -Pemecahan Persamaan Linier () Dosen: Anny Yuniarti, M.Comp.Sc Gasal - Anny Agenda Bagian : Matriks Invers Bagian : Eliminasi = Faktorisasi: A = LU Bagian : Transpos dan Permutasi Anny Bagian MATRIKS INVERS

Lebih terperinci

Ruang Hasil Kali Dalam

Ruang Hasil Kali Dalam Ruang Hasil Kali Dalam (Gram Schmidt) Wono Setya Budhi KKAG FMIPA ITB v 0.1 Maret 2015 Wono Setya Budhi (KKAG FMIPA ITB) Ruang Hasil Kali Dalam v 0.1 Maret 2015 1 / 13 Misalkan S subhimpunan di V, kita

Lebih terperinci

GARIS-GARIS BESAR PROGRAM PENGAJARAN PROGRAM STUDI: S1 SISTEM INFORMASI Semester : 1

GARIS-GARIS BESAR PROGRAM PENGAJARAN PROGRAM STUDI: S1 SISTEM INFORMASI Semester : 1 GARIS-GARIS BESAR PROGRAM PENGAJARAN PROGRAM STUDI: S1 SISTEM INFORMASI Semester : 1 Berlaku mulai: Gasal/2010 MATA KULIAH : MATRIK DAN TRANSFORMASI LINEAR KODE MATA KULIAH / SKS : 410102042 / 3 SKS MATA

Lebih terperinci

PENYELESAIAN SISTEM PERSAMAAN LINEAR FUZZY KOMPLEKS MENGGUNAKAN METODE DEKOMPOSISI QR TUGAS AKHIR

PENYELESAIAN SISTEM PERSAMAAN LINEAR FUZZY KOMPLEKS MENGGUNAKAN METODE DEKOMPOSISI QR TUGAS AKHIR PENYELESAIAN SISTEM PERSAMAAN LINEAR FUZZY KOMPLEKS MENGGUNAKAN METODE DEKOMPOSISI QR TUGAS AKHIR Diajukan sebagai Salah Satu Syarat untuk Memperoleh Gelar Sarjana Sains pada Jurusan Matematika Oleh :

Lebih terperinci

1. Persamaan Energi Total

1. Persamaan Energi Total . Persamaan Eneri Total Eneri total adala jmla eneri karena ketinian elevasi (potential enery), eneri tekanan (pressre enery), dan eneri kecepatan (velocity ead). Prinsip eneri kekal ini lebi dikenal denan

Lebih terperinci

MAKALAH ALJABAR LINEAR TRANSFORMASI LINEAR ATAU PEMETAAN LINEAR

MAKALAH ALJABAR LINEAR TRANSFORMASI LINEAR ATAU PEMETAAN LINEAR MAKALAH ALJABAR LINEAR TRANSFORMASI LINEAR ATAU PEMETAAN LINEAR Disusun oleh : 1. Supriyani (0903040095) 2. Sri Hartati (0903040113) 3. Anisatul M. (0903040065) TEKNIK INFORMATIKA FAKULTAS TEKNIK UNIVERSITAS

Lebih terperinci

BAB III MATRIKS HERMITIAN. dan konsep-konsep lainnya yang berkaitan dengan matriks Hermitian. Matriks

BAB III MATRIKS HERMITIAN. dan konsep-konsep lainnya yang berkaitan dengan matriks Hermitian. Matriks BAB III MATRIKS HERMITIAN Pada bab ini, akan dibahas beberapa konsep penting dari matriks Hermitian dan konsep-konsep lainnya yang berkaitan dengan matriks Hermitian. Matriks Hermitian merupakan kelas

Lebih terperinci

BAB 5 RUANG VEKTOR A. PENDAHULUAN

BAB 5 RUANG VEKTOR A. PENDAHULUAN BAB 5 RUANG VEKTOR A. PENDAHULUAN 1. Definisi-1. Suatu ruang vektor adalah suatu himpunan objek yang dapat dijumlahkan satu sama lain dan dikalikan dengan suatu bilangan, yang masing-masing menghasilkan

Lebih terperinci

4.1 Algoritma Ortogonalisasi Gram-Schmidt yang Diperumum

4.1 Algoritma Ortogonalisasi Gram-Schmidt yang Diperumum BAB 4 ORTOGONALISASI GRAM-SCHMIDT YANG DIPERUMUM Diberikan sebarang barisan hingga vektor di ruang Hilbert berdimensi hingga. Pada bab ini akan diberikan algoritma untuk menghitung frame Parseval pada

Lebih terperinci

Prof.Dr. Budi Murtiyasa Muhammadiyah University of Surakarta

Prof.Dr. Budi Murtiyasa Muhammadiyah University of Surakarta BASIS DAN DIMENSI Prof.Dr. Budi Murtiyasa Muhammadiyah University of Surakarta Basis dan Dimensi Ruang vektor V dikatakan mempunyai dimensi terhingga n (ditulis dim V = n) jika ada vektor-vektor e, e,,

Lebih terperinci

PRAKTIKUM OPERASI TEKNIK KIMIA II MODUL 5 BILANGAN REYNOLD

PRAKTIKUM OPERASI TEKNIK KIMIA II MODUL 5 BILANGAN REYNOLD PRAKTIKUM OPERASI TEKNIK KIMIA II MODUL 5 BILANGAN REYNOLD LABORATORIUM RISET DAN OPERASI TEKNIK KIMIA PROGRAM STUDI TEKNIK KIMA FAKULTAS TEKNOLOGI INDUSTRI UPN VETERAN JAWA TIMUR SURABAYA BILANGAN REYNOLD

Lebih terperinci