UKURAN PEMUSATAN & PENYEBARAN
|
|
|
- Herman Gunardi
- 8 tahun lalu
- Tontonan:
Transkripsi
1 UKURAN PEMUSATAN & PENYEBARAN
2 RATA - RATA UKURAN PEMUSATAN MEDIAN MODUS
3 Rata rata htug (mea) Merupaka hasl bag dar sejumlah skr dega bayakya respde Utuk Data Tdak Berkelmpk x Dmaa : = la samapa x = la data = jumlah data Cth Data Nla statstk kelas A (utuk mahasswa) sebaga berkut : Peyelesaa : x
4 Mecar rata rata Jka dalam betuk tabel dstrbus rekues x Dmaa : = mea = rekues x = la data Berdasarka tabel dbawah, htuglah rata-rataya : x = ,87
5 Data terkelmpk m. Dmaa : = mea m = ttk tegah = rekues Cth : Kelas m m * Peyelesaa :
6 U Rata rata megguaka terval kelas (skala) U U. U. C. U Dmaa : U Kelas m m * Peyelesaa : ; U - C. U = rata rata U pada skala U = la skala U kelas I = rekues = la tegah kelas dmaa U = U U *
7 Meda (la tegah) Utuk gajl k ; Med k Cth : Nla uja statstk dar 9 mahasswa, masg-masg adalah sebaga berkut : 9,7,6,75,65,8,,5,5. Berapa besarya la meda? Jaw:,5,5,6,65, 7,75,8,9 k 9- ; Med
8 8 Cth: Ada 8 karyawa da upahya dalam rbua rupah adalah sebaga berkut :, 8, 75, 6, 5, 85,5,9. Berapa la meda? 8 k 5 eda k k M Utuk geap eda k k M ,5
9 Meda (la tegah) Data terkelmpk Meda L C m Dmaa : L = batas kelas bawah utuk kelas dmaa meda berada C = terval kelas m = jumlah rekues dar semua kelas d bawah kelas yag megadug meda (yag megadug meda tdak termasuk) = rekues dar kelas yag megadug meda = bayakya bservas
10 Cth : Meda Meda Kelas k * L = batas bawah sebearya (67.5) L C m = m = Kelas meda berada = 7 jumlah rekues dar semua kelas d bawah kelas yag megadug meda = (5*.)
11 Mdus data berkelmpk L C d M Dmaa : L = batas kelas bawah utuk kelas dmaa mdus berada C = terval kelas = selsh rekues kelas yag memuat mdus dega rekues kelas sebelumya (bawahya) = selsh rekues kelas yag memuat mdus dega rekues kelas sesudahya (atasya)
12 Cth : Kelas L = batas bawah sebearya (67.5) Md Md L C = 7 = 5 = 7 = (5*.5)
13 Quartl ukura peyebara Desl Persetl
14 Quartl Quartl (data tak berkelmpk) Ukura yag membag sekelmpk la mejad baga yag sama 5% 5 % Q Q Q 75 % Q la yagke,,,
15 Cth : Berkut adalah data pejuala kmputer setap tahuya pada sebuah perusahaa IT d Jakarta. Car la Q, Q, Q Peyelesaa : Data terurut : =, =, = 6, = 5, 5 = 57, 6 = 6, 7 = 7 8 = 77, 9 = 78, = 79, = 8, = 8, = 8, = 95 Q 5 da berart data yag 5
16 Quartl (data terkelmpk) Q L C q,,, Dmaa : L C = Batas bawah dar kelas yag memuat Quartl ke I = Iterval kelas = jumlah rekues Fq = Jumlah rek. dar semua kelas sebelum kelas yag megadug quartl ke = Frek. dar kelas yag megadug quartl 6
17 Cth : Tetuka Q dar tabel dstrbus rekues dbawah : Kelas L = batas bawah sebearya (67.5) q = 7 k * 6 = Kelas quartl berada = 7 jumlah rekues dar semua kelas d bawah kelas yag megadug quartl = 6 Q Q L C * 7 q c 5,,, ; 6 ; q 7 ; L Q (5*.)
18 Desl Ukura yag membag sekelmpk la mejad baga yag sama, ms : D, D, D,, D9 D Cth: la yagke,,,,..., 9 Sal datas, Htug D6 Peyelesaa : Data terurut : =, =, = 6, = 5, 5 = 57, 6 = 6, 7 = 7 8 = 77, 9 = 78, = 79, = 8, = 8, = 8, = 95 6 D6 berart, 79 8
19 Desl (data berkelmpk) D L C d,,,,..., 9 d = rek. dar kelas yag megadug desl ke
20 Cth : Tetuka D dar tabel dstrbus rekues dbawah : Kelas k * 6 = jumlah rekues dar semua kelas d bawah kelas yag megadug desl = Kelas desl berada = 5.6 L = batas bawah sebearya (5.5) D D L C,,, d * 5.6 d = c 5 ; d,..., 9 ; ; L D (5*.8) 6.5
21 Persetl Ukura yag membag sekelmpk la mejad baga yag sama, ms : P, P, P,, P99 la yagke,,,,..., 99 Cth : P Sal datas, htug P55 Peyelesaa : Data terurut : =, =, = 6, = 5, 5 = 57, 6 = 6, 7 = 7 8 = 77, 9 = 78, = 79, = 8, = 8, = 8, = 95 P berart
22 Persetl (data terkelmpk) P L C p,,,,..., 99 p = rek. dar kelas yag megadug persetl ke
23 Cth : Tetuka P76 dar tabel dstrbus rekues dbawah : Kelas k * 6 = jumlah rekues dar semua kelas d bawah kelas yag megadug persetl = 6 Kelas persetl berada =.6 L = batas bawah sebearya (67.5) P P L C,,, q 76* 76.6 p = 7 c 5 ; 6 d,...99 ; 7 ; L P (5*.7) 7 78
BAB III UKURAN PEMUSATAN DATA
BAB III UKURAN PEMUSATAN DATA A. Ukura Gejala Pusat Ukura pemusata adalah suatu ukura yag meujukka d maa suatu data memusat atau suatu kumpula pegamata memusat (megelompok). Ukura pemusata data adalah
Mean untuk Data Tunggal. Definisi. Jika suatu sampel berukuran n dengan anggota x1, x2, x3,, xn, maka mean sampel didefinisiskan : n Xi.
Mea utuk Data Tuggal Des. Jka suatu sampel berukura dega aggota x1, x, x3,, x, maka mea sampel ddesska : 1... N 1 Mea utuk Data Kelompok Des Mea dar data yag dkelompoka adalah : x x 1 1 1 dega : x = ttk
TATAP MUKA III UKURAN PEMUSATAN DATA (MEAN, MEDIAN DAN MODUS) Fitri Yulianti, SP. Msi.
TATAP MUKA III UKURAN PEMUSATAN DATA (MEAN, MEDIAN DAN MODUS) Ftr Yulat, SP. Ms. UKURAN DATA Ukura data Ukura Pemusata data Ukura letak data Ukura peyebara data Mea Meda Jagkaua Meda Kuartl Jagkaua atar
STATISTIKA DASAR. Oleh
STATISTIKA DASAR Oleh Suryo Gurto cara peyaja data - tabel - grak meghtug harga-harga petg : - ukura lokas - ukura sebara/peympaga apabla data mempuya observasya cukup bayak perlu dsusu secara sstematk
b) Untuk data berfrekuensi fixi Data (Xi)
B. Meghtug ukura pemusata, ukura letak da ukura peyebara data serta peafsraya A. Ukura Pemusata Data Msalka kumpula data berkut meujukka hasl pegukura tgg bada dar orag sswa. 0 cm 30 cm 5 cm 5 cm 35 cm
4/1/2013. Bila X 1, X 2, X 3,,X n adalah pengamatan dari sampel, maka rata-rata hitung dirumuskan sebagai berikut. Dengan: n = banyak data
//203 UKURAN GEJALA PUSAT DAN UKURAN LETAK Kaa Evta Dew, S.Pd., M.S. Ukura gejala pusat Utuk medapatka gambara yag lebh jelas tetag sekumpula data megea sesuatu hal, bak tu dar sampel ataupu populas Ukura
3/19/2012. Bila X 1, X 2, X 3,,X n adalah pengamatan dari sampel, maka rata-rata hitung dirumuskan sebagai berikut
3/9/202 UKURAN GEJALA PUSAT DAN UKURAN LETAK Kaa Evta Dew, S.Pd., M.S. Ukura gejala pusat Utuk medapatka gambara yag lebh jelas tetag sekumpula data megea sesuatu hal, bak tu dar sampel ataupu populas
BAB 1 STATISTIKA RINGKASAN MATERI
BAB STATISTIKA A RINGKASAN MATERI. Pegerta Data adalah kumpula keteraga-keteraga atau catata-catata megea suatu kejada, dapat berupa blaga, smbol, sat atau kategor. Masg-masg keteraga dar data dsebut datum.
UKURAN GEJALA PUSAT DAN UKURAN LETAK
UKURAN GEJALA PUSAT DAN UKURAN LETAK MODUL 4 UKURAN GEJALA PUSAT DAN UKURAN LETAK. Pedahulua Utuk medapatka gambara yag lebh jelas tetag sekumpula data megea sesuatu persoala, bak megea sampel atau pu
STATISTIKA A. Definisi Umum B. Tabel Distribusi Frekuensi
STATISTIKA A. Des Umum. Pegerta statstk Statstk adalah kumpula akta yag berbetuk agka da dsusu dalam datar atau tabel yag meggambarka suatu persoala. Cotoh: statstk kurs dolar Amerka, statstk pertumbuha
UKURAN GEJALA PUSAT (UGP)
UKURAN GEJALA PUSAT (UGP) Pegerta: Rata-rata (average) alah suatu la yag mewakl suatu kelompok data. Nla dsebut juga ukura gejala pusat karea pada umumya mempuya kecederuga terletak d tegah-tegah da memusat
Ukuran Pemusatan Data. Arum Handini P., M.Sc Ayundyah K., M.Si.
Ukura Pemusata Data Arum Had P., M.Sc Ayudyah K., M.S. Notas utuk Populas da Sampel Notas: Mea (rata-rata) Sample x Populas μ Varas s 2 σ 2 Smpaga baku s σ Ukura Pemusata Data 1. Mea (rata-rata) 2. Meda
STATISTIKA: UKURAN PEMUSATAN. Tujuan Pembelajaran
Kurkulum 013/006 matematka K e l a s XI STATISTIKA: UKURAN PEMUSATAN Tujua Pembelajara Setelah mempelajar mater, kamu dharapka memlk kemampua berkut. 1. Dapat meetuka rata-rata data tuggal da data berkelompok..
47 Soal dengan Pembahasan, 46 Soal Latihan
Galer Soal 7 Soal dega Pembahasa, Soal Latha Dragkum Oleh: ag Wbowo, S.Pd Jauar 0 MatkZoe s Seres Emal : [email protected] log : www.matkzoe.wordpress.com HP : 0 97 97 Hak pta Dldug Udag-udag. Dlarag megkutp
Tabel Distribusi Frekuensi
Tabel Dstrbus Frekues Tabel dstrbus frekues adalah susua data meurut kelas-kelas terval tertetu atau meurut kategor tertetu dalam sebuah daftar. Dar dstrbus frekues, dapat dperoleh keteraga atau gambara
STATISTIKA. A. Tabel Langkah untuk mengelompokkan data ke dalam tabel distribusi frekuensi data berkelompok/berinterval: a. Rentang/Jangkauan (J)
STATISTIKA A. Tabel Lagkah utuk megelompokka data ke dalam tabel dstrbus frekues data berkelompok/berterval: a. Retag/Jagkaua (J) J X maks X m b. Bayak kelas (k) Megguaka atura Sturgess, yatu k,. log c.
UKURAN PEMUSATAN DAN LETAK DATA
UKURAN PEMUSATAN DAN LETAK DATA PENDAHULUAN Suatu harga yag dapat dpaka utuk mewakl sekumpula data. Harga rata-rata merupaka suatu la sektar maa blaga-blaga la tersebar. Harga rata-rata serg damaka measure
SUM BER BELA JAR Menerap kan aturan konsep statistika dalam pemecah an masalah INDIKATOR MATERI TUGAS
C. Pembelajara 3 1. Slabus N o STANDA R KOMPE TENSI KOMPE TENSI DASAR INDIKATOR MATERI TUGAS BUKTI BELAJAR KON TEN INDIKA TOR WAK TU SUM BER BELA JAR Meerap ka atura kosep statstka dalam pemecah a masalah
* MEMBUAT DAFTAR DISTRIBUSI FREKUENSI MENGGUNAKAN ATURAN STURGES
* PENYAJIAN DATA Secara umum, ada dua cara peyaja data, yatu : 1. Tabel atau daftar. Grafk atau dagram Macam-macam daftar yag dkeal : a. Daftar bars kolom b. Daftar kotges c. Daftar dstrbus frekues Sedagka
S2 MP Oleh ; N. Setyaningsih
S2 MP Oleh ; N. Setyagsh MATERI PERTEMUAN 1-3 (1)Pedahulua pera statstka dalam peelta ; (2)Peyaja data : dalam betuk (a) tabel da (b) dagram; (3) ukura tedes setaral da ukura peympaga (4)dstrbus ormal
Pada saat upacara bendera, kita sering memperhatikan teman-teman kita.
Bab Ukura Data Pada saat upacara bedera, kta serg memperhatka tema-tema kta. Terkadag tapa sadar kta membadgka tgg redah sswa dalam upacara tersebut. Ada yag tggya 170 cm, 165 cm, 150 cm atau bahka 140
9. SOAL-SOAL STATISTIKA
9. SOAL-SOAL STATISTIKA UN00SMK. Dagram lgara d bawah meyaja jes estrauruler d suatu SMK yag dut oleh 500 orag sswa. Baya sswa yag tda megut estrauruler Pasbra adalah.. A. 00 sswa Olah B. 50 sswa Pasbra
9. SOAL-SOAL STATISTIKA
9. SOAL-SOAL STATISTIKA UN00SMK. Dagram lgara d bawah meyaja jes estrauruler d suatu SMK yag dut oleh 500 orag sswa. Baya sswa yag tda megut estrauruler Pasbra adalah.. A. 00 sswa Olah B. 50 sswa Pasbra
9/22/2009. Materi 2. Outline. Graphical Techniques. Penyajian Data. Numerical Techniques
Mater Outle Graphcal Techques Peyaja Data Numercal Techques Tekk Grafk (Graphcal Techques) Secara vsual, grafs merupaka gambar-gambar yag meujukka data berupa agka yag basaya dbuat berdasarka tabel yag
BAB 2 LANDASAN TEORI. Regresi linier sederhana merupakan bagian regresi yang mencakup hubungan linier
BAB LANDASAN TEORI. Regres Ler Sederhaa Regres ler sederhaa merupaka baga regres yag mecakup hubuga ler satu peubah acak tak bebas dega satu peubah bebas. Hubuga ler da dar satu populas dsebut gars regres
2.2.3 Ukuran Dispersi
3 Ukura Dspers Yag aka dbahas ds adalah smpaga baku da varas karea dua ukura dspers yag palg serg dguaka Hubuga atara smpaga baku dega varas adalah Varas = Kuadrat dar Smpaga baku otas yag umum dguaka
Statistika. Menyajikan Data dalam Bentuk Diagram ;
Statstka Meyajka Data dalam Betuk Dagram ; Meyajka Data dalam Betuk Tabel Dstrbus Frekues ; Meghtug Ukura Pemusata, Ukura Letak, da Ukura ; Peyebara Data Kalau kamu ke kator keluraha, kator pajak, kator
STATISTIK. Ukuran Gejala Pusat Ukuran Letak Ukuran Simpangan, Dispersi dan Variasi Momen, Kemiringan, dan Kurtosis
STATISTIK Ukura Gejala Pusat Ukura Letak Ukura Smpaga, Dspers da Varas Mome, Kemrga, da Kurtoss Notas Varabel dyataka dega huruf besar Nla dar varabel dyataka dega huruf kecl basaya dtuls Tmes New Roma
titik tengah kelas ke i k = banyaknya kelas
STATISTIKA Bab 0 UKURAN PEMUSATAN DAN PENYEBARAN. Mea X. a. Data Tuggal... 3 b. Data Kelompo ( dstrbus frewes) f. f. f.... f. 3 3 f f f... f = f. f 3 Ket : tt tegah elas e = bayaya elas f frewes elas e
BAB 2 LANDASAN TEORI. Regresi linier sederhana yang variabel bebasnya ( X ) berpangkat paling tinggi satu.
BAB LANDASAN TEORI. Regres Ler Sederhaa Regres ler sederhaa yag varabel bebasya ( berpagkat palg tgg satu. Utuk regres ler sederhaa, regres ler haya melbatka dua varabel ( da. Persamaa regresya dapat dtulska
STATISTIKA: UKURAN PENYEBARAN DATA. Tujuan Pembelajaran
KTSP & K-3 matemata K e l a s XI STATISTIKA: UKURAN PENYEBARAN DATA Tujua Pembelajara Setelah mempelajar mater, amu dharapa meml emampua berut.. Memaham defs uura peyebara data da jes-jesya.. Dapat meetua
STATISTIKA Matematika Kelas XI MIA
STATISTIKA Matematka Kelas XI MIA 90 0 70 0 50 40 30 0 0 1st Qtr d Qtr 3rd Qtr 4th Qtr East West North Dsusu oleh : Markus Yuarto, S.S Tahu Pelajara 01 017 SMA Sata Agela Jl. Merdeka No. 4 Badug PENGANTAR
100% r n. besarnya %. n. h t t p : / / m a t e m a t r i c k. b l o g s p o t. c o m =. 400
h t t p : / / m a t e m a t r c k. b l o g p o t. c o m Meetuka uur-uur pada dagram lgkara atau batag Rgkaa Mater : Uur uur pada dagram lgkara yag pokok haya hal :. Meetuka bear baga dalam lgkara ( dapat
Statistika Deskriptif
Statstka Deskrptf Statstka Deskrptf Statstka deskrptf (descrptve statstcs) berkata dega peerapa metode statstk utuk megumpulka, megolah, meyajka, da megaalss data kuattatf secara deskrptf. Statstka Deskrptf
ANALISIS REGRESI. Model regresi linier sederhana merupakan sebuah model yang hanya terdiri dari satu peubah terikat dan satu peubah penjelas:
ANALISIS REGRESI Pedahulua Aalss regres berkata dega stud megea ketergatuga satu peubah (peubah terkat) terhadap satu atau lebh peubah laya (peubah pejelas). Jka Y dumpamaka sebaga peubah terkat da X1,X,...,X
TEKNIK SAMPLING. Hazmira Yozza Izzati Rahmi HG Jurusan Matematika FMIPA Universitas Andalas
TEKNIK SAMPLING Hazmra Yozza Izzat Rahm HG Jurusa Matematka FMIPA Uverstas Adalas Defs Suatu cotoh gerombol adalah suatu cotoh acak sederhaa dmaa setap ut pearka cotoh adalah kelompok atau gerombol dar
8. MENGANALISIS HASIL EVALUASI
8. MENGANALISIS HASIL EVALUASI Tujua : Mampu megaalsa tgkat kesukara hasl evaluas utuk megkatka hasl proses pembelajara Kegata megaals hasl evaluas merupaka upaya utuk memperbak programprogram pembelajara
UKURAN PEMUSATAN DATA
Malim Muhammad, M.Sc. UKURAN PEMUSATAN DATA J U R U S A N A G R O T E K N O L O G I F A K U L T A S P E R T A N I A N U N I V E R S I T A S M U H A M M A D I Y A H P U R W O K E R T O DEFINISI UKURAN PEMUSATAN
UKURAN PEMUSATAN UKURAN PENYEBARAN
UKURAN PEMUSATAN DATA TUNGGAL DATA KELOMPOK. MEAN / RATA-RATA. MODUS 3. MEDIAN 4. KUARTIL. MEAN / RATA-RATA. MODUS 3. MEDIAN 4. KUARTIL UKURAN PENYEBARAN JANGKAUAN HAMPARAN RAGAM / VARIANS SIMPANGAN BAKU
BAB 1 STATISTIKA. Gambar 1.1
STANDAR KOMPETENSI: BAB 1 STATISTIKA Megguaka atura statstka, kadah pecacaha, da sat-sat peluag dalam pemecaha masalah. Kompetes Dasar 1. Membaca data dalam betuk tabel da dagram batag, gars, lgkara, da
IMPLEMENTASI DAN KOMPARASI ATURAN SEGIEMPAT UNTUK PENYELESAIAN INTEGRAL DENGAN BATAS MENGGUNAKAN MATLAB
Semar Nasoal Tekolog 007 (SNT 007) ISSN : 978 9777 IMPLEMENTASI DAN KOMPARASI ATURAN SEGIEMPAT UNTUK PENYELESAIAN INTEGRAL DENGAN BATAS MENGGUNAKAN MATLAB Krsawat STMIK AMIKOM Yogyakarta e-mal : [email protected]
BAB 2 : BUNGA, PERTUMBUHAN DAN PELURUHAN
Jl. Raya Wagu Kel. Sdagsar Kota Bogor Telp. 0251-8242411, emal: [email protected], webste : www.smkwkrama.et BAB 2 : BUNGA, PERTUBUHAN DAN PELURUHAN PENGERTIAN BUNGA Buga adalah jasa dar smpaa atau
POLIGON TERBUKA TERIKAT SEMPURNA
MODUL KULIAH ILMU UKUR TANAH POLIGON TERBUKA TERIKAT SEMPURNA Pegerta : peetua azmuth awal da akhr, peetuat kesalaha peutup sudut,koreks sudut, kesalaha lear da koreks lear kearah sumbu X da Y, Peetua
BAB V UKURAN GEJALA PUSAT (TENDENSI CENTRAL)
BAB V UKURAN GEJALA PUSAT (TENDENSI CENTRAL) Setiap peelitia selalu berkeaa dega sekelompok data. Yag dimaksud kelompok disii adalah: Satu orag mempuyai sekelompok data, atau sekelompok orag mempuyai satu
PERTEMUAN III PERSAMAAN REGRESI TUJUAN PRAKTIKUM
PERTEMUAN III PERSAMAAN REGRESI TUJUAN PRAKTIKUM 1 Megetahu perhtuga persamaa regres ler Meggambarka persamaa regres ler ke dalam dagram pecar TEORI PENUNJANG Persamaa Regres adalah persamaa matematka
INTERVAL KEPERCAYAAN UNTUK PERBEDAAN KOEFISIEN VARIASI DARI DISTRIBUSI LOGNORMAL I. Pebriyani 1*, Bustami 2, S. Sugiarto 2
INTERVAL KEPERCAAAN UNTUK PERBEDAAN KOEFIIEN VARIAI DARI DITRIBUI LOGNORMAL I. Pebrya * Bustam. ugarto Mahasswa Program Matematka Dose Jurusa Matematka Fakultas Matematka da Ilmu Pegetahua Alam Uverstas
Integrasi 1. Metode Integral Reimann Metode Integral Trapezoida Metode Integral Simpson. Integrasi 1
Itegras Metode Itegral Rema Metode Itegral Trapezoda Metode Itegral Smpso Itegras Permasalaa Itegras Pertuga tegral adala pertuga dasar yag dguaka dalam kalkulus, dalam bayak keperlua. Itegral secara det
Uji Statistika yangb digunakan dikaitan dengan jenis data
Uj Statstka yagb dguaka dkata dega jes data Jes Data omal Ordal Iterval da Raso Uj Statstka Koefse Kotges Rak Spearma Kedall Tau Korelas Parsal Kedall Tau Koefse Kokordas Kedall W Pearso Korelas Gada Korelas
BAB I PENDAHULUAN. 1.1 Statistika Deskriptif dan Statistika Inferensial. 1.2 Populasi dan Sampel
BAB I PENDAHULUAN 1.1 Statstka Deskrptf da Statstka Iferesal Dewasa d berbaga bdag lmu da kehdupa utuk memaham/megetahu sesuatu dperluka dat Sebaga cotoh utuk megetahu berapa bayak rakyat Idoesa yag memerluka
STATISTIKA SMA (Bag.1)
SMA - STATISTIKA SMA (Bag. A. DATA TUNGGAL. Ukura Pemusata : Terdapat ilai statistika yag dapat dimiliki oleh sekumpula data yag diperoleh yaitu : a. Rata-rata Rata-rata jumlah seluruh data bayakya data
BAB 5. ANALISIS REGRESI DAN KORELASI
BAB 5. ANALISIS REGRESI DAN KORELASI Tujua utama aalss regres adalah mecar ada tdakya hubuga ler atara dua varabel: Varabel bebas (X), yatu varabel yag mempegaruh Varabel terkat (Y), yatu varabel yag dpegaruh
BAB II LANDASAN TEORI
BAB II LANDASAN TEORI 1 Pegerta Regres Istlah regres pertama kal dperkealka oleh Fracs Galto Meurut Galto, aalss regres berkeaa dega stud ketergatuga dar suatu varabel yag dsebut tak bebas depedet varable,
MATEMATIKA INTEGRAL RIEMANN
MATEMATIKA KELAS XII IPA - KURIKULUM GABUNGAN Ses NGAN INTEGRAL RIEMANN A. NOTASI SIGMA a. Defs Notas Sgma Sgma (Σ) adalah otas matematka megguaka smbol yag mewakl pejumlaha da beberapa suku yag memlk
PRAKTIKUM 5 Penyelesaian Persamaan Non Linier Metode Secant Dengan Modifikasi Tabel
Praktkum 5 Peelesaa Persamaa No Ler Metode Secat Dega Modfkas Tabel PRAKTIKUM 5 Peelesaa Persamaa No Ler Metode Secat Dega Modfkas Tabel Tujua : Mempelajar metode Secat dega modfkas tabel utuk peelesaa
KALKULUS LANJUT. Pertemuan ke-4. Reny Rian Marliana, S.Si.,M.Stat.
KALKULUS LANJUT Pertemua ke-4 Rey Ra Marlaa, S.S.,M.Stat. Plot Mater Notas Jumlah & Sgma Itegral Tetu Jumlah Rema Pedahulua Luas Notas Jumlah & Sgma Purcell, et all. (page 226,2003): Sebuah fugs yag daerah
BAB IV HASIL PENELITIAN DAN PEMBAHASAN. melakukan smash sebelum dan sesudah latihan power otot lengan adalah sebagai
BAB IV HASIL PENELITIAN DAN PEMBAHASAN 4. Deskrps Peelta Berdasarka hasl peelta, d peroleh data megea kemempua sswa melakuka smash sebelum da sesudah latha power otot lega adalah sebaga berkut : Tabel.
Ukuran Pemusatan. Pertemuan 3. Median. Quartil. 17-Mar-17. Modus
-Mar- Ukura Pemusata Pertemua STATISTIKA DESKRIPTIF Statistik deskripti adalah pegolaha data utuk tujua medeskripsika atau memberika gambara terhadap obyek yag diteliti dega megguaka sampel atau populasi.
SOLUSI TUGAS I HIMPUNAN
Program Stud S1 Tekk Iformatka Fakultas Iformatka, Telkom Uversty SOLUSI TUGAS I HIMPUNAN Matematka Dskrt (MUG2A3) Halama 1 dar 6 Soal 1 Tetukalah eleme-eleme dar hmpua berkut! 2 x x adalah blaga real
BAB IX. STATISTIKA. Contoh : hasil ulangan Matematika 5 siswa sbb: Pengertian Statistika dan Statistik:
BAB IX. STATISTIKA Pegerta Statsta da Statst: Statsta adalah lmu pegetahua yag membahas metode-metode lmah tetag ara-ara pegumpula data, pegolaha, pegaalsa da peara esmpula. Statst adalah umpula data,
Pertemuan 3 Luas Daerah Bidang Datar, dan Volume Benda Padat dengan Metode Bidang Irisan Sejajar
ertemua 3 Luas Daerah Bdag Datar, da Volume Beda adat dega Metode Bdag Irsa Sejajar A. Luas Daerah Bdag Datar 1. Luas Daerah Bdag Datar Yag Datas Oleh Kura f, sumu X, Gars a da Gars DEFINISI: Msalka D
BAB III METODE PENELITIAN. Tempat penelitian ini dilaksanakan di SMP Negeri 4 Tilamuta Kabupaten
BAB III METODE PENELITIAN 3. Tempat da Waktu Peelta 3.. Tempat Tempat peelta dlaksaaka d SMP Neger 4 Tlamuta Kabupate Boalemo pada sswa kelas VIII. 3.. Waktu Peelta dlaksaaka dalam waktu 3 bula yatu dar
BAB IX. STATISTIKA. Contoh : hasil ulangan Matematika 5 siswa sbb: Pengertian Statistika dan Statistik:
BAB IX. STATISTIKA Pegerta Statsta da Statst: Statsta adalah lmu pegetahua yag membahas metode-metode lmah tetag ara-ara pegumpula data, pegolaha, pegaalsa da peara esmpula. Statst adalah umpula data,
Regresi Linier Sederhana Definisi Pengaruh
Regres Ler Sederhaa Dah Idra Baga Bostatstka da Kepeduduka Fakultas Kesehata Masyarakat Uverstas Arlagga Defs Pegaruh Jka terdapat varabel, msalka da yag data-dataya dplot sepert gambar dbawah 3 Defs Pegaruh
BAB II TINJAUAN PUSTAKA
BAB II TINJAUAN PUSTAKA.1 Pedahulua Sebelum membahas megea prosedur peguja hpotess, terlebh dahulu aka djelaska beberapa teor da metode yag meujag utuk mempermudah pembahasa. Adapu teor da metode tersebut
BAB IX PENGGUNAAN STATISTIK DALAM SIMULASI
BAB IX PENGGUNAAN STATISTIK DALAM SIMULASI 9.1. Dstrbus Kotu Dstrbus memlk sfat kotu dmaa data yag damat berjala secara kesambuga da tdak terputus. Maksudya adalah bahwa data yag damat tersebut tergatug
PRAKTIKUM 7 Penyelesaian Persamaan Non Linier Metode Secant Dengan Modifikasi Tabel
Praktkum 7 Peelesaa Persamaa No Ler Metode Secat Dega Modfkas Tabel PRAKTIKUM 7 Peelesaa Persamaa No Ler Metode Secat Dega Modfkas Tabel Tujua : Mempelajar metode Secat dega modfkas tabel utuk peelesaa
FMDAM (2) TOPSIS TOPSIS TOPSIS. Charitas Fibriani
FMDAM (2) Chartas Fbra Techque for Order Preferece by Smlarty to Ideal Soluto () ddasarka pada kosep dmaa alteratf terplh yag terbak tdak haya memlk jarak terpedek dar solus deal postf, amu juga memlk
Pertemuan VII IV. Titik Berat dan Momen Inersia
Baa jar Mekaka Baa Mulat, ST., MT Pertemua V V. Ttk Berat da Mome ersa. Ttk Berat Peampag Mome pertama suatu luasa eleme teradap suatu sumbu d dalam bdag luasa dberka dega produk luasa eleme da jarak tegak
PENDAHULUAN. Tabel nilai statistika Nilai Jumlah Mahasiswa A 5 B 9 C 25 D 3 E
1 PENDAHULUAN 1.1. Pegerta statstk da statstka Statstk adalah kumpula data, blaga maupu o blaga yag dsusu dalam table da atau dagram yag melukska suatu persoala Tabel la statstka Nla Jumlah Mahasswa A
BAB 2. Tinjauan Teoritis
BAB Tjaua Teorts.1 Regres Lear Sederhaa Regres lear adalah alat statstk yag dperguaka utuk megetahu pegaruh atara satu atau beberapa varabel terhadap satu buah varabel. Varabel yag mempegaruh serg dsebut
Jawablah pertanyaan berikut dengan ringkas dan jelas menggunakan bolpoin. Total nilai 100. A. ISIAN SINGKAT (Poin 20) 2
M 81 STTISTIK DSR SEMESTER II 11/1 KK STTISTIK, FMIP IT SOLUSI UJIN TENGH SEMESTER (UTS) Sabtu, 1 Me 1, Pukul 9. 1.4 WI (1 met) Kelas 1. Pegajar: Udjaa S. Pasarbu/Rr. Kura Novta Sar, Kelas. Pegajar: Utrwe
PRAKTIKUM 20 Interpolasi Polinomial dan Lagrange
Praktkum 0 Iterpolas Polomal da Lagrage PRAKTIKUM 0 Iterpolas Polomal da Lagrage Tuua : Mempelaar berbaga metode Iterpolas ag ada utuk meetuka ttkttk atara dar buah ttk dega megguaka suatu fugs pedekata
PENAKSIR PARAMETER DISTRIBUSI EKSPONENSIAL PARETO DENGAN METODE MOMEN DAN METODE MAKSIMUM LIKELIHOOD
PENAKSIR PARAMETER DISTRIBUSI EKSPONENSIAL PARETO DENGAN METODE MOMEN DAN METODE MAKSIMUM LIKELIHOOD Mayag Novhta Sar *, Bustam, Sgt Sugarto Mahasswa Program Stud S Matematka FMIPA Uverstas Rau Dose Fakultas
Penarikan Contoh Acak Sederhana (Simple Random Sampling)
Pearka Cotoh Acak Sederhaa (Smple Radom Samplg) Defs Jka sebuah cotoh berukura dambl dar suatu populas sedemka rupa sehgga setap cotoh berukura ag mugk memlk peluag sama utuk terambl, maka prosedur tu
BAB 2 LANDASAN TEORI. perkiraan (prediction). Dengan demikian, analisis regresi sering disebut sebagai
BAB LANDASAN TEORI. Kosep Dasar Aalss Regres Aalss regres regressso aalyss merupaka suatu tekk utuk membagu persamaa da megguaka persamaa tersebut utuk membuat perkraa predcto. Dega demka, aalss regres
ALGORITMA MENENTUKAN HIMPUNAN TERBESAR DARI SUATU MATRIKS INTERVAL DALAM ALJABAR MAX-PLUS
LGORITM MENENTUKN HIMPUNN TERBESR DRI SUTU MTRIKS INTERVL DLM LJBR MX-PLUS Rata Novtasar Program Stud Matematka FMIP UNDIP JlProfSoedarto SH Semarag 575 bstract Ths research dscussed about how to obtaed
BAB III ISI. x 2. 2πσ
BAB III ISI 4. Keadata Normal Multvarat da Sfat-sfatya Keadata ormal multvarat meruaka geeralsas dar keadata ormal uvarat utuk dmes. f ( x) [( x )/ ] / = e x π x = ( x )( ) ( x ). < < (-) (-) Betuk (-)
BAB II LANDASAN TEORI
BAB II LANDASAN TEORI Bab aka mejelaska megea ladasa teor yag dpaka oleh peuls dalam peelta. Bab dbag mejad beberapa baga, yag masg masg aka mejelaska Prcpal Compoet Aalyss (PCA), Egeface, Klusterg K-Meas,
BAB III INTEGRAL RIEMANN-STIELTJES. satu pendekatan untuk membentuk proses titik. Berkaitan dengan masalah
BAB III INEGRAL RIEMANN-SIELJES. Pedahulua Pada Bab, telah dsggug bahwa ukura meghtug merupaka salah satu pedekata utuk membetuk proses ttk. Berkata dega masalah perhtuga, ada hal meark yag perlu amat,
STATISTIKA. Contoh : hasil ulangan Matematika 5 siswa sbb: Pengertian Statistika dan Statistik:
STATISTIKA Pegerta Statsta da Statst: Statsta adalah lmu pegetahua yag membahas metode-metode lmah tetag ara-ara pegumpula data, pegolaha, pegaalsa da peara esmpula. Statst adalah umpula data, blaga ataupu
Galeri Soal. Dirangkum Oleh: Anang Wibowo, S.Pd
Galer Soal Dragkum Oleh: ag Wbowo, S.P www.matkzoe.worress.com Jauar Semoga sekt cotoh soal-soal aat membatu sswa alam memelajar Matematka khususya ab Statstka. Kam megusahaka agar soal-soal yag kam bahas
BAB 6 PRINSIP INKLUSI DAN EKSKLUSI
BB 6 PRINSIP INKLUSI DN EKSKLUSI Pada baga aka ddskuska topk berkutya yatu eumeras yag damaka Prsp Iklus da Eksklus. Kosep dalam bab merupaka perluasa de dalam Dagram Ve beserta oepras rsa da gabuga, amu
Statistika Deskriptif Ukuran Pemusatan dan Ukuran Penyebaran
Statistika Deskriptif Ukura Pemusata da Ukura Peyebara Ukura Pemusata Data Rata-rata Hitug Rata-rata hitug data tuggal: = x 1 + x 2 + x 3 + + x atau =. (1 : rata-rata hitug data tuggal (baca x-bar : bayakya
BAB III PERSAMAAN PANAS DIMENSI SATU
BAB III PERSAMAAN PANAS DIMENSI SAU Pada baga sebelumya, kta telah membahas peerapa metoda Ruge-Kutta orde 4 utuk meyelesaka masalah la awal dar persamaa dferesal basa orde. Pada bab, kta aka melakuka
Bab 1. Statistika. A. Penyajian Data B. Penyajian Data Statistik C. Penyajian Data Ukuran menjadi Data Statistik Deskriptif
Bab Statstka Sumber: farm.statc.flckr.com Setelah mempelajar bab, Ada harus mampu melakuka pegolaha, peyaja da peafsra data dega cara membaca da meyajka data dalam betuk tabel da dagram batag, gars, lgkara,
PENDAHULUAN Metode numerik merupakan suatu teknik atau cara untuk menganalisa dan menyelesaikan masalah masalah di dalam bidang rekayasa teknik dan
Aalsa Numerk Baha Matrkulas PENDAHULUAN Metode umerk merupaka suatu tekk atau cara utuk megaalsa da meyelesaka masalah masalah d dalam bdag rekayasa tekk da sa dega megguaka operas perhtuga matematk Masalah-masalah
BAB IV BATAS ATAS BAGI JARAK MINIMUM KODE SWA- DUAL GENAP
BAB IV BATAS ATAS BAGI JARAK MINIMUM KODE SWA- DUAL GENAP Msal dguaka kode ler C[, k, d] dega matrks pembagu G da matrks cek partas H. Sebuah blok formas x = x 1 x 2 x k, x = 0 atau 1, yag aka dkrm terlebh
STATISTIKA. Penulis Dra. Th. Widyantini, M.Si. Layouter: Titik Sutanti, S.Pd.Si., M.Ed.
STATISTIKA Peuls Dra. Th. Wdyat, M.S. Layouter: Ttk Sutat, S.Pd.S., M.Ed. PUSAT PENGEMBANGAN DAN PENBERDAYAAN PENDIDIK DAN TENAGA KEPENDIDIKAN MATEMATIKA KEMENTERIAN PENDIDIKAN DAN KEBUDAYAAN 015 Daftar
3 Departemen Statistika FMIPA IPB
Supleme Respos Pertemua ANALISIS DATA KATEGORIK (STK51) Departeme Statstka FMIPA IPB Pokok Bahasa Sub Pokok Bahasa Referes Waktu U potess Tga Cotoh atau Lebh U Kruskal-Walls (aalss ragam satu-arah berdasarka
Bab I Pendahuluan & Statistika Deskriptif
Bab I Pedahulua & Statstka Deskrptf Pegerta Statstka Dstrbus Frekues Cetral Tedecy Measure of Dsperso Pegerta Statstka Statstk (statstc) vs statstka (statstcs) Statstk: agka-agka Statstka: pegguaa data
Bab II Teori Pendukung
Bab II Teor Pedukug.. asar Statstka Utuk keperlua peaksra outstadg clams lablty, pegetahua dalam statstka mead hal yag petg. asar statstka yag dguaka dalam tess atara la :. strbus ormal Sebuah peubah acak
8. 1 Mengidentifikasi pengertian statistik, statistika, populasi, dan sampel
Sumber : Art ad Gallery Stadar Kompetes 8. Meerapka atura kosep statstk dalam pemecaha masalah Kompetes Dasar 8. Megdetfkas pegerta statstk, statstka, populas, da sampel 8. Meyajka data dalam betuk tabel
BAB III METODOLOGI PENELITIAN. Propinsi Gorontalo tahun pelajaran 2012/2013.
BAB III METODOLOGI PENELITIAN 3.. Tempat da Waktu Peelta Peelta dlaksaaka d SMP Neger 3 Gorotalo kota Gorotalo Props Gorotalo tahu pelajara 0/03. D SMP Neger 3 Gorotalo memlk 6 romboga belajar yag terdr
BAB 5 BARISAN DAN DERET KOMPLEKS. Secara esensi, pembahasan tentang barisan dan deret komlpeks sama dengan barisan dan deret real.
BAB 5 BARIAN DAN DERET KOMPLEK ecara eses, pembahasa tetag barsa da deret komlpeks sama dega barsa da deret real. 5. Barsa Barsa merupaka sebuah fugs dega doma berupa hmpua blaga asl N. ebuah barsa kompleks
Di dunia ini kita tidak dapat hidup sendiri, tetapi memerlukan hubungan dengan orang lain. Hubungan itu pada umumnya dilakukan dengan maksud tertentu
KORELASI 1 D dua kta tdak dapat hdup sedr, tetap memerluka hubuga dega orag la. Hubuga tu pada umumya dlakuka dega maksud tertetu sepert medapat kergaa pajak, memperoleh kredt, memjam uag, serta mta pertologa/batua
11/10/2010 REGRESI LINEAR SEDERHANA DAN KORELASI TUJUAN
// REGRESI LINEAR SEDERHANA DAN KORELASI. Model Regres Lear. Peaksr Kuadrat Terkecl 3. Predks Nla Respos 4. Iferes Utuk Parameter-parameter Regres 5. Kecocoka Model Regres 6. Korelas Utrwe Mukhayar MA
STATISTIK DAN STATISTIKA
STATISTIK DAN STATISTIKA A. Pegerta Statstk da Statstka Statstk berasal dar kata State yag artya egara, megapa demka karea lmu dlham dar peemua para ahl yatu : bahwa d setap egara past mempuya sesuatu
