LOGO ANALISIS REGRESI LINIER

Ukuran: px
Mulai penontonan dengan halaman:

Download "LOGO ANALISIS REGRESI LINIER"

Transkripsi

1 LOGO ANALISIS REGRESI LINIER BERGANDA Hazmra Yozza Jur. Maemaka FMIPA Uv. Adalas

2 KOMPETENSI megdefkaska model regres ler bergada dalam oas aljabar basa maupu oas marks da asumsya medapaka model regres ler bergada dega megguaka meode kuadra erkel 3 mejelaska sfa-sfa peduga kuadra erkel 4 membeuk abel aalss ragam, meghug la R² da dugaa σ² dar suau model regres ler bergada 5 6 melakuka peguja hpoess megea sau para meer regres, semua parameer regres da beberapa parameer regres pada aalss regres ler bergada meemuka model regres ler bergada jka salah sau varabel pejelas merupaka varabel kaegor Hazmra Yozza-Jur Jur. Maemaka FMIPA Uv. Adalas Compay Logo

3 D A T A DATA Y k y k y k y k3 y k Hazmra Yozza-Jur Jur. Maemaka FMIPA Uv. Adalas

4 MODEL LINIER y... ε k k ASUMSI.,, p bukala peubah aak.. ε ~ N, σ INTERPRETASI Besarya perubaha respos yag dharapka bla peubah berubah sebesar u dega asums peubah-peubah la kosa. Hazmra Yozza-Jur. Maemaka FMIPA Uv. Adalas

5 MODEL LINIER p p y ε... k k k k k k y y y ε ε ε p p p p y y y ε ε ε ε Y Hazmra Hazmra Yozza Yozza-Jur Jur. Maemaka Maemaka FMIPA Uv. FMIPA Uv. Adalas Adalas

6 MODEL LINIER Y ε V.Gala V.respo Marks Raaga V.Koefse ASUMSI ε ~ MVN,Iσ Hazmra Yozza-Jur Jur. Maemaka FMIPA Uv. Adalas

7 Meode Kuadra Terkel Model Dugaa Y b e e Y b JKS e e e e d db Y Y Y Y Y Y Y Y b Y b b b b b Y b b b Dega MKT, b dperoleh dega memmumka JKS b b Y b Y Y b Persamaa Normal dalam Aalss Regres Ler Bergada Hazmra Yozza-Jur Jur. Maemaka FMIPA Uv. Adalas

8 ' ' Y b ' p p p p p p p p L L L M O M M L L L M O M M L L Peduga Peduga MKT MKT p p M O L p p p p y y y y y y Y ' M L M O M M L L smers Hazmra Hazmra Yozza Yozza-Jur Jur. Maemaka Maemaka FMIPA Uv. FMIPA Uv. Adalas Adalas

9 Peyekaa Keragama JKT JKR JKS y y yˆ y y yˆ Y' Y Y b' ' Y Y Y' Y b' ' Y KOEFISIEN DETERMINASI R JKR JKT % b ' ' Y Y Y ' Y Y % Hazmra Yozza-Jur Jur. Maemaka FMIPA Uv. Adalas

10 ASUMSI ε ~ MVM,Iσ Dduga dar Y b Y b JKS s σˆ p p Hazmra Yozza-Jur Jur. Maemaka FMIPA Uv. Adalas

11 Peguja Hpoess Keberara Model Regres Hpoess H p Semua Peubah dak berpegaruh erhadap Y H Ada Ada peubah yag berpegaruh erhadap Y Sumber Der. bebas db Jumlah Kuadra JK Kuadra Tegah KT F hug Regres dbr p JKR KTR JKR/dbr KTR / KTS Ssaa dbs -p- JKS KTS JKS/dbs Toal db - JKT b' ' Y Y Y ' Y b' ' Y Y' Y Y F hug > F,p,-p- Tolak H Ada peubah yag berpegaruh erhadap Y Hazmra Yozza-Jur Jur. Maemaka FMIPA Uv. Adalas

12 Fhug > F,p,-p- Tolak H p Ada yag maa??? Lakuka peguja masgmasg peubah masg-masg parameer regres Hazmra Yozza-Jur Jur. Maemaka FMIPA Uv. Adalas

13 Sfa-sfa peduga Kuadra Terkel ASUMSI ε ~ MVM,Iσ σ ε ε I Var E ε ε E E E Y E ε Y σ ε ε I Var Var Y Var

14 Y b Y E ε Y σ I Y Var Y E Y E b E σ σ σ I Y Var Y Var b Var

15 Y E b E Y b σ b Var k... kk k k k k k k O maka maka σ σ b b Var s b s Jka Jka

16 Peguja Hpoess Sau Parameer Regres Hpoess H Peubah ke dak berpegaruh erhadap Y H Peubah ke berpegaruh erhadap Y Sask Uj Bla dyaaka Var b σ ' da Maka sask uj adalah b b h Var ˆ b s s ' KTS M p JKS dbs M p M p L p L L O L p p M pp Y' Y b' ' Y p Tolak H jka h > /,-p- Hazmra Yozza-Jur Jur. Maemaka FMIPA Uv. Adalas

17 Peguja Beberapa Parameer Regres Msal g duj, apakah seara bersama-sama meambahka peubah 3 da 4 berpegaruh dalam meeragka keragama Y Aalog dega meguj hpoess H da 4 berpegaruh erhadap Y H Ada Palg dak salah sau dar 3 da 4 3,4 berpegaruh erhadap Y JUMLAH KUADRAT REGRESI SEKUENSIAL Hazmra Yozza-Jur Jur. Maemaka FMIPA Uv. Adalas

18 Peyekaa Keragama JUMLAH KUADRAT TOTAL JKT Y' Y Y JUMLAH KUADRAT REGRESI JKR b' ' Y Y JUMLAH KUADRAT SISAAN JKS Y ' Y b' ' Y JKR aka selalu berambah jka suau peubah dambahka lag ke dalam sebuah model, palg dak, dak berkurag Hazmra Yozza-Jur Jur. Maemaka FMIPA Uv. Adalas

19 Peyekaa Keragama masuk model dambahka. Dalam model erdapa da 3 dambahka. Dalam model erdapa, da 3 JKR JKR, JKR,,3 JKR JKR,-JKR JKR JKR,-JKR JKR JK SEKUENSIAL JKR3, JKR,,3-JKR, JKR, JKR,,3-JKR, JKR, JUMLAH KUADRAT TAMBAHAN AKIBAT MASUKNYA 3 KE DALAM KE DALAM MODEL MODEL YANG YANG TELAH TELAH MENGANDUNG & Hazmra Yozza-Jur Jur. Maemaka FMIPA Uv. Adalas

20 Peyekaa Keragama masuk model dambahka. Dalam model erdapa da JKR JKR, JKR,3 JKR,,3-JKR JKR JKR,,3-JKR JKR 3 dambahka. Dalam model erdapa, da 3 JKR,,3 JUMLAH KUADRAT TAMBAHAN AKIBAT MASUKNYA DAN 3 KE DALAM MODEL YANG TELAH MENGANDUNG Hazmra Yozza-Jur Jur. Maemaka FMIPA Uv. Adalas

21 Peubah dlm model JKR , 8.73,3 65.5,4.3, ,4.77 3, ,, ,,4 6.39,3,4 65.3,3, ,,3, JKR3 JKR,3-JKR JKR Cooh JKR4, JKR,,4-JKR, JKR, JK TAMBAHAN AKIBAT MASUKNYA 3 4 KE DALAM MODEL YANG TELAH MENGANDUNG DAN Hazmra Yozza-Jur Jur. Maemaka FMIPA Uv. Adalas

22 Peguja Beberapa Parameer Regres Msal g duj, apakah seara bersama-sama meambahka peubah 3 da 4 berpegaruh dalam meeragka keragama Y Hpoess H da 4 berpegaruh erhadap Y H Ada Palg dak salah sau dar 3 da 4 3,4 berpegaruh erhadap Y F Sask Uj JKR,, 3, 4 JKR, JKR 3, 4, / db KTS KTS / db db deraja bebas dar JKR sekuesal KTS KTS dar model yag megadug peubah,,3,4 model peuh Compay Logo

23 Peguja Beberapa Parameer Regres Sask Uj F db JKR,, 3, 4 JKR, KTS / JKS JKT JKR KTS JKS/-p- 93./ / / db Peubah JKR , 8.73,3 65.5,4.3, ,4.77 3, ,, ,,4 6.39,3,4 65.3,3, ,,3, Compay Logo JKT

24 Peguja Beberapa Parameer Regres Sask Uj F JKR,, 3, 4 JKR, KTS / db Tk Krs F,db,dbs F.5,, F h > 3.37 olak Ho palg dak salah sau dar 3 aau 4 berpegaruh erhadap Y Compay Logo

25 Y k k ANREG BIASA PEUBAH BEBAS DAN TAK BEBAS PEUBAH SELANG ATAU RASIO? PEUBAH BEBAS aau TAK BEBAS buka PEUBAH SELANG ATAU RASIO ap PEUBAH KATEGORIK PEUBAH TAK BEBAS KATEGORIK KATEGORIK ANALISIS REGRESI LOGISTIK Hazmra Yozza-Jur Jur. Maemaka FMIPA Uv. Adalas

26 ANALISIS REGRESI dega PEUBAH KATEGORIK PEUBAH BEBAS KATEGORIK Y deyu ad seelah lar lama lar, usa 3 jes kelam. ANALISIS REGRESI dega PEUBAH KATEGORIK Sama dega aalss regres basa Peubah Kaegor drasformas mejad Peubah Boeka Dummy Varable Hazmra Yozza-Jur Jur. Maemaka FMIPA Uv. Adalas

27 Sau peubah Kaegork dega Dua Kaegor apa eraks Msal g dmodelka hubuga aara Y dega da ; merupaka peubah kaegork dega dua kaegor seper Jes Kelam L/P Pada prspya, aalss yag dlakuka sama dega aalss regres basa Peubah yag buka selag aau raso drasformas mejad peubah boeka dummy varables z uuk kaegor z uuk kaegor Selajuya lakuka aalss regres ler basa Model y z ε Hazmra Yozza-Jur Jur. Maemaka FMIPA Uv. Adalas

28 Sau peubah Kaegork dega Dua Kaegor 3 perama Kaegor kedua Kaegor Hazmra Hazmra Yozza Yozza-Jur Jur. Maemaka Maemaka FMIPA Uv. FMIPA Uv. Adalas Adalas

29 DATA Y Z A 3 - A B - -3 A B B 3 B MATRIKS RANCANGAN 3 3 Hazmra Yozza-Jur Jur. Maemaka FMIPA Uv. Adalas

30 Sau peubah Kaegork dega Dua Kaegor ' ' Hazmra Hazmra Yozza Yozza-Jur Jur. Maemaka Maemaka FMIPA Uv. FMIPA Uv. Adalas Adalas

31 Sau peubah Kaegork dega Dua Kaegor y y y Y ' Hazmra Hazmra Yozza Yozza-Jur Jur. Maemaka Maemaka FMIPA Uv. FMIPA Uv. Adalas Adalas

32 Ierpreas ˆ y Z Z ˆ yˆ z y ˆ Kaegor z y Kaegor z ˆ y Jad adalah perbedaa respos Y dar dua pegamaa yag berbeda kaegor amu memlk la yag sama Compay Logo

33 Sau peubah Kaegork dega Lebh dar dua Kaegor Y f, ; peubah kaegork dega > kaegor Cooh gka peddka TS, SD, SMP, SMA, PT Aalss sama dega aalss regres basa dega m kaegor drasformas mejad m- peubah boeka, Z, Z,, Zm- Kaegor Z Z Z3 A B C D Kaegor Z Z Z3 A B C D Model Y Z 3 Z 4 Z3 ε Selajuya aalss seper basa

34 Ka Z Z Z3 Y Z 3 Z 4 Z3 A Y B Y C Y 3 3 D Y 4 4 ˆ y 3 y ˆ 3 ˆ y Ka. 3 z Ka. z 4 ˆ y Ka. z 3

35 LOGO

Analisis Korelasi dan Regresi

Analisis Korelasi dan Regresi Aalss Korelas da Regres Hazmra Yozza Izzat Rahm HG Jurusa Matematka FMIPA Uad LOGO www.themegaller.com LOGO Data varat Data dega dua varael Terhadap satu pegamata dlakuka pegukurapegamata terhadap varael

Lebih terperinci

BAB 5. ANALISIS REGRESI DAN KORELASI

BAB 5. ANALISIS REGRESI DAN KORELASI BAB 5. ANALISIS REGRESI DAN KORELASI Tujua utama aalss regres adalah mecar ada tdakya hubuga ler atara dua varabel: Varabel bebas (X), yatu varabel yag mempegaruh Varabel terkat (Y), yatu varabel yag dpegaruh

Lebih terperinci

Regresi Linier Sederhana Definisi Pengaruh

Regresi Linier Sederhana Definisi Pengaruh Regres Ler Sederhaa Dah Idra Baga Bostatstka da Kepeduduka Fakultas Kesehata Masyarakat Uverstas Arlagga Defs Pegaruh Jka terdapat varabel, msalka da yag data-dataya dplot sepert gambar dbawah 3 Defs Pegaruh

Lebih terperinci

11/10/2010 REGRESI LINEAR SEDERHANA DAN KORELASI TUJUAN

11/10/2010 REGRESI LINEAR SEDERHANA DAN KORELASI TUJUAN // REGRESI LINEAR SEDERHANA DAN KORELASI. Model Regres Lear. Peaksr Kuadrat Terkecl 3. Predks Nla Respos 4. Iferes Utuk Parameter-parameter Regres 5. Kecocoka Model Regres 6. Korelas Utrwe Mukhayar MA

Lebih terperinci

ANALISIS REGRESI. Model regresi linier sederhana merupakan sebuah model yang hanya terdiri dari satu peubah terikat dan satu peubah penjelas:

ANALISIS REGRESI. Model regresi linier sederhana merupakan sebuah model yang hanya terdiri dari satu peubah terikat dan satu peubah penjelas: ANALISIS REGRESI Pedahulua Aalss regres berkata dega stud megea ketergatuga satu peubah (peubah terkat) terhadap satu atau lebh peubah laya (peubah pejelas). Jka Y dumpamaka sebaga peubah terkat da X1,X,...,X

Lebih terperinci

BAB III MENENTUKAN JADWAL OPTIMUM PERAWATAN OVERHAUL. MESIN OKK Gill BCG1-P2 PADA BAGIAN DRAWING PT VONEX INDONESIA

BAB III MENENTUKAN JADWAL OPTIMUM PERAWATAN OVERHAUL. MESIN OKK Gill BCG1-P2 PADA BAGIAN DRAWING PT VONEX INDONESIA BAB III MENENTUKAN JADWAL OPTIMUM PERAWATAN OVERHAUL MESIN OKK Gll BCG1-P PADA BAGIAN DRAWING PT VONEX INDONESIA 3.1 Pedahulua Pada Bab II elah djelaska megea eor eor yag dbuuhka uuk meeuka jadwal opmum

Lebih terperinci

BAB 2 LANDASAN TEORI. perkiraan (prediction). Dengan demikian, analisis regresi sering disebut sebagai

BAB 2 LANDASAN TEORI. perkiraan (prediction). Dengan demikian, analisis regresi sering disebut sebagai BAB LANDASAN TEORI. Kosep Dasar Aalss Regres Aalss regres regressso aalyss merupaka suatu tekk utuk membagu persamaa da megguaka persamaa tersebut utuk membuat perkraa predcto. Dega demka, aalss regres

Lebih terperinci

Rancangan Acak Kelompok

Rancangan Acak Kelompok Racaga Acak Kelompok Saua percoaa dak seragam dlakuka pegelompoka egacaka dlakuka per kelompok Model : Y j μ + β + τ + ε dega : Y j respos pada perlakua ke -, ulaga ke - j μ raaa umum j τ pegaruh perlakuake

Lebih terperinci

Hidraulika Komputasi

Hidraulika Komputasi Hdraulka Kompuas Meoda Beda Hgga Ir. Djoko Lukao, M.Sc., Ph.D. Jurusa Tekk Spl Fakulas Tekk Uversas Gadjah Mada Peyelesaa Pedekaa Karea dak dperoleh peyelesaa aals, maka dguaka peyelesaa pedekaa umers.

Lebih terperinci

Pemilihan Model Terbaik

Pemilihan Model Terbaik Pemiliha Model Terbaik Hazmira Yozza Jur. Matematika FMIPA Uiv. Adalas Jadi bayak model yag mugki dibetuk Var. Bebas :,, 3 Model Maa Yag Mampu Mewakili Data 3,, 3, 3,, 3 + model akar, log, hasil kali,

Lebih terperinci

Oleh : Azzahrowani Furqon Dosen Pembimbing Dr. Purhadi, M.Sc.

Oleh : Azzahrowani Furqon Dosen Pembimbing Dr. Purhadi, M.Sc. Aalss Regres Webull uuk Megeahu Fakor-Fakor yag Mempegaruh Laju Perbaka Kods Kls Pedera Sroke Sud kasus RSU Haj Surabaya Oleh : Azzahrowa Furqo 3090004 Dose Pembmbg Dr. Purhad, M.Sc. AGENDA OUTLINE PENDAHULUAN

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 1 Pegerta Regres Istlah regres pertama kal dperkealka oleh Fracs Galto Meurut Galto, aalss regres berkeaa dega stud ketergatuga dar suatu varabel yag dsebut tak bebas depedet varable,

Lebih terperinci

BAB 4 ENTROPI PADA PROSES STOKASTIK RANTAI MARKOV

BAB 4 ENTROPI PADA PROSES STOKASTIK RANTAI MARKOV BAB 4 ENTROPI PADA PROSES STOKASTIK RANTAI MARKOV 4. Proses Sokask Dalam kehdupa yaa, sergkal orag g megama keerkaa sau kejada dega kejada la dalam suau erval waku ereu, yag merupaka suau barsa kejada.

Lebih terperinci

BAB 2. Tinjauan Teoritis

BAB 2. Tinjauan Teoritis BAB Tjaua Teorts.1 Regres Lear Sederhaa Regres lear adalah alat statstk yag dperguaka utuk megetahu pegaruh atara satu atau beberapa varabel terhadap satu buah varabel. Varabel yag mempegaruh serg dsebut

Lebih terperinci

PENGGUNAAN METODE DURBIN WATSON DALAM MENYELESAIKAN MODEL REGRESI YANG MENGANDUNG AUTOKORELASI SKRIPSI SITI RAHAYU

PENGGUNAAN METODE DURBIN WATSON DALAM MENYELESAIKAN MODEL REGRESI YANG MENGANDUNG AUTOKORELASI SKRIPSI SITI RAHAYU PENGGUNAAN METODE DURBIN WATSON DALAM MENYELESAIKAN MODEL REGRESI YANG MENGANDUNG AUTOKORELASI SKRIPSI SITI RAHAYU 8345 DEPARTEMEN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS SUMATERA

Lebih terperinci

TEKNIK SAMPLING. Hazmira Yozza Izzati Rahmi HG Jurusan Matematika FMIPA Universitas Andalas

TEKNIK SAMPLING. Hazmira Yozza Izzati Rahmi HG Jurusan Matematika FMIPA Universitas Andalas TEKNIK SAMPLING Hazmra Yozza Izzat Rahm HG Jurusa Matematka FMIPA Uverstas Adalas Defs Suatu cotoh gerombol adalah suatu cotoh acak sederhaa dmaa setap ut pearka cotoh adalah kelompok atau gerombol dar

Lebih terperinci

Jawablah pertanyaan berikut dengan ringkas dan jelas menggunakan bolpoin. Total nilai 100. A. ISIAN SINGKAT (Poin 20) 2

Jawablah pertanyaan berikut dengan ringkas dan jelas menggunakan bolpoin. Total nilai 100. A. ISIAN SINGKAT (Poin 20) 2 M 81 STTISTIK DSR SEMESTER II 11/1 KK STTISTIK, FMIP IT SOLUSI UJIN TENGH SEMESTER (UTS) Sabtu, 1 Me 1, Pukul 9. 1.4 WI (1 met) Kelas 1. Pegajar: Udjaa S. Pasarbu/Rr. Kura Novta Sar, Kelas. Pegajar: Utrwe

Lebih terperinci

Metode Statistika Pertemuan XII. Analisis Korelasi dan Regresi

Metode Statistika Pertemuan XII. Analisis Korelasi dan Regresi Metode Statstka Pertemua XII Aalss Korelas da Regres Aalss Hubuga Jes/tpe hubuga Ukura Keterkata Skala pegukura varabel Pemodela Keterkata Relatoshp vs Causal Relatoshp Tdak semua hubuga (relatoshp) berupa

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang BAB PENDAHULUAN. Latar Belakag Sampa saat, model Regres da model Aalss Varas telah dpadag sebaga dua hal ag tdak berkata. Meskpu merupaka pedekata ag umum dalam meeragka kedua cara pada taraf permulaa,

Lebih terperinci

BAB 2 LANDASAN TEORI. Regresi linier sederhana merupakan bagian regresi yang mencakup hubungan linier

BAB 2 LANDASAN TEORI. Regresi linier sederhana merupakan bagian regresi yang mencakup hubungan linier BAB LANDASAN TEORI. Regres Ler Sederhaa Regres ler sederhaa merupaka baga regres yag mecakup hubuga ler satu peubah acak tak bebas dega satu peubah bebas. Hubuga ler da dar satu populas dsebut gars regres

Lebih terperinci

BAB 2 LANDASAN TEORI. Regresi linier sederhana yang variabel bebasnya ( X ) berpangkat paling tinggi satu.

BAB 2 LANDASAN TEORI. Regresi linier sederhana yang variabel bebasnya ( X ) berpangkat paling tinggi satu. BAB LANDASAN TEORI. Regres Ler Sederhaa Regres ler sederhaa yag varabel bebasya ( berpagkat palg tgg satu. Utuk regres ler sederhaa, regres ler haya melbatka dua varabel ( da. Persamaa regresya dapat dtulska

Lebih terperinci

LANGKAH-LANGKAH UJI HIPOTESIS DENGAN 2 (Untuk Data Nominal)

LANGKAH-LANGKAH UJI HIPOTESIS DENGAN 2 (Untuk Data Nominal) LANGKAH-LANGKAH UJI HIPOTESIS DENGAN (Utuk Data Nomal). Merumuska hpotess (termasuk rumusa hpotess statstk). Data hasl peelta duat dalam etuk tael slag (tael frekues oservas) 3. Meetuka krtera uj atau

Lebih terperinci

REGRESI LINIER GANDA

REGRESI LINIER GANDA REGRESI LINIER GANDA Secara umum, data hasil pegamata Y bisa terjadi karea akibat variabelvariabel bebas,,, k. Aka ditetuka hubuga atara Y da,,, k sehigga didapat regresi Y atas,,, k amu masih meujukka

Lebih terperinci

Analisis Regresi dan Korelasi

Analisis Regresi dan Korelasi Metode Statstka Pertemua III Aalss Regres da Korelas Pegatar Apa tu aalss regres? Apa edaya dega korelas? Aalss Regres Aalss statstka yag memafaatka huuga atara dua atau leh peuah kuattatf sehgga salah

Lebih terperinci

Di dunia ini kita tidak dapat hidup sendiri, tetapi memerlukan hubungan dengan orang lain. Hubungan itu pada umumnya dilakukan dengan maksud tertentu

Di dunia ini kita tidak dapat hidup sendiri, tetapi memerlukan hubungan dengan orang lain. Hubungan itu pada umumnya dilakukan dengan maksud tertentu KORELASI 1 D dua kta tdak dapat hdup sedr, tetap memerluka hubuga dega orag la. Hubuga tu pada umumya dlakuka dega maksud tertetu sepert medapat kergaa pajak, memperoleh kredt, memjam uag, serta mta pertologa/batua

Lebih terperinci

ANALISIS FAKTOR-FAKTOR YANG MEMPENGARUHI KETAHANAN HIDUP PASIEN TUBERCULOSIS DENGAN MODEL REGRESI COX

ANALISIS FAKTOR-FAKTOR YANG MEMPENGARUHI KETAHANAN HIDUP PASIEN TUBERCULOSIS DENGAN MODEL REGRESI COX ANAISIS FAKTOR-FAKTOR YANG MEMPENGARUHI KETAHANAN HIDUP PASIEN TUBERCUOSIS DENGAN MODE REGRESI COX Es Okava Sr Seyagsh da A Adrya Program Sud Maemaka Fakulas Maemaka da Ilmu Pegeahua Alam Uversas Pakua

Lebih terperinci

Penarikan Contoh Gerombol (Cluster Sampling) Departemen Statistika FMIPA IPB

Penarikan Contoh Gerombol (Cluster Sampling) Departemen Statistika FMIPA IPB Pearka Cotoh Gerombol (Cluster Samplg) Departeme Statstka FMIPA IPB Radom samplg (Revew) Smple radom samplg Stratfed radom samplg Rato, regresso, ad dfferece estmato Systematc radom samplg Cluster radom

Lebih terperinci

PERTEMUAN III PERSAMAAN REGRESI TUJUAN PRAKTIKUM

PERTEMUAN III PERSAMAAN REGRESI TUJUAN PRAKTIKUM PERTEMUAN III PERSAMAAN REGRESI TUJUAN PRAKTIKUM 1 Megetahu perhtuga persamaa regres ler Meggambarka persamaa regres ler ke dalam dagram pecar TEORI PENUNJANG Persamaa Regres adalah persamaa matematka

Lebih terperinci

BAB 2 LANDASAN TEORI. Analisis regresi adalah suatu proses memperkirakan secara sistematis tentang apa yang paling

BAB 2 LANDASAN TEORI. Analisis regresi adalah suatu proses memperkirakan secara sistematis tentang apa yang paling BAB LANDASAN TEORI Kosep Dasar Aalss Regres Aalss regres adalah suatu proses memperkraka secara sstemats tetag apa yag palg mugk terjad dmasa yag aka datag berdasarka formas yag sekarag dmlk agar memperkecl

Lebih terperinci

ANALISIS REGRESI LINIER BERGANDA : PERSOALAN ESTIMASI DAN PENGUJIAN HIPOTESIS

ANALISIS REGRESI LINIER BERGANDA : PERSOALAN ESTIMASI DAN PENGUJIAN HIPOTESIS ANALISIS REGRESI LINIER BERGANDA : PERSOALAN ESTIMASI DAN PENGUJIAN HIPOTESIS = 1 + + + + k k + u PowerPot Sldes baa Rohmaa Educato Uverst of Idoesa 007 Laboratorum Ekoom & Koperas Publshg Jl. Dr. Setabud

Lebih terperinci

Regresi & Korelasi Linier Sederhana

Regresi & Korelasi Linier Sederhana Regres & Korelas Ler Sederhaa. Pedahulua Gagasa perhtuga dtetapka oleh Sr Fracs Galto (8-9) Persamaa regres :Persamaa matematk ag memugkka peramala la suatu peubah takbebas (depedet varable) dar la peubah

Lebih terperinci

PENDUGAAN DURBIN WATSON UNTUK MENGATASI OTOKORELASI DALAM ANALISIS REGRESI LINEAR SKRIPSI

PENDUGAAN DURBIN WATSON UNTUK MENGATASI OTOKORELASI DALAM ANALISIS REGRESI LINEAR SKRIPSI PENDUGAAN DURBIN WATSON UNTUK MENGATASI OTOKORELASI DALAM ANALISIS REGRESI LINEAR SKRIPSI Daua uu Memeuh Persyaraa Peyelesaa Program Saraa Sas Jurusa Maemaa Faulas Maemaa da Ilmu Pegeahua Alam Uversas

Lebih terperinci

DISTRIBUSI GAMMA. Ada beberapa distribusi penting dalam distribusi uji hidup, salah satunya adalah distribusi gamma.

DISTRIBUSI GAMMA. Ada beberapa distribusi penting dalam distribusi uji hidup, salah satunya adalah distribusi gamma. DITRIBUI GAMMA Ada beberaa dsrbus eg dalam dsrbus uj hdu, salah sauya adalah dsrbus gamma. A. Fugs keadaa eluag (fk) Fugs keadaa eluag (fk) dar dsrbus gamma dega dua arameer yau da adalah sebaga berku:

Lebih terperinci

REGRESI & KORELASI LINIER SEDERHANA

REGRESI & KORELASI LINIER SEDERHANA 1. Pedahulua REGRESI & KORELASI LINIER SEDERHANA Gagasa perhtuga dtetapka oleh Sr Fracs Galto (18-1911) Persamaa regres :Persamaa matematk ag memugkka peramala la suatu peubah takbebas (depedet varable)

Lebih terperinci

PENGUJIAN HIPOTESIS. Hipotesis Statistik : pernyataan atau dugaan mengenai satu atau lebih populasi.

PENGUJIAN HIPOTESIS. Hipotesis Statistik : pernyataan atau dugaan mengenai satu atau lebih populasi. . Pedahulua PENGUJIAN HIPOTESIS Hipoesis Saisik : peryaaa aau dugaa megeai sau aau lebih populasi. Pegujia hipoesis berhubuga dega peerimaa aau peolaka suau hipoesis. Kebeara (bear aau salahya) suau hipoesis

Lebih terperinci

MODEL KOREKSI KESALAHAN DENGAN METODE BAYESIAN PADA DATA RUNTUN WAKTU INDEKS HARGA KONSUMEN KOTA - KOTA DI PAPUA

MODEL KOREKSI KESALAHAN DENGAN METODE BAYESIAN PADA DATA RUNTUN WAKTU INDEKS HARGA KONSUMEN KOTA - KOTA DI PAPUA Prosdg Semar Nasoal Sas da Peddka Sas IX, Fakulas Sas da Maemaka, UKSW Salaga, Ju 4, Vol 5, No., ISSN :87-9 MODEL KOREKSI KESALAHAN DENGAN MEODE BAYESIAN PADA DAA RUNUN WAKU INDEKS HARGA KONSUMEN KOA -

Lebih terperinci

REGRESI & KORELASI LINIER SEDERHANA

REGRESI & KORELASI LINIER SEDERHANA . Pedahulua REGRESI & KORELASI LINIER SEDERHANA Gagasa perhtuga dtetapka oleh Sr Fracs Galto (8-9) Persamaa regres :Persamaa matematk ag memugkka peramala la suatu peubah takbebas (depedet varable) dar

Lebih terperinci

Uji Statistika yangb digunakan dikaitan dengan jenis data

Uji Statistika yangb digunakan dikaitan dengan jenis data Uj Statstka yagb dguaka dkata dega jes data Jes Data omal Ordal Iterval da Raso Uj Statstka Koefse Kotges Rak Spearma Kedall Tau Korelas Parsal Kedall Tau Koefse Kokordas Kedall W Pearso Korelas Gada Korelas

Lebih terperinci

Penggunaan Uji Kointegrasi pada Data Kurs IDR terhadap AUD

Penggunaan Uji Kointegrasi pada Data Kurs IDR terhadap AUD Vol. 7, No., 3-33, Jul Pegguaa Uj Koegras pada Daa Kurs IDR erhadap AUD Asa Absrak Peela megkaj peerapa Saska pada daa ruu waku yag megkaj uj koegras pada daa ersebu. Koegras adalah suau uj yag dguaka

Lebih terperinci

Regresi & Korelasi Linier Sederhana. Gagasan perhitungan ditetapkan oleh Sir Francis Galton ( )

Regresi & Korelasi Linier Sederhana. Gagasan perhitungan ditetapkan oleh Sir Francis Galton ( ) Regres & Korelas Ler Sederhaa 1. Pedahulua Gagasa perhtuga dtetapka oleh Sr Fracs Galto (18-1911) Persamaa regres :Persamaa matematk yag memugkka peramala la suatu peubah takbebas (depedet varable) dar

Lebih terperinci

XI. ANALISIS REGRESI KORELASI

XI. ANALISIS REGRESI KORELASI I ANALISIS REGRESI KORELASI Aalss regres mempelajar betuk hubuga atara satu atau lebh peubah bebas dega satu peubah tak bebas dalam peelta peubah bebas basaya peubah yag dtetuka oelh peelt secara bebas

Lebih terperinci

ANALISIS PEUBAH PREDIKTOR YANG MEMUAT KESALAHAN PENGUKURAN DENGAN REGRESI ORTOGONAL

ANALISIS PEUBAH PREDIKTOR YANG MEMUAT KESALAHAN PENGUKURAN DENGAN REGRESI ORTOGONAL Prosdg Semar Nasoal Peelta, Peddka da Peerapa MIPA, Fakultas MIPA, Uverstas Neger Yogyakarta, 4 Me ANALISIS PEUBAH PREDIKTOR YANG MEMUAT KESALAHAN PENGUKURAN DENGAN REGRESI ORTOGONAL Ksmat Jurusa Peddka

Lebih terperinci

Estimasi Parameter dan Dalam Pemulusan Eksponensial Ganda Dua Parameter Dengan Metode Modifikasi Golden Section

Estimasi Parameter dan Dalam Pemulusan Eksponensial Ganda Dua Parameter Dengan Metode Modifikasi Golden Section JURNAL SAINS DAN SENI ITS Vol., No., (Sep. 0) ISSN: 0- A- Esmas Parameer a Dalam Pemulusa Ekspoesal Gaa Dua Parameer Dega Meoe Mofkas Gole Seco Nla Yuwa, Lukma Haaf, Nur Wahyugsh Jurusa Maemaka, Fakulas

Lebih terperinci

BAB III MENYELESAIKAN MASALAH REGRESI INVERS DENGAN METODE GRAYBILL. Masalah regresi invers dengan bentuk linear dapat dijumpai dalam

BAB III MENYELESAIKAN MASALAH REGRESI INVERS DENGAN METODE GRAYBILL. Masalah regresi invers dengan bentuk linear dapat dijumpai dalam BAB III MENYELESAIKAN MASALAH REGRESI INVERS DENGAN METODE GRAYBILL 3. Pegerta Masalah regres vers dega betuk lear dapat djumpa dalam berbaga bdag kehdupa, dataraya dalam bdag ekoom, kesehata, fska, kma

Lebih terperinci

BAB 3 METODE PENELITIAN

BAB 3 METODE PENELITIAN BAB 3 METODE PENELITIAN 3 Meode Pegumpula Daa 3 Jeis Daa Pada peeliia ii aka megguaka jeis daa yag bersifa kuaiaif Daa kuaiaif adalah daa yag berbeuk agka / omial Dalam peeliia ii aka megguaka daa pejuala

Lebih terperinci

Pemodelan Regresi untuk Rancangan Percobaan Faktor Tunggal

Pemodelan Regresi untuk Rancangan Percobaan Faktor Tunggal Jural Sas & Maemaka JSM) ISSN Kaa 854-675 Pusaka Volume 5, Nomor, Aprl 7 Arkel Peela 6-67 Pemodela Regres uuk Racaga Percobaa Fakor Tuggal Dw Ispra Saf Pegaar urusa Maemaka Fakulas MIPA UNDIP Semarag ABSTRAK---Meode

Lebih terperinci

Y = f(x1, X2,..., Xp) + error (2.1) = komp. sistematik + komp. non-sistematik dugaan Y = f(x1, X2,..., Xp) (2.2)

Y = f(x1, X2,..., Xp) + error (2.1) = komp. sistematik + komp. non-sistematik dugaan Y = f(x1, X2,..., Xp) (2.2) Bab. MODEL REGRESI LINEAR SEDERHANA Oleh Bambag Juada Pegerta Model & Tujua Pemodela Perumusa masalah Model Model: Abstraks realtas dlm pers matematka Model ekoometrka: model statstk yg mecakup error Y

Lebih terperinci

Pendugaan Parameter Regresi. Itasia & Y Angraini, Dep Statistika FMIPA - IPB

Pendugaan Parameter Regresi. Itasia & Y Angraini, Dep Statistika FMIPA - IPB Pendugaan Parameter Regres Menduga gars regres Menduga gars regres lner sederhana = menduga parameter-parameter regres β 0 dan β 1 : Penduga parameter yang dhaslkan harus merupakan penduga yang bak Software

Lebih terperinci

ANALISIS BEDA Fx F.. S u S g u i g y i an a t n o t da d n a Ag A u g s u Su S s u wor o o

ANALISIS BEDA Fx F.. S u S g u i g y i an a t n o t da d n a Ag A u g s u Su S s u wor o o ANALII BEDA Fx. ugiyao da Agus usworo Kosep Peeliia bermaksud meguji keadaa (sesuau) yag erdapa dalam suau kelompok dega kelompok lai Meguji apakah erdapa perbedaa yg Meguji apakah erdapa perbedaa yg sigifika

Lebih terperinci

INFERENSI DATA UJI HIDUP TERSENSOR TIPE II BERDISTRIBUSI RAYLEIGH. Oleh : Tatik Widiharih 1 Wiwin Mardjiyati 2

INFERENSI DATA UJI HIDUP TERSENSOR TIPE II BERDISTRIBUSI RAYLEIGH. Oleh : Tatik Widiharih 1 Wiwin Mardjiyati 2 INFERENSI DAA UJI HIDUP ERSENSOR IPE II BERDISRIBUSI RAYLEIGH Oleh : ak Wdhah Ww Madjya Saf Pogam Sud Saska FMIPA UNDIP Alum Pogam Sud Saska FMIPA UNDIP Absac Aalyss of lfe me s oe of sascal aalyss whch

Lebih terperinci

BAB II TINJAUAN TEORITIS. Statistik merupakan cara cara tertentu yang digunakan dalam mengumpulkan,

BAB II TINJAUAN TEORITIS. Statistik merupakan cara cara tertentu yang digunakan dalam mengumpulkan, BAB II TINJAUAN TEORITIS.1 Kosep Dasar Statstka Statstk merupaka cara cara tertetu yag dguaka dalam megumpulka, meyusu atau megatur, meyajka, megaalsa da member terpretas terhadap sekumpula data, sehgga

Lebih terperinci

Rumus-rumus yang Digunakan

Rumus-rumus yang Digunakan Saisika Uipa Surabaya 4. Sampel Tuggal = Rumus-rumus yag Diguaka s..... Sampel berkorelasi D D N N N...... 3. Sampel Bebas a. Uuk varias sama... 3 aau x x s g... 4 b. Sampel Heeroge Guaka Uji Corha - Cox

Lebih terperinci

ANALISIS BEDA. Konsep. Uji t (t-test) Teknik Uji Beda. Agus Susworo Dwi Marhaendro

ANALISIS BEDA. Konsep. Uji t (t-test) Teknik Uji Beda. Agus Susworo Dwi Marhaendro ANALII BEA Agus usworo wi Marhaedro Kosep Peeliia bermaksud meguji keadaa (sesuau) yag erdapa dalam suau kelompok dega kelompok lai Meguji apakah erdapa perbedaa yg sigifika di aara kelompok-kelompok Tekik

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang Masalah

BAB 1 PENDAHULUAN. 1.1 Latar Belakang Masalah BAB 1 PENDAHULUAN 1.1 Latar Belakag Masalah Regres merupaka suatu metode statstka yag dguaka utuk meyeldk pola hubuga atara dua atau lebh varabel.betuk atau pola hubuga varabelvarabel tersebut dapat ddetfkas

Lebih terperinci

RISK ANALYSIS RESIKO DAN KETIDAKPASTIAN DALAM MEMBUAT KEPUTUSAN MANAJERIAL

RISK ANALYSIS RESIKO DAN KETIDAKPASTIAN DALAM MEMBUAT KEPUTUSAN MANAJERIAL RISK ANALYSIS Dr. Mohammad Abdul Mukhy,, SE., MM RESIKO DAN KETIDAKPASTIAN DALAM MEMBUAT KEPUTUSAN MANAJERIAL kepuusa maageral dbua d bawah kods-kods kepasa, kedak-pasa aau resko. Kepasa megacu pada suas

Lebih terperinci

2.2.3 Ukuran Dispersi

2.2.3 Ukuran Dispersi 3 Ukura Dspers Yag aka dbahas ds adalah smpaga baku da varas karea dua ukura dspers yag palg serg dguaka Hubuga atara smpaga baku dega varas adalah Varas = Kuadrat dar Smpaga baku otas yag umum dguaka

Lebih terperinci

Penarikan Contoh Acak Sederhana (Simple Random Sampling)

Penarikan Contoh Acak Sederhana (Simple Random Sampling) Pearka Cotoh Acak Sederhaa (Smple Radom Samplg) Defs Jka sebuah cotoh berukura dambl dar suatu populas sedemka rupa sehgga setap cotoh berukura ag mugk memlk peluag sama utuk terambl, maka prosedur tu

Lebih terperinci

BAB III METODE PENELITIAN. Tempat penelitian ini dilaksanakan di SMP Negeri 4 Tilamuta Kabupaten

BAB III METODE PENELITIAN. Tempat penelitian ini dilaksanakan di SMP Negeri 4 Tilamuta Kabupaten BAB III METODE PENELITIAN 3. Tempat da Waktu Peelta 3.. Tempat Tempat peelta dlaksaaka d SMP Neger 4 Tlamuta Kabupate Boalemo pada sswa kelas VIII. 3.. Waktu Peelta dlaksaaka dalam waktu 3 bula yatu dar

Lebih terperinci

Jurnal Matematika Murni dan Terapan Vol. 4 No.2 Desember 2010: ANALISIS REGRESI LINEAR BERGANDA DENGAN SATU VARIABEL BONEKA (DUMMY VARIABLE)

Jurnal Matematika Murni dan Terapan Vol. 4 No.2 Desember 2010: ANALISIS REGRESI LINEAR BERGANDA DENGAN SATU VARIABEL BONEKA (DUMMY VARIABLE) Jural Matematka Mur da Terapa Vol. 4 No. esember : 4 - ANALISIS REGRESI LINEAR BERGANA ENGAN SATU VARIABEL BONEKA (UMMY VARIABLE Tat Krsawardha Nur Salam da ew Aggra Program Stud Matematka Uverstas Lambug

Lebih terperinci

REGRESI LINEAR SEDERHANA

REGRESI LINEAR SEDERHANA REGRESI LINEAR SEDERHANA MODUL Dra. Sr Pagest, S.U. PENDAHULUAN A alss regres merupaka aalss statstk yag mempelajar ubuga atara dua varabel atau leb. Dalam aalss regres lear dasumska berlakuya betuk ubuga

Lebih terperinci

BAB 2 LANDASAN TEORI. disebut dengan bermacam-macam istilah: variabel penjelas, variabel

BAB 2 LANDASAN TEORI. disebut dengan bermacam-macam istilah: variabel penjelas, variabel BAB LANDASAN TEORI.1 Pegerta Regres Regres dalam statstka adalah salah satu metode utuk meetuka tgkat pegaruh suatu varabel terhadap varabel yag la. Varabel yag pertama dsebut dega bermacam-macam stlah:

Lebih terperinci

Pendahuluan. Relasi Antar Variabel. Relasi Antar Variabel. Relasi Antar Variabel 4/6/2015. Oleh : Fauzan Amin

Pendahuluan. Relasi Antar Variabel. Relasi Antar Variabel. Relasi Antar Variabel 4/6/2015. Oleh : Fauzan Amin 4/6/015 Oleh : Fauza Am Se, 06 Aprl 015 GDL 11 (07.30-10.50) Pedahulua Aalsa regres dguaka utuk mempelajar da megukur hubuga statstk ag terjad atara dua atau lebh varbel. Dalam regres sederhaa dkaj dua

Lebih terperinci

L A T I H A N S O A L A N R E G 1 Muhamad Ferdiansyah, S. Stat.

L A T I H A N S O A L A N R E G 1 Muhamad Ferdiansyah, S. Stat. L A T I H A N S O A L A N R E G Muhamad Ferdiasyah, S. Stat. *Saya saraka utuk mecoba sediri baru lihat jawabaya **Jawaba saya BELUM TENTU BENAR karea saya mausia biasa. Silaka dikosultasika jika ada jawaba

Lebih terperinci

PENYELESAIAN NUMERIK PERSAMAAN KONDUKSI 1D DENGAN SKEMA FTCS, LAASONEN DAN CRANK-NICOLSON. Eko Prasetya Budiana 1 Syamsul Hadi 2

PENYELESAIAN NUMERIK PERSAMAAN KONDUKSI 1D DENGAN SKEMA FTCS, LAASONEN DAN CRANK-NICOLSON. Eko Prasetya Budiana 1 Syamsul Hadi 2 PENYELESAIAN NUMERIK PERSAMAAN KONDUKSI D DENGAN SKEMA FCS, LAASONEN DAN CRANK-NICOLSON Eko Praseya Budaa Syamsul Had Absrac, Fe dfferece mehod ( FCS, Laasoe ad Crak-Ncholso scheme) have bee develop for

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB LANDASAN TEORI. Defes Aalss Korelas da Regres a Aalss Korelas adalah metode statstka yag dguaka utuk meetuka kuatya atau derajat huuga lear atara dua varael atau leh. Semak yata huuga ler gars lurus,

Lebih terperinci

BAB 2 TINJAUAN TEORITIS. regresi berkenaan dengan studi ketergantungan antara dua atau lebih variabel yaitu

BAB 2 TINJAUAN TEORITIS. regresi berkenaan dengan studi ketergantungan antara dua atau lebih variabel yaitu BAB TINJAUAN TEORITIS. Pegerta Aalsa Regres Istlah regres pertama kal dperkealka oleh Fracs Galto. Meurutya, aalss regres berkeaa dega stud ketergatuga atara dua atau lebh varabel yatu varabel yag meeragka

Lebih terperinci

BAB IV HASIL PENELITIAN DAN PEMBAHASAN. melakukan smash sebelum dan sesudah latihan power otot lengan adalah sebagai

BAB IV HASIL PENELITIAN DAN PEMBAHASAN. melakukan smash sebelum dan sesudah latihan power otot lengan adalah sebagai BAB IV HASIL PENELITIAN DAN PEMBAHASAN 4. Deskrps Peelta Berdasarka hasl peelta, d peroleh data megea kemempua sswa melakuka smash sebelum da sesudah latha power otot lega adalah sebaga berkut : Tabel.

Lebih terperinci

REGRESI LINIER SEDERHANA

REGRESI LINIER SEDERHANA MODUL REGRESI LINIER SEDERHANA Dsusu oleh : I MADE YULIARA Jurusa Fska Fakultas Matematka Da Ilmu Pegetahua Alam Uverstas Udayaa Tahu 016 Kata Pegatar Puj syukur saya ucapka ke hadapa Tuha Yag Maha Kuasa

Lebih terperinci

BAB 2 LANDASAN TEORI. pada masa mendatang. Peramalan penjualan adalah peramalan yang mengkaitkan berbagai

BAB 2 LANDASAN TEORI. pada masa mendatang. Peramalan penjualan adalah peramalan yang mengkaitkan berbagai BAB 2 LANDASAN TEORI 2.1 Pegeria Peramala (orecasig) Peramala (orecasig) adalah suau kegiaa yag memperkiraka apa yag aka erjadi pada masa medaag. Peramala pejuala adalah peramala yag megkaika berbagai

Lebih terperinci

S2 MP Oleh ; N. Setyaningsih

S2 MP Oleh ; N. Setyaningsih S2 MP Oleh ; N. Setyagsh MATERI PERTEMUAN 1-3 (1)Pedahulua pera statstka dalam peelta ; (2)Peyaja data : dalam betuk (a) tabel da (b) dagram; (3) ukura tedes setaral da ukura peympaga (4)dstrbus ormal

Lebih terperinci

METODE PENELITIAN. Kota Bogor. Kecamatan Bogor Barat. Purposive. Kelurahan Cilendek Barat RW 05 N1= 113. Cluster random sampling.

METODE PENELITIAN. Kota Bogor. Kecamatan Bogor Barat. Purposive. Kelurahan Cilendek Barat RW 05 N1= 113. Cluster random sampling. METODE PENELITIAN Desa, Tempat da Waktu Peelta Peelta megguaka desa cross sectoal study. Lokas peelta d Kota Bogor. Pemlha lokas peelta secara purposve dega pertmbaga merupaka salah satu kecamata dega

Lebih terperinci

Pendugaan Parameter. Debrina Puspita Andriani /

Pendugaan Parameter. Debrina Puspita Andriani    / Pedugaa Parameter 7 Debria Puspita Adriai E-mail : [email protected] / [email protected] Outlie Pedahulua Pedugaa Titik Pedugaa Iterval Pedugaa Parameter: Kasus Sampel Rataa Populasi Pedugaa Parameter:

Lebih terperinci

III. METODE PENELITIAN. yang hidup dan berguna bagi masyarakat, maupun bagi peneliti sendiri

III. METODE PENELITIAN. yang hidup dan berguna bagi masyarakat, maupun bagi peneliti sendiri III. METODE PEELITIA A. Metodolog Peelta Metodolog peelta adalah cara yag dlakuka secara sstemats megkut atura-atura, recaaka oleh para peeltutuk memecahka permasalaha yag hdup da bergua bag masyarakat,

Lebih terperinci

BAB V ANALISA HASIL. Untuk mendapatkan jenis peramalan yang dinginkan terdapat banyak

BAB V ANALISA HASIL. Untuk mendapatkan jenis peramalan yang dinginkan terdapat banyak BB V NLIS HSIL 5.1 Ukura kurasi Hasil Peramala Uuk medapaka jeis peramala yag digika erdapa bayak parameer-parameer yag dapa diguaka. Seperi yag elah diuraika pada ladasa eori, parameer-parameer ersebu

Lebih terperinci

Bab II Teori Pendukung

Bab II Teori Pendukung Bab II Teor Pedukug.. asar Statstka Utuk keperlua peaksra outstadg clams lablty, pegetahua dalam statstka mead hal yag petg. asar statstka yag dguaka dalam tess atara la :. strbus ormal Sebuah peubah acak

Lebih terperinci

Rangkaian Listrik 2. Fakultas Program Studi Tatap Muka Kode MK Disusun Oleh

Rangkaian Listrik 2. Fakultas Program Studi Tatap Muka Kode MK Disusun Oleh MODU PERKUIAHA Ragkaa srk Idukas da Kapasas Fakulas Program Sud Taap Muka Kode MK Dsusu Oleh FAKUTAS TEKIK TEKIK EEKTRO 0 4009 Yulza ST,MT Absrac Tak ada egaga melas sebuah dukor jka arus ag melalu dukor

Lebih terperinci

III BAHAN/OBJEK DAN METODE PENELITIAN. Objek yang digunakan dalam penelitian ini adalah 50 ekor sapi Pasundan

III BAHAN/OBJEK DAN METODE PENELITIAN. Objek yang digunakan dalam penelitian ini adalah 50 ekor sapi Pasundan III BAHAN/OBJEK DAN METODE PENELITIAN 3.1. Baha da Alat Peelta 3.1.1. Baha Peelta Objek yag dguaka dalam peelta adalah 50 ekor sap Pasuda jata da beta dewasa dega umur -3 tahu da tdak butg utuk meghdar

Lebih terperinci

Beberapa Definisi Ruang Contoh Kejadian dan Peluang Definisi L.1 (Ruang contoh dan kejadian) . Definisi L.2 (Kejadian lepas )

Beberapa Definisi Ruang Contoh Kejadian dan Peluang Definisi L.1 (Ruang contoh dan kejadian) .   Definisi L.2 (Kejadian lepas ) 33 LAMPIRAN 34 35 Beberapa Defiisi Ruag Cooh Kejadia da Peluag Suau percobaa yag dapa diulag dalam kodisi yag sama, yag hasilya idak dapa diprediksi dega epa eapi kia bisa megeahui semua kemugkia hasil

Lebih terperinci

ESTIMASI PARAMETER MODEL SURVIVAL DISTRIBUSI EKSPONENSIAL DATA TERSENSOR DENGAN METODE MAKSIMUM LIKELIHOOD DAN BAYESIAN SELF

ESTIMASI PARAMETER MODEL SURVIVAL DISTRIBUSI EKSPONENSIAL DATA TERSENSOR DENGAN METODE MAKSIMUM LIKELIHOOD DAN BAYESIAN SELF Bule Ilmah Mah. Sa. da Terapaya Bmaser Volume 5, No. 3 26, hal 23 22. ESTIMASI PARAMETER MODEL SURVIVAL DISTRIBUSI EKSPONENSIAL DATA TERSENSOR DENGAN METODE MAKSIMUM LIKELIHOOD DAN BAYESIAN SELF Syarah

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA.1 Pedahulua Sebelum membahas megea prosedur peguja hpotess, terlebh dahulu aka djelaska beberapa teor da metode yag meujag utuk mempermudah pembahasa. Adapu teor da metode tersebut

Lebih terperinci

Bab 5 Penaksiran Fungsi Permintaan. Ekonomi Manajerial Manajemen

Bab 5 Penaksiran Fungsi Permintaan. Ekonomi Manajerial Manajemen Bab 5 Penaksiran Fungsi Perminaan 1 Ekonomi Manajerial Manajemen Peranyaan Umum Tenang Perminaan Seberapa besar penerimaan perusahaan akan berubah seelah adanya peningkaan harga? Berapa banyak produk yang

Lebih terperinci

UKURAN GEJALA PUSAT (UGP)

UKURAN GEJALA PUSAT (UGP) UKURAN GEJALA PUSAT (UGP) Pegerta: Rata-rata (average) alah suatu la yag mewakl suatu kelompok data. Nla dsebut juga ukura gejala pusat karea pada umumya mempuya kecederuga terletak d tegah-tegah da memusat

Lebih terperinci

ANALISIS REGRESI DAN KORELASI SEDERHANA

ANALISIS REGRESI DAN KORELASI SEDERHANA LATAR BELAKANG DAN KORELASI SEDERHANA Aalisis regresi da korelasi megkaji da megukur keterkaita seara statistik atara dua atau lebih variabel. Keterkaita atara dua variabel regresi da korelasi sederhaa.

Lebih terperinci

PENGUJIAN HIPOTESIS PROSEDUR UMUM PROSEDUR UMUM PROSEDUR UMUM. Langkah 1 : tentukan hipotesis 0 (H 0 ) dan anti hipotesis (H 1 )

PENGUJIAN HIPOTESIS PROSEDUR UMUM PROSEDUR UMUM PROSEDUR UMUM. Langkah 1 : tentukan hipotesis 0 (H 0 ) dan anti hipotesis (H 1 ) PENGUJIAN HIPOTESIS PROSEDUR UMUM Lagkah : tetuka hpote 0 (H 0 ) da at hpote (H ) malya: H 0 : µ 00 H : µ 00 atau H : µ > 00 atau H : µ < 00 PROSEDUR UMUM Lagkah : tetuka je dtrbu yag cocok: bla > 30 da

Lebih terperinci

STATISTICS. Hanung N. Prasetyo Week 11 TELKOM POLTECH/HANUNG NP

STATISTICS. Hanung N. Prasetyo Week 11 TELKOM POLTECH/HANUNG NP STATISTICS Haug N. Prasetyo Week 11 PENDAHULUAN Regresi da korelasi diguaka utuk megetahui hubuga dua atau lebih kejadia (variabel) yag dapat diukur secara matematis. Ada dua hal yag diukur atau diaalisis,

Lebih terperinci

Declustering Peaks Over Threshold Pada Data Curah Hujan Ekstrim Dependen di Sentra Produksi Padi Jawa Timur

Declustering Peaks Over Threshold Pada Data Curah Hujan Ekstrim Dependen di Sentra Produksi Padi Jawa Timur Decluserg Peaks Over Threshold Pada Daa Curah Huja Eksrm Depede d Sera Produks Pad Jawa Tmur Rosa Malka () da Suko () ()() Jurusa Saska, FMIPA, ITS, Isu Tekolog Sepuluh Nopember (ITS) Jl. Aref Rahma Hakm,

Lebih terperinci

V. PENGUJIAN HIPOTESIS

V. PENGUJIAN HIPOTESIS V. PENGUJIAN IPOTEI A. IPOTEI TATITIK Defiisi uau hipoesa saisik adalah suau peryaaa aau dugaa megeai sau aau lebih variabel populasi. ipoesis digologka mejadi. ipoesis ol adalah hipoesis yag dirumuska

Lebih terperinci

INTEGRAL TAK TENTU (pecahan rasional) Agustina Pradjaningsih, M.Si. Jurusan Matematika FMIPA UNEJ

INTEGRAL TAK TENTU (pecahan rasional) Agustina Pradjaningsih, M.Si. Jurusan Matematika FMIPA UNEJ INTEGRL TK TENTU pecaha rasioal gusia Pradjaigsih, M.Si. Jurusa Maemaika FMIP UNEJ [email protected] DEFINISI Fugsi suku bayak derajad dega bula o egaif 0 dimaa, 0 a a a a a P Fugsi kosa dipadag sbg

Lebih terperinci

Regresi Linear Sederhana dan Korelasi

Regresi Linear Sederhana dan Korelasi Regres Lnear Sederhana dan Korelas 1. Model Regres Lnear. Penaksr Kuadrat Terkecl 3. Predks Nla Respons 4. Inferens Untuk Parameter-parameter Regres 5. Kecocokan Model Regres 6. Korelas Utrwen Mukhayar

Lebih terperinci

Regresi Linier Berganda

Regresi Linier Berganda Regresi Linier Berganda Regresi Berganda Contoh Menguji hubungan linier antara variabel dependen (y) dan atau lebih variabel independen (x n ) Hubungan antara suhu warehouse dan viskositas cat dengan jumlah

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB LANDASAN TEORI.1 Aalisis Regresi Istilah regresi pertama kali diperkealka oleh seorag ahli yag berama Facis Galto pada tahu 1886. Meurut Galto, aalisis regresi berkeaa dega studi ketergatuga dari suatu

Lebih terperinci