ANALISIS PEUBAH PREDIKTOR YANG MEMUAT KESALAHAN PENGUKURAN DENGAN REGRESI ORTOGONAL
|
|
- Agus Tanuwidjaja
- 5 tahun lalu
- Tontonan:
Transkripsi
1 Prosdg Semar Nasoal Peelta, Peddka da Peerapa MIPA, Fakultas MIPA, Uverstas Neger Yogyakarta, 4 Me ANALISIS PEUBAH PREDIKTOR YANG MEMUAT KESALAHAN PENGUKURAN DENGAN REGRESI ORTOGONAL Ksmat Jurusa Peddka Matematka, FMIPA Uverstas Neger Yogyakarta Emal: Abstrak Aalss regres lear sederhaa adalah suatu aalss yag dguaka utuk megetahu hubuga atara satu peubah predktor da satu peubah respos. Pada model regres lear sederhaa, peubah predktor daggap tetap (tdak memlk dstrbus sedagka peubah respos megkut dstrbus ormal. Bla peubah predktor memuat kesalaha pegukura sehgga memuat galat yag memlk dstrbus maka model regres lear sederhaa tdak tepat dguaka. Pada makalah aka megkaj alteratf regres yag mampu megatas permasalaha peubah predktor yag memuat kesalaha pegukura dega megguaka regres ortogoal. Kata kuc: peubah predktor, kesalaha pegukura, regres ortogoal PENDAHULUAN Aalss regres adalah suatu aalss yag dguaka utuk megetahu hubuga atara satu atau lebh peubah predktor dega peubah respos. Model regres lear sederhaa adalah model yag palg sederhaa utuk mejelaska hubuga atara satu peubah predktor ( da satu peubah respos (Y. Pada model regres lear klask, peubah predktor dasumska dketahu (fxed sehgga dperoleh tapa adaya galat sedagka peubah respos dasumska berdstrbus ormal Apabla peubah predktor memuat kesalaha pegukura (galat maka model regres lear sederhaa kurag tepat dguaka. Alteratf regres yag dapat dguaka utuk megatas permasalaha adalah regres ortogoal. Pada model regres ortogoal, bak peubah predktor maupu peubah respos adalah peubah acak. PEMBAHASAN Regres ortogoal dguaka utuk megetahu hubuga atara peubah predktor ( da peuah respos (Y bla pada peubah predktor tersebut megadug kesalaha pegukura (galat. Pada aalss regres ortogoal, kedua peubah tersebut merupaka peubah kotu. Regres ortogoal serg dguaka pada data-data yag dperoleh dar hasl pegukura sepert d suatu laboratorum. Msalka seorag peelt yag bekerja d suatu laboratorum g megetahu apakah suatu tekk baru yag relatf lebh murah utuk peguja kadar glukose memberka hasl pegukura yag sama atau berbeda dega tekk stadar. Dalam hal, kadar glukose yag dhaslka oleh tekk baru (Y dmugkka terjadya kesalaha pegukura. Peubah predktor adalah kadar glukose yag dhaslka oleh tekk stadar (. Tekk baru aka dguaka sebaga peggat tekk stadar apabla meghaslka pegukura kadar glukose yag sama dega tekk stadar, sehgga regres ortogoal lebh cocok dguaka darpada regres lear sederhaa. M-65
2 Ksmat / Aalss Peubah Predktor Model Regres Lear Sederhaa Model regres lear sederhaa adalah model regres yag dguaka utuk megetahu hubuga atara satu peubah predktor da peubah respos, dega peubah predktor dasumska tetap (fxed. Model regres lear sederhaa dyataka sebaga berkut: ( σ d Y + + ε, ε ~ N, ε Y adalah peubah respos pada pegamata ke-, ( dega da adalah parameter regres, adalah peubah predktor pada pegamata ke-, ε adalah galat (kesalaha pegukura pada pegamata ke-. Estmator da dapat dperoleh dega metode maksmum lkelhood (Ba & Egelhardt, 99: 58. Berkut adalah fugs lkelhood: L L(, exp ( Y ( πσ σ Selajutya dlogartmaaturalka sehgga dperoleh fugs log-lkelhood sebaga berkut l L l( πσ ( Y (3 σ Lalu dturuka terhadap da da dsamadegaka ol maka dperoleh persamaa maksmum lkelhood berkut: Y ˆ + ˆ Y ˆ ˆ Y ˆ ˆ + ˆ Y (4 Y S Y ˆ (5 S Estmas Parameter Regres dega Orthogoal Least Squares Estmator bag da pada model regres lear sederhaa ( dapat dperoleh dega metode orthogoal least squares (Dessaake & Wag, 3: -3 yatu memmumka jarak atara pegamata dega gars dugaa. Dar Gambar berkut dperoleh bahwa tg( θ (6 da jarak kuadrat atara pegamata A (, Y da gars dugaa adalah ( Y AD [ cos( θ ( Y ] (7 + Y M-66
3 Prosdg Semar Nasoal Peelta, Peddka da Peerapa MIPA, Fakultas MIPA, Uverstas Neger Yogyakarta, 4 Me Gambar. Ilustras dar estmas parameter dega metode orthogoal least squares Selajutya dguaka metode orthogoal least squares utuk memmumka ( Y L, lalu dturuka secara parsal terhadap da turua tersebut + da dsamadegaka ol yatu L ( Y (8 + L ( + ( Y ( Y ( + Dar persamaa (4 dperoleh ˆ Y ˆ ( dega meyataka rata-rata sampel da Y adalah rata-rata sampel Y. Selajutya dar persamaa (9 da ( dperoleh ˆ ˆ S S S S ( ( Y YY Y da YY dega S S berturut-turut adalah varas sampel dar da Y, sedagka S Y adalah kovaras sampel da Y. Sehgga solus dar persamaa ( utuk ˆ adalah ( S S ± ( S S ˆ YY YY 4S Y ( S Y Namu demka pemblag pada persamaa ( harus postf sehgga estmator adalah dega ( S S + ( S S ˆ YY YY 4S Y (3 S Y Y, Y, S (, SYY ( Y Y ; S Y ( ( Y Y (9. M-67
4 Ksmat / Aalss Peubah Predktor Model Regres Ortogoal Msal da Y memuat kompoe galat δ da ε, dega kompoe galat tersebut berasal dar kesalaha pegukura, sehgga model regres ortogoal (Leg et al., 7: - adalah ξ + δ, δ ~ N (, σ δ (4 Y η + ε, ε ~ N, σ ( ε η + ξ dega ξ, δ da ε salg bebas. da dasumska bahwa da Y megkut dstrbus ormal bvarat, µ τ + σ δ τ ~ N, Y + µ τ τ + σ ε Sehgga, E ( E( ξ + E( δ µ E ( Y E ( η + E ( ε + µ ( Var( ξ + Var( δ τ + σ δ Var ( Y Var( η + Var( ε Var( ξ + Var( ε τ + σ ε Cov (, Y Cov( ξ + δ, + ξ + ε τ Var (6 Selajutya estmator dapat dperoleh dega metode maksmum lkelhood. Namu demka tergatug oleh raso dua varas galat yatu λ σ ε σ δ. Sehgga estmator maksmum lkelhood dar (Leg et al., 7: - adalah ˆ ( S λs SYY λs + YY + 4λS Y (7 S Y Peurua selegkapya dapat dlhat d Fuller (987: 3-6. Bla λ, maka persamaa (7 sama dega persamaa (3. Apabla σ ε da σ δ tdak dketahu maka dapat destmas dega ragam sampel dar Y da (Carroll & Ruppert, 994: 7. Ilustras Regres Ortogoal Sebuah perusahaa peralata meds g meetuka apakah alat pemotor tekaa darah yag baru mereka cptaka setara dega alat pemotor tekaa darah yag telah beredar d pasara. Dar sampel acak 6 orag yag dukur tekaa darah sstolk dega megguaka dua alat pemotor tersebut. Peubah respos adalah tekaa darah sstolk (dalam mmhg yag dperoleh dar alat pemotor baru, sedagka peubah predktor adalah tekaa darah sstolk yag dperoleh dar alat pemotor yag beredar d pasara. Berdasarka stud yag dlakuka sebelumya, perusahaa megetahu bahwa raso varas galat adalah,9. Berkut dataya: M-68 Tabel. Data tekaa darah sstolk No Baru Pasara No Baru Pasara No Baru Pasara (5
5 Prosdg Semar Nasoal Peelta, Peddka da Peerapa MIPA, Fakultas MIPA, Uverstas Neger Yogyakarta, 4 Me Data dambl dar worksheet Mtab 6 (BLOODPRESSURE.MTW Aalss data megguaka Mtab 6 yag dguaka utuk. meyeldk apakah peubah predktor ( da peubah respos (Y masg-masg berdstrbus ormal atau tdak dega uj kolmogorov smrov. meyeldk pemeuha asums-asums pada regres ortogoal 3. megestmas parameter regres da feres parameter pada model regres ortogoal 4. membuat plot da Y beserta gars regres Probablty Plot of Normal Probablty Plot of Y Normal Mea.5 StDev 4.3 N 6 KS. P-Value Mea.6 StDev 3.96 N 6 KS.7 P-Value.45 Percet Percet Y (a Gambar. Plot peluag ormal (b Berdasarka Gambar dlakuka peguja ormaltas dega megguaka uj Kolmogorov-Smrov, berkut lagkah pegujaya. Hpotess H : Data berdstrbus ormal H : Data tdak berdstrbus ormal Taraf yata : α, D sup F x F x Statstk Uj : ( ( x Krtera keputusa: H dtolak jka p-value >, Htuga: Peubah Y Kolmogorov-Smrov,,7 p-value,33,45 Kesmpula H dterma H dterma M-69
6 Ksmat / Aalss Peubah Predktor Kesmpula: Karea p-value utuk masg-masg peubah kurag dar,5 maka dapat dsmpulka bahwa kedua peubah megkut dstrbus ormal. Resdual Plots for Y Normal Probablty Plot 5. Versus Fts Percet 9 5 Resdual Resdual Ftted Value 4 3 Hstogram 5. Versus Order Frequecy Resdual Resdual Observato Order Gambar 3. Plot resdual bag peubah respos Dar Gambar 3, asums galat berdstrbus ormal terpeuh yag dtujukka oleh ttkttk resdual pada gambar ormal probablty plot megkut gars dagoal, asums galat memlk ragam yag kosta terpeuh yag dtujukka dega oleh ttk-ttk resdual pada gambar versus fts yag tdak membetuk pola tertetu, da asums galat salg bebas juga terpeuh yag dtujukka oleh ttk-ttk ssaa pada gambar versus order yag acak. Semua asums dalam model regres ortogoal terpeuh maka dapat dlakuka feres terhadap parameter regresya. Tabel. Rgkasa output Mtab 6 Model Koefse Stadard Error Z p-value Selag Kepercayaa 99% bag Regres b,644 s{b },745,369,7 (-3,85; 5,38 Ortogoal b,995 s{b },4 7,346, (,959;,3 λ,9 Varas Galat utuk Y σ,79; Varas Galat utuk σ,98 Regres Lear Sederhaa b,387 b,989 ˆε s{b },734 s{b },4,8 7,35,47, ˆδ (-4,633; 4,7 (,96;,37 s,3,56 Berdasarka Tabel, pada model regres ortogoal dperoleh. persamaa regres ortogoal: Yˆ,644 +, 995. la tersep medekat da slope medekat sehgga kedua alat pemotor memberka hasl pegukura tekaa darah sstolk yag sama. 3. termuat dalam selag kepercayaa bag tersep da termuat dalam selag kepercayaa bag slope, sehgga tdak ada bukt yag meyataka bahwa kedua alat pemotor memberka hasl pegukura yag berbeda. 4. Bahwa la s pada model regres ortogoal lebh kecl dar model regres lear sederhaa sehgga model regres ortogoal merupaka model regres yag lebh bak darpada model regres lear sederhaa M-7
7 Prosdg Semar Nasoal Peelta, Peddka da Peerapa MIPA, Fakultas MIPA, Uverstas Neger Yogyakarta, 4 Me Pada model regres lear sederhaa dperoleh kesmpula yag sama dega model regres lear sederhaa, amu model regres lear sederhaa tdak tepat dguaka karea peubah predktor memuat kesalaha pegukura (measuremet error. 5 4 Plot of Y vs wth Ftted Les Orthogoal Least Squares 3 Y Orthogoal: Y Least Squares: Y Gambar 4. Plot data tekaa darah sstolk Dar Gambar 4 dapat dlhat bahwa persamaa regres ortogoal cocok utuk data tersebut. Ttkttk cukup dekat pada gars regres ortogoal. Gars regres least square dekat dega gars regres ortogoal pada data. KESIMPULAN Model regres ortogoal lebh tepat dguaka apabla peubah predktor memuat kesalaha pegukura. Apabla raso dua varas galat adalah maka la ˆ pada model regres ortogoal aka samadega la ˆ pada model regres lear sederhaa. DAFTAR PUSTAKA Ba, L.J. & Egelhardt, M. 99. Itroducto to probablty ad mathematcal statstcs. d edto. Calfora: Duxbury press. Carrol, R.J. & Ruppert, D The use ad msuse of orthogoal regresso estmato lear errors--varables models. [Dakses taggal Aprl ]. Dssaake, G. & Wag, S. 3. A crtcal examato of orthogoal regresso. Socal Scece Research Network-d [Dakses taggal Aprl ] Fuller, W.A Measuremet error models. New York: Joh Wley & Sos. Leg, L., Zhag, T., Kema, L. & Zhu, W. 7. Ordary least square regresso, orthogoal regresso, geometrc mea regresso ad ther applcatos aerosol scece. Joural of Physcs 78(7: -5. M-7
8 Ksmat / Aalss Peubah Predktor M-7
BAB 2 LANDASAN TEORI. perkiraan (prediction). Dengan demikian, analisis regresi sering disebut sebagai
BAB LANDASAN TEORI. Kosep Dasar Aalss Regres Aalss regres regressso aalyss merupaka suatu tekk utuk membagu persamaa da megguaka persamaa tersebut utuk membuat perkraa predcto. Dega demka, aalss regres
11/10/2010 REGRESI LINEAR SEDERHANA DAN KORELASI TUJUAN
// REGRESI LINEAR SEDERHANA DAN KORELASI. Model Regres Lear. Peaksr Kuadrat Terkecl 3. Predks Nla Respos 4. Iferes Utuk Parameter-parameter Regres 5. Kecocoka Model Regres 6. Korelas Utrwe Mukhayar MA
PERTEMUAN III PERSAMAAN REGRESI TUJUAN PRAKTIKUM
PERTEMUAN III PERSAMAAN REGRESI TUJUAN PRAKTIKUM 1 Megetahu perhtuga persamaa regres ler Meggambarka persamaa regres ler ke dalam dagram pecar TEORI PENUNJANG Persamaa Regres adalah persamaa matematka
BAB 5. ANALISIS REGRESI DAN KORELASI
BAB 5. ANALISIS REGRESI DAN KORELASI Tujua utama aalss regres adalah mecar ada tdakya hubuga ler atara dua varabel: Varabel bebas (X), yatu varabel yag mempegaruh Varabel terkat (Y), yatu varabel yag dpegaruh
Regresi Linier Sederhana Definisi Pengaruh
Regres Ler Sederhaa Dah Idra Baga Bostatstka da Kepeduduka Fakultas Kesehata Masyarakat Uverstas Arlagga Defs Pegaruh Jka terdapat varabel, msalka da yag data-dataya dplot sepert gambar dbawah 3 Defs Pegaruh
ANALISIS REGRESI. Model regresi linier sederhana merupakan sebuah model yang hanya terdiri dari satu peubah terikat dan satu peubah penjelas:
ANALISIS REGRESI Pedahulua Aalss regres berkata dega stud megea ketergatuga satu peubah (peubah terkat) terhadap satu atau lebh peubah laya (peubah pejelas). Jka Y dumpamaka sebaga peubah terkat da X1,X,...,X
BAB 2 LANDASAN TEORI. Regresi linier sederhana yang variabel bebasnya ( X ) berpangkat paling tinggi satu.
BAB LANDASAN TEORI. Regres Ler Sederhaa Regres ler sederhaa yag varabel bebasya ( berpagkat palg tgg satu. Utuk regres ler sederhaa, regres ler haya melbatka dua varabel ( da. Persamaa regresya dapat dtulska
BAB 2 LANDASAN TEORI. Regresi linier sederhana merupakan bagian regresi yang mencakup hubungan linier
BAB LANDASAN TEORI. Regres Ler Sederhaa Regres ler sederhaa merupaka baga regres yag mecakup hubuga ler satu peubah acak tak bebas dega satu peubah bebas. Hubuga ler da dar satu populas dsebut gars regres
BAB 2. Tinjauan Teoritis
BAB Tjaua Teorts.1 Regres Lear Sederhaa Regres lear adalah alat statstk yag dperguaka utuk megetahu pegaruh atara satu atau beberapa varabel terhadap satu buah varabel. Varabel yag mempegaruh serg dsebut
BAB III MENYELESAIKAN MASALAH REGRESI INVERS DENGAN METODE GRAYBILL. Masalah regresi invers dengan bentuk linear dapat dijumpai dalam
BAB III MENYELESAIKAN MASALAH REGRESI INVERS DENGAN METODE GRAYBILL 3. Pegerta Masalah regres vers dega betuk lear dapat djumpa dalam berbaga bdag kehdupa, dataraya dalam bdag ekoom, kesehata, fska, kma
TAKSIRAN PARAMETER DISTRIBUSI WEIBULL DENGAN MENGGUNAKAN METODE MOMEN DAN METODE KUADRAT TERKECIL
TAKSIRAN PARAMETER DISTRIBUSI WEIBULL DENGAN MENGGUNAKAN METODE MOMEN DAN METODE KUADRAT TERKECIL Hesty ala, Arsma Ada, Bustam hestyfala@ymalcom Mahasswa Program S Matematka MIPA-UR Dose Matematka MIPA-UR
Jawablah pertanyaan berikut dengan ringkas dan jelas menggunakan bolpoin. Total nilai 100. A. ISIAN SINGKAT (Poin 20) 2
M 81 STTISTIK DSR SEMESTER II 11/1 KK STTISTIK, FMIP IT SOLUSI UJIN TENGH SEMESTER (UTS) Sabtu, 1 Me 1, Pukul 9. 1.4 WI (1 met) Kelas 1. Pegajar: Udjaa S. Pasarbu/Rr. Kura Novta Sar, Kelas. Pegajar: Utrwe
BAB 2 LANDASAN TEORI. Analisis regresi adalah suatu proses memperkirakan secara sistematis tentang apa yang paling
BAB LANDASAN TEORI Kosep Dasar Aalss Regres Aalss regres adalah suatu proses memperkraka secara sstemats tetag apa yag palg mugk terjad dmasa yag aka datag berdasarka formas yag sekarag dmlk agar memperkecl
III. METODE PENELITIAN. yang hidup dan berguna bagi masyarakat, maupun bagi peneliti sendiri
III. METODE PEELITIA A. Metodolog Peelta Metodolog peelta adalah cara yag dlakuka secara sstemats megkut atura-atura, recaaka oleh para peeltutuk memecahka permasalaha yag hdup da bergua bag masyarakat,
ANALISIS REGRESI LINIER BERGANDA : PERSOALAN ESTIMASI DAN PENGUJIAN HIPOTESIS
ANALISIS REGRESI LINIER BERGANDA : PERSOALAN ESTIMASI DAN PENGUJIAN HIPOTESIS = 1 + + + + k k + u PowerPot Sldes baa Rohmaa Educato Uverst of Idoesa 007 Laboratorum Ekoom & Koperas Publshg Jl. Dr. Setabud
Analisis Korelasi dan Regresi
Aalss Korelas da Regres Hazmra Yozza Izzat Rahm HG Jurusa Matematka FMIPA Uad LOGO www.themegaller.com LOGO Data varat Data dega dua varael Terhadap satu pegamata dlakuka pegukurapegamata terhadap varael
TAKSIRAN PARAMETER DISTRIBUSI WEIBULL DENGAN MENGGUNAKAN METODE MOMEN DAN METODE MAKSIMUM LIKELIHOOD
TAKSIRAN PARAMETER DISTRIBUSI WEIBULL DENGAN MENGGUNAKAN METODE MOMEN DAN METODE MAKSIMUM LIKELIHOOD Eka Mer Krst ), Arsma Ada ), Sgt Sugarto ) ekamer_tross@ymal.com ) Mahasswa Program S Matematka FMIPA-UR
BAB 1 PENDAHULUAN. 1.1 Latar Belakang
BAB PENDAHULUAN. Latar Belakag Sampa saat, model Regres da model Aalss Varas telah dpadag sebaga dua hal ag tdak berkata. Meskpu merupaka pedekata ag umum dalam meeragka kedua cara pada taraf permulaa,
Pemodelan Regresi Linier Menggunakan Metode Theil (Studi Kasus: Kompensasi Pegawai di Badan Kepegawaian Daerah Kota Samarinda)
Jural EKSPONENSIAL Volume 4, Nomor 1, Me 2013 ISSN 2085-7829 Pemodela Regres Ler Megguaka Metode Thel (Stud Kasus: Kompesas Pegawa d Bada Kepegawaa Daerah Kota Samarda) Lear Regresso Modelg Wth Thel Method
BAB II LANDASAN TEORI
BAB II LANDASAN TEORI 1 Pegerta Regres Istlah regres pertama kal dperkealka oleh Fracs Galto Meurut Galto, aalss regres berkeaa dega stud ketergatuga dar suatu varabel yag dsebut tak bebas depedet varable,
BAB 2 LANDASAN TEORI
BAB LANDASAN TEORI. Defes Aalss Korelas da Regres a Aalss Korelas adalah metode statstka yag dguaka utuk meetuka kuatya atau derajat huuga lear atara dua varael atau leh. Semak yata huuga ler gars lurus,
INTERVAL KEPERCAYAAN UNTUK PERBEDAAN KOEFISIEN VARIASI DARI DISTRIBUSI LOGNORMAL I. Pebriyani 1*, Bustami 2, S. Sugiarto 2
INTERVAL KEPERCAAAN UNTUK PERBEDAAN KOEFIIEN VARIAI DARI DITRIBUI LOGNORMAL I. Pebrya * Bustam. ugarto Mahasswa Program Matematka Dose Jurusa Matematka Fakultas Matematka da Ilmu Pegetahua Alam Uverstas
Di dunia ini kita tidak dapat hidup sendiri, tetapi memerlukan hubungan dengan orang lain. Hubungan itu pada umumnya dilakukan dengan maksud tertentu
KORELASI 1 D dua kta tdak dapat hdup sedr, tetap memerluka hubuga dega orag la. Hubuga tu pada umumya dlakuka dega maksud tertetu sepert medapat kergaa pajak, memperoleh kredt, memjam uag, serta mta pertologa/batua
Analisis Regresi dan Korelasi
Metode Statstka Pertemua III Aalss Regres da Korelas Pegatar Apa tu aalss regres? Apa edaya dega korelas? Aalss Regres Aalss statstka yag memafaatka huuga atara dua atau leh peuah kuattatf sehgga salah
X a, TINJAUAN PUSTAKA
PENELITIAN SEBELUMNYA Statstka Deskrptf TINJAUAN PUSTAKA TINJAUAN STATISTIKA Uj Idepedes Uj depedes dguak utuk megetahu adaya hubuga atara dua varabel (Agrest, 1990). H 0 : tdak ada hubuga atara varabel
LANGKAH-LANGKAH UJI HIPOTESIS DENGAN 2 (Untuk Data Nominal)
LANGKAH-LANGKAH UJI HIPOTESIS DENGAN (Utuk Data Nomal). Merumuska hpotess (termasuk rumusa hpotess statstk). Data hasl peelta duat dalam etuk tael slag (tael frekues oservas) 3. Meetuka krtera uj atau
ANALISIS INDEKS DISTURBANCES STORM TIME DENGAN KOMPONEN H GEOMAGNET
Prosdg Semar Nasoal Peelta, Peddka da Peerapa MIPA Fakultas MIPA, Uverstas Neger Yogyakarta, 6 Me 9 ANALISIS INDEKS DISTURBANCES STORM TIME DENGAN KOMPONEN H GEOMAGNET Sty Rachyay Pusat Pemafaata Sas Atarksa,
BAB II LANDASAN TEORI. teori dan definisi mengenai variabel random, regresi linier, metode kuadrat
BAB II LANDASAN TEORI Sebaga pedukug dalam pembahasa selajutya, dperluka beberapa teor da defs megea varabel radom, regres ler, metode kuadrat terkecl, peguja asums aalss regres, outler, da regres robust.
( ) ( ) ( ) ( ) ( ) III MODEL. , θ Ω. 1 Pendugaan parameter dengan metode maximum lkelihood estimation dapat diperoleh dari:
5 Mamum Lkelhood Estmato Defs Fugs Lkelhood Msalka X, X,, X adalah eubah acak d dega fugs massa eluag ( ; θ, dega θ dasumska skalar da tdak dketahu, maka rosedur fugs lkelhood daat dtulska sebaga berkut
BAB II LANDASAN TEORI. Dalam pengambilan sampel dari suatu populasi, diperlukan suatu
BAB II LADASA TEORI Dalam pegambla sampel dar suatu populas, dperluka suatu tekk pegambla sampel yag tepat sesua dega keadaa populas tersebut. Sehgga sampel yag dperoleh adalah sampel yag dapat mewakl
BAB II LANDASAN TEORI. digunakan dengan mengabaikan asumsi-asumsi yang melandasi penggunaan metode
BAB II ANDASAN TEORI. Regres Noparametrk Metode statstka oparametrk merupaka metode statstka ag dapat dguaka dega megabaka asums-asums ag meladas pegguaa metode statstk parametrk. Terutama ag berkata dega
BAB 1 PENDAHULUAN. 1.1 Latar Belakang Masalah
BAB 1 PENDAHULUAN 1.1 Latar Belakag Masalah Regres merupaka suatu metode statstka yag dguaka utuk meyeldk pola hubuga atara dua atau lebh varabel.betuk atau pola hubuga varabelvarabel tersebut dapat ddetfkas
BAB III METODE PENELITIAN. Tempat penelitian ini dilaksanakan di SMP Negeri 4 Tilamuta Kabupaten
BAB III METODE PENELITIAN 3. Tempat da Waktu Peelta 3.. Tempat Tempat peelta dlaksaaka d SMP Neger 4 Tlamuta Kabupate Boalemo pada sswa kelas VIII. 3.. Waktu Peelta dlaksaaka dalam waktu 3 bula yatu dar
S2 MP Oleh ; N. Setyaningsih
S2 MP Oleh ; N. Setyagsh MATERI PERTEMUAN 1-3 (1)Pedahulua pera statstka dalam peelta ; (2)Peyaja data : dalam betuk (a) tabel da (b) dagram; (3) ukura tedes setaral da ukura peympaga (4)dstrbus ormal
BAB II TINJAUAN TEORITIS. Statistik merupakan cara cara tertentu yang digunakan dalam mengumpulkan,
BAB II TINJAUAN TEORITIS.1 Kosep Dasar Statstka Statstk merupaka cara cara tertetu yag dguaka dalam megumpulka, meyusu atau megatur, meyajka, megaalsa da member terpretas terhadap sekumpula data, sehgga
Uji Statistika yangb digunakan dikaitan dengan jenis data
Uj Statstka yagb dguaka dkata dega jes data Jes Data omal Ordal Iterval da Raso Uj Statstka Koefse Kotges Rak Spearma Kedall Tau Korelas Parsal Kedall Tau Koefse Kokordas Kedall W Pearso Korelas Gada Korelas
SIFAT-SIFAT LANJUT FUNGSI TERBATAS
Bulet Ilmah Mat. Stat. da Terapaya (Bmaster) Volume 03, No. 2(204), hal 35 42. SIFAT-SIFAT LANJUT FUNGSI TERBATAS Suhard, Helm, Yudar INTISARI Fugs terbatas merupaka fugs yag memlk batas atas da batas
Pendahuluan. Relasi Antar Variabel. Relasi Antar Variabel. Relasi Antar Variabel 4/6/2015. Oleh : Fauzan Amin
4/6/015 Oleh : Fauza Am Se, 06 Aprl 015 GDL 11 (07.30-10.50) Pedahulua Aalsa regres dguaka utuk mempelajar da megukur hubuga statstk ag terjad atara dua atau lebh varbel. Dalam regres sederhaa dkaj dua
Jurnal Matematika Murni dan Terapan Vol. 4 No.2 Desember 2010: ANALISIS REGRESI LINEAR BERGANDA DENGAN SATU VARIABEL BONEKA (DUMMY VARIABLE)
Jural Matematka Mur da Terapa Vol. 4 No. esember : 4 - ANALISIS REGRESI LINEAR BERGANA ENGAN SATU VARIABEL BONEKA (UMMY VARIABLE Tat Krsawardha Nur Salam da ew Aggra Program Stud Matematka Uverstas Lambug
BAB IV HASIL PENELITIAN DAN PEMBAHASAN. melakukan smash sebelum dan sesudah latihan power otot lengan adalah sebagai
BAB IV HASIL PENELITIAN DAN PEMBAHASAN 4. Deskrps Peelta Berdasarka hasl peelta, d peroleh data megea kemempua sswa melakuka smash sebelum da sesudah latha power otot lega adalah sebaga berkut : Tabel.
* MEMBUAT DAFTAR DISTRIBUSI FREKUENSI MENGGUNAKAN ATURAN STURGES
* PENYAJIAN DATA Secara umum, ada dua cara peyaja data, yatu : 1. Tabel atau daftar. Grafk atau dagram Macam-macam daftar yag dkeal : a. Daftar bars kolom b. Daftar kotges c. Daftar dstrbus frekues Sedagka
REGRESI SEDERHANA Regresi
P a g e REGRESI SEDERHANA.. Regres Istlah regres dkemukaka utuk pertama kal oleh seorag atropolog da ahl meteorology Fracs Galto dalam artkelya Famly Lkeess Stature pada tahu 886. Ada juga sumber la yag
Metode Statistika Pertemuan XII. Analisis Korelasi dan Regresi
Metode Statstka Pertemua XII Aalss Korelas da Regres Aalss Hubuga Jes/tpe hubuga Ukura Keterkata Skala pegukura varabel Pemodela Keterkata Relatoshp vs Causal Relatoshp Tdak semua hubuga (relatoshp) berupa
BAB II TINJAUAN PUSTAKA
BAB II TINJAUAN PUSTAKA.1 Pedahulua Sebelum membahas megea prosedur peguja hpotess, terlebh dahulu aka djelaska beberapa teor da metode yag meujag utuk mempermudah pembahasa. Adapu teor da metode tersebut
PENAKSIR PARAMETER DISTRIBUSI EKSPONENSIAL PARETO DENGAN METODE MOMEN DAN METODE MAKSIMUM LIKELIHOOD
PENAKSIR PARAMETER DISTRIBUSI EKSPONENSIAL PARETO DENGAN METODE MOMEN DAN METODE MAKSIMUM LIKELIHOOD Mayag Novhta Sar *, Bustam, Sgt Sugarto Mahasswa Program Stud S Matematka FMIPA Uverstas Rau Dose Fakultas
BAB 2 TINJAUAN TEORITIS. regresi berkenaan dengan studi ketergantungan antara dua atau lebih variabel yaitu
BAB TINJAUAN TEORITIS. Pegerta Aalsa Regres Istlah regres pertama kal dperkealka oleh Fracs Galto. Meurutya, aalss regres berkeaa dega stud ketergatuga atara dua atau lebh varabel yatu varabel yag meeragka
PENAKSIR RASIO REGRESI LINEAR YANG EFISIEN UNTUK RATA-RATA POPULASI DENGAN MENGGUNAKAN DUA VARIABEL TAMBAHAN
PENAKIR RAIO REGREI LINEAR ANG EFIIEN UNTUK RATA-RATA POPULAI DENGAN MENGGUNAKAN DUA VARIABEL TAMBAHAN Ed Jamlu 1* Harso Haposa rat 1 Mahasswa Program tud 1 Matematka Dose Jurusa Matematka Fakultas Matematka
BAB 2 LANDASAN TEORI. disebut dengan bermacam-macam istilah: variabel penjelas, variabel
BAB LANDASAN TEORI.1 Pegerta Regres Regres dalam statstka adalah salah satu metode utuk meetuka tgkat pegaruh suatu varabel terhadap varabel yag la. Varabel yag pertama dsebut dega bermacam-macam stlah:
TEKNIK SAMPLING. Hazmira Yozza Izzati Rahmi HG Jurusan Matematika FMIPA Universitas Andalas
TEKNIK SAMPLING Hazmra Yozza Izzat Rahm HG Jurusa Matematka FMIPA Uverstas Adalas Defs Suatu cotoh gerombol adalah suatu cotoh acak sederhaa dmaa setap ut pearka cotoh adalah kelompok atau gerombol dar
Penarikan Contoh Gerombol (Cluster Sampling) Departemen Statistika FMIPA IPB
Pearka Cotoh Gerombol (Cluster Samplg) Departeme Statstka FMIPA IPB Radom samplg (Revew) Smple radom samplg Stratfed radom samplg Rato, regresso, ad dfferece estmato Systematc radom samplg Cluster radom
KOMBINASI PENAKSIR RASIO UNTUK RATA-RATA POPULASI PADA SAMPLING ACAK SEDERHANA MENGGUNAKAN KOEFISIEN REGRESI, KOEFISIEN KURTOSIS DAN KOEFISIEN VARIASI
KOMBINASI PENAKSIR RASIO UNTUK RATA-RATA POPULASI PADA SAMPLING ACAK SEDERHANA MENGGUNAKAN KOEFISIEN REGRESI, KOEFISIEN KURTOSIS DAN KOEFISIEN VARIASI Defl Ardh 1, Frdaus, Haposa Srat defl_math@ahoo.com
PENAKSIR REGRESI CUM RASIO UNTUK RATA-RATA POPULASI DENGAN MENGGUNAKAN KOEFISIEN KURTOSIS DAN KOEFISIEN SKEWNESS
PENAKIR REGREI CUM RAIO UNTUK RATA-RATA POPULAI DENGAN MENGGUNAKAN KOEFIIEN KURTOI DAN KOEFIIEN KEWNE usta Wula ar *, Arsma Ada, Haposa rat Mahasswa Program Matematka Dose Jurusa Matematka Fakultas Matematka
REGRESI LINIER SEDERHANA
MODUL REGRESI LINIER SEDERHANA Dsusu oleh : I MADE YULIARA Jurusa Fska Fakultas Matematka Da Ilmu Pegetahua Alam Uverstas Udayaa Tahu 016 Kata Pegatar Puj syukur saya ucapka ke hadapa Tuha Yag Maha Kuasa
II. TINJAUAN PUSTAKA. variabel. Dalam regresi sederhana dikaji dua variabel, sedangkan dalam regresi
3 II. TINJAUAN PUSTAKA. Aalss Regres Aalss regres merupaka salah satu metode statstka ag dguaka utuk mempelajar da megukur huuga statstk ag terjad atara dua atau leh varael. Dalam regres sederhaa dkaj
Bab II Teori Pendukung
Bab II Teor Pedukug.. asar Statstka Utuk keperlua peaksra outstadg clams lablty, pegetahua dalam statstka mead hal yag petg. asar statstka yag dguaka dalam tess atara la :. strbus ormal Sebuah peubah acak
PENAKSIR RASIO YANG EFISIEN UNTUK RATA-RATA POPULASI DENGAN MENGGUNAKAN DUA VARIABEL TAMBAHAN
PENAKSIR RASIO YANG EFISIEN UNTUK RATA-RATA POPULASI DENGAN MENGGUNAKAN DUA VARIABEL TAMBAHAN Idah Vltr, Harso, Haposa Srat Mahassa Program S Matematka Dose Jurusa Matematka Fakultas Matematka da Ilmu
TAKSIRAN UMUR SISTEM DENGAN UMUR KOMPONEN BERDISTRIBUSI SERAGAM. Sudarno Jurusan Matematika FMIPA UNDIP
JURNAL MATEMATIKA DAN KOMPUTER Vol. 7. No. 1, 11-19, Aprl 004, ISSN : 1410-8518 TAKSIRAN UMUR SISTEM DENGAN UMUR KOMPONEN BERDISTRIBUSI SERAGAM Sudaro Jurusa Matematka FMIPA UNDIP Abstrak Sstem yag dbetuk
STATISTIK. Ukuran Gejala Pusat Ukuran Letak Ukuran Simpangan, Dispersi dan Variasi Momen, Kemiringan, dan Kurtosis
STATISTIK Ukura Gejala Pusat Ukura Letak Ukura Smpaga, Dspers da Varas Mome, Kemrga, da Kurtoss Notas Varabel dyataka dega huruf besar Nla dar varabel dyataka dega huruf kecl basaya dtuls Tmes New Roma
BAB III ESTIMASI MODEL PROBIT TERURUT
BAB III ESTIMASI MODEL PROBIT TERURUT 3. Pedahulua Model eurua kods embata destmas dega model robt terurut. Estmas terhada arameter model robt terurut yatu koefse model da threshold dlakuka dega metode
BAB IX PENGGUNAAN STATISTIK DALAM SIMULASI
BAB IX PENGGUNAAN STATISTIK DALAM SIMULASI 9.1. Dstrbus Kotu Dstrbus memlk sfat kotu dmaa data yag damat berjala secara kesambuga da tdak terputus. Maksudya adalah bahwa data yag damat tersebut tergatug
BAB III PERSAMAAN PANAS DIMENSI SATU
BAB III PERSAMAAN PANAS DIMENSI SAU Pada baga sebelumya, kta telah membahas peerapa metoda Ruge-Kutta orde 4 utuk meyelesaka masalah la awal dar persamaa dferesal basa orde. Pada bab, kta aka melakuka
JMP : Volume 1 Nomor 2, Oktober 2009 PEMILIHAN PARAMETER PENGHALUS PADA ESTIMATOR DERET FOURIER DALAM REGRESI NONPARAMETRIK. Agustini Tripena Br.Sb.
JMP : Volume Nomor, Oktober 009 PEMILIHAN PARAMETER PENGHALUS PADA ESTIMATOR DERET FOURIER DALAM REGRESI NONPARAMETRIK Agust Trpea Br.Sb. Fakultas Sas da Tekk, Uverstas Jederal Soedrma Purwokerto, Idoesa
ANALISIS REGRESI. Untuk mengetahui bentuk linear atau nonlinear dapat dilakukan dengan membuat scatterplot seperti berikut : Gambar.
ANALISIS REGRESI Berdasara betu eleara data, model regres dapat dlasfasa mead dua macam yatu lear da o-lear. Ja pola data lear maa dguaa pemodela lear. Begtu uga sebalya apabla pola data tda lear maa dguaa
Analisis Regresi Robust Menggunakan Kuadrat Terkecil Terpangkas untuk Pendugaan Parameter
Vol. 6, No., 9-6, Jauar Aalss Regres Robust Megguaka Kuadrat Terkecl Terpagkas utuk Pedugaa Parameter Asa, Raupog, Sarmat Zaudd Abstrak Prosedur regres robust dtujuka utuk megakomodas adaya keaeha data,
ESTIMASI PARAMETER MODEL INTEGER-VALUE AUTOREGRESSIVE
ESTIMASI PARAMETER MODEL INTEGER-VALUE AUTOREGRESSIVE UNTUK MENENTUKAN PROBABILITAS TERJADINYA KEBAKARAN YANG DISEBABKAN OLEH GAS ELPIJI DI KOTA SURAKARTA Nurmaltasar Jurusa Sstem Iformas, STMIK Duta Bagsa
REGRESI LINEAR SEDERHANA
REGRESI LINEAR SEDERHANA MODUL Dra. Sr Pagest, S.U. PENDAHULUAN A alss regres merupaka aalss statstk yag mempelajar ubuga atara dua varabel atau leb. Dalam aalss regres lear dasumska berlakuya betuk ubuga
Y = f(x1, X2,..., Xp) + error (2.1) = komp. sistematik + komp. non-sistematik dugaan Y = f(x1, X2,..., Xp) (2.2)
Bab. MODEL REGRESI LINEAR SEDERHANA Oleh Bambag Juada Pegerta Model & Tujua Pemodela Perumusa masalah Model Model: Abstraks realtas dlm pers matematka Model ekoometrka: model statstk yg mecakup error Y
PROSEDUR ESTIMASI PARAMETER MODEL REGRESI MENGGUNAKAN RESAMPLING BOOTSTRAP DAN JACKKNIFE
PROSEDUR ESTIMASI PARAMETER MODEL REGRESI MENGGUNAKAN RESAMPLING BOOTSTRAP DAN JACKKNIFE ESTIMATION OF PARAMETER REGRESION MODEL USING BOOTSTRAP AND JACKKNIFE Hed (Staf Pegajar UP MKU Poltekk Neger Badug)
TUGAS MATA KULIAH TEORI RING LANJUT MODUL NOETHER
TUGAS ATA KULIAH TEORI RING LANJUT ODUL NOETHER Da Aresta Yuwagsh (/364/PPA/03489) Sebelumya, telah dketahu bahwa sebaga rg dega eleme satua memeuh sfat rata ak utuk deal-deal d. Apabla dpadag sebaga modul,
MINGGU KE-10 HUBUNGAN ANTAR KONVERGENSI
MINGGU KE-0 HUBUNGAN ANTAR KONVERGENSI Hubuga atar koverges Hrark atar koverges dyataka dalam teorema berkut. Teorema Msalka X da X, X, X 3,... adalah varabel radom yag ddefska pada ruag probabltas yag
Volume 1, Nomor 2, Desember 2007
Volume, Nomor, Desember 007 Barekeg, Desember 007. hal.-7 Vol.. No. ESTIMASI PARAMETER DISTRIBUSI EKPONENSIAL PADA LOKASI TERBATAS (Estmatg Parameter Dstrbuto Expoetal At Fte Locato MOZART W TALAKUA, JEFRI
Analisis Survival Pada Pasien Demam Berdarah Dengue (DBD) di RSU Haji Surabaya Menggunakan Model Regresi Weibull
JURNAL SAINS DAN SENI ITS Vol. 5 No. (16) 337-35 (31-98X Pr D-31 Aalss Survval Pada Pase Demam Berdarah Degue (DBD) d RSU Haj Surabaya Megguaka Model Regres Webull Alfa Slf Mufdah da Purhad Jurusa Statstka,
BAB III INTEGRAL RIEMANN-STIELTJES. satu pendekatan untuk membentuk proses titik. Berkaitan dengan masalah
BAB III INEGRAL RIEMANN-SIELJES. Pedahulua Pada Bab, telah dsggug bahwa ukura meghtug merupaka salah satu pedekata utuk membetuk proses ttk. Berkata dega masalah perhtuga, ada hal meark yag perlu amat,
BAB 2 LANDASAN TEORI
BAB LANDAAN TORI. Regres Ler ederhaa Dalam beberapa masalah terdapat dua atau lebh varabel yag hubugaya tdak dapat dpsahka, da hal tersebut basaya dseldk sfat hubugaya. Aalss regres adalah sebuah tekk
XI. ANALISIS REGRESI KORELASI
I ANALISIS REGRESI KORELASI Aalss regres mempelajar betuk hubuga atara satu atau lebh peubah bebas dega satu peubah tak bebas dalam peelta peubah bebas basaya peubah yag dtetuka oelh peelt secara bebas
BAB 6 PRINSIP INKLUSI DAN EKSKLUSI
BB 6 PRINSIP INKLUSI DN EKSKLUSI Pada baga aka ddskuska topk berkutya yatu eumeras yag damaka Prsp Iklus da Eksklus. Kosep dalam bab merupaka perluasa de dalam Dagram Ve beserta oepras rsa da gabuga, amu
KONSISTENSI KOEFISIEN DETERMINASI SEBAGAI UKURAN KESESUAIAN MODEL PADA REGRESI ROBUST
KONSISTENSI KOEFISIEN DETERINASI SEBAGAI UKURAN KESESUAIAN ODEL PADA REGRESI ROBUST Harm Sugart (harm@ut.ac.d) Ad egawar Jurusa Statstka FIPA Uverstas Terbuka ABSTRACT I statstcs, the coeffcet of determato
*Corresponding Author:
Prosdg Semar Sas da Tekolog FMIPA Umul Vol. No. Jul 0, Samarda, Idoesa ISSN : - 0 STRUCTURAL EQUATION MODELLING DENGAN PENDEKATAN PARTIAL LEAST SQUARE (Stud Kasus: Pegaruh Locus of Cotrol, Self Effcacy,
Beberapa Metode Alternatif untuk Analisis Data Sampel Berpasangan
Prosdg Statstka ISSN 46-6456 Beberapa Metode Alteratf utuk Aalss Data Sampel Berpasaga Rma Rzka Yuar Tet Sofa Yat, 3 Abdul Kudus,,3 Statstka, Fakultas MIPA, Uverstas Islam Badug, Jl Tamasar No Badug 46
Prosiding SNaPP2011 Sains, Teknologi, dan Kesehatan. 1 Joko Riyono. (Kampus A Jl.Kiyai Tapa No.1,Jakarta11440)
Prosdg NaPP as, Tekolog, da Kesehata IN:89-58 MODIFIKAI TATITIK UJI-t PADA TET INFERENIA MEAN MEREDUKI PENGARUH KEAIMETRIKAN POPULAI MENGGUNAKAN EKPANI CORNIH-FIHER Joko Ryoo taf.pegajar Fakultas Tekolog
PEMERIKSAAN DATA BERPENGARUH DALAM MODEL REGRESI GAMMA. Nusar Hajarisman 1
Pemerksaa Data (Nusar H) PEMERIKSAAN DATA BERPENGARUH DALAM MODEL REGRESI GAMMA Nusar Hajarsma Staf Pegajar Jurusa Statstka Uverstas Islam Badug Jala Purawarma No. 69 Badug 06 rsma@yahoo.co.uk Abstract
Uji Modifikasi Peringkat Bertanda Wilcoxon Untuk Masalah Dua Sampel Berpasangan 1 Wili Solidayah 2 Siti Sunendiari 3 Lisnur Wachidah
Prosdg Statstka ISSN 40-45 Uj Modfkas Pergkat Bertada Wlcoxo Utuk Masalah Dua Sampel Berpasaga 1 Wl Soldayah St Suedar 3 Lsur Wachdah 1, Statstka, Fakultas MIPA, Uverstas Islam Badug, Jl. Tamasar No. 1
ABSTRAK. Ika Dewi Ariyanti 1 dan Sutikno 2
Pemodela Aomal Luas Pae Pad da Curah Huja Terbobot (Weghted Rafall Idex) dega Pedekata Robust Bootstrap LTS (Stud Kasus: Pemodela Luas Pae d Kabupate Subag) Ika Dew Aryat da Sutko Mahasswa S Statstka ITS,
BAB IV BATAS ATAS BAGI JARAK MINIMUM KODE SWA- DUAL GENAP
BAB IV BATAS ATAS BAGI JARAK MINIMUM KODE SWA- DUAL GENAP Msal dguaka kode ler C[, k, d] dega matrks pembagu G da matrks cek partas H. Sebuah blok formas x = x 1 x 2 x k, x = 0 atau 1, yag aka dkrm terlebh
REGRESI NONPARAMETRIK KERNEL ADJUSTED. Novita Eka Chandra Universitas Islam Darul Ulum Lamongan
JMP : Volume 7 Nomor, Ju 05, hal. - 0 REGRESI NONPARAMETRIK KERNEL ADJUSTED Novta Eka Chadra Uverstas Islam Darul Ulum Lamoga ovtaekachadra@gmal.com Sr Haryatm da Zulaela Jurusa Matematka FMIPA UGM ABSTRACT.
PENAKSIR RASIO UNTUK RATA-RATA POPULASI PADA SAMPLING ACAK SEDERHANA MENGGUNAKAN KOEFISIEN VARIASI DAN MEDIAN
PENAKI AIO UNTUK ATA-ATA POPULAI PADA AMPLING ACAK EDEHANA MENGGUNAKAN KOEFIIEN VAIAI DAN MEDIAN sk ahmada *, Arsma Ada, Haposa rat Mahasswa Program Matematka Dose Jurusa Matematka Fakultas Matematka da
TINJAUAN PUSTAKA Evaluasi Pengajaran
TINJAUAN PUSTAKA Evaluas Pegajara Evaluas adalah suatu proses merecaaka, memperoleh da meyedaka formas yag sagat dperluka utuk membuat alteratf- alteratf keputusa. Dalam hubuga dega kegata pegajara evaluas
PENDITEKSIAN PENCILAN (OUTLIER) DAN RESIDUAL PADA REGRESI LINIER
PENDITEKSIAN PENCILAN (OUTLIER) DAN RESIDUAL PADA REGRESI LINIER Outler ad Resdual Detecto the Lear Regresso Iwa Sugkawa Jurusa Statstka Fakultas Sas da Tekolog, Uverstas Ba Nusatara Jakarta ABSTRACT Ths
BAB 1 PENDAHULUAN. 1.1 Latar Belakang
BAB PENDAHULUAN. Latar Belakag Dalam pemodela program ler, semua parameter yag dguaka dalam model dasumska dapat dketahu secara past. Parameter-parameter terdr dar koefse batasa ( ) a, la kuattas batasa
BOBOT OPTIMAL PADA REGRESI SEMIPARAMETRIK SPLINE
BOBOT OPTIMAL PADA REGRESI SEMIPARAMETRIK SPLINE Jerry Dw Trjoyo Puromo Jurusa Statstka Isttut Tekolog Sepuluh Nopember Surabaya Emal: jerrypuromo@yahoo.com ABSTRAK Regres semparametrk sple adalah metode
Penarikan Contoh Acak Sederhana (Simple Random Sampling)
Pearka Cotoh Acak Sederhaa (Smple Radom Samplg) Defs Jka sebuah cotoh berukura dambl dar suatu populas sedemka rupa sehgga setap cotoh berukura ag mugk memlk peluag sama utuk terambl, maka prosedur tu
LOGO ANALISIS REGRESI LINIER
LOGO ANALISIS REGRESI LINIER BERGANDA Hazmra Yozza Jur. Maemaka FMIPA Uv. Adalas KOMPETENSI megdefkaska model regres ler bergada dalam oas aljabar basa maupu oas marks da asumsya medapaka model regres
BAB III UKURAN PEMUSATAN DATA
BAB III UKURAN PEMUSATAN DATA A. Ukura Gejala Pusat Ukura pemusata adalah suatu ukura yag meujukka d maa suatu data memusat atau suatu kumpula pegamata memusat (megelompok). Ukura pemusata data adalah
Peramalan Kebutuhan Listrik Dengan Model Harvey
Peramala Kebutuha Lstrk Dega Model Harvey Oleh: Ley Setyag B. (30600006) Pembmbg: Prof. Drs. Nur Irawa, M.IKom, Ph.D Latar Belakag Jumlah Peduduk Megkat Produks megkat Supply < Demad Kebutuha Barag Megkat
BAB IV HASIL PENELITIAN. Hasil penelitian ini berdasarkan data yang diperoleh dari kegiatan penelitian
BAB IV HASIL PENELITIAN Hasl peelta berdasarka data yag dperole dar kegata peelta yag tela dlaksaaka ole peelt d MTs Salafya II Radublatug Blora pada kelas VIII A tau ajara 1 11. Data asl peelta tersebut
ESTIMASI FUNGSI REGRESI MENGGUNAKAN METODE DERET FOURIER
Supart da Sudargo Estmas Regres Deret Fourer ESTIMASI FUNGSI REGRESI MENGGUNAKAN METODE DERET FOURIER Supart da Sudargo 2 ) Jurusa Matematka, FMIPA, Udp 2) Jurusa Ped. Matematka, FPMIPA, IKIP PGRI, Semarag
ESTIMASI PARAMETER DAN PENGUJIAN HIPOTESISMODEL REGRESI BURRTIGA PARAMETER TIPE XII
Prosdg Semar Nasoal Matematka, Uverstas Jember, 19 November 2014145 ESTIMASI PARAMETER DAN PENGUJIAN HIPOTESISMODEL REGRESI BURRTIGA PARAMETER TIPE XII Rzwa Arsad 1, Purhad 2 1,2 Jurusa Statstka FMIPA
3 Departemen Statistika FMIPA IPB
Supleme Respos Pertemua ANALISIS DATA KATEGORIK (STK51) Departeme Statstka FMIPA IPB Pokok Bahasa Sub Pokok Bahasa Referes Waktu U potess Tga Cotoh atau Lebh U Kruskal-Walls (aalss ragam satu-arah berdasarka
Pemodelan Faktor-Faktor yang Mempengaruhi Jumlah Kasus HIV & AIDS di Provinsi Jawa Timur Tahun 2013 Menggunakan Bivariate Poisson.
JURNAL SAINS DAN SENI IS Vol. 4, No., (5) 337-35 (3-98X Prt) D45 Pemodela Faktor-Faktor yag Mempegaruh Jumlah Kasus IV & AIDS d Provs Jawa mur ahu 3 Megguaka Bvarate Posso Regresso Lucy Da Pusptasar da
PEMBENTUKAN MODEL PROBIT BIVARIAT
PEMBENTUKAN MODEL PROBIT BIVARIAT SKRIPSI Dsusu Oleh : Yudh Cadra JE 003 66 PROGRAM STUDI STATISTIKA JURUSAN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS DIPONEGORO SEMARANG 009