BAHAN KULIAH. Konsep Probabilitas Probabilitas Diskrit dan Kontinyu
|
|
|
- Vera Sanjaya
- 8 tahun lalu
- Tontonan:
Transkripsi
1 BAHAN KULIAH Konsep Probabilitas Probabilitas Diskrit dan Kontinyu
2 Soal UTS periode November 00 Mata Kuliah : Statistika & Probabilitas Waktu : 0 menit. Suatu sistem pipa seperti ditunjukkan pada gambar di bawah ini, mempunyai 8 buah katup dan tersusun atas tingkat. Probabilitas bahwa semua katup bekerja = 0.80, kecuali pada katup ke dan 7 = Sistem ini akan bekerja jika ketiga tingkatnya berjalan dengan baik. Jika seluruh unit dalam setiap tingkat saling bebas, hitunglah probabilitas bahwa sistem tersebut akan berjalan dengan baik I II III
3 . Jika adalah variabel yang menyatakan tinggi muka air dalam suatu tampungan (dalam m), dengan fungsi kepadatan probabilitas sebagai berikut, f() = (0.5-) untuk = untuk yang lain a. Tentukan nilai b. Tentukan distribusi kumulatifnya c. Gambarkan grafik probabilitas density functionnya d. Tentukan probabilitas bahwa muka air ada diatas.5 m e. Hitung P(.5.5) f. Hitung rata-rata dan variannya.
4 . DISTRIBUSI POISSON untuk mengamati jumlah kejadian-kejadian khusus yg terjadi dalam satu satuan waktu atau ruang. p(; ) e!, untuk 0,,,... μ = rata-rata banyaknya hasil percobaan dalam satu satuan unit e =, = 0
5 Jawab : Diketahui : P() = 0.8, P() = 0.8, P() = 0.9, P() = 0.8, P(5) = 0.8, P() = 0.8, P(7) = 0.9, P(8) = 0.8. Misal probabilitas di tingkat I terdiri dari Ia dan Ib maka, P(Ia) = P()P() = P()+P()- P()P() = = 0.9 P(Ib) = P()P() = P()P() = = 0.7 P(I) = P(Ia)P(Ib) = P(Ia)+P(Ib)- P(Ia)P(Ib) = = P(II) = P(5)P() = P(5)P() = = 0. P(III) = P(7)P(8) = P(7)+P(8)- P(7)P(8) = = 0.98 Probabilitas aliran berjalan dengan baik P(I) P(II) P(III) = = 0.075
6 . a). f() = (0.5-) untuk b). α α α 0.5 α d 0.5 α d 0.5 α atau F 7 t t t 0.5 dt 0.5t dt t f F
7 f() c) Graph of Probability Density Function 7 5 f ( = 0) f ( = ).5 f ( = ) 0 f ( = ).5 0 0
8 0.75 * }d ) f{( d).
9 0.5 * }d ) f{( d d d d f μ e). f).
10 d d d d f - μ σ 5 5
11 SOAL-SOAL DISTRIBUSI PROBABILITAS DISKRIT. Direktur suatu perusahaan negara menyatakan bahwa 0% dari peserta tes calon tenaga kerja akan diterima sebagai pegawai di perusahaan tersebut. Dari orang peserta tes diambil secara random/acak, berapa probabilitasnya : a) orang akan lulus, b) Paling banyak 8 orang akan lulus, c) Paling sedikit 5 orang akan lulus, d) sampai 9 orang yang lulus.. Diketahui bahwa % dari hasil produksi baut dari mesin X tidak memenuhi standar. Dalam sampel acak sebanyak 00 baut produksi mesin tsb., hitunglah probabilitas bahwa : a) Semua baut adalah baik b) Dua atau kurang baut tidak memenuhi syarat, c) Dua atau lebih baut tidak memenuhi syarat.
12 . Diketahui : n = ; p = 0% = 0,; q = - 0, = 0, a) P(=)! 0 0, 0,! ( )! 0,59 b) P(8) =p(=0)+p(=)+p(=)+.p(=8) = 0,0008+0,007+0, =0,97 c) P(5) = - [p( )]= = -[p(=0)+p(=)+p(=)+p(=)] = -0,79=0,707 c) P(9) =p(=)+p(=5)+ +p(=9) = 0,59+0,0+ +0,008 = 0,858
13 . Diketahui : μ =% 00 = a) P(=0) e =, e 0! 0,098 b) P( )=p(=0)+p(=)+p(=) = 0, ,9 + 0,0 = 0, c) P( )= [p( =0)+p(=)] = - 0, ,9 = 0,8008
14 Debit puncak sungai Kaligarang untuk periode ulang 5 tahun adalah 57 m /detik. Tentukan dalam waktu 0 tahun peluang debit banjir tersebut,.tidak terjadi,.terjadi kali,.hitung rata-rata dan standar deviasinya.
15 Dalam suatu Daerah Pengaliran Sungai (DPS) dibangun sebuah waduk pengendali banjir dengan umur 00 tahun. Berapa peluang terjadinya banjir 5 m /detik dengan periode ulang 00 tahun selama umur waduk tersebut, bila ditentukan dengan distribusi Poisson. Periode ulang banjir 00 tahun, maka peluang terjadinya banjir adalah : P 0,005 T 00 N 00 tahun berdasarkan rumus, maka μ sehingga : P(R) P() R μ e R! μ 0,5,788! NP 00 0,005 0,5 0,5 0,08 Artinya dalam DPS tsb, Waduk Pengendali Banjir dg umur bangunan 00 tahun, selama periode umur tsb akan terjadi banjir periode 00 tahun dg peluang 0,80 %.
16 Bila diketahui frekuensi gempa bumi besar setiap tahun diseluruh dunia merupakan variabel random dengan distribusi yang mendekati distribusi normal, mempunyai rata-rata (μ) = 0,8 dan simpangan baku (σ) =,5 ; hitunglah probabilitasnya bahwa akan terjadi : 8 kali gempa bumi besar dalam suatu tahun tertentu. Paling sedikit kali Dari 0 sampai 5 kali
17 Penyelesaian : Gunakan pendekatan distribusi normal : Diketahui : = 0.8 =.5 Probabilitas terjadi 8 kali gempa bumi : Z = ( )/.5 =...., luasnya =... a... Z = ( )/.5 =...., luasnya =...b... Luas 7.5 sampai dengan 8.5 = a - b Lihat tabel luasnya..... Probabilitas paling sedikit kali A = (.5-0.8)/.5 = 0. Luasnya = 0.0 Maka luas.5 ke kanan = = 0. Probabilitas dari 0 sampai 5 kali : Z = ( )/.5 = , luasnya = 0. Z = ( )/.5 =.0...., luasnya = Maka luas
18 Jika data tersebut diatas merupakan sampel yang berdistribusi normal, Berikut adalah data uji kuat tekan beton dalam kg/cm.. Hitunglah nilai rata-rata dan standar deviasi data tersebut.. Berapakah probabilitas nilai kuat beton lebih dari 5 kg/cm.. Jika disyaratkan bahwa nilai kuat tekan beton 5 kg/cm harus mencapai lebih dari 80%, maka berdasarkan hasil uji itu, apakah syarat tersebut dipenuhi?. Berapakah nilai kuat tekan beton dengan probabilitas 80% tersebut. 5. Hitunglah probabilitas kekuatan beton antara 0 kg/cm - 75 kg/cm Catatan : a,b,c dan d adalah NIM saudara dengan urutan sebagai berikut, misalnya NIM LA 005, maka a =, b =, c = 5, d =
19 No. Benda Uji Kuat Tekan (kg/cm ) 7d 0 a 9c 5 8b
STATISTIKA EKONOMI I Chapter 4 Distribusi Probabilitas Normal dan Binomial Chapter 5 Teori Sampling
STATISTIKA EKONOMI I Chapter 4 Distribusi Probabilitas Normal dan Binomial Chapter 5 Teori Sampling Rengganis Banitya Rachmat [email protected] 4. Distribusi Probabilitas Normal dan Binomial
DISTRIBUSI PROBABILITAS KONTINYU. Nur Hayati, S.ST, MT Yogyakarta, Maret 2016
DISTRIBUSI PROBABILITAS KONTINYU Nur Hayati, S.ST, MT Yogyakarta, Maret 2016 DISTRIBUSI PELUANG KONTINYU Berbeda dengan variabel random diskrit, sebuah variabel random kontinyu adalah variabel yang dapat
STATISTIK PERTEMUAN IV
STATISTIK PERTEMUAN IV PRINSIP DAN DISTRIBUSI PROBABILITAS A. PERANAN PROBABILITAS Pembuatan model, analisis matematis, simulasi komputer dan sebagainya, banyak didasarkan atas asumsi-asumsi yang diidealisir,
Probabilitas dan Statistika Fungsi Distribusi Peluang Kontinyu. Adam Hendra Brata
Probabilitas dan Statistika Adam Hendra Brata Himpunan nilai-nilai yang mungkin dari peubah acak X merupakan himpunan tak terhitung yaitu tidak dapat dinyatakan sebagai {,, 3,., n } atau {,, 3,.} tetapi
DISTRIBUSI PELUANG KONTINYU DISTRIBUSI PROBABILITAS
DISTRIBUSI PROBABILITAS Berbeda dengan variabel random diskrit, sebuah variabel random kontinyu adalah variabel yang dapat mencakup nilai pecahan maupun mencakup range/ rentang nilai tertentu. Karena terdapat
ESTIMASI. Arna Fariza PENDAHULUAN
ESTIMASI Arna Fariza PENDAHULUAN MATERI LALU Karena adanya berbagai alasan seperti banyaknya individu dalam populasi amatan, maka penelitian keseluruhan terhadap populasi tersebut tidaklah ekonomis, baik
Hipotesis. Penerimaan hipotesis menunjukkan bahwa tidak cukup petunjuk untuk mempercayai sebaliknya
Hipotesis Suatu anggapan yang mungkin benar atau tidak mengenai suatu populasi atau lebih Digunakan istilah diterima atau ditolak untuk suatu hipotesis Penolakan suatu hipotesis berarti menyimpulkan bahwa
Jurusan Teknik Sipil dan Lingkungan Universitas Gadjah Mada STATISTIKA. Distribusi Normal. 1-Sep-14
Jurusan Teknik Sipil dan Lingkungan Universitas Gadjah Mada STATISTIKA Distribusi Normal 1-Sep-14 http://istiarto.staff.ugm.ac.id 1 Distribusi Binomial Ingat contoh pemilihan 1 kegiatan (Kegiatan A) dari
KULIAH ANALISIS STATISTIK DATA SIMULASI Tipe-tipe simulasi berdasarkan analisis output:
KULIAH ANALISIS STATISTIK DATA SIMULASI Tipe-tipe simulasi berdasarkan analisis output: 1. Terminating simulation 2. Nonterminating simulation: a. Steady-state parameters b. Steady-state cycle parameters
Kumpulan pasangan nilai-nilai dari variabel acak X dengan probabilitas nilai-nilai variabel random X, yaitu P(X=x) disebut distribusi probabilitas X
Kumpulan pasangan nilai-nilai dari variabel acak X dengan probabilitas nilai-nilai variabel random X, yaitu P(X=) disebut distribusi probabilitas X (distribusi X) Diskrit Seragam Binomial Hipergeometrik
Distribusi Diskrit dan Kontinu yang Penting. Oleh Azimmatul Ihwah
Distribusi Diskrit dan Kontinu yang Penting Oleh Azimmatul Ihwah Distribusi Diskrit Fungsi probabilitas dari variabel random diskrit dapat dinyatakan dalam formula matematik tertentu yang dinamakan fungsi
Distribusi Normal, Skewness dan Qurtosis
Distribusi Normal, Skewness dan Qurtosis Departemen Biostatistika FKM UI 1 2 SAP Statistika 1, minggu ke-4 4 Membekali mahasiswa agar lebih paham dan menguasai teori terkait: menghitung ukuran penyimpangan
BI5106 ANALISIS BIOSTATISTIK Bab 3 Peubah Acak dan Dist
BI5106 ANALISIS BIOSTATISTIK Bab 3 Peubah Acak dan Distribusi Orang Biologi Tidak Anti Statistika Silabus Silabus dan Tujuan Konsep peubah acak, fungsi peluang (probability density function), fungsi distribusi
STATISTIKA. Distribusi Binomial. Ingat contoh pemilihan 1 kegiatan (Kegiatan A) dari 4 kegiatan untuk didanai. Distribusi Normal
STATISTIKA Distribusi Normal Distribusi Binomial Ingat contoh pemilihan 1 kegiatan (Kegiatan A) dari 4 kegiatan untuk didanai Distribusi Binomial Histogram Distribusi Probabilitas Sukses Statistika Distribusi
Universitas Gadjah Mada Fakultas Teknik Departemen Teknik Sipil dan Lingkungan ANALISIS FREKUENSI. Statistika dan Probabilitas
Universitas Gadjah Mada Fakultas Teknik Departemen Teknik Sipil dan Lingkungan ANALISIS FREKUENSI Statistika dan Probabilitas 2 Regresi Linear Tabel data x i y i = f(x i ) 1 0.5 2 2.5 3 2 4 4 5 3.5 6 6
Haryoso Wicaksono, S.Si., M.M., M.Kom. 26
Distribusi probabilita kontinu, yaitu apabila random variabel yang digunakan kontinu. Probabilita dihitung untuk nilai dalam suatu interval tertentu. Probabilita di suatu titik = 0. Probabilita untuk random
(ESTIMASI/ PENAKSIRAN)
ESTIMASI PENDAHULUAN Karena adanya berbagai alasan seperti banyaknya individu dalam populasi amatan, maka penelitian keseluruhan terhadap populasi tersebut tidaklah ekonomis, baik tenaga, waktu, maupun
Pembahsan Tugas 9 Probabilitas dan Statistika Distribusi Peluang Diskrit dan Distribusi Peluang Kontinyu
Pembahsan Tugas 9 Probabilitas dan Statistika Distribusi Peluang Diskrit dan Distribusi Peluang Kontinyu Distribusi Peluang Diskrit 1. Hitunglah P( < 10) dengan distribusi binomial untuk n = 15, p = 0,4!
Pengujian Hipotesis. Oleh : Dewi Rachmatin
Pengujian Hipotesis Oleh : Dewi Rachmatin Hipotesis Suatu anggapan yang mungkin benar atau tidak mengenai suatu populasi atau lebih Akan digunakan istilah diterima atau ditolak pada bagian ini Penolakan
Mata Kuliah Pemodelan & Simulasi. Riani Lubis Program Studi Teknik Informatika Universitas Komputer Indonesia
Mata Kuliah Pemodelan & Simulasi Riani Lubis Program Studi Teknik Informatika Universitas Komputer Indonesia Pokok Bahasan Variabel Acak Pola Distribusi Masukan Pendugaan Pola Distribusi Uji Distribusi
STATISTIKA. Muhamad Nursalman Pendilkom/Ilkom UPI
STATISTIKA Muhamad Nursalman Pendilkom/Ilkom UPI 1 Daftar Isi Bab 1 Peluang Bab Peubah Acak Bab 3 Distribusi Peluang Diskret Bab 4 Distribusi Peluang Kontinu Bab 5 Fungsi Peubah Acak Bab 6 Teori Penaksiran
BAB II DISTRIBUSI PROBABILITAS
BAB II DISTRIBUSI PROBABILITAS.1. VARIABEL RANDOM Definisi 1: Variabel random adalah suatu fungsi yang memetakan ruang sampel (S) ke himpunan bilangan Real (R), dan ditulis X : S R Contoh (Variabel random)
Pendugaan Parameter. Ayundyah Kesumawati. April 13, Prodi Statistika FMIPA-UII. Ayundyah (UII) Pendugaan Parameter April 13, / 30
Pendugaan Parameter Ayundyah Kesumawati Prodi Statistika FMIPA-UII April 13, 2015 Ayundyah (UII) Pendugaan Parameter April 13, 2015 1 / 30 Pendugaan 1 Proses yang menggunakan sampel statistik untuk menduga
DISTRIBUSI PROBABILITAS VARIABEL RANDOM
Universitas Gadjah Mada Fakultas Teknik Departemen Teknik Sipil dan Lingkungan DISTRIBUSI PROBABILITAS VARIABEL RANDOM Statistika dan Probabilitas 2 Distribusi probabilitas variabel random diskrit Distribusi
4.1.1 Distribusi Binomial
4.1.1 Distribusi Binomial Perhatikan sebuah percobaan dengan ciri-ciri sebagai berikut : Hanya menghasilkan (diperhatikan) dua peristiwa atau kategori, misal S (sukses) dan G (gagal) Dilakukan sebanyak
Distribusi Teoritis Probabilitas. Distribusi Teoritis Probabilitas. Distribusi Binomial. Distribusi Binomial. Distribusi Binomial
Distribusi Teoritis Probabilitas Topik Distribusi teoritis Binomial Distribusi teoritis Poisson Distribusi teoiritis Normal 3 4 Distribusi Teoritis Probabilitas Distr. Teoritis Probabilitas Diskrit Kontinyu
STATISTIKA. Tabel dan Grafik
STATISTIKA Organisasi Data Koleksi data statistik perlu disusun (diorganisir) sedemikian hingga dapat dibaca dengan jelas. Salah satu pengorganisasian data statistik adalah dengan: tabel grafik Organisasi
Distribusi Teoritis Probabilitas
Distribusi Teoritis Probabilitas Topik Distribusi teoritis Binomial Distribusi teoritis Poisson Distribusi teoiritis Normal 2 Distribusi Teoritis Probabilitas Distr. Teoritis Probabilitas Diskrit Kontinyu
Sumbu X (horizontal) memiliki range (rentang) dari minus takhingga. ( ) hingga positif takhingga (+ ). Kurva normal memiliki puncak pada X
Sumbu X (horizontal) memiliki range (rentang) dari minus takhingga ( ) hingga positif takhingga (+ ). Kurva normal memiliki puncak pada X = 0. Perlu diketahui bahwa luas kurva normal adalah satu (sebagaimana
DISTRIBUSI PELUANG.
DISTRIBUSI PELUANG [email protected] Distribusi? Peluang? Distribusi Peluang? Distribusi = sebaran, pencaran, susunan data Peluang : Ukuran/derajat ketidakpastian suatu peristiwa Distribusi Peluang adalah
Ummu Kalsum UNIVERSITAS GUNADARMA
Ummu Kalsum UNIVERSITAS GUNADARMA 2016 Inferensia Statistika : Mencakup semua metode yang digunakan untuk penarikan kesimpulan atau generalisasi mengenai populasi dengan melakukan pengambilan sampel (sampling)
STATISTICS. WEEK 5 Hanung N. Prasetyo TELKOM POLTECH/HANUNG NP
STATISTICS WEEK 5 Hanung N. Prasetyo Kompetensi 1. Mahasiswa memahamikonsep dasar distribusi peluang kontinu khusus seperti uniform dan eksponensial 2. Mahasiswamampumelakukanoperasi hitungyang berkaitan
Pengujian Hipotesis. 1. Pendahuluan. Topik Bahasan:
Topik Bahasan: Pengujian Hipotesis. Pendahuluan Hipotesis pernyataan yang merupakan pendugaan berkaitan dengan nilai suatu parameter populasi (satu atau lebih populasi) Kebenaran suatu hipotesis diuji
PEMBANGKIT RANDOM VARIATE
PEMBANGKIT RANDOM VARIATE Mata Kuliah Pemodelan & Simulasi JurusanTeknik Informatika Universitas Komputer Indonesia 1 Pendahuluan (1) Sifat probalitistik pada sistem nyata mempunyai pola distribusi probabilistik
Bab 2 DISTRIBUSI PELUANG
Bab 2 DISTRIBUSI PELUANG PENDAHULUAN Setiap peristiwa akan mempunyai peluangnya masingmasing, dan peluang terjadinya peristiwa itu akan mempunyai penyebaran yang mengikuti suatu pola tertentu yang di sebut
MA2082 BIOSTATISTIKA Bab 3 Peubah Acak dan Distribusi
MA2082 BIOSTATISTIKA Bab 3 Peubah Acak dan Distribusi Orang Biologi Tidak Anti Statistika Silabus Silabus dan Tujuan Konsep peubah acak, fungsi peluang (probability density function), fungsi distribusi
Magister Pengelolaan Air dan Air Limbah Universitas Gadjah Mada. 18-Aug-17. Statistika Teknik.
Magister Pengelolaan Air dan Air Limbah Universitas Gadjah Mada Statistika Teknik Tabel dan Grafik Organisasi Data Koleksi data statistik perlu disusun (diorganisir) sedemikian hingga dapat dibaca dengan
MK Statistik Bisnis 2 MultiVariate. Haryoso Wicaksono, S.Si., M.M., M.Kom. 1
Haryoso Wicaksono, S.Si., M.M., M.Kom. 1 Descriptive Statistics mengandung metoda dan prosedur yang digunakan untuk pengumpulan, pengorganisasian, presentasi dan memberikan karakteristik terhadap himpunan
Distribusi Normal. Statistika (MAM 4137) Syarifah Hikmah JS
Distribusi Normal Statistika (MAM 4137) Syarifah Hikmah JS Outline Kurva normal Luas daerah di bawah kurva normal Penerapan sebaran normal DISTRIBUSI NORMAL model distribusi kontinyu yang paling penting
ANALISIS DATA SECARA RANDOM PADA APLIKASI MINITAB DENGAN MENGGUNAKAN DISTRIBUSI PELUANG
LAPORAN RESMI PRAKTIKUM PENGANTAR METODE STATISTIKA MODUL 3 ANALISIS DATA SECARA RANDOM PADA APLIKASI MINITAB DENGAN MENGGUNAKAN DISTRIBUSI PELUANG Oleh : Diana Nafkiyah 1314030028 Nilamsari Farah Millatina
Distribusi Probabilitas Kontinyu Teoritis
Distribusi Probabilitas Kontinyu Teoritis Suprayogi Dist. Prob. Teoritis Kontinyu () Distribusi seragam kontinyu (continuous uniform distribution) Distribusi segitiga (triangular distribution) Distribusi
BAB 2 TINJAUAN TEORITIS. Menurut Open Darnius (2006, hal: 53) simulasi dapat diartikan sebagai suatu
xiv BAB 2 TINJAUAN TEORITIS 2.1 Pendahuluan Menurut Open Darnius (2006, hal: 53) simulasi dapat diartikan sebagai suatu rekayasa dari suatu model secara logika ilmiah merupakan suatu metode alternatif
BAB I PENDAHULUAN. penerbangan, kedokteran, teknik mesin, software komputer, bahkan militer
BAB I PENDAHULUAN A. Latar Belakang Statistika merupakan salah satu ilmu matematika yang terus berkembang dari waktu ke waktu. Di dalamnya mencakup berbagai sub pokok-sub pokok materi yang sangat bermanfaat
DISTRIBUSI PROBABILITAS FERDIANA YUNITA
DISTRIBUSI PROBABILITAS FERDIANA YUNITA DEFINISI DISTRIBUSI PROBABILITAS Model untuk variable acak, yg menggambarkan cara probabilitas tersebar pada semua nilai yang mungkin terjadi dari variable acak
Nilai harapan suatu variabel acak x ditulis E (x) didefinisikan E (x) = Σ x. f (x) Var (x) = σ x 2 = E [ x E (x) ] 2 = E (x 2 ) { E (x) } 2
Pertemuan ke- 4 BAB III POPULASI, SAMPEL & DISTRIBUSI TEORITIS VARIABEL DISKRIT DAN FUNGSI PROBABILITAS 3.1 Variabel Random atau Variabel Acak Variabel yang nilainya merupakan suatu bilangan yang ditentukan
DISTRIBUSI ERLANG DAN PENERAPANNYA. Rini Kurniasih 1, Getut Pramesti 2 Mahasiswi Pendidikan Matematika FKIP UNS, Dosen Pendidikan Matematika FKIP UNS
DISTRIBUSI ERLANG DAN PENERAPANNYA Rini Kurniasih 1, Getut Pramesti 2 Mahasiswi Pendidikan Matematika FKIP UNS, Dosen Pendidikan Matematika FKIP UNS [email protected], [email protected] ABSTRAK
Jurusan Teknik Sipil dan Lingkungan Universitas Gadjah Mada. 1http://istiarto.staff.ugm.ac.id STATISTIKA. Discrete Probability Distributions
Jurusan Teknik Sipil dan Lingkungan Universitas Gadjah Mada STATISTIKA Discrete Probability Distributions 1http://istiarto.staff.ugm.ac.id Discrete Probability Distributions Distribusi Hipergeometrik Bernoulli
Menjelaskan pengertian distribusi binomial, mengidentifikasi eksperimen binomial dan menghitung probabilitas binomial, menghitung ukuran pemusatan
Tujuan Pembelajaran Menjelaskan pengertian distribusi binomial, mengidentifikasi eksperimen binomial dan menghitung probabilitas binomial, menghitung ukuran pemusatan dan penyebaran distribusi binomial
STATISTIK PERTEMUAN V
STATISTIK PERTEMUAN V Variabel Random/ Acak variabel yg nilai-nilainya ditentukan oleh kesempatan/ variabel yang bernilai numerik yg didefinisikan dlm suatu ruang sampel 1. Variabel Random diskrit Variabel
DISTRIBUSI NORMAL. Pertemuan 3. 1 Pertemuan 3_Statistik Inferensial
DISTRIBUSI NORMAL Pertemuan 3 1 Pertemuan 3_Statistik Inferensial Distribusi Normal Pertama kali diperkenalkan oleh Abraham de Moivre (1733). De Moivre menemukan persamaan matematika untuk kurva normal
Populasi dan Sampel. Materi 1 Distribusi Sampling
Materi 1 Distribusi Sampling UNIVERSITAS GUNADARMA 2013 Populasi dan Sampel Populasi : keseluruhan objek yang menjadi pusat perhatian dalam statistika Parameter besaran yang menggambarkan karakteristik
Distribusi Peluang Kontinyu STATISTIK INDUSTRI 1. Distribusi Peluang Kontinyu. Distribusi Diskrit Uniform. Distribusi Diskrit Uniform 17/12/2014
STATISTIK INDUSTRI 1 Agustina Eunike, ST., MT., MBA Rata-rata dan Variansi Rumus Umum: Distribusi Peluang Diskrit dan Kontinyu UNIFORM Distribusi Diskrit Uniform Distribusi Diskrit Uniform Contoh: Suatu
PENS. Probability and Random Process. Topik 4. Variabel Acak dan Distribusi Probabilitas. Prima Kristalina April 2015
Program Pasca Sarjana Terapan Politeknik Elektronika Negeri Surabaya Probability and Random Process Topik 4. Variabel Acak dan Distribusi Probabilitas Prima Kristalina April 2015 1 Outline 1. Definisi
BAB IV PENGUMPULAN DAN PENGOLAHAN DATA
FORMAT LAPORAN MODUL III DISTRIBUSI VARIABEL ACAK DISKRIT ABSTRAK ABSTRACT KATA PENGANTAR DAFTAR ISI DAFTAR TABEL DAFTAR GAMBAR DAFTAR LAMPIRAN BAB I PENDAHULUAN. Latar Belakang. Tujuan Penulisan Laporan.
BAB II TINJAUAN TEORITIS. Menurut Darnius, O (2006, Hal : 53) simulasi dapat diartikan sebagai suatu
BAB II TINJAUAN TEORITIS 2.1 Pendahulauan Menurut Darnius, O (2006, Hal : 53) simulasi dapat diartikan sebagai suatu rekayasa suatu model logika ilmiah untuk melihat kebenaran/kenyataan model tersebut.
DISTRIBUSI PROBABILITAS
BAB 7 DISTRIBUSI PROBABILITAS Kompetensi Menjelaskan distribusi probabilitas Indikator 1. Menjelaskan distribusi hipergeometris 2. Menjelaskan distribusi binomial 3. Menjelaskan distribusi multinomial
KONSEP DASAR PROBABILITAS DAN DISTRIBUSI PROBABILITAS LELY RIAWATI, ST, MT.
KONSEP DASAR PROBABILITAS DAN DISTRIBUSI PROBABILITAS LELY RIAWATI, ST, MT. EKSPERIMEN suatu percobaan yang dapat diulang-ulang dengan kondisi yang sama CONTOH : Eksperimen : melempar dadu 1 kali Hasilnya
Latihan Soal. Bahan Kuliah II2092 Probabilitas dan Statistik Oleh: Rinaldi Munir Sekolah Teknik Elektro dan Informatika ITB
Latihan Soal Bahan Kuliah II2092 Probabilitas dan Statistik Oleh: Rinaldi Munir Sekolah Teknik Elektro dan Informatika ITB Soal 1 Misalkan peluang sebuah kota mengalami gempa bumi setiap bulan adalah 1/100.
UJI STATISTIK NON PARAMETRIK. Widha Kusumaningdyah,, ST., MT
UJI STATISTIK NON PARAMETRIK Widha Kusumaningdyah,, ST., MT UJI KERANDOMAN (RANDOMNESS TEST / RUN TEST) Uji KERANDOMAN Untuk menguji apakah data sampel yang diambil merupakan data yang acak / random Prosedur
Metode Perencanaan Berdasarkan Kondisi Keamanan*
TKS 6112 Keandalan Struktur Metode Perencanaan Berdasarkan Kondisi Keamanan* * www.zacoeb.lecture.ub.ac.id Pendahuluan Metode perencanaan berdasarkan kondisi keamanan ada dua, yaitu Metode Deterministik
Distribusi Probabilitas : Gamma & Eksponensial
Distribusi Probabilitas : Gamma & Eksponensial 11 Debrina Puspita Andriani E-mail : [email protected] / [email protected] 2 Outline Distribusi Gamma Distribusi Eksponensial 3 Distribusi Gamma Tidak selamanya
PENS. Probability and Random Process. Topik 5. Beberapa jenis Distribusi Variabel Acak. Prima Kristalina April 2015
Program Pasca Sarjana Terapan Politeknik Elektronika Negeri Surabaya Probability and Random Process Topik 5. Beberapa jenis Distribusi Variabel Acak Prima Kristalina April 215 1 Outline 1. Beberapa macam
DISTRIBUSI TEORITIS. Variabel Acak Distribusi Teoritis Binomial Normal
DISTRIBUSI TEORITIS DISTRIBUSI TEORITIS Variabel Acak Distribusi Teoritis Binomial Normal Variabel acak adalah sebuah besaran yang merupakan hasil dari percobaan acak yang secara untung-untungan, dapat
DISTRIBUSI PROBABILITAS DISKRIT TEORITIS 2. Distribusi Hipergeometrik
DISTRIBUSI PROBABILITAS DISKRIT TEORITIS 2 TI2131 TEORI PROBABILITAS MINGGU KE-10 Distribusi Hipergeometrik Eksperimen hipergeometrik memiliki karakteristik sebagai berikut: 1. sebuah sampel random berukuran
Bab 5 Distribusi Sampling
Bab 5 Distribusi Sampling Pendahuluan Untuk mempelajari populasi kita memerlukan sampel yang diambil dari populasi yang bersangkutan. Meskipun kita dapat mengambil lebih dari sebuah sampel berukuran n
MODUL II DISTRIBUSI PELUANG DISKRIT DAN KONTINU
DISTRIBUSI PELUANG DISKRIT DAN KONTINU A. TUJUAN PRAKTIKUM Melalui praktikum Modul II ini diharapkan praktikan dapat: 1. Mengenal jenis dan karakteristik dari beberapa distribusi peluang. 2. Menguji dan
Konsep Dasar Statistik dan Probabilitas
Konsep Dasar Statistik dan Probabilitas Pengendalian Kualitas Statistika Ayundyah Kesumawati Prodi Statistika FMIPA-UII September 30, 2015 Ayundyah (UII) Konsep Dasar Statistik dan Probabilitas September
DISTRIBUTIONS OF RANDOM VARIABLE DISTRIBUSI VARIABEL RANDOM
1.11 Chebyshev s Inequality DISTRIBUTIONS OF RANDOM VARIABLE (Ketaksamaan Chebyshev) A. Pendahuluan DISTRIBUSI VARIABEL RANDOM Konsep atau rumus yang berhubungan dengan Ketaksamaan Chebyshev Ekspektasi
STATISTIK INDUSTRI 1. Random Variable. Distribusi Peluang. Distribusi Peluang Diskrit. Distribusi Peluang Diskrit 30/10/2013 DISKRIT DAN KONTINYU
STATISTIK INDUSTRI 1 Agustina Eunike, ST., MT., MBA Distribusi Peluang DISKRIT DAN KONTINYU Random Variable Random variable / peubah acak: Suatu fungsi yang mengaitkan suatu bilangan real dengan tiap elemen
Pertemuan ke Nilai Harapan (Mean atau Rata rata) dan Varians Distribusi Kontinu
Pertemuan ke 5 4.1 Nilai Harapan (Mean atau Rata rata) dan Varians Distribusi Kontinu Fungsi Probabilitas dengan variabel kontinu terdiri dari : 1. Distribusi Normal 2. Distribusi T 3. Distribusi Chi Kuadrat
Sampling Theory. Spiegel, M R, Schiller,J. Schaum's outline of probability and statistics.third Edition. United State: McGraw Hill ;2009.
Sampling Theory Spiegel, M R, Schiller,J. Schaum's outline of probability and statistics.third Edition. United State: McGraw Hill ;2009. Pengertian Sampling O Teknik sampling adalah bagian dari metodologi
DISTRIBUSI POISSON Pendahuluan Rumus Pendekatan Peluang Poisson untuk Binomial P ( x ; µ ) = (e µ. µ X ) / X! n. p Rumus Proses Poisson
DISTRIBUSI POISSON Pendahuluan Distribusi poisson diberi nama sesuai dengan penemunya yaitu Siemon D. Poisson. Distribusi ini merupakan distribusi probabilitas untuk variabel diskrit acak yang mempunyai
Probabilitas Peluang Kemungkinan Mengapa probabilitas?
STATISTIKA PROBABILITAS Probabilitas Probabilitas Peluang Kemungkinan Mengapa probabilitas? Orang tidak dapat memastikan nilai suatu proses (misal erupsi gunung berapi) berdasarkan data erupsi selama waktu
DISTRIBUSI NORMAL. Pertemuan 3. Distribusi Normal_M. Jainuri, M.Pd 1
DISTRIBUSI NORMAL Pertemuan 3 1 Distribusi Normal Pertama kali diperkenalkan oleh Abraham de Moivre (1733). De Moivre menemukan persamaan matematika untuk kurva normal yang menjadi dasar dalam banyak teori
Uji Mengenai Variansi dan Proporsi. Oleh Azimmatul Ihwah
Uji Mengenai Variansi dan Proporsi Oleh Azimmatul Ihwah Uji Hipotesis Mengenai Variansi Beda uji hipotesis mengenai variansi dengan uji hipotesis mengenai rataan adalah pada parameter penduga, yaitu menggunakan
DISTRIBUSI SAMPLING besar
DISTRIBUSI SAMPLING besar Distribusi Sampling Sampling = pendataan sebagian anggota populasi = penarikan contoh / pengambilan sampel Sampel yang baik Sampel yang representatif, yaitu diperoleh dengan memperhatikan
Statistika. Random Variables Discrete Random Variables Continuous Random Variables. Jurusan Teknik Sipil dan Lingkungan Universitas Gadjah Mada
Jurusan Teknik Sipil dan Lingkungan Universitas Gadjah Mada Statistika Random Variables Discrete Random Variables Continuous Random Variables 1 Pengertian Random variable (variabel acak) Jenis suatu fungsi
Catatan Kuliah MA4181 Pengantar Proses Stokastik Precise and Stochastic. Dosen: Khreshna I.A. Syuhada, MSc. PhD.
Catatan Kuliah MA4181 Pengantar Proses Stokastik Precise and Stochastic Dosen: Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan Statistika - FMIPA Institut Teknologi Bandung 2015 Tentang MA4181 (Pengantar)
RELIABILITAS & FUNGSI HAZARD. 05/09/2012 MK. Analisis Reliabilitas Darmanto, S.Si.
RELIABILITAS & FUNGSI HAZARD 1 RELIABILITAS Peluang bahwa suatu produk atau jasa akan beroperasi dengan baik dalam jangka waktu tertentu (durabilitas) pada kondisi pengoperasian sesuai dengan desain (suhu,
Statistika Variansi dan Kovariansi. Adam Hendra Brata
Statistika dan Adam Hendra Brata Kita sudah memahami bahwa nilai harapan peubah acak X seringkali disebut rataan (mean) dan dilambangkan dengan μ. Tetapi, rataan tidak memberikan gambaran dispersi atau
ANALISIS CURAH HUJAN UNTUK MEMBUAT KURVA INTENSITY-DURATION-FREQUENCY (IDF) DI KAWASAN KOTA LHOKSEUMAWE
ANALISIS CURAH HUJAN UNTUK MEMBUAT KURVA INTENSITY-DURATION-FREQUENCY (IDF) DI KAWASAN KOTA LHOKSEUMAWE Fasdarsyah Dosen Jurusan Teknik Sipil, Universitas Malikussaleh Abstrak Rangkaian data hujan sangat
Magister Pengelolaan Air dan Air Limbah Universitas Gadjah Mada. 18-Aug-17. 1http://istiarto.staff.ugm.ac.id. Statistika Teknik.
Magister Pengelolaan Air dan Air Limbah Universitas Gadjah Mada Statistika Teknik Rentang Keyakinan 1 Rentang Keyakinan Estimasi Parameter Distribusi probabilitas memiliki sejumlah parameter. Parameter-parameter
Garis Besar Program Pembelajaran (GBPP) Kontrak Pembelajaran. Oleh: Prof. Dr. F.X. Susilo (PJ Matakuliah)
GBPP Matakuliah Statistika Pertanian (AGT 212) Page 1 of 10 Garis Besar Program Pembelajaran (GBPP) Kontrak Pembelajaran Matakuliah Statistika Pertanian (AGT 212) Kelas D SEMESTER GENAP 2011/2012 Oleh:
Distribusi Peluang Kontinyu STATISTIK INDUSTRI 1. Distribusi Peluang Kontinyu. Distribusi Diskrit Uniform. Distribusi Diskrit Uniform 13/11/2013
3//203 STATISTIK INDUSTRI Agustina Eunike, ST., MT., MBA Rata-rata dan Variansi Rumus Umum: Distribusi Peluang Diskrit dan Kontinyu UNIFORM Distribusi Diskrit Uniform Distribusi Diskrit Uniform Contoh:
BIOSTATISTIK HIPOTESIS UNTUK PROPORSI MARIA ALMEIDA ( ) NURTASMIA ( ) SOBRI ( )
BIOSTATISTIK UJI HIPOTESIS UNTUK PROPORSI MARIA ALMEIDA (20611003) NURTASMIA (20611022) SOBRI (20611027) : Tahapan-tahapan dalam uji hipotesis 1.Membuat hipotesis nol (H o ) dan hipotesis alternatif (H
Variansi dan Kovariansi. Bahan Kuliah II2092 Probabilitas dan Statistik Oleh: Rinaldi Munir Sekolah Teknik Elektro dan Informatika ITB
Variansi dan Kovariansi Bahan Kuliah II2092 Probabilitas dan Statistik Oleh: Rinaldi Munir Sekolah Teknik Elektro dan Informatika ITB 1 Variansi Kita sudah memahami bahwa nilai harapan peubah acak X seringkali
Peubah Acak dan Distribusi
BAB 1 Peubah Acak dan Distribusi 1.1 ILUSTRASI (Ilustrasi 1) B dan G secara bersamaan menembak sasaran tertentu. Peluang tembakan B mengenai sasaran adalah 0.7 sedangkan peluang tembakan G (bebas dari
BAB IV HASIL PENELITIAN DAN PEMBAHASAN
BAB IV HASIL PENELITIAN DAN PEMBAHASAN A. Deskripsi Data Hasil Penelitian 1. Data Nilai Awal Kelas Eksperimen (VIIIA) Tes awal yang diberikan pada kelas eksperimen sebelum peserta didik diajar dengan model
Catatan Kuliah. MA4181 PENGANTAR PROSES STOKASTIK Smart and Stochastic. disusun oleh Khreshna I.A. Syuhada, MSc. PhD.
Catatan Kuliah MA4181 PENGANTAR PROSES STOKASTIK Smart and Stochastic disusun oleh Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan STATISTIKA - FMIPA Institut Teknologi Bandung 2014 Tentang MA4181 (Pengantar)
SATUAN ACARA PERKULIAHAN MATA KULIAH STATISTIKA DASAR Kode : EK11. B230 / 3 Sks
Minggu Pokok Bahasan ke dan TIU 1 1Pendahuluan tentang konsep statistika dan notasi penjumlahan Sub Pokok Bahasan dan Sasaran Belajar 1.1. Konsep statistika statistika Mahasiswa dapat menjelaskan kegunaan
Statistik Non Parametrik-2
Statistik Non Parametrik-2 UJI RUN 2 Uji Run Disebut juga uji random Bertujuan untuk menentukan apakah urutan yang dipilih atau sampel yang diambil diperoleh secara random atau tidak Didasarkan atas banyaknya
PENGUJIAN HIPOTESIS DESKRIPTIF (Satu sampel) Wahyu Hidayat, M.Pd
PENGUJIAN HIPOTESIS DESKRIPTIF (Satu sampel) Wahyu Hidayat, M.Pd Definisi Pengujian hipotesis deskriptif pada dasarnya merupakan proses pengujian generalisasi hasil penelitian yang didasarkan pada satu
Distribusi Peluang Kontinu. Bahan Kuliah II2092 Probabilitas dan Statistik Oleh: Rinaldi Munir Sekolah Teknik Elektro dan Informatika ITB
Distribusi Peluang Kontinu Bahan Kuliah II9 Probabilitas dan Statistik Oleh: Rinaldi Munir Sekolah Teknik Elektro dan Informatika ITB 1 Fungsi Padat Peluang Untuk peubah acak kontinu, fungsi peluangnya
BAB VII PENELUSURAN BANJIR (FLOOD ROUTING)
VII-1 BAB VII PENELUSURAN BANJIR (FLOOD ROUTING) 7.1. Penelusuran Banjir Melalui Saluran Pengelak Penelusuran banjir melalui pengelak bertujuan untuk mendapatkan elevasi bendung pengelak (cofferdam). Pada
Pengantar Proses Stokastik
Bab 1: Dasar-Dasar Probabilitas Atina Ahdika, S.Si, M.Si Statistika FMIPA Universitas Islam Indonesia Ruang Sampel dan Kejadian Ruang Sampel dan Kejadian Ruang Sampel dan Kejadian Percobaan adalah kegiatan
STATISTIKA LINGKUNGAN Pendahuluan. Dwina Roosmini
STATISTIKA LINGKUNGAN Pendahuluan Dwina Roosmini Statistika Pengetahuan yang berhubungan dengan cara-cara: pengumpulanfakta, pengolahanserta penganalisaannya, penarikankesimpulan keputusan yang beralasan
DISTRIBUSI TEORITIS DISTRIBUSI TEORITIS
DISTRIBUSI TEORITIS DISTRIBUSI TEORITIS Variabel Acak Distribusi Teoritis Binomial Normal 1 Variabel acak adalah sebuah besaran yang merupakan hasil dari percobaan acak yang secara untung-untungan, dapat
Pr { +h =1 = } lim. Suatu fungsi dikatakan h apabila lim =0. Dapat dilihat bahwa besarnya. probabilitas independen dari.
6.. Proses Kelahiran Murni Dalam bab ini, akan dibahas beberapa contoh penting dari waktu kontinu, state diskrit, proses Markov. Khususnya, dengan kumpulan dari variabel acak {;0 } di mana nilai yang mungkin
Distribusi Peluang. Kuliah 6
Distribusi Peluang Kuliah 6 1. Diskrit 1. Bernoulli 2. Binomial 3. Poisson Distribution 2. Kontinu 1. Normal (Gaussian) 2. t 3. F 4. Chi Kuadrat Distribusi Peluang 1.1. Distribusi Bernoulli Distribusi
DISTRIBUSI TEORITIS. P(M) = p = probabilitas untuk mendapat bola merah (sukses) 30
DISTRIBUSI TEORITIS Distribusi teoritis merupakan alat bagi kita untuk menentukan apa yang dapat kita harapkan, apabila asumsi-asumsi yang kita buat benar. Distribusi teoritis memungkinkan para pembuat
