PERBANDINGAN METODE MAXIMUM LIKELIHOOD ESTIMATION (MLE) DAN METODE BAYES DALAM PENDUGAAN PARAMETER DISTRIBUSI EKSPONENSIAL

Ukuran: px
Mulai penontonan dengan halaman:

Download "PERBANDINGAN METODE MAXIMUM LIKELIHOOD ESTIMATION (MLE) DAN METODE BAYES DALAM PENDUGAAN PARAMETER DISTRIBUSI EKSPONENSIAL"

Transkripsi

1 Bult Ilmah Mat. Stat. a Trapaya (Bmastr) Volum, No. (3), hal PRBANDINGAN MTOD MAXIMUM LIKLIHOOD STIMATION (ML) DAN MTOD BAYS DALAM PNDUGAAN PARAMTR DISTRIBUSI KSPONNSIAL Dw Nurlala, Daa Kusaar, vy Sulstagsh INTISARI Plta mmbagka mto ML a mto Bays alam muga paramtr Dstrbus ksposal. Dstrbus pror utuk mto Bays yag guaka paa plta aalah prluasa strbus pror Jffry. Prbaga kua mto lakuka mlalu smulas ata paa brbaga kos paramtr a ukura sampl. valuas trhaap kua mto lakuka mlalu pgamata trhaap la bas a MS yag haslka. Plta mujukka bahwa mto Bays ga la kostata Jffry lbh kl ar satu slalu mghaslka la bas a MS yag lbh bak bagka ga mto Mamum Lklhoo stmato (ML). Kata ku: Dstrbus ksposal, Mto ML, Mto Bays. PNDAHULUAN Pugaa paramtr aalah baga ar statstk frs yag mrupaka suatu ara utuk mmprks karaktrstk ar suatu populas brasarka sampl yag ambl. Sara umum pugaa paramtr gologka mja ua yatu pugaa ttk a pugaa slag. Bbrapa mto pugaa ttk yag guaka utuk muga paramtr ataraya aalah mto mom, mto kuarat trkl, mto Mamum Lklhoo stmato (ML) a mto Bays. Mto mom muga paramtr ga ara myamaka k mom sampl ga k mom populas a mylsaka sstm prsamaa yag haslka []. Sagka mto kuarat trkl prsp krjaya aalah mmmumka jumlah kuarat pympaga atau rror la-la obsrvas trhaap rata-rataya. Slajutya mto ML mrupaka suatu mto pugaa paramtr yag mmaksmalka fugs lklhoo. Kmua mto Bays mrupaka mto pugaa yag mggabugka strbus pror a strbus sampl. Dstrbus pror aalah strbus awal yag mmbr formas ttag paramtr. Dstrbus sampl yag gabug ga strbus pror aka mghaslka suatu strbus baru yatu strbus postror yag myataka rajat kyaka ssorag mga ltak paramtr stlah sampl amat []. Al Kutub a Ibrahm [3] mlakuka plta mga pugaa paramtr Dstrbus ksposal ar ata waktu hup. Plta trsbut mgguaka mto Bays ga strbus pror Jffry a prluasa strbus pror Jffry. Plta mghaslka bahwa prluasa strbus pror Jffry mmbrka puga trbak bagka ga puga laya. Plta la mga mto Bays yag muga paramtr Dstrbus Gamma lakuka olh Praha a Kuu [4]. Plta trsbut mmbagka krja Bays ga ML srta mto mom mgguaka smulas Mot Carlo. Dar hasl smulas apat lhat bahwa puga Bays a puga ML lbh bak ar puga mom. Jka bagka puga Bays a puga ML maka apat smpulka bahwa paa saat puga Bays ga pror o-formatf mghaslka la yag sama ga ML, ttap paa saat mgguaka pror formatf puga Bays lbh bak bagka ML. Slajutya Shawky a Bakoba [5] juga mlakuka plta mga pugaa paramtr sbuah bag Dstrbus Gamma potat. 5

2 5 D NURLAILA, D KUSNANDAR, DAN SULISTIANINGSIH Plta trsbut mgguaka mto Bays a ML utuk mmprolh puga ar paramtr btuk, rlablty (kaala) a falur rat futos (fugs tgkat kgagala). Plta mgajurka pgguaa pkata Bays ga quarat loss futo (kuarat fugs khlaga) utuk muga paramtr btuk ar Dstrbus Gamma potat. Smtara ML lbh ajurka utuk muga kaala a fugs tgkat kgagala. Kmua Plta yag lakuka olh Yarmohamma a Pazra [6] mgguaka mto Bays a ML alam muga paramtr btuk, rlablty a falur rat futo paa Gralz potal Dstrbuto. Hasl yag prolh ar pgamata mujukka sara umum bahwa lbh bak mgguaka pkata Bays ga LINX loss futo utuk mmprkraka paramtr btuk ar Gralz potal Dstrbuto. Sagka utuk mmprkraka kaala a fugs tgkat kgagala mgguaka pkata Bays ga Prautoary loss futo. Pugaa paramtr paa Dstrbus Wbull juga mgguaka mto Bays a ML yag tlt olh Ahm t al [7]. Paa plta trsbut mto Bays mgguaka strbus pror Jffry a prluasa strbus pror Jffry utuk mmprkraka paramtr Dstrbus Wbull paa ata waktu hup. Plta mympulka bahwa mto Bays yag guaka alam muga paramtr Wbull tak lbh uggul bagka ga mto ML. Tujua plta aalah mmbagka tgkat fktftas mto Mamum Lklhoo stmato (ML) a mto Bays alam muga paramtr Dstrbus ksposal. Prbaga kua mto lakuka mlalu stu smulas yag mlbatka tga la paramtr a tga ukura sampl. Mto Bays yag guaka paa plta mgguaka prluasa strbus pror Jffry. Kmua prbaga kfktftasa kua mto lhat ar la bas a MS yag prolh. MTOD MAXIMUM LIKLIHOOD STIMATION Mto Mamum Lklhoo stmato aalah mto pugaa yag mmaksmumka fugs lklhoo. Dalam plta mto ML guaka utuk muga paramtr Dstrbus ksposal. Dstrbus ksposal mrupaka salah satu strbus kotu. Dstrbus guaka paa ata waktu hup ga kgagala kosta. Dstrbus ksposal ga paramtr mmlk fugs kpaata pluag sbaga brkut [8]: f,,, Aapu fugs lklhoo ar Dstrbus ksposal aalah sbaga brkut []: L f f... f. () Nla yag maksmum ar L() juga aka maksmum paa log-lklhoo. Aapu prsamaa loglklhoo ar Dstrbus ksposal aalah l L l l L l. ()

3 Prbaga Mto ML a Mto Bays alam Pugaa Paramtr Dstrbus ksposal 53 Nla puga prolh ga muruka Prsamaa () trhaap ga ol, yatu: shgga prolh, l., Dga mka puga Mamum Lklhoo stmato bag aalah. a myamaka turuaya MTOD BAYS Dasar ar mto Bays aalah probabltas brsyarat, shgga utuk mlakuka pugaa prluka sbuah formas awal ar paramtr yag sbut ga strbus pror. Dstrbus pror apat otaska ga ( ), yag maa aalah paramtr ar strbus sampl. Salah satu strbus pror aalah strbus pror Jffry [3] yatu ( ) ( ), maa l, f I. Dalam aplkasya, strbus pror Jffry prluas mja prluasa strbus pror Jffry yatu I, utuk smua. Shgga prluasa strbus pror Jffry utuk Dstrbus ksposal yatu k, ga k aalah kostata,, a aalah jumlah sampl. Dstrbus pror kmua kombas ga strbus sampl yag aka mghaslka strbus baru yatu strbus postror. Dstrbus postror prolh ga ara mmbag fugs kpaata brsama ga fugs margal. Utuk mghaslka fugs kpaata brsama a fugs margal lakuka ga ara brkut [9]: Fugs kpaata brsama ar,...,, yatu: Fugs margal ar ( H ) yatu:,...,, L ~ k, P,..., H,...,. (3)

4 54 D NURLAILA, D KUSNANDAR, DAN SULISTIANINGSIH k k,..., P Dar Prsamaa (3) a Prsamaa (4) strbus postror apat tuls sbaga brkut:,,..., H,,..., H,..., Pugaa Bays aalah rata-rata ar strbus postror []. 3,..., Dga mka puga Bays bag aalah. Puga yag prolh mgguaka mto ML a mto Bays aka bagka mgguaka smulas. Smulas ata lakuka ga mmbagktka brbaga js kos ata yag mlbatka tga la yatu,5; a,5 srta tga maam ukura sampl yatu = 5, = 5 a =. Kmua lakuka prulaga sbayak. kal utuk stap kombas a. Data yag prolh trsbut aalss utuk muga paramtr mgguaka mto ML a mto Bays. Puga paramtr ga mto Bays mgguaka prluasa strbus pror Jffry yag mlbatka bbrapa la kostata Jffry yatu =,;,3;,5;,7. Slajutya htug la bas a MS ar kua mto trsbut ga rumus sbaga brkut: Bas MS Smulas paa plta lakuka ga program R. Kmua la bas a MS yag htug mgguaka rumus paa prsamaa (5) a Prsamaa (6) tamplka paa Tabl a. (4) (5) (6)

5 Prbaga Mto ML a Mto Bays alam Pugaa Paramtr Dstrbus ksposal 55 Tabl. Nla Bas yag Dhaslka olh Puga ML a Puga Bays ar Paramtr Dstrbus ksposal 5 5 ML Bas Bays =, =,3 =,5 =,7 =,3,5,9838 -,759 -,977 -,9553,736,3343,4477 -, ,3788,938,96483,697949,5, , ,37857,348,6554,37,5,799 -, ,35899,4957,4584,68385,736 -,64 -,78445,34,84873,3985,5, ,7697 -,5397 -,377,9473,45743,5,4988 -,4599 -,4 -,5,899,79584,998 -,8994 -,4595 -,96,394,64,5,853 -,976 -,53,3698,948,7368 Tabl. Nla MS yag Dhaslka olh Puga ML a Puga Bays ar Paramtr Dstrbus ksposal 5 5 ML MS Bays =, =,3 =,5 =,7 =,3,5,9779,857,49,677,89,393,48653,463,47635,4333,44859,537898,5,97739,93437,947635,97494,386,5,5,5657,595,5493,533,543,59598,358,634,7789,599,477,35456,5,5334,468377,478,47676,4848,5867,5,67,57,53,56,55,677,4834,86,4,77,749,766,5,43369,398,33454,35355,38,544 Tabl a mujukka la bas a MS yag brba-ba ar masg-masg mto. Trlhat bahwa kua mto mmlk pola yag sama yatu smak bsar ukura sampl la bas a MS yag haslka smak kl. Hal trja utuk smua ukura. Mto Bays ga la kostata Jffry yag lbh kl ar satu mghaslka la bas a MS yag lbh kl bagka ga mto ML. Aka ttap sbalkya mto Bays ga la kostata Jffry yag lbh bsar ar satu mghaslka la bas a MS yag lbh bsar ar mto ML. Kua mto trsbut mmlk la bas yag rlatf kl yatu ar la paramtr. Nla bas trkl prolh ktka kostata Jffry sama ga,5, kaaa kosst alam brbaga kos ata. Sla tu mto Bays ga kostata Jffry, mghaslka la MS yag lbh kl ar yag la. Smak bsar la kostata Jffry maka la bas a MS yag haslka smak bsar. Dar aalss yag lakuka ktahu bahwa

6 56 D NURLAILA, D KUSNANDAR, DAN SULISTIANINGSIH mto Bays ga prluasa strbus pror Jffry lbh bak bagka ga mto ML. Namu hal trsbut tak brlaku sara umum, kara hal trsbut ttuka olh la yag mrupaka kostata Jffry. PNUTUP Plta mghaslka bahwa utuk muga paramtr Dstrbus ksposal, Mto Bays ga prluasa strbus pror Jffry lbh fktf bagka ga mto ML. Aka ttap hal haya brlaku ktka sbaga kostata Jffry kurag ar satu. Kara mghaslka la bas a MS yag lbh kl bagka ga mto ML. DAFTAR PUSTAKA []. Ba LJ, glhart M. Itrouto to Probablty a Mathmatal Statsts. Bosto: Dubury Prss; 99. []. Walpol R, Myrs RH. Ilmu Pluag a Statstka utuk Isyur a Ilmuwa. Baug: Prbt ITB; 995. [3]. Al-Kutub HS, Ibrahm NA. Bays stmator for potal Dstrbuto wth tso of Jffry Pror Iformato. Malaysa Joural of Mathmatal Ss. 9; 3(): [4]. Praha B, Kuu D. Bays stmato a Prto of th Two-Paramtr Gamma Dstrbuto. Joural Statstal Computato a Smulato. ; 8: [5]. Shawky AI, Bakoba RA. Baysa a No-Baysa stmatos o th potat Gamma Dstrbuto. Appl Mathmatal Ss. 8; (5):5-53. [6]. Yarmohamma M, Pazra H. Classal a Baysa stmatos o th Gralz potal Dstrbuto Usg Csor Data. It.Joural of Math.Aalyss. ; 4(9): [7]. Ahm AM, Al-Kutub HS, Ibrahm NA. Comparso of th Baysa a Mamum Lklhoo stmato for Wbull Dstrbuto. Joural of Mathmats a Statsts. ; 6():-4. [8]. Forbs C, vas M, Hastgs N, Paok B. Statstal Dstrbutos. Hobok, NJ: Joh Wly & Sos;. [9]. Subaar. Statstka Matmatka. Yogyakarta: Graha Ilmu;. []. Caslla G, Brgr RL. Statstal Ifr. Bosto: Dubury Prss;. Dw Nurlala Daa Kusaar vy Sulstagsh : Fakultas MIPA Uvrstas Tajugpura, Potaak, [email protected] : Fakultas MIPA Uvrstas Tajugpura, Potaak, [email protected]. : Fakultas MIPA Uvrstas Tajugpura, Potaak, [email protected]

SIFAT ASIMTOTIK NORMALITAS DAN KETAKBIASAN PENDUGA KEMUNGKINAN MAKSIMUM PARAMETER DISTRIBUSI GENERALIZED GAMMA

SIFAT ASIMTOTIK NORMALITAS DAN KETAKBIASAN PENDUGA KEMUNGKINAN MAKSIMUM PARAMETER DISTRIBUSI GENERALIZED GAMMA J. Sas MIPA s Khusus Tahu 8 Vo. 4 No. Ha.: 4-46 ISSN 978-873 SIFAT ASIMTOTIK NORMAITAS DAN KTAKBIASAN PNDUGA KMUNGKINAN MAKSIMUM PARAMTR DISTRIBUSI GNRAIZD GAMMA ABSTRACT Da Kurasar Doa Ra Maja Warsoo

Lebih terperinci

KAJIAN KONVERGENSI BARISAN RUANG NORM-(n-1) DENGAN n 2

KAJIAN KONVERGENSI BARISAN RUANG NORM-(n-1) DENGAN n 2 Kaa Kovrgs Barsa Ruag Norm-(-) Dga KAJIAN KONVERGENSI BARISAN RUANG NORM-(-) DENGAN Faratul Masruroh Era Aprla Sao 3 Jurusa Matmatka FMIPA Isttut Tkolog Spuluh Nopmbr Surabaa 3 Jl. Arf Rahma Hakm Kampus

Lebih terperinci

BAB 1 HAMPIRAN TAYLOR DAN ANALISIS GALAT

BAB 1 HAMPIRAN TAYLOR DAN ANALISIS GALAT Catata Kuliah EL Aalisis Numrik BAB HAMPIRAN TAYLOR DAN ANALISIS GALAT. Pgatar Mtod Numrik Ktika kita mylsaika prsamaa-prsamaa matmatika di maa torma-tormaya masih dapat ditrapka, solusi aalitik atau solusi

Lebih terperinci

ESTIMASI TITIK BAYESIAN OBYEKTIF

ESTIMASI TITIK BAYESIAN OBYEKTIF ESTIMASI TITIK BAYESIAN OBYEKTIF Adi Stiawa ([email protected]) Program Studi Matmatika, Fakultas Sais da Matmatika Uivrsitas Krist Satya Wacaa Jl Dipogoro 52-6 Salatiga 57, Idosia Abstrak Estimasi

Lebih terperinci

INTERVAL KREDIBEL BAYESIAN OBYEKTIF DARI PARAMETER POPULASI BERDISTRIBUSI POISSON DAN EKSPONENSIAL

INTERVAL KREDIBEL BAYESIAN OBYEKTIF DARI PARAMETER POPULASI BERDISTRIBUSI POISSON DAN EKSPONENSIAL INTERVAL KREDIBEL BAYESIAN OBYEKTIF DARI PARAMETER POPULASI BERDISTRIBUSI POISSON DAN EKSPONENSIAL A Sawa Program S Mamaka Isr a Saska Faklas Sas a Mamaka Uvrsas Krs Saya Wacaa Jl Dpogoro 5-6 Salaga 57

Lebih terperinci

MODEL LOGIT KUMULATIF UNTUK RESPON ORDINAL

MODEL LOGIT KUMULATIF UNTUK RESPON ORDINAL MODEL LOGIT KUMULATIF UNTUK RESPON ORDINAL Robah P Rahaat da Tatk Wdhah Juusa Matmatka FMIPA UNDIP Jl. Pof. H. Sodato, S.H, Smaag 575 Abstat. Logt umulatv modl s usd to dsb th latoshp btw a spos vaabl

Lebih terperinci

BAB 2 SOLUSI NUMERIK PERSAMAAN

BAB 2 SOLUSI NUMERIK PERSAMAAN BAB SOLUSI NUMERIK PERSAMAAN Dalam sais da rkayasa, kita srigkali harus mcari akar solusi dari prsamaa f 0. Jika f mrupaka fugsi poliomial liar atau kuadratis, solusi ksakya mudah utuk didapatka kara rumusya

Lebih terperinci

Persatuan Aktuaris Indonesia Dasar-dasar Matematika Asuransi Jiwa 28 November Untuk soal no. 1 s/d 3 di bawah, diketahui suatu survival function

Persatuan Aktuaris Indonesia Dasar-dasar Matematika Asuransi Jiwa 28 November Untuk soal no. 1 s/d 3 di bawah, diketahui suatu survival function Prsatua ktuars Idosa Dasar-dasar Matmatka suras Jwa 8 Nombr 00 Utuk soal o s/d 3 d bawah, dktahu suatu sural fucto 00 s ( ) utuk 0 00 0 Htuglah F (75) X 0,0 B 0,30 C 0,40 D 0,50 E 0,0 Htuglah f (75) X

Lebih terperinci

S - 1 Penggunaan Metode Bayesian Obyektif dalam Analisis Pengukuran Tingkat Kepuasan Pelanggan Berdasarkan Kuesioner

S - 1 Penggunaan Metode Bayesian Obyektif dalam Analisis Pengukuran Tingkat Kepuasan Pelanggan Berdasarkan Kuesioner PROSIDING ISBN : 978 979 6353 6 3 S - Pgguaa Mtod Baysia Obyktif dalam Aalisis Pgukura Tigkat Kpuasa Plagga Brdasarka Kusior Adi Stiawa Program Studi Matmatika, Fakultas Sais da Matmatika Uivrsitas Krist

Lebih terperinci

TURUNAN FUNGSI. Definisi. 3.1 Pengertian Turunan Fungsi. Turunan fungsi f adalah fungsi f yang nilainya di c adalah. h asalkan limit ini ada.

TURUNAN FUNGSI. Definisi. 3.1 Pengertian Turunan Fungsi. Turunan fungsi f adalah fungsi f yang nilainya di c adalah. h asalkan limit ini ada. 3 TURUNAN FUNGSI 3. Pgrtia Turua Fugsi Diisi Turua ugsi adala ugsi yag ilaiya di c adala c c c asalka it ii ada. Coto Jika 3 4, maka turua di adala 3 4 3.. 4 3 4 4 4 4 4 4 3 3 3 4 Jika mmpuyai turua di

Lebih terperinci

PENAKSIR PARAMETER DISTRIBUSI EKSPONENSIAL PARETO DENGAN METODE MOMEN DAN METODE MAKSIMUM LIKELIHOOD

PENAKSIR PARAMETER DISTRIBUSI EKSPONENSIAL PARETO DENGAN METODE MOMEN DAN METODE MAKSIMUM LIKELIHOOD PENAKSIR PARAMETER DISTRIBUSI EKSPONENSIAL PARETO DENGAN METODE MOMEN DAN METODE MAKSIMUM LIKELIHOOD Mayag Novhta Sar *, Bustam, Sgt Sugarto Mahasswa Program Stud S Matematka FMIPA Uverstas Rau Dose Fakultas

Lebih terperinci

PENGOPTIMUMAN PADA FUNGSI PRODUKSI CROPPES

PENGOPTIMUMAN PADA FUNGSI PRODUKSI CROPPES PENGOPTIMUMAN PADA FUNGSI PRODUSI CROPPES NURJANAH G5404008 DEPARTEMEN MATEMATIA FAUTAS MATEMATIA DAN IMU PENGETAHUAN AAM INSTITUT PERTANIAN BOGOR 008 ABSTRACT NURJANAH Optmzato Cropps producto ucto Suprvsd

Lebih terperinci

3.1 Hubungan Dasar Probabilitas Probabilitas adalah harga perbandingan jumlah kejadian (A) yang mungkin dapat

3.1 Hubungan Dasar Probabilitas Probabilitas adalah harga perbandingan jumlah kejadian (A) yang mungkin dapat . Hubuga Dasar rbabltas rbabltas adalah harga prbadga jumlah kjada A yag mugk dapat trjad trhadap jumlah ksluruha kjada yag mugk trjad dalam sbuah prstwa. Cth:. luag utuk mdapatka agka gap dar lmpara sbuah

Lebih terperinci

ESTIMASI REGRESI MODEL LOGIT DENGAN METODE MAKSIMUM LIKELIHOOD SKRIPSI. Oleh: DINUL WAFA NIM

ESTIMASI REGRESI MODEL LOGIT DENGAN METODE MAKSIMUM LIKELIHOOD SKRIPSI. Oleh: DINUL WAFA NIM STIMASI RGRSI MODL LOGIT DNGAN MTOD MAKSIMUM LIKLIHOOD SKRIPSI Olh: DINUL WAFA NIM. 5548 JURUSAN MATMATIKA FAKULTAS SAINS DAN TKNOLOGI UNIVRSITAS ISLAM NGRI MAULANA MALIK IBRAHIM MALANG 9 STIMASI RGRSI

Lebih terperinci

PENDUGAAN PARAMETER DISTRIBUSI GENERALIZED WEIBULL DENGAN MENGGUNAKAN METODE KEMUNGKINAN MAKSIMUM

PENDUGAAN PARAMETER DISTRIBUSI GENERALIZED WEIBULL DENGAN MENGGUNAKAN METODE KEMUNGKINAN MAKSIMUM J. Sas MIPA Eds Khusus Tahu 28 Vol. 4 No. Hal.: 7-22 ISSN 978-873 ABSTRACT PENDUGAAN PARAMETER DISTRIBUSI GENERALIZED WEIBULL DENGAN MENGGUNAKAN METODE KEMUNGKINAN MAKSIMUM Ra Sa Hmta Wasoo da Da Kuasa

Lebih terperinci

INTERVAL KEPERCAYAAN UNTUK PERBEDAAN KOEFISIEN VARIASI DARI DISTRIBUSI LOGNORMAL I. Pebriyani 1*, Bustami 2, S. Sugiarto 2

INTERVAL KEPERCAYAAN UNTUK PERBEDAAN KOEFISIEN VARIASI DARI DISTRIBUSI LOGNORMAL I. Pebriyani 1*, Bustami 2, S. Sugiarto 2 INTERVAL KEPERCAAAN UNTUK PERBEDAAN KOEFIIEN VARIAI DARI DITRIBUI LOGNORMAL I. Pebrya * Bustam. ugarto Mahasswa Program Matematka Dose Jurusa Matematka Fakultas Matematka da Ilmu Pegetahua Alam Uverstas

Lebih terperinci

TAKSIRAN PARAMETER DISTRIBUSI WEIBULL DENGAN MENGGUNAKAN METODE MOMEN DAN METODE MAKSIMUM LIKELIHOOD

TAKSIRAN PARAMETER DISTRIBUSI WEIBULL DENGAN MENGGUNAKAN METODE MOMEN DAN METODE MAKSIMUM LIKELIHOOD TAKSIRAN PARAMETER DISTRIBUSI WEIBULL DENGAN MENGGUNAKAN METODE MOMEN DAN METODE MAKSIMUM LIKELIHOOD Eka Mer Krst ), Arsma Ada ), Sgt Sugarto ) [email protected] ) Mahasswa Program S Matematka FMIPA-UR

Lebih terperinci

PROSIDING ISBN :

PROSIDING ISBN : PROSIDING ISBN : 978 979 6353 3 METODE FINALTI UNTUK MENENTUKAN BERAT SAPI OPTIMAL Olh : H. A. Pahusp da Sska Ayua Pogam Stud Matmatka Idust da Statstka Fakultas Sas da Matmatka (FSM) Uvstas Kst Satya

Lebih terperinci

PERLUASAN METODE NEWTON DENGAN PENDEKATAN PARABOLIK

PERLUASAN METODE NEWTON DENGAN PENDEKATAN PARABOLIK PERLUASAN METDE NEWTN DENGAN PENDEKATAN PARABLIK Abdul Rahma, Supriadi Putra, Bustami Mahasiswa Program Studi S Matmatika Dos JurusaMatmatika Fakultas Matmatika da Ilmu Pgtahua Alam Uivrsitas Riau Kampus

Lebih terperinci

JURNAL SAINS DAN SENI POMITS Vol. 2, No.1, (2013) ( X Print) D-1

JURNAL SAINS DAN SENI POMITS Vol. 2, No.1, (2013) ( X Print) D-1 JURNAL SAINS DAN SENI POMITS Vol., No., (3) 33-3 (3-8 Prt) D- Pmodla Partspas Wata dalam Kgata Ekoom Rumah Tagga Nlaya d Pssr Tmur Surabaya (Stud Kasus Kcamata Kcamata Bulak, Mulyorjo, da Kjra) Irma Harlagtyas,

Lebih terperinci

Penerapan Pendekatan Gabungan Grey Relational Analysis (GRA) dan Principal Component Analysis (PCA) Pada Metode Taguchi Multirespon

Penerapan Pendekatan Gabungan Grey Relational Analysis (GRA) dan Principal Component Analysis (PCA) Pada Metode Taguchi Multirespon JURNL SINS DN SENI IS Vol., No., (Spt. ) ISSN: -98X D-4 Prapa Pdkata Gabuga Gry Rlatoal alyss (GR) da Prcpal Compot alyss (PC) Pada Mtod aguch Multrspo Nur prla Rahmada, Soy Suaryo da Muhammad Sahd kbar

Lebih terperinci

11/10/2010 REGRESI LINEAR SEDERHANA DAN KORELASI TUJUAN

11/10/2010 REGRESI LINEAR SEDERHANA DAN KORELASI TUJUAN // REGRESI LINEAR SEDERHANA DAN KORELASI. Model Regres Lear. Peaksr Kuadrat Terkecl 3. Predks Nla Respos 4. Iferes Utuk Parameter-parameter Regres 5. Kecocoka Model Regres 6. Korelas Utrwe Mukhayar MA

Lebih terperinci

UJI CHI KUADRAT (χ²) 1.1. Pengertian Frekuensi Observasi dan Frekuensi Harapan

UJI CHI KUADRAT (χ²) 1.1. Pengertian Frekuensi Observasi dan Frekuensi Harapan UJI CHI KUADRAT (χ²) 1. Pndahuluan Uj Ch Kuadrat adalah pngujan hpotss mngna prbandngan antara : frkuns obsrvas/yg bnar-bnar trjad/aktual dngan frkuns harapan/kspktas 1.1. Pngrtan Frkuns Obsrvas dan Frkuns

Lebih terperinci

4/1/2013. Bila X 1, X 2, X 3,,X n adalah pengamatan dari sampel, maka rata-rata hitung dirumuskan sebagai berikut. Dengan: n = banyak data

4/1/2013. Bila X 1, X 2, X 3,,X n adalah pengamatan dari sampel, maka rata-rata hitung dirumuskan sebagai berikut. Dengan: n = banyak data //203 UKURAN GEJALA PUSAT DAN UKURAN LETAK Kaa Evta Dew, S.Pd., M.S. Ukura gejala pusat Utuk medapatka gambara yag lebh jelas tetag sekumpula data megea sesuatu hal, bak tu dar sampel ataupu populas Ukura

Lebih terperinci

ESTIMASI PARAMETER PADA DISTRIBUSI EKSPONENSIAL

ESTIMASI PARAMETER PADA DISTRIBUSI EKSPONENSIAL Jural Matmata Mur da Traa Vol5 No Dsmbr : 4-5 ESTIMASI PARAMETER PADA DISTRIBUSI EKSPONENSIA Ry Aula Hj Noor Fajrah Nur Salam Proram Stud Matmata Faultas MIPA Ulam Bajarbaru Kalsl ABSTRAK Estmas tt dar

Lebih terperinci

BAB II PEMULIHAN SOLUSI METODE REP DAN ERROR ESTIMATOR Z 2

BAB II PEMULIHAN SOLUSI METODE REP DAN ERROR ESTIMATOR Z 2 BB II PEMULIHN SOLUSI MEODE REP DN ERROR ESIMOR Z.1. UMUM.1.1 Ksalaa Solus Mtod Elm Hgga Error yag trjad mrupaka sls atara solus ksak dga solus pdkata da dapat dksprska dalam btuk prala, tgaga maupu gaya

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI A II LANDASAN TEORI. Distribusi Pluag Diisi. (Walpol da M rs 995) Jika X adalah suatu variabl radom kotiu maka ugsi dsitas pluaga adalah suatu ugsi ag mmuhi kodisi: i. ; utuk x (- ) ii. = iii. = (.) Diisi.

Lebih terperinci

TEORI ANTRIAN. Elemen Dasar Model Antrian. Distribusi Poisson dan eksponensial. =, t 0, dimana E { t}

TEORI ANTRIAN. Elemen Dasar Model Antrian. Distribusi Poisson dan eksponensial. =, t 0, dimana E { t} Elm Dasar Modl Atria. TEORI ANTRIAN Aktor utama customr da srvr. Elm dasar :. distribusi kdataga customr.. distribusi waktu playaa. 3. disai fasilitas playaa (sri, parall atau jariga). 4. disipli atria

Lebih terperinci

UKURAN PEMUSATAN & PENYEBARAN

UKURAN PEMUSATAN & PENYEBARAN UKURAN PEMUSATAN & PENYEBARAN RATA - RATA UKURAN PEMUSATAN MEDIAN MODUS Rata rata htug (mea) Merupaka hasl bag dar sejumlah skr dega bayakya respde Utuk Data Tdak Berkelmpk x Dmaa : = la samapa x = la

Lebih terperinci

SKRIPSI. oleh: FARIDA KARUNIAWATI NIM

SKRIPSI. oleh: FARIDA KARUNIAWATI NIM ANALISIS REGRESI DUMMY VARIABLE MODEL LOGIT (Kasus pada Estmas Huja d Karagploso, Malag) SKRIPSI olh: FARIDA KARUNIAWATI NIM. 0650028 JURUSAN MATEMATIKA FAKULTAS SAIN DAN TEKNOLOGI UNIVERSITAS ISLAM NEGERI

Lebih terperinci

Transformasi Fourier Waktu Diskrit

Transformasi Fourier Waktu Diskrit Praktikum Isyarat da Sistm Topik 5 Trasformasi ourir Waktu Diskrit Tuua Mahasiswa dapat mtuka da mgguaka trasformasi ourir waktu diskrit dalam aalisa suatu sistm LTI Mahasiswa dapat mgguaka MATLAB sbagai

Lebih terperinci

Pengklasifikasian Penyakit Jantung Di RSUD Abdul Wahab Sjahranie Samarinda Dengan Menggunakan Regresi Logistik Biner

Pengklasifikasian Penyakit Jantung Di RSUD Abdul Wahab Sjahranie Samarinda Dengan Menggunakan Regresi Logistik Biner Pgklasfkasa Pyakt Jatug D RSUD Abdul Wahab Sjahra Samarda Dga Mgguaka Rgrs Logstk Br Classfcato of Hart Dsas RSUD Abdul Wahab Sjahra Samarda Usg Bary Logstk Rgrsso Adras Sutato 1, Darah A. Noh, Syarudd

Lebih terperinci

BAB II LANDASAN TEORI. kesetimbangan, linearisasi, bilangan reproduksi dasar, analisa kestabilan, kriteria

BAB II LANDASAN TEORI. kesetimbangan, linearisasi, bilangan reproduksi dasar, analisa kestabilan, kriteria BAB II LANDASAN EORI Pada bab ii aka dibahas tori tori pdukug yag aka diguaka pada bab slajutya, atara lai modl matmatika, modl pidmik SIR klasik, ilai ig, prsamaaa difrsial, sistm prsamaa difrsial, titik

Lebih terperinci

BAB II TINJAUAN PUSTAKA. penurunan akan permintaan pergerakan transportasi. [ 11]

BAB II TINJAUAN PUSTAKA. penurunan akan permintaan pergerakan transportasi. [ 11] BAB II TINJAUAN PUSTAKA II.1 Umum Tngkat playanan suatu jarngan jalan tntukan olh waktu prjalanan, baya prjalanan (tarf an bahan bakar), knyamanan, an kamanan pnumpang. Jka trja pnurunan tngkat playanan

Lebih terperinci

ANALISIS REGRESI. Model regresi linier sederhana merupakan sebuah model yang hanya terdiri dari satu peubah terikat dan satu peubah penjelas:

ANALISIS REGRESI. Model regresi linier sederhana merupakan sebuah model yang hanya terdiri dari satu peubah terikat dan satu peubah penjelas: ANALISIS REGRESI Pedahulua Aalss regres berkata dega stud megea ketergatuga satu peubah (peubah terkat) terhadap satu atau lebh peubah laya (peubah pejelas). Jka Y dumpamaka sebaga peubah terkat da X1,X,...,X

Lebih terperinci

METODE SECANT-MIDPOINT NEWTON UNTUK MENYELESAIKAN PERSAMAAN NONLINEAR. Supriadi Putra

METODE SECANT-MIDPOINT NEWTON UNTUK MENYELESAIKAN PERSAMAAN NONLINEAR. Supriadi Putra METODE SENT-MIDPOINT NEWTON UNTUK MENYELESIKN PERSMN NONLINER Supriadi Putra [email protected] Laboratorium Komputasi Jurusa Matmatika Fakultas Matmatika da Ilmu Pgtahua lam Uivrsitas Riau Kampus Biawidya

Lebih terperinci

3/19/2012. Bila X 1, X 2, X 3,,X n adalah pengamatan dari sampel, maka rata-rata hitung dirumuskan sebagai berikut

3/19/2012. Bila X 1, X 2, X 3,,X n adalah pengamatan dari sampel, maka rata-rata hitung dirumuskan sebagai berikut 3/9/202 UKURAN GEJALA PUSAT DAN UKURAN LETAK Kaa Evta Dew, S.Pd., M.S. Ukura gejala pusat Utuk medapatka gambara yag lebh jelas tetag sekumpula data megea sesuatu hal, bak tu dar sampel ataupu populas

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang 1 BAB 1 PENDAHULUAN 1.1 Latar Blakang Mnmum spannng tr (MST) mrupakan sbuah prmasalahan dalam suatu graph yang mana banyak aplkasnya bak scara langsung maupun tdak langsung yang tlah dplajar. Salah satu

Lebih terperinci

3 Departemen Statistika FMIPA IPB

3 Departemen Statistika FMIPA IPB Supleme Respos Pertemua ANALISIS DATA KATEGORIK (STK51) Departeme Statstka FMIPA IPB Pokok Bahasa Sub Pokok Bahasa Referes Waktu U potess Tga Cotoh atau Lebh U Kruskal-Walls (aalss ragam satu-arah berdasarka

Lebih terperinci

BAB 2 LANDASAN TEORI. Regresi linier sederhana merupakan bagian regresi yang mencakup hubungan linier

BAB 2 LANDASAN TEORI. Regresi linier sederhana merupakan bagian regresi yang mencakup hubungan linier BAB LANDASAN TEORI. Regres Ler Sederhaa Regres ler sederhaa merupaka baga regres yag mecakup hubuga ler satu peubah acak tak bebas dega satu peubah bebas. Hubuga ler da dar satu populas dsebut gars regres

Lebih terperinci

BAB III UKURAN PEMUSATAN DATA

BAB III UKURAN PEMUSATAN DATA BAB III UKURAN PEMUSATAN DATA A. Ukura Gejala Pusat Ukura pemusata adalah suatu ukura yag meujukka d maa suatu data memusat atau suatu kumpula pegamata memusat (megelompok). Ukura pemusata data adalah

Lebih terperinci

Uji Statistika yangb digunakan dikaitan dengan jenis data

Uji Statistika yangb digunakan dikaitan dengan jenis data Uj Statstka yagb dguaka dkata dega jes data Jes Data omal Ordal Iterval da Raso Uj Statstka Koefse Kotges Rak Spearma Kedall Tau Korelas Parsal Kedall Tau Koefse Kokordas Kedall W Pearso Korelas Gada Korelas

Lebih terperinci

REGRESI LOGISTIK BINER

REGRESI LOGISTIK BINER REGRESI LOGISTIK BINER Mtod rgrs mruaka aalss data yag mdskrska hubuga kausaltas atara varabl rso da rdktor (Hosmr da Lmshow, ). Prbdaa mdasar atara rgrs lr da rgrs logstk adalah ty dar varabl rso. Rgrs

Lebih terperinci

JURNAL SAINS DAN SENI POMITS Vol. 3, No.2, (2014) ( X Print) D-140

JURNAL SAINS DAN SENI POMITS Vol. 3, No.2, (2014) ( X Print) D-140 JURNAL SAINS DAN SENI POMITS Vol. 3, No., (014) 337-350 (301-98X Prt) D-140 Faktor-Faktor yag Mmgaruh Pyakt Malara ada Ibu Haml d Provs Nusa Tggara Barat, Nusa Tggara Tmur, Maluku, Maluku Utara, Paua,

Lebih terperinci

V. PENDEKATAN BAYES PADA MODEL ACAK

V. PENDEKATAN BAYES PADA MODEL ACAK 7 V PEDEKT BYES PD MODEL CK 5 Pdahulua Pada aak kasus, srgkal dapat dprolh foras awal ttag paratr ag aka dduga Saga cotoh adalah pada kasus pdugaa produkttas taaa hortkultura ag tlah dahas pada Ba Pada

Lebih terperinci

TAKSIRAN PARAMETER DISTRIBUSI WEIBULL DENGAN MENGGUNAKAN METODE MOMEN DAN METODE KUADRAT TERKECIL

TAKSIRAN PARAMETER DISTRIBUSI WEIBULL DENGAN MENGGUNAKAN METODE MOMEN DAN METODE KUADRAT TERKECIL TAKSIRAN PARAMETER DISTRIBUSI WEIBULL DENGAN MENGGUNAKAN METODE MOMEN DAN METODE KUADRAT TERKECIL Hesty ala, Arsma Ada, Bustam hestyfala@ymalcom Mahasswa Program S Matematka MIPA-UR Dose Matematka MIPA-UR

Lebih terperinci

PENDUGAAN RESIKO RELATIF PADA PENDUGAAN AREA KECIL 1. Kismiantini Jurusan Pendidikan Matematika FMIPA Universitas Negeri Yogyakarta

PENDUGAAN RESIKO RELATIF PADA PENDUGAAN AREA KECIL 1. Kismiantini Jurusan Pendidikan Matematika FMIPA Universitas Negeri Yogyakarta PENDUGAAN RESIKO RELATIF PADA PENDUGAAN AREA KECIL 1 Ksmantn Jurusan Pnddkan Matmatka FMIPA Unvrstas Ngr Yogakarta Abstrak Pnduga rsko rlat mrupakan statstk ang dgunakan untuk mngtahu sbaran suatu pnakt.

Lebih terperinci

BAB 2 LANDASAN TEORI. Regresi linier sederhana yang variabel bebasnya ( X ) berpangkat paling tinggi satu.

BAB 2 LANDASAN TEORI. Regresi linier sederhana yang variabel bebasnya ( X ) berpangkat paling tinggi satu. BAB LANDASAN TEORI. Regres Ler Sederhaa Regres ler sederhaa yag varabel bebasya ( berpagkat palg tgg satu. Utuk regres ler sederhaa, regres ler haya melbatka dua varabel ( da. Persamaa regresya dapat dtulska

Lebih terperinci

STATISTIKA A. Definisi Umum B. Tabel Distribusi Frekuensi

STATISTIKA A. Definisi Umum B. Tabel Distribusi Frekuensi STATISTIKA A. Des Umum. Pegerta statstk Statstk adalah kumpula akta yag berbetuk agka da dsusu dalam datar atau tabel yag meggambarka suatu persoala. Cotoh: statstk kurs dolar Amerka, statstk pertumbuha

Lebih terperinci

TEORI ANTRIAN. A. Definisi dan Unsur-unsur Dasar Model Antrian

TEORI ANTRIAN. A. Definisi dan Unsur-unsur Dasar Model Antrian TEORI ANTRIAN Tori atria mrupaka studi matmatis mgai atria atau waitig lis yag di dalamya disdiaka bbrapa altratif modl matmatika yag dapat diguaka utuk mtuka bbrapa karaktristik da optimasi dalam pgambila

Lebih terperinci

INTEGRAL FOURIER. DISUSUN OLEH : Kelompok III (Tiga)

INTEGRAL FOURIER. DISUSUN OLEH : Kelompok III (Tiga) INTEGRA FOURIER DISUSUN OEH : Klompok III (Tiga). Maruah (7 6). Yusi Oktavia (7 45 ) 3. Widya Elvi AS (7 45) 4. Azar Saarudi (7 454) 5. Irmaati (7 455) Mata Kuliah Dos Pgasuh Klas : Matmatika ajuta : Fadli,

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Statistika Deskriptif dan Statistika Inferensial. 1.2 Populasi dan Sampel

BAB I PENDAHULUAN. 1.1 Statistika Deskriptif dan Statistika Inferensial. 1.2 Populasi dan Sampel BAB I PENDAHULUAN 1.1 Statstka Deskrptf da Statstka Iferesal Dewasa d berbaga bdag lmu da kehdupa utuk memaham/megetahu sesuatu dperluka dat Sebaga cotoh utuk megetahu berapa bayak rakyat Idoesa yag memerluka

Lebih terperinci

ESTIMASI PARAMETER MODEL GEOGRAPHICALLY WEIGHTED ORDINAL LOGISTIC REGRESSION (GWOLR)

ESTIMASI PARAMETER MODEL GEOGRAPHICALLY WEIGHTED ORDINAL LOGISTIC REGRESSION (GWOLR) ISBN : 978.60.36.00.0 ESIMASI PARAMEER MODEL GEOGRAPHICALLY WEIGHED ORDINAL LOGISIC REGRESSION (GWOLR) Sylf, Vta Ratnasar Mahasswa Jurusan Statstka Insttut knolog Spuluh Nopmbr (IS), Dosn Jurusan Statstka

Lebih terperinci

PERTIDAKSAMAAN AZUMA PADA MARTINGALE UNTUK MENENTUKAN SUPREMUM PELUANG

PERTIDAKSAMAAN AZUMA PADA MARTINGALE UNTUK MENENTUKAN SUPREMUM PELUANG PERTIDAKSAMAAN AZUMA PADA MARTINGALE UNTUK MENENTUKAN SUPREMUM PELUANG Sudaro Jurusa Matatka FMIPA UNDIP Jl Prof H Sodarto SH Tbalag Sarag 575 Abstract Coutg probablty a two-tald hypothss dtr lvl of th

Lebih terperinci

2.2.3 Ukuran Dispersi

2.2.3 Ukuran Dispersi 3 Ukura Dspers Yag aka dbahas ds adalah smpaga baku da varas karea dua ukura dspers yag palg serg dguaka Hubuga atara smpaga baku dega varas adalah Varas = Kuadrat dar Smpaga baku otas yag umum dguaka

Lebih terperinci

BAB 6 PRINSIP INKLUSI DAN EKSKLUSI

BAB 6 PRINSIP INKLUSI DAN EKSKLUSI BB 6 PRINSIP INKLUSI DN EKSKLUSI Pada baga aka ddskuska topk berkutya yatu eumeras yag damaka Prsp Iklus da Eksklus. Kosep dalam bab merupaka perluasa de dalam Dagram Ve beserta oepras rsa da gabuga, amu

Lebih terperinci

PENGHITUNGAN PREMI DENGAN MENGGUNAKAN METODE BAYESIAN ROBUST DAN METODE KREDIBILITAS ROBUST TITIES MELYASIH

PENGHITUNGAN PREMI DENGAN MENGGUNAKAN METODE BAYESIAN ROBUST DAN METODE KREDIBILITAS ROBUST TITIES MELYASIH PENGHITUNGAN PREMI DENGAN MENGGUNAKAN METODE BAYESIAN ROBUST DAN METODE KREDIBILITAS ROBUST TITIES MELYASIH DEPARTEMEN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM INSTITUT PERTANIAN BOGOR

Lebih terperinci

Interpretasi Parameter dalam Model Regresi Logistik untuk Variabel Bebas Dikotomus

Interpretasi Parameter dalam Model Regresi Logistik untuk Variabel Bebas Dikotomus Jural EKSPONENSIAL Volum 3, Nomor, M 22 ISSN 285-7829 Itrprtas Paramtr dalam Modl Rgrs Logst utu Varabl Bbas Dotomus Paramtr Itrprtato Logstc Rgrsso Modls for Dcotomus Idpdt Varabl Darah A. Noh Program

Lebih terperinci

ESTIMASI SMALL AREA BERDASARKAN MODEL PADA RATA-RATA PENGELUARAN PERKAPITA RUMAH TANGGA DI KABUPATEN KEBUMEN

ESTIMASI SMALL AREA BERDASARKAN MODEL PADA RATA-RATA PENGELUARAN PERKAPITA RUMAH TANGGA DI KABUPATEN KEBUMEN ESTIMASI SMALL AREA BERDASARKAN MODEL PADA RATA-RATA PENGELUARAN PERKAPITA RUMAH TANGGA DI KABUPATEN KEBUMEN A. Nna Rosana Chytrasar 1), Sr Haryatm 2), Danardono 3) 1) Mahasswa Jur. Matmatka FMIPA UGM

Lebih terperinci

Analisis Pemodelan berdasarkan karakteristik dinamik

Analisis Pemodelan berdasarkan karakteristik dinamik Aalss Pmdla brdasarka karaktrstk damk DISUSUN OLEH: Dr. Yffry Hadk Putra, ST., M.T Karaktrstk damk suatu sstm atau strum myataka prlaku rsps sstm saat tras (utuk put stp) da prlaku sstm jka mdapatka put

Lebih terperinci

Konsistensi dan Asimtotik Normalitas Model Multivariate Adaptive Regression Spline (Mars) Respon Biner

Konsistensi dan Asimtotik Normalitas Model Multivariate Adaptive Regression Spline (Mars) Respon Biner Jural IMU DASAR, Vol No, Jul 9 : 33-33 Kossts da Asmtotk Normaltas Modl Multvarat Adatv Rgrsso Sl (Mars Rso r Cosstcy ad Asymtotc Normalty of Maxmum klhood Estmator MARS ary Rsos Modl ambag Wdaarko Otok

Lebih terperinci

PENDUGAAN PARAMETER BEBERAPA SEBARAN POISSON CAMPURAN DAN BEBERAPA SEBARAN DISKRET DENGAN MENGGUNAKAN ALGORITME EM ADE HARIS HIMAWAN

PENDUGAAN PARAMETER BEBERAPA SEBARAN POISSON CAMPURAN DAN BEBERAPA SEBARAN DISKRET DENGAN MENGGUNAKAN ALGORITME EM ADE HARIS HIMAWAN PENDUGAAN PARAMETER BEBERAPA SEBARAN POISSON CAMPURAN DAN BEBERAPA SEBARAN DISKRET DENGAN MENGGUNAKAN ALGORITME EM ADE HARIS HIMAWAN SEKOLAH PASCASARJANA INSTITUT PERTANIAN BOGOR BOGOR 8 PERNYATAAN MENGENAI

Lebih terperinci

BAB III ISI. x 2. 2πσ

BAB III ISI. x 2. 2πσ BAB III ISI 4. Keadata Normal Multvarat da Sfat-sfatya Keadata ormal multvarat meruaka geeralsas dar keadata ormal uvarat utuk dmes. f ( x) [( x )/ ] / = e x π x = ( x )( ) ( x ). < < (-) (-) Betuk (-)

Lebih terperinci

UKURAN GEJALA PUSAT DAN UKURAN LETAK

UKURAN GEJALA PUSAT DAN UKURAN LETAK UKURAN GEJALA PUSAT DAN UKURAN LETAK MODUL 4 UKURAN GEJALA PUSAT DAN UKURAN LETAK. Pedahulua Utuk medapatka gambara yag lebh jelas tetag sekumpula data megea sesuatu persoala, bak megea sampel atau pu

Lebih terperinci

Ruang Banach. Sumanang Muhtar Gozali UNIVERSITAS PENDIDIKAN INDONESIA

Ruang Banach. Sumanang Muhtar Gozali UNIVERSITAS PENDIDIKAN INDONESIA Ruag Baach Sumaag Muhtar Gozal UNIVERSITAS PENDIDIKAN INDONESIA Satu kose etg d kulah Aalss ugsoal adalah teor ruag Baach. Pada baga aka drevu defs, cotoh-cotoh, serta sfat-sfat etg ruag Baach. Kta aka

Lebih terperinci

TATAP MUKA III UKURAN PEMUSATAN DATA (MEAN, MEDIAN DAN MODUS) Fitri Yulianti, SP. Msi.

TATAP MUKA III UKURAN PEMUSATAN DATA (MEAN, MEDIAN DAN MODUS) Fitri Yulianti, SP. Msi. TATAP MUKA III UKURAN PEMUSATAN DATA (MEAN, MEDIAN DAN MODUS) Ftr Yulat, SP. Ms. UKURAN DATA Ukura data Ukura Pemusata data Ukura letak data Ukura peyebara data Mea Meda Jagkaua Meda Kuartl Jagkaua atar

Lebih terperinci

SIFAT-SIFAT LANJUT FUNGSI TERBATAS

SIFAT-SIFAT LANJUT FUNGSI TERBATAS Bulet Ilmah Mat. Stat. da Terapaya (Bmaster) Volume 03, No. 2(204), hal 35 42. SIFAT-SIFAT LANJUT FUNGSI TERBATAS Suhard, Helm, Yudar INTISARI Fugs terbatas merupaka fugs yag memlk batas atas da batas

Lebih terperinci

b. peluang terjadinya peristiwa yang diperhatikan mendekati nol (p 0). c. perkalian n.p =, sehingga p = /n.

b. peluang terjadinya peristiwa yang diperhatikan mendekati nol (p 0). c. perkalian n.p =, sehingga p = /n. 0 DISTRIBUSI POISSO Distribusi Poisso ii diprolh dari distribusi biomial, apabila dalam distribusi biomial brlau syarat-syarat sbagai briut: a. baya pgulaga sprimya sagat bsar ( ). b. pluag trjadiya pristiwa

Lebih terperinci

BAB I PENDAHULUAN. ANALISIS STATISTIK TERHADAP PENYAKIT KANKER PARU OLEH BAHAN KARSINOGENIK (Studi Kasus Pasien Kanker Paru RSUD Dr.

BAB I PENDAHULUAN. ANALISIS STATISTIK TERHADAP PENYAKIT KANKER PARU OLEH BAHAN KARSINOGENIK (Studi Kasus Pasien Kanker Paru RSUD Dr. BAB I PENDAHULUAN ANALISIS STATISTIK TERHADAP PENYAKIT KANKER PARU OLEH BAHAN KARSINOGENIK (Stud Kasus Pas Kakr Paru RSUD Dr. Sotomo Nama Mahasswa : N matus Solkhah NRP : 35 9 5 Jurusa : Statstka FMIPA-ITS

Lebih terperinci

MODEL DINAMIS RANTAI MAKANAN TIGA SPESIES

MODEL DINAMIS RANTAI MAKANAN TIGA SPESIES MODL DINAMIS RANTAI MAKANAN TIGA SPSIS Wj Bu Pratkno an Sunarsh Program Stu Matmatka FMIPA UNDIP Jl. Prof. Soarto SH Smarang 575 Astract. Thr spcs foo chan mols ar mol that xprss th ntracton of thr populatons

Lebih terperinci

BAB 5. ANALISIS REGRESI DAN KORELASI

BAB 5. ANALISIS REGRESI DAN KORELASI BAB 5. ANALISIS REGRESI DAN KORELASI Tujua utama aalss regres adalah mecar ada tdakya hubuga ler atara dua varabel: Varabel bebas (X), yatu varabel yag mempegaruh Varabel terkat (Y), yatu varabel yag dpegaruh

Lebih terperinci

BAB 2. Tinjauan Teoritis

BAB 2. Tinjauan Teoritis BAB Tjaua Teorts.1 Regres Lear Sederhaa Regres lear adalah alat statstk yag dperguaka utuk megetahu pegaruh atara satu atau beberapa varabel terhadap satu buah varabel. Varabel yag mempegaruh serg dsebut

Lebih terperinci

Jawablah pertanyaan berikut dengan ringkas dan jelas menggunakan bolpoin. Total nilai 100. A. ISIAN SINGKAT (Poin 20) 2

Jawablah pertanyaan berikut dengan ringkas dan jelas menggunakan bolpoin. Total nilai 100. A. ISIAN SINGKAT (Poin 20) 2 M 81 STTISTIK DSR SEMESTER II 11/1 KK STTISTIK, FMIP IT SOLUSI UJIN TENGH SEMESTER (UTS) Sabtu, 1 Me 1, Pukul 9. 1.4 WI (1 met) Kelas 1. Pegajar: Udjaa S. Pasarbu/Rr. Kura Novta Sar, Kelas. Pegajar: Utrwe

Lebih terperinci

BAB 1 STATISTIKA RINGKASAN MATERI

BAB 1 STATISTIKA RINGKASAN MATERI BAB STATISTIKA A RINGKASAN MATERI. Pegerta Data adalah kumpula keteraga-keteraga atau catata-catata megea suatu kejada, dapat berupa blaga, smbol, sat atau kategor. Masg-masg keteraga dar data dsebut datum.

Lebih terperinci

( ) ( ) ( ) ( ) ( ) III MODEL. , θ Ω. 1 Pendugaan parameter dengan metode maximum lkelihood estimation dapat diperoleh dari:

( ) ( ) ( ) ( ) ( ) III MODEL. , θ Ω. 1 Pendugaan parameter dengan metode maximum lkelihood estimation dapat diperoleh dari: 5 Mamum Lkelhood Estmato Defs Fugs Lkelhood Msalka X, X,, X adalah eubah acak d dega fugs massa eluag ( ; θ, dega θ dasumska skalar da tdak dketahu, maka rosedur fugs lkelhood daat dtulska sebaga berkut

Lebih terperinci

KARAKTERISTIK FUNGSI DISTRIBUSI FOUR-PARAMETER GENERALIZED-t

KARAKTERISTIK FUNGSI DISTRIBUSI FOUR-PARAMETER GENERALIZED-t Jural -DuMah Volum No Jauar 6 Hlm 8- KARAKTERISTIK FUNGSI DISTRIUSI FOUR-PARAMETER GENERALIZED- Rahma Cahad Warsoo Musoa Usma Da Kurasar Pddka Mamaka STKIP Muhammadah Prgswu Emal: rahma_cahad@ahoocom Mamaka

Lebih terperinci

Regresi & Korelasi Linier Sederhana. Gagasan perhitungan ditetapkan oleh Sir Francis Galton ( )

Regresi & Korelasi Linier Sederhana. Gagasan perhitungan ditetapkan oleh Sir Francis Galton ( ) Regres & Korelas Ler Sederhaa 1. Pedahulua Gagasa perhtuga dtetapka oleh Sr Fracs Galto (18-1911) Persamaa regres :Persamaa matematk yag memugkka peramala la suatu peubah takbebas (depedet varable) dar

Lebih terperinci

UKURAN GEJALA PUSAT (UGP)

UKURAN GEJALA PUSAT (UGP) UKURAN GEJALA PUSAT (UGP) Pegerta: Rata-rata (average) alah suatu la yag mewakl suatu kelompok data. Nla dsebut juga ukura gejala pusat karea pada umumya mempuya kecederuga terletak d tegah-tegah da memusat

Lebih terperinci

Ukuran Pemusatan Data. Arum Handini P., M.Sc Ayundyah K., M.Si.

Ukuran Pemusatan Data. Arum Handini P., M.Sc Ayundyah K., M.Si. Ukura Pemusata Data Arum Had P., M.Sc Ayudyah K., M.S. Notas utuk Populas da Sampel Notas: Mea (rata-rata) Sample x Populas μ Varas s 2 σ 2 Smpaga baku s σ Ukura Pemusata Data 1. Mea (rata-rata) 2. Meda

Lebih terperinci

BAB IV STUDI KASUS NILAI AVL SLJJ PT TELKOM

BAB IV STUDI KASUS NILAI AVL SLJJ PT TELKOM BAB IV STUDI KASUS NILAI AVL SLJJ PT TELKOM 4.1 Pndahuluan Ktga prtdaksamaan yang tlah dbahas sblumnya akan daplkaskan dalam suatu stud kasus mngna nla AVL (avalablty ntwork) dar sambungan langsung jarak

Lebih terperinci

MATEMATIKA INTEGRAL RIEMANN

MATEMATIKA INTEGRAL RIEMANN MATEMATIKA KELAS XII IPA - KURIKULUM GABUNGAN Ses NGAN INTEGRAL RIEMANN A. NOTASI SIGMA a. Defs Notas Sgma Sgma (Σ) adalah otas matematka megguaka smbol yag mewakl pejumlaha da beberapa suku yag memlk

Lebih terperinci

MINGGU KE-10 HUBUNGAN ANTAR KONVERGENSI

MINGGU KE-10 HUBUNGAN ANTAR KONVERGENSI MINGGU KE-0 HUBUNGAN ANTAR KONVERGENSI Hubuga atar koverges Hrark atar koverges dyataka dalam teorema berkut. Teorema Msalka X da X, X, X 3,... adalah varabel radom yag ddefska pada ruag probabltas yag

Lebih terperinci

Metode Iterasi Tiga Langkah dengan Orde Konvergensi Enam untuk Menyelesaikan Persamaan Nonlinear

Metode Iterasi Tiga Langkah dengan Orde Konvergensi Enam untuk Menyelesaikan Persamaan Nonlinear Jural Sais Matmatika da Statistika Vol No Juli 6 ISSN 6-5 Mtod Itrasi Tiga Lagkah dga rd Kovrgsi Eam utuk Mlsaika Prsamaa Noliar M Ari da M M Niam Jurusa Matmatika Fakultas Sais da Tkologi UIN Sulta Sari

Lebih terperinci

BAB III INTEGRAL RIEMANN-STIELTJES. satu pendekatan untuk membentuk proses titik. Berkaitan dengan masalah

BAB III INTEGRAL RIEMANN-STIELTJES. satu pendekatan untuk membentuk proses titik. Berkaitan dengan masalah BAB III INEGRAL RIEMANN-SIELJES. Pedahulua Pada Bab, telah dsggug bahwa ukura meghtug merupaka salah satu pedekata utuk membetuk proses ttk. Berkata dega masalah perhtuga, ada hal meark yag perlu amat,

Lebih terperinci

Regresi Linier Sederhana Definisi Pengaruh

Regresi Linier Sederhana Definisi Pengaruh Regres Ler Sederhaa Dah Idra Baga Bostatstka da Kepeduduka Fakultas Kesehata Masyarakat Uverstas Arlagga Defs Pegaruh Jka terdapat varabel, msalka da yag data-dataya dplot sepert gambar dbawah 3 Defs Pegaruh

Lebih terperinci

Estimasi Parameter dan Dalam Pemulusan Eksponensial Ganda Dua Parameter Dengan Metode Modifikasi Golden Section

Estimasi Parameter dan Dalam Pemulusan Eksponensial Ganda Dua Parameter Dengan Metode Modifikasi Golden Section JURNAL SAINS DAN SENI ITS Vol., No., (Sep. 0) ISSN: 0- A- Esmas Parameer a Dalam Pemulusa Ekspoesal Gaa Dua Parameer Dega Meoe Mofkas Gole Seco Nla Yuwa, Lukma Haaf, Nur Wahyugsh Jurusa Maemaka, Fakulas

Lebih terperinci

BAB III METODE PENELITIAN. Tempat penelitian ini dilaksanakan di SMP Negeri 4 Tilamuta Kabupaten

BAB III METODE PENELITIAN. Tempat penelitian ini dilaksanakan di SMP Negeri 4 Tilamuta Kabupaten BAB III METODE PENELITIAN 3. Tempat da Waktu Peelta 3.. Tempat Tempat peelta dlaksaaka d SMP Neger 4 Tlamuta Kabupate Boalemo pada sswa kelas VIII. 3.. Waktu Peelta dlaksaaka dalam waktu 3 bula yatu dar

Lebih terperinci

S2 MP Oleh ; N. Setyaningsih

S2 MP Oleh ; N. Setyaningsih S2 MP Oleh ; N. Setyagsh MATERI PERTEMUAN 1-3 (1)Pedahulua pera statstka dalam peelta ; (2)Peyaja data : dalam betuk (a) tabel da (b) dagram; (3) ukura tedes setaral da ukura peympaga (4)dstrbus ormal

Lebih terperinci

Di dunia ini kita tidak dapat hidup sendiri, tetapi memerlukan hubungan dengan orang lain. Hubungan itu pada umumnya dilakukan dengan maksud tertentu

Di dunia ini kita tidak dapat hidup sendiri, tetapi memerlukan hubungan dengan orang lain. Hubungan itu pada umumnya dilakukan dengan maksud tertentu KORELASI 1 D dua kta tdak dapat hdup sedr, tetap memerluka hubuga dega orag la. Hubuga tu pada umumya dlakuka dega maksud tertetu sepert medapat kergaa pajak, memperoleh kredt, memjam uag, serta mta pertologa/batua

Lebih terperinci

INTERPOLASI. FTI-Universitas Yarsi

INTERPOLASI. FTI-Universitas Yarsi BAB VI INTERPOLASI FTI-Uverstas Yars Pedahulua Bla dketahu taulas ttk-ttk (y seaga erkut (yag dalam hal rumus ugs y ( tdak dketahu secara eksplst: Htug taksra la y utuk 3.8! FTI-Uverstas Yars Persoala

Lebih terperinci

FAKULTAS TEKNIK JURUSAN SIPIL UNIVERSITAS BRAWIJAYA MALANG

FAKULTAS TEKNIK JURUSAN SIPIL UNIVERSITAS BRAWIJAYA MALANG FAKULTAS TEKNIK JURUSAN SIPIL UNIVERSITAS BRAWIJAYA MALANG 1. Perecaaa Batag Tark 1. Tegaga Recaa 2. Kosep LRFD 3. Cotoh 1 4. Cotoh 2 5. Luas Peampag Efektf 6. Faktor Reduks U 7. Cotoh 3 8. Pegaruh Lubag

Lebih terperinci

BAB 2 LANDASAN TEORI. perkiraan (prediction). Dengan demikian, analisis regresi sering disebut sebagai

BAB 2 LANDASAN TEORI. perkiraan (prediction). Dengan demikian, analisis regresi sering disebut sebagai BAB LANDASAN TEORI. Kosep Dasar Aalss Regres Aalss regres regressso aalyss merupaka suatu tekk utuk membagu persamaa da megguaka persamaa tersebut utuk membuat perkraa predcto. Dega demka, aalss regres

Lebih terperinci

KALKULUS LANJUT. Pertemuan ke-4. Reny Rian Marliana, S.Si.,M.Stat.

KALKULUS LANJUT. Pertemuan ke-4. Reny Rian Marliana, S.Si.,M.Stat. KALKULUS LANJUT Pertemua ke-4 Rey Ra Marlaa, S.S.,M.Stat. Plot Mater Notas Jumlah & Sgma Itegral Tetu Jumlah Rema Pedahulua Luas Notas Jumlah & Sgma Purcell, et all. (page 226,2003): Sebuah fugs yag daerah

Lebih terperinci