Pembuktian dengan Induksi Matematik

Ukuran: px
Mulai penontonan dengan halaman:

Download "Pembuktian dengan Induksi Matematik"

Transkripsi

1 Pembuktian dengan Induksi Matematik Contoh Soal Toni Bakhtiar Departemen Matematika IPB September 2012 Toni Bakhtiar PIM September / 24

2 Example Dengan induksi matematik, buktikan bahwa untuk setiap bilangan asli n berlaku (1 2) + ( 2 2 2) + ( 3 2 3) + + (n 2 n ) = (n 1) 2 n Jawab Definisikan semesta dan predikat berikut: S = N, P(n) : (1 2) + ( 2 2 2) + + (n 2 n ) = (n 1) 2 n Basis induksi: untuk n = 1 berlaku P(1) : = (1 1) P(1) : 2 = 2. P(1) benar. Hipotesis induksi: untuk k 1, anggap P(k) benar, yaitu berlaku (1 2) + ( 2 2 2) + ( 3 2 3) ( ) + + k 2 k = (k 1) 2 k Toni Bakhtiar (m@thipb) PIM September / 24

3 Langkah induksi: Akan dibuktikan P(k + 1) benar, yaitu berlaku (1 2) + ( 2 2 2) + + ((k + 1) 2 k+1) = ((k + 1) 1) 2 (k+1) = k 2 k B Ruas kiri = (1 2) + ( 2 2 2) ( ) + + k 2 k + ((k + 1) 2 k+1) = (k 1) 2 k ((k + 1) 2 k+1) = 2 k+1 [(k 1) + (k + 1)] + 2 = 2 k+1 (2k) + 2 = k 2 2 k = k 2 k = ruas kanan. Terbukti. Toni Bakhtiar (m@thipb) PIM September / 24

4 Example Buktikan n 3 n habis dibagi 3 untuk setiap n bilangan asli. Misalkan P(n) : n 3 n habis dibagi 3. Akan dibuktikan bahwa: ( n N)P(n). Basis induksi: untuk n = 1 diperoleh = 0 habis dibagi 3. P(1) benar. Hipotesis induksi: untuk n = k dan k 1 andaikan P(k) benar, yaitu berlaku k 3 k habis dibagi 3 k 3 k = 3m, m Z. Langkah induksi: untuk n = k + 1 akan dibuktikan P(k + 1) benar, yaitu (k + 1) 3 (k + 1) habis dibagi 3 (k + 1) 3 (k + 1) = 3r, r Z. Toni Bakhtiar (m@thipb) PIM September / 24

5 B (k + 1) 3 (k + 1) = k 3 + 3k 2 + 3k + 1 (k + 1) = (k 3 k) + 3k 2 + 3k = 3m + 3(k 2 + k) = 3(m + k 2 + k) = 3r, r := m + k 2 + k. Karena m Z maka r := m + k 2 + k Z, sehingga terbukti. Toni Bakhtiar (m@thipb) PIM September / 24

6 Example Misalkan x 1. Gunakan induksi matematik untuk membuktikan bahwa untuk setiap bilangan asli n. (1 + x) n 1 + nx, Jawab Definisikan semesta dan predikat berikut: S = N, P(n) : (1 + x) n 1 + nx, x 1. Basis induksi: untuk} n = 1 berlaku Ruas kiri: 1 + x Benar bahwa 1 + x 1 + x Ruas kanan: 1 + x Dengan demikian P(1) benar. Hipotesis induksi: untuk k 1, anggap P(k) benar, yaitu berlaku (1 + x) k 1 + kx. Toni Bakhtiar (m@thipb) PIM September / 24

7 Langkah induksi: akan dibuktikan P(k + 1) benar, yaitu berlaku (1 + x) k (k + 1)x. B Dari hipotesis induksi dan karena x 1 maka (1 + x) k 1 + kx (1 + x) k (1 + x) (1 + kx) (1 + x) (1 + x) k (1 + x) 1 + x + kx + kx 2. Karena k bilangan asli, maka kx 2 0, sehingga 1 + x + kx + kx x + kx. Ini berarti (1 + x) k (1 + x) 1 + x + kx (1 + x) k (k + 1) x. Terbukti. Toni Bakhtiar (m@thipb) PIM September / 24

8 Example Diberikan barisan bilangan real x 1, x 2, x 3,... yang didefinisikan oleh x 1 = 2, x n+1 = 2 1 x n, n = 1, 2, 3,.... Dengan pembuktian induksi matematik, buktikan bahwa x n = n + 1 n, n 2. Jawab Didefinisikan predikat: P(n) : x n = n + 1 n. Akan dibuktikan dengan induksi matematik bahwa ( n 2)P(n). Toni Bakhtiar (m@thipb) PIM September / 24

9 Basis induksi: untuk n = 2, dari definisi diperoleh x 2 = 2 1 x 1 = = 3 2. Di lain pihak, dari rumus analitik diperoleh x 2 = = 3 2 (benar). Hipotesis induksi: untuk n = k andaikan benar bahwa x k = k + 1. k Langkah induksi: untuk n = k + 1 akan dibuktikan bahwa x k+1 = (k + 1) + 1 k + 1 = k + 2 k + 1. Toni Bakhtiar (m@thipb) PIM September / 24

10 B x k+1 = 2 1 x k (dari definisi) Terbukti. = 2 1 k+1 k = 2 k k + 1 = k + 2 k + 1. (dari hipotesis) Toni Bakhtiar (m@thipb) PIM September / 24

11 Example Gobang adalah mata uang resmi Negeri Artamaya dengan pecahan-pecahan yang berlaku adalah suku (= 2 gobang), benggol (= 5 gobang), ketip (= 7 gobang), dan kawung (= 10 gobang). Di suatu kejadian aneh, seorang penjual barang kelontong yang hanya memiliki sejumlah pecahan benggol sebagai uang kembalian kedatangan seorang pembeli yang hanya memiliki sejumlah pecahan ketip. Buktikan bahwa setiap transaksi atas barang kelontong seharga n gobang, dengan n 25 dan n bilangan asli, selalu dapat dilakukan dengan hanya menggunakan pecahan-pecahan benggol dan ketip tanpa menimbulkan utang-piutang antara penjual dan pembeli. Ilustrasi: Jika harga barang 50 gobang maka pembeli membayar dengan 10 keping uang ketip dan mendapat kembalian 4 keping uang benggol. Petunjuk: Buktikan dengan induksi matematik bahwa setiap bilangan asli n, dengan n 25, selalu dapat dituliskan sebagai n = 7x 5y,dengan x dan y adalah suatu bilangan bulat positif. Toni Bakhtiar (m@thipb) PIM September / 24

12 Jawab Masalah di atas ekuivalen dengan masalah berikut: dengan induksi matematik, buktikan bahwa setiap bilangan asli n, dengan n 25, selalu dapat dituliskan sebagai n = 7x harga 5y bayar kembalian dengan x dan y adalah bilangan-bilangan bulat positif. Basis induksi: untuk n = 25 diperoleh 25 = sehingga diperoleh x = 5 dan y = 2 (Benar). Hipotesis induksi: untuk n = k anggap benar bahwa k = 7a 5b dengan a dan b suatu bilangan bulat positif., Toni Bakhtiar (m@thipb) PIM September / 24

13 Langkah induksi: untuk n = k + 1 akan dibuktikan bahwa k + 1 = 7p 5q dengan p dan q suatu bilangan bulat positif. B k + 1 = (7a 5b) + 1 (dari hipotesis induksi) = 7a 5b + ( ) = 7(a + 3) 5(b + 4) = 7p 5q, dengan p := a + 3 dan q := b + 4. Karena a dan b bilangan bulat positif maka p := a + 3 dan q := b + 4 bilangan bulat positif. Terbukti. Toni Bakhtiar (m@thipb) PIM September / 24

14 Example Buktikan untuk setiap bilangan asli n berlaku Jawab Didefinisikan predikat: (n 1) 2 < n3 3. P(n) : (n 1) 2 < n3 3. Akan dibuktikan dengan induksi matematik bahwa ( n N)P(n). Toni Bakhtiar (m@thipb) PIM September / 24

15 Basis induksi: untuk n = 1 diperoleh P(1) : (1 1) 2 < < 1 3. P(1) benar. Hipotesis induksi: untuk n = k dan k 1 andaikan P(k) benar, yaitu berlaku (k 1) 2 < k3 3. Langkah induksi: untuk n = k + 1 akan dibuktikan P(k + 1) benar, yaitu (k 1) 2 + k 2 < (k + 1)3. 3 Toni Bakhtiar (m@thipb) PIM September / 24

16 Bukti: (k 1) 2 + k 2 < k3 3 + k2 = k k2 3 < k k k = k3 + 3k 2 + 3k (k + 1)3 =. 3 Toni Bakhtiar (m@thipb) PIM September / 24

17 Example Buktikan untuk setiap bilangan asli n 10 berlaku 2 n > n 3. Jawab Didefinisikan predikat: P(n) : 2 n > n 3. Akan dibuktikan dengan induksi matematik bahwa ( n 10)P(n). Toni Bakhtiar (m@thipb) PIM September / 24

18 Basis induksi: untuk n = 10 diperoleh P(10) : 2 10 > > P(10) benar. Hipotesis induksi: untuk n = k dan k 10 andaikan P(k) benar, yaitu berlaku 2 k > k 3. Langkah induksi: untuk n = k + 1 akan dibuktikan P(k + 1) benar, yaitu 2 k+1 > (k + 1) 3. Toni Bakhtiar (m@thipb) PIM September / 24

19 Bukti: 2 k+1 = 2 2 k > 2 k 3 = k 3 + k 3 k k 2 (k 10 k 3 10k 2 ) = k 3 + 3k 2 + 7k 2 k 3 + 3k k (k 10 k 2 10k 7k 2 70k) > k 3 + 3k 2 + 3k + 1 = (k + 1) 3. Toni Bakhtiar (m@thipb) PIM September / 24

20 Problem Didefinisikan barisan bilangan a 1, a 2, a 3,... dengan a 1 = 1, a 2 = , a 3 = ,. a n = n, untuk semua bilangan asli n. Buktikan untuk semua bilangan asli n berlaku a 1 + a a n = (n + 1)a n n. Toni Bakhtiar (m@thipb) PIM September / 24

21 Problem Diketahui barisan bilangan y 1, y 2, y 3,... dengan y 1 = 1, y n+1 = 1 4 (2y n + 3), untuk n = 1, 2,.... Dengan menggunakan induksi matematik, tunjukkan bahwa y n 2 untuk setiap bilangan asli n. Problem Diketahui barisan bilangan x 1, x 2, x 3,... dengan x 1 = 1 x n+1 = 2 x n, untuk n = 1, 2, 3,.... Dengan menggunakan induksi matematik buktikan bahwa x n x n+1 untuk setiap bilangan asli n. Toni Bakhtiar (m@thipb) PIM September / 24

22 Problem Diketahui barisan bilangan bulat x 1, x 2, x 3,... yang didefinisikan oleh x 1 = 2, x n = x n 1 + 2n, (untuk n 2). Tunjukkan dengan induksi matematik bahwa untuk semua bilangan asli n, berlaku: x n = n(n + 1). Problem Dengan menggunakan induksi matematik, buktikan bahwa n 3 > n4 4. adalah benar untuk setiap bilangan asli n. (Diketahui: (a + b) 4 = a 4 + 4a 3 b + 6a 2 b 2 + 4ab 3 + b 4.) Toni Bakhtiar (m@thipb) PIM September / 24

23 Problem Dengan induksi matematik, buktikan bahwa untuk bilangan asli n berlaku 4 2n n+2 habis dibagi 13. Problem Dengan menggunakan induksi matematik buktikan bahwa untuk setiap bilangan asli n berlaku: (8n 5) = 4n 2 n. Problem Misalkan a bilangan real dan a = 1. Dengan induksi matematik, tunjukkan bahwa 1 + a + a a n 1 = 1 an 1 a untuk setiap bilangan asli n. Toni Bakhtiar (m@thipb) PIM September / 24

24 Problem Perhatikan deret berikut: S n = n i=1 i (i + 1)!. 1 Hitung S 1, S 2, dan S 3. Dengan memerhatikan pola yang terbentuk, tebaklah bentuk dari S n. 2 Dengan menggunakan induksi matematik, buktikan tebakan Anda. Toni Bakhtiar (m@thipb) PIM September / 24

Logika Predikat. Contoh Soal. Toni Bakhtiar. September Departemen Matematika IPB. Toni Bakhtiar Logika Predikat September / 11

Logika Predikat. Contoh Soal. Toni Bakhtiar. September Departemen Matematika IPB. Toni Bakhtiar Logika Predikat September / 11 Logika Predikat Contoh Soal Toni Bakhtiar Departemen Matematika IPB September 2012 Toni Bakhtiar (m@thipb) Logika Predikat September 2012 1 / 11 Example Diberikan predikat berikut: "Ada makhluk hidup yang

Lebih terperinci

Induksi 1 Matematika

Induksi 1 Matematika Induksi 1 Matematika Metode pembuktian untuk pernyataan perihal bilangan bulat adalah induksi matematik. Contoh : p(n): Jumlah bilangan bulat positif dari 1 sampai n adalah n(n + 1)/2. Buktikan p(n) benar!

Lebih terperinci

Metode pembuktian untuk pernyataan perihal bilangan bulat adalah induksi matematik.

Metode pembuktian untuk pernyataan perihal bilangan bulat adalah induksi matematik. Induksi Matematik 1 Metode pembuktian untuk pernyataan perihal bilangan bulat adalah induksi matematik. Contoh : p(n): Jumlah bilangan bulat positif dari 1 sampai n adalah n(n + 1)/2. Buktikan p(n) benar!

Lebih terperinci

Metode pembuktian untuk proposisi yang berkaitan dengan bilangan bulat adalah induksi matematik.

Metode pembuktian untuk proposisi yang berkaitan dengan bilangan bulat adalah induksi matematik. Induksi Matematika Metode pembuktian untuk proposisi yang berkaitan dengan bilangan bulat adalah induksi matematik. Contoh: 1. Buktikan bahwa jumlah n bilangan bilangan bulat positif pertama adalah n(n

Lebih terperinci

LEMBAR AKTIVITAS SISWA INDUKSI MATEMATIKA

LEMBAR AKTIVITAS SISWA INDUKSI MATEMATIKA Nama Siswa Kelas : : LEMBAR AKTIVITAS SISWA INDUKSI MATEMATIKA Latihan 1 1. A. NOTASI SIGMA 1. Pengertian Notasi Sigma Misalkan jumlah n suku pertama deret aritmatika adalah S n = U 1 + U 2 + U 3 + + U

Lebih terperinci

A. PRINSIP INDUKSI SEDERHANA

A. PRINSIP INDUKSI SEDERHANA INDUKSI MATEMATIK Induksi matematik adalah merupakan teknik pembuktian yang baku di dalam Matematika. Induksi matematik digunakan untuk membuktikan pernyataan yang khusus menyangkut bilangan bulat positif.

Lebih terperinci

MODUL PERKULIAHAN EDISI 1 MATEMATIKA DISKRIT

MODUL PERKULIAHAN EDISI 1 MATEMATIKA DISKRIT MODUL PERKULIAHAN EDISI 1 MATEMATIKA DISKRIT Penulis : Nelly Indriani Widiastuti S.Si., M.T. JURUSAN TEKNIK INFORMATIKA UNIVERSITAS KOMPUTER INDONESIA BANDUNG 011 6 INDUKSI MATEMATIKA JUMLAH PERTEMUAN

Lebih terperinci

Induksi Matematika. Fitriyanti Mayasari

Induksi Matematika. Fitriyanti Mayasari Induksi Matematika Fitriyanti Mayasari Pendahuluan Induksi Matematika merupakan salah satu cara yang dapat digunakan untuk membuktikan pernyataan-pernyataan yang menegaskan bahwa suatu p(n) adalah benar

Lebih terperinci

Metoda Pembuktian: Induksi Matematika

Metoda Pembuktian: Induksi Matematika Metoda Pembuktian: 1 Program Studi Pendidikan Matematika Universitas Muhammadiyah, Ponorogo January 14, 011 ILUSTRASI Figure: Ilustrasi Induksi Reaksi Berantai Pada ilustrasi di atas, kartu-kartu disusun

Lebih terperinci

INF-104 Matematika Diskrit

INF-104 Matematika Diskrit Teori Bilangan Jurusan Informatika FMIPA Unsyiah April 13, 2013 Metode pembuktian untuk pernyataan perihal bilangan bulat adalah induksi matematik. Induksi matematik merupakan teknik pembuktian yang baku

Lebih terperinci

Contoh-contoh soal induksi matematika

Contoh-contoh soal induksi matematika Contoh-contoh soal induksi matematika Buktikan bahwa 2 n > n + 20 untuk setiap bilangan bulat n 5. (i) Basis induksi : Untuk n = 5, kita peroleh 2 5 > 5 + 20 adalah suatu pernyataan yang benar. (ii) Langkah

Lebih terperinci

Metode pembuktian untuk pernyataan perihal bilangan bulat adalah induksi matematik.

Metode pembuktian untuk pernyataan perihal bilangan bulat adalah induksi matematik. Induksi Matematik Metode pembuktian untuk pernyataan perihal bilangan bulat adalah induksi matematik. Contoh : p(n): Jumlah bilangan bulat positif dari 1 sampai n adalah n(n + 1)/2. Buktikan p(n) benar!

Lebih terperinci

Induksi Matematik. Metode pembuktian untuk pernyataan perihal bilangan bulat adalah induksi matematik.

Induksi Matematik. Metode pembuktian untuk pernyataan perihal bilangan bulat adalah induksi matematik. Induksi Matematik Matematika Diskrit 1 Metode pembuktian untuk pernyataan perihal bilangan bulat adalah induksi matematik. Contoh : p(n): Jumlah bilangan bulat positif dari 1 sampai n adalah n(n + 1)/2.

Lebih terperinci

PEMBINAAN TAHAP I CALON SISWA INVITATIONAL WORLD YOUTH MATHEMATICS INTERCITY COMPETITION (IWYMIC) 2010 MODUL BILANGAN

PEMBINAAN TAHAP I CALON SISWA INVITATIONAL WORLD YOUTH MATHEMATICS INTERCITY COMPETITION (IWYMIC) 2010 MODUL BILANGAN PEMBINAAN TAHAP I CALON SISWA INVITATIONAL WORLD YOUTH MATHEMATICS INTERCITY COMPETITION (IWYMIC) 200 MODUL BILANGAN DIREKTORAT JENDERAL MANAJEMEN PENDIDIKAN DASAR DAN MENENGAH DIREKTORAT PEMBINAAN SMP

Lebih terperinci

Pertemuan ke-10: UJI PERBANDINGAN, DERET BERGANTI TANDA, KEKONVERGENAN MUTLAK, UJI RASIO, DAN UJI AKAR

Pertemuan ke-10: UJI PERBANDINGAN, DERET BERGANTI TANDA, KEKONVERGENAN MUTLAK, UJI RASIO, DAN UJI AKAR Pertemuan ke-0: UJI PERBANDINGAN, DERET BERGANTI TANDA, KEKONVERGENAN MUTLAK, UJI RASIO, DAN UJI AKAR Departemen Matematika FMIPA IPB Bogor, 205 (Departemen Matematika FMIPA IPB) Kalkulus II Bogor, 205

Lebih terperinci

INDUKSI MATEMATIKA PERTEMUAN KE- 4

INDUKSI MATEMATIKA PERTEMUAN KE- 4 INDUKSI MATEMATIKA PERTEMUAN KE- 4 DEFINISI Induksi Matematika adalah metode pembuktian untuk pernyataan perihal bilangan bulat Induksi matematik merupakan teknik pembuktian yang baku di dalam matematika

Lebih terperinci

INTERVAL, PERTIDAKSAMAAN, DAN NILAI MUTLAK

INTERVAL, PERTIDAKSAMAAN, DAN NILAI MUTLAK INTERVAL, PERTIDAKSAMAAN, DAN NILAI MUTLAK Departemen Matematika FMIPA IPB Bogor, 2012 (Departemen Matematika FMIPA IPB) Kalkulus I Bogor, 2012 1 / 19 Topik Bahasan 1 Sistem Bilangan Real 2 Interval 3

Lebih terperinci

BAB IV PERTIDAKSAMAAN. 1. Pertidaksamaan Kuadrat 2. Pertidaksamaan Bentuk Pecahan 3. Pertidaksamaan Bentuk Akar 4. Pertidaksamaan Nilai Mutlak

BAB IV PERTIDAKSAMAAN. 1. Pertidaksamaan Kuadrat 2. Pertidaksamaan Bentuk Pecahan 3. Pertidaksamaan Bentuk Akar 4. Pertidaksamaan Nilai Mutlak BAB IV PERTIDAKSAMAAN 1. Pertidaksamaan Kuadrat. Pertidaksamaan Bentuk Pecahan 3. Pertidaksamaan Bentuk Akar 4. Pertidaksamaan Nilai Mutlak 86 LEMBAR KERJA SISWA 1 Mata Pelajaran : Matematika Uraian Materi

Lebih terperinci

INDUKSI MATEMATIS Drs. C. Jacob, M.Pd Pengantar Apakah suatu formula untuk jumlah dari n bilangan bulat positif ganjil

INDUKSI MATEMATIS Drs. C. Jacob, M.Pd Pengantar Apakah suatu formula untuk jumlah dari n bilangan bulat positif ganjil INDUKSI MATEMATIS Drs. C. Jacob, M.Pd Email: cjacob@upi.edu 3. Pengantar Apakah suatu formula untuk jumlah dari n bilangan bulat positif ganjil pertama? Jumlah dari n bilangan bulat ganjil positif pertama

Lebih terperinci

Antiremed Kelas 09 Matematika

Antiremed Kelas 09 Matematika Antiremed Kelas 09 Matematika Deret Bilangan - Latihan Soal Doc. Name: AR09MAT0613 Version: 2013-10 halaman 1 01a Berapakah nilai deret aritmatika di bawah (A) 1 + 2 + 3 + 4 + + 100 01b Berapakah nilai

Lebih terperinci

induksi matematik /Nurain Suryadinata, M.Pd

induksi matematik /Nurain Suryadinata, M.Pd Nama Mata Kuliah Kode Mata Kuliah/SKS Program Studi Semester Dosen Pengampu : Matematika Diskrit : MAT-3615/ 3 sks : Pendidikan Matematika : VI (Enam) : Nego Linuhung, M.Pd /Nurain Suryadinata, M.Pd Referensi

Lebih terperinci

Daftar Isi 5. DERET ANALISIS REAL. (Semester I Tahun ) Hendra Gunawan. Dosen FMIPA - ITB September 26, 2011

Daftar Isi 5. DERET ANALISIS REAL. (Semester I Tahun ) Hendra Gunawan. Dosen FMIPA - ITB   September 26, 2011 (Semester I Tahun 2011-2012) Dosen FMIPA - ITB E-mail: hgunawan@math.itb.ac.id. September 26, 2011 Diberikan sejumlah terhingga bilangan a 1,..., a N, kita dapat menghitung jumlah a 1 + + a N. Namun,

Lebih terperinci

Pecahan. mendapatkan setengah sehingga = 1. 2

Pecahan. mendapatkan setengah sehingga = 1. 2 Pecahan A. Konsep Pecahan Konsep pecahan ada 2, yaitu:. Konsep bagian dari keseluruhan Pada umumnya pecahan dinyatakan dengan konsep bagian dari suatu keseluruhan. Pecahan dalam bentuk a/b, bilangan pada

Lebih terperinci

Induksi Matematik. Bahan Kuliah IF2120 Matematika Diskrit. Oleh: Rinaldi Munir. Program Studi Teknik Informatika STEI - ITB

Induksi Matematik. Bahan Kuliah IF2120 Matematika Diskrit. Oleh: Rinaldi Munir. Program Studi Teknik Informatika STEI - ITB Induksi Matematik Bahan Kuliah IF2120 Matematika Diskrit Oleh: Rinaldi Munir Program Studi Teknik Informatika STEI - ITB 1 Metode pembuktian untuk proposisi yang berkaitan dengan bilangan bulat adalah

Lebih terperinci

MATEMATIKA DISKRIT. 1 Induksi Matematik

MATEMATIKA DISKRIT. 1 Induksi Matematik MATEMATIKA DISKRIT 1 Induksi Matematik Metode pembuktian untuk pernyataan perihal bilangan bulat adalah induksi matematik. Contoh : p(n): Jumlah bilangan bulat positif dari 1 sampai n adalah n(n + 1)/2.

Lebih terperinci

Induksi Matematika. Nur Hasanah, M.Cs

Induksi Matematika. Nur Hasanah, M.Cs Induksi Matematika Nur Hasanah, M.Cs Induksi matematik merupakan teknik pembuktian yang baku di dalam matematika. Induksi matematik dapat mengurangi langkah pembuktian bahwa semua bilangan bulat termasuk

Lebih terperinci

LANDASAN TEORI. Pada Bab ini akan diberikan istilah-istilah, definisi-definisi dan identitas-identitas

LANDASAN TEORI. Pada Bab ini akan diberikan istilah-istilah, definisi-definisi dan identitas-identitas II. LANDASAN TEORI Pada Bab ini akan diberikan istilah-istilah, definisi-definisi dan identitas-identitas dari Bilangan Fibonacci, Bilangan Lucas dan Bilangan Gibonaccci. 2.1 Bilangan Fibonacci dan Beberapa

Lebih terperinci

ANALISIS REAL. (Semester I Tahun ) Hendra Gunawan. August 18, Dosen FMIPA - ITB

ANALISIS REAL. (Semester I Tahun ) Hendra Gunawan. August 18, Dosen FMIPA - ITB (Semester I Tahun 2011-2012) Dosen FMIPA - ITB E-mail: hgunawan@math.itb.ac.id. August 18, 2011 Kita telah mencatat sebelumnya bahwa supremum dan infimum suatu himpunan tidak harus merupakan anggota himpunan

Lebih terperinci

Materi Olimpiade Tingkat Sekolah Dasar BIDANG ALJABAR

Materi Olimpiade Tingkat Sekolah Dasar BIDANG ALJABAR Materi Olimpiade Tingkat Sekolah Dasar BIDANG ALJABAR Caturiyati M.Si. Jurdik Matematika FMIPA NY wcaturiyati@yahoo.com Operasi Dasar (penjumlahan pengurangan perkalian pembagian) Hal-hal yang perlu diperhatikan

Lebih terperinci

Matematika Diskret (Induksi Matematik) Instruktur : Ferry Wahyu Wibowo, S.Si., M.Cs.

Matematika Diskret (Induksi Matematik) Instruktur : Ferry Wahyu Wibowo, S.Si., M.Cs. Matematika Diskret (Induksi Matematik) Instruktur : Ferry Wahyu Wibowo, S.Si., M.Cs. Metode pembuktian untuk pernyataan perihal bilangan bulat adalah induksi matematik. Contoh : p(n): Jumlah bilangan bulat

Lebih terperinci

BAB III. PECAHAN KONTINU dan PIANO. A. Pecahan Kontinu Tak Hingga dan Bilangan Irrasional

BAB III. PECAHAN KONTINU dan PIANO. A. Pecahan Kontinu Tak Hingga dan Bilangan Irrasional BAB III PECAHAN KONTINU dan PIANO A. Pecahan Kontinu Tak Hingga dan Bilangan Irrasional Sekarang akan dibahas tentang pecahan kontinu tak hingga yang diawali dengan barisan tak hingga bilangan bulat mendefinisikan

Lebih terperinci

ANALISIS REAL 1. Perkuliahan ini dimaksudkan memberikan

ANALISIS REAL 1. Perkuliahan ini dimaksudkan memberikan ANALISIS REAL 1 Perkuliahan ini dimaksudkan memberikan kemampuan pada mahasiswa agar dapat memahami pernyataan-pernyataan matematika secara baik dan benar, berpikir secara logis, kritis dan sistematis,

Lebih terperinci

PENERAPAN INDUKSI MATEMATIKA DALAM PEMBUKTIAN MATEMATIKA

PENERAPAN INDUKSI MATEMATIKA DALAM PEMBUKTIAN MATEMATIKA Penerapan Induksi Matematika Dalam Pembuktian.. PENERAPAN INDUKSI MATEMATIKA DALAM PEMBUKTIAN MATEMATIKA Miksalmina, S.Pd ABSTRAK Induksi matematika merupakan sebuah teknik pembuktian pernyataan yang berkaitan

Lebih terperinci

1 SISTEM BILANGAN REAL

1 SISTEM BILANGAN REAL Bilangan real sudah dikenal dengan baik sejak masih di sekolah menengah, bahkan sejak dari sekolah dasar. Namun untuk memulai mempelajari materi pada BAB ini anggaplah diri kita belum tahu apa-apa tentang

Lebih terperinci

Barisan Deret ANALISIS REAL (BARISAN DAN DERET) Kus Prihantoso Krisnawan. August 30, Yogyakarta. Krisnawan Pertemuan 1, 2, & 3

Barisan Deret ANALISIS REAL (BARISAN DAN DERET) Kus Prihantoso Krisnawan. August 30, Yogyakarta. Krisnawan Pertemuan 1, 2, & 3 ANALISIS REAL (BARISAN DAN DERET) Kus Prihantoso Krisnawan August 30, 0 Yogyakarta Limit Monoton Pada bagian ini kita akan mencoba menebak bentuk umum dari suatu barisan. Limit Monoton Pada bagian ini

Lebih terperinci

Relasi Rekursi. Matematika Informatika 4. Onggo

Relasi Rekursi. Matematika Informatika 4. Onggo Relasi Rekursi Matematika Informatika 4 Onggo Wiryawan @OnggoWr Definisi Definisi 1 Suatu relasi rekursi untuk sebuah barisan {a n } merupakan sebuah rumus untuk menyatakan a n ke dalam satu atau lebih

Lebih terperinci

Induksi Matematik Program Studi Teknik Informatika STEI - ITB

Induksi Matematik Program Studi Teknik Informatika STEI - ITB Induksi Matematik Bahan Kuliah IF2120 Matematika Diskrit Oleh: Rinaldi Munir Program Studi Teknik Informatika STEI - ITB 1 Metode pembuktian untuk proposisi yang berkaitan dengan bilangan bulat adalah

Lebih terperinci

18. SOAL-SOAL NOTASI SIGMA, BARISAN, DERET DAN INDUKSI MATEMATIKA

18. SOAL-SOAL NOTASI SIGMA, BARISAN, DERET DAN INDUKSI MATEMATIKA 8. SOAL-SOAL NOTASI SIGMA, BARISAN, DERET DAN INDUKSI MATEMATIKA UN00.Nilai (n 6). n A. 88 B. 00 C. 00 D. 97 E. 060 n (n 6) (. 6) + (. 6) + (. 6)+ + (. 6) + 9 + +...+ 99 a b 9 9 n n(akhir) (n(awal)-) (-)

Lebih terperinci

BAHAN AJAR ANALISIS REAL 1. DOSEN PENGAMPU RINA AGUSTINA, S. Pd., M. Pd. NIDN

BAHAN AJAR ANALISIS REAL 1. DOSEN PENGAMPU RINA AGUSTINA, S. Pd., M. Pd. NIDN BAHAN AJAR ANALISIS REAL 1 DOSEN PENGAMPU RINA AGUSTINA, S. Pd., M. Pd. NIDN. 0212088701 PENDIDIKAN MATEMATIKA FAKULTAS KEGURUAN DAN ILMU PENDIDIKAN UNIVERSITAS MUHAMMADIYAH METRO 2015 1 KATA PENGANTAR

Lebih terperinci

BAHAN AJAR TEORI BILANGAN. DOSEN PENGAMPU RINA AGUSTINA, S. Pd., M. Pd. NIDN

BAHAN AJAR TEORI BILANGAN. DOSEN PENGAMPU RINA AGUSTINA, S. Pd., M. Pd. NIDN BAHAN AJAR TEORI BILANGAN DOSEN PENGAMPU RINA AGUSTINA, S. Pd., M. Pd. NIDN. 0212088701 PENDIDIKAN MATEMATIKA FAKULTAS KEGURUAN DAN ILMU PENDIDIKAN UNIVERSITAS MUHAMMADIYAH METRO 2015 KATA PENGANTAR ب

Lebih terperinci

GLOSSARIUM. A Akar kuadrat

GLOSSARIUM. A Akar kuadrat A Akar kuadrat GLOSSARIUM Akar kuadrat adalah salah satu dari dua faktor yang sama dari suatu bilangan. Contoh: 9 = 3 karena 3 2 = 9 Anggota Himpunan Suatu objek dalam suatu himpunan B Belahketupat Bentuk

Lebih terperinci

K13 Revisi Antiremed Kelas 11 Matematika Wajib

K13 Revisi Antiremed Kelas 11 Matematika Wajib K13 Revisi Antiremed Kelas 11 Matematika Wajib Baris dan Deret Aritmatika - Latihan Soal Ulangan Doc. Name: RK13AR11MATWJB0603 Version : 2016-11 halaman 1 01. Suku ke-20 pada barisan 3, 9, 15, 21,. Adalah

Lebih terperinci

BILANGAN BERPANGKAT DAN BENTUK AKAR

BILANGAN BERPANGKAT DAN BENTUK AKAR BILANGAN BERPANGKAT DAN BENTUK AKAR 1. Bilangan Berpangkat Sederhana Dalam kehidupan sehari-hari kita sering menemui perkalian bilangan-bilangan dengan faktorfaktor yang sama. Misalkan kita temui perkalian

Lebih terperinci

3. Induksi Matematika Source : Rinaldi Munir. Discrete Mathematics 1

3. Induksi Matematika Source : Rinaldi Munir. Discrete Mathematics 1 3. Induksi Matematika Source : Rinaldi Munir Discrete Mathematics 1 Discrete Mathematics 1. Set and Logic 2. Relation 3. Function 4. Induction 5. Boolean Algebra and Number Theory MID 6. Graf dan Tree/Pohon

Lebih terperinci

MODUL MATEMATIKA XI IPA SUKU BANYAK SMA SANTA ANGELA TAHUN PELAJARAN SEMSTER GENAP

MODUL MATEMATIKA XI IPA SUKU BANYAK SMA SANTA ANGELA TAHUN PELAJARAN SEMSTER GENAP MODUL MATEMATIKA XI IPA SUKU BANYAK SMA SANTA ANGELA TAHUN PELAJARAN 05 06 SEMSTER GENAP STANDAR KOMPETENSI 4. Menggunakan aturan sukubanyak dalam penyelesaian masalah. KOMPETENSI DASAR 4. Menggunakan

Lebih terperinci

Silabus. 1 Sistem Bilangan Real. 2 Fungsi Real. 3 Limit dan Kekontinuan. Kalkulus 1. Arrival Rince Putri. Sistem Bilangan Real.

Silabus. 1 Sistem Bilangan Real. 2 Fungsi Real. 3 Limit dan Kekontinuan. Kalkulus 1. Arrival Rince Putri. Sistem Bilangan Real. Silabus 1 2 3 Referensi E. J. Purcell, D. Varberg, and S. E. Rigdon, Kalkulus, Jilid 1 Edisi Kedelapan, Erlangga, 2003. Penilaian 1 Ujian Tengah Semester (UTS) : 30 2 Ujian Akhir Semester (UAS) : 20 3

Lebih terperinci

matematika PEMINATAN Kelas X PERSAMAAN DAN PERTIDAKSAMAAN EKSPONEN K13 A. PERSAMAAN EKSPONEN BERBASIS KONSTANTA

matematika PEMINATAN Kelas X PERSAMAAN DAN PERTIDAKSAMAAN EKSPONEN K13 A. PERSAMAAN EKSPONEN BERBASIS KONSTANTA K1 Kelas X matematika PEMINATAN PERSAMAAN DAN PERTIDAKSAMAAN EKSPONEN TUJUAN PEMBELAJARAN Setelah mempelajari materi ini, kamu diharapkan memiliki kemampuan berikut. 1. Memahami bentuk-bentuk persamaan

Lebih terperinci

Sistem Bilangan Real. Pendahuluan

Sistem Bilangan Real. Pendahuluan Sistem Bilangan Real Pendahuluan Kalkulus didasarkan pada sistem bilangan real dan sifat-sifatnya. Sistem bilangan real adalah himpunan bilangan real yang disertai operasi penjumlahan dan perkalian sehingga

Lebih terperinci

Sifat 1 Untuksebarang bilangan rasional a tak nol dan sebarang bilangan bulat m dan n, berlaku a m. a m = a m + n

Sifat 1 Untuksebarang bilangan rasional a tak nol dan sebarang bilangan bulat m dan n, berlaku a m. a m = a m + n Bilangan Berpangkat Kita ingat kembali bahwa untuk bilangan-bilangan cacah a, m, dan n dengan a 0, berlaku: 1 a m = a a a a (sebanyak m faktor) a m a n = a m + n a 0 = 1, di mana a 0 Notasi-notasi di atas

Lebih terperinci

TEKNIK MEMBILANG. b T U V W

TEKNIK MEMBILANG. b T U V W TEKNIK MEMBILANG Berikut ini teknik-teknik (cara-cara) membilang atau menghitung banyaknya anggota ruang sampel dari suatu eksperimen tanpa harus mendaftar seluruh anggota ruang sampel tersebut. A. Prinsip

Lebih terperinci

METODE PENELITIAN. Penelitian ini dilakukan pada semester genap tahun ajaran bertempat di

METODE PENELITIAN. Penelitian ini dilakukan pada semester genap tahun ajaran bertempat di III. METODE PENELITIAN 3.1 Waktu dan Tempat Penelitian Penelitian ini dilakukan pada semester genap tahun ajaran 2011-2012 bertempat di Jurusan Matematika, Fakultas Matematika dan Ilmu Pengetahuan Alam

Lebih terperinci

1 SISTEM BILANGAN REAL

1 SISTEM BILANGAN REAL Bilangan real sudah dikenal dengan baik sejak masih di sekolah menengah, bahkan sejak dari sekolah dasar. Namun untuk memulai mempelajari materi pada BAB ini anggaplah diri kita belum tahu apa-apa tentang

Lebih terperinci

2 BILANGAN PRIMA. 2.1 Teorema Fundamental Aritmatika

2 BILANGAN PRIMA. 2.1 Teorema Fundamental Aritmatika Bilangan prima telah dikenal sejak sekolah dasar, yaitu bilangan yang tidak mempunyai faktor selain dari 1 dan dirinya sendiri. Bilangan prima memegang peranan penting karena pada dasarnya konsep apapun

Lebih terperinci

INDUKSI MATEMATIKA A. Penalaran Induktif dan Deduktif Penalaran dalam matematika ada dua jenis, yaitu penalaran induktif dan penalaran deduktif. 1.

INDUKSI MATEMATIKA A. Penalaran Induktif dan Deduktif Penalaran dalam matematika ada dua jenis, yaitu penalaran induktif dan penalaran deduktif. 1. INDUKSI MATEMATIKA A. Penalaran Induktif dan Deduktif Penalaran dalam matematika ada dua jenis, yaitu penalaran induktif dan penalaran deduktif. 1. Penalaran induktif Penalaran Induktif adalah proses berpikir

Lebih terperinci

EKSPLORASI BILANGAN. 1.1 BARISAN BILANGAN

EKSPLORASI BILANGAN. 1.1 BARISAN BILANGAN EKSPLORASI BILANGAN. 1.1 BARISAN BILANGAN 1 EKSPLORASI BILANGAN Fokus eksplorasi bilangan ini adalah mencari pola dari masalah yang disajikan. Mencari pola merupakan bagian penting dari pemecahan masalah

Lebih terperinci

Xpedia Matematika. DP SNMPTN Mat 05

Xpedia Matematika. DP SNMPTN Mat 05 Xpedia Matematika DP SNMPTN Mat 05 Doc. Name: XPMAT9920 Doc.Version : 2012-11 halaman 1 01. Jarak dari kota A dan kota B 5 mil dan jarak dari kota B dan kota C 4 mil. Jarak kota A dan kota C TIDAK mungkin.

Lebih terperinci

Perhatikan skema sistem bilangan berikut. Bilangan. Bilangan Rasional. Bilangan pecahan adalah bilangan yang berbentuk a b

Perhatikan skema sistem bilangan berikut. Bilangan. Bilangan Rasional. Bilangan pecahan adalah bilangan yang berbentuk a b 2 SISTEM BILANGAN Perhatikan skema sistem bilangan berikut Bilangan Bilangan Kompleks Bilangan Real Bilangan Rasional Bilangan Irasional Bilangan Bulat Bilangan Pecahan Bilangan bulat adalah bilangan yang

Lebih terperinci

BAB 4 SEBARAN ASIMTOTIK PENDUGA KOMPONEN PERIODIK

BAB 4 SEBARAN ASIMTOTIK PENDUGA KOMPONEN PERIODIK BAB 4 SEBARAN ASIMTOTIK PENDUGA KOMPONEN PERIODIK 4. Sebaran Asimtotik,, Teorema 4. (Sebaran Normal Asimtotik,, ) Misalkan fungsi intensitas seperti (3.2) dan terintegralkan lokal. Jika kernel K adalah

Lebih terperinci

CHAPTER 5 INDUCTION AND RECURSION

CHAPTER 5 INDUCTION AND RECURSION CHAPTER 5 INDUCTION AND RECURSION 5.1 MATHEMATICAL INDUCTION Jumlah n Bilangan Ganjil Positif 1 = 1 1 + 3 = 4 1 + 3 + 5 = 9 1 + 3 + 5 + 7 = 16 1 + 3 + 5 + 7 + 9 = 25 Tebakan: Jumlah dari n bilangan ganjil

Lebih terperinci

SISTEM BILANGAN BULAT

SISTEM BILANGAN BULAT SISTEM BILANGAN BULAT A. Bilangan bulat Pengertian Bilangan bulat adalah bilangan yang tidak mempunyai pecahan desimal, misalnya 8, 21, 8765, -34, 0. Berlawanan dengan bilangan bulat adalah bilangan riil

Lebih terperinci

Dwi Lestari, M.Sc: Konvergensi Deret 1. KONVERGENSI DERET

Dwi Lestari, M.Sc: Konvergensi Deret   1. KONVERGENSI DERET 1. KONVERGENSI DERET Suatu barisan disebut konvergen jika terdapat bilangan Z yang setiap lingkungannya memuat semua. Jika bilangan Z itu ada maka dapat ditulis: lim sehingga dapat dikatakan bahwa barisan

Lebih terperinci

Tata dan Dio bermain permainan bola di komputer. Bolabola itu bertuliskan bilangan-bilangan yang disusun seperti gambar berikut.

Tata dan Dio bermain permainan bola di komputer. Bolabola itu bertuliskan bilangan-bilangan yang disusun seperti gambar berikut. BAB 1 LETAK BILANGAN PADA GARIS BILANGAN Tata dan Dio bermain permainan bola di komputer. Bolabola itu bertuliskan bilangan-bilangan yang disusun seperti gambar berikut. Sumber : Ilustrasi Haryana Bacalah

Lebih terperinci

BAB 4 KEKONSISTENAN PENDUGA DARI FUNGSI SEBARAN DAN FUNGSI KEPEKATAN WAKTU TUNGGU DARI PROSES POISSON PERIODIK DENGAN TREN FUNGSI PANGKAT

BAB 4 KEKONSISTENAN PENDUGA DARI FUNGSI SEBARAN DAN FUNGSI KEPEKATAN WAKTU TUNGGU DARI PROSES POISSON PERIODIK DENGAN TREN FUNGSI PANGKAT 29 BAB 4 KEKONSISTENAN PENDUGA DARI FUNGSI SEBARAN DAN FUNGSI KEPEKATAN WAKTU TUNGGU DARI PROSES POISSON PERIODIK DENGAN TREN FUNGSI PANGKAT 4.1 Perumusan Penduga Misalkan adalah proses Poisson nonhomogen

Lebih terperinci

BILANGAN. Kita bisa menggunakan garis bilangan di bawah ini untuk memaknai penjumlahan 3 ditambah 4.

BILANGAN. Kita bisa menggunakan garis bilangan di bawah ini untuk memaknai penjumlahan 3 ditambah 4. BILANGAN A. BILANGAN BULAT Himpunan bilangan bulat adalah himpunan bilangan yang terdiri dari himpunan bilangan positif (bilangan asli), bilangan nol, dan bilangan bulat negatif. Himpunan bilangan bulat

Lebih terperinci

CHAPTER 5 INDUCTION AND RECURSION

CHAPTER 5 INDUCTION AND RECURSION CHAPTER 5 INDUCTION AND RECURSION 5.1 MATHEMATICAL INDUCTION Jumlah n Bilangan Ganjil Positif 1 = 1 1 + 3 = 4 1 + 3 + 5 = 9 1 + 3 + 5 + 7 = 16 1 + 3 + 5 + 7 + 9 = 25 Tebakan: Jumlah dari n bilangan ganjil

Lebih terperinci

Induksi Matematika. Metode pembuktian untuk pernyataan perihal bilangan bulat adalah induksi matematik.

Induksi Matematika. Metode pembuktian untuk pernyataan perihal bilangan bulat adalah induksi matematik. Induksi Matematika Metode pembuktian untuk pernyataan perihal bilangan bulat adalah induksi matematik. Misalkan p(n) adalah pernyataan yang menyatakan: Jumlah bilangan bulat positif dari 1 sampai n adalah

Lebih terperinci

MATEMATIKA BISNIS DERET. Muhammad Kahfi, MSM. Modul ke: Fakultas Ekonomi Bisnis. Program Studi Manajemen

MATEMATIKA BISNIS DERET. Muhammad Kahfi, MSM. Modul ke: Fakultas Ekonomi Bisnis. Program Studi Manajemen MATEMATIKA BISNIS Modul ke: DERET Fakultas Ekonomi Bisnis Muhammad Kahfi, MSM Program Studi Manajemen http://www.mercubuana.ac.id Konsep Barisan (sequence) adalah suatu susunan bilangan yang dibentuk menurut

Lebih terperinci

SISTEM BILANGAN REAL

SISTEM BILANGAN REAL DAFTAR ISI 1 SISTEM BILANGAN REAL 1 1.1 Sifat Aljabar Bilangan Real..................... 1 1.2 Sifat Urutan Bilangan Real..................... 6 1.3 Nilai Mutlak dan Jarak Pada Bilangan Real............

Lebih terperinci

1 SISTEM BILANGAN REAL

1 SISTEM BILANGAN REAL 1 SISTEM BILANGAN REAL Bilangan real sudah dikenal dengan baik sejak masih di sekolah menengah, bahkan sejak dari sekolah dasar. Namun untuk memulai mempelajari materi pada BAB ini anggaplah diri kita

Lebih terperinci

Arief Ikhwan Wicaksono, S.Kom, M.Cs

Arief Ikhwan Wicaksono, S.Kom, M.Cs Arief Ikhwan Wicaksono, S.Kom, M.Cs ariefikhwanwicaksono@gmail.com masawik.blogspot.com @awik1212 Kalkulus (Bahasa Latin: calculus, artinya "batu kecil", untuk menghitung) adalah cabang ilmu matematika

Lebih terperinci

LOMBA MATEMATIKA NASIONAL KE-25

LOMBA MATEMATIKA NASIONAL KE-25 LOMBA MATEMATIKA NASIONAL KE-5 Babak Penyisihan Tingkat SMP Minggu, 9 November 04 HIMPUNAN MAHASISWA MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS GADJAH MADA SEKIP UTARA UNIT III

Lebih terperinci

Matematika Bahan Ajar & LKS

Matematika Bahan Ajar & LKS Matematika Bahan Ajar & LKS Pola Bilangan, Barisan & Deret = + ( 1) Un = ar^(n-1) Nama : NIS : Kelas : Sekolah : Pengantar Bahan ajar ini sekaligus merupakan Lembar Kerja Siswa. Untuk mempelajarinya, Anda

Lebih terperinci

LIMIT KED. Perhatikan fungsi di bawah ini:

LIMIT KED. Perhatikan fungsi di bawah ini: LIMIT Perhatikan fungsi di bawah ini: f x = x2 1 x 1 Perhatikan gambar di samping, untuk nilai x = 1 nilai f x tidak ada. Tetapi jikakita coba dekati nilai x = 1 dari sebelah kiri dan kanan maka dapat

Lebih terperinci

R. Rosnawati Jurusan Pendidikan Matematika FMIPA UNY

R. Rosnawati Jurusan Pendidikan Matematika FMIPA UNY R. Rosnawati Jurusan Pendidikan Matematika FMIPA UNY Induksi Matematika Induksi matematika adalah : Salah satu metode pembuktian untuk proposisi perihal bilangan bulat Induksi matematika merupakan teknik

Lebih terperinci

Induksi Matematika. Bab. Di unduh dari : Bukupaket.com. Kompetensi Dasar Dan Pengalaman Belajar

Induksi Matematika. Bab. Di unduh dari : Bukupaket.com. Kompetensi Dasar Dan Pengalaman Belajar Bab 3 Induksi Matematika Kompetensi Dasar Dan Pengalaman Belajar Kompetensi Dasar 1.1. Menghayati dan mengamalkan ajaran agama yang dianutnya 2.1. Menghayati perilaku disiplin, sikap kerjasama, sikap kritis

Lebih terperinci

II. SISTEM BILANGAN RIIL. Handout Analisis Riil I (PAM 351)

II. SISTEM BILANGAN RIIL. Handout Analisis Riil I (PAM 351) II. SISTEM BILANGAN RIIL Handout Analisis Riil I (PAM 351) Sifat Aljabar (Aksioma Lapangan) dari Bilangan Riil Bagian ini akan membicarakan struktur aljabar bilangan riil dengan terlebih dahulu memberikan

Lebih terperinci

PENDAHULUAN INDUKSI MATEMATIKA Di dalam Matematika, sebuah pernyataan atau argumen dan bahkan sebuah rumus sekalipun tidak hanya sekedar dibaca.

PENDAHULUAN INDUKSI MATEMATIKA Di dalam Matematika, sebuah pernyataan atau argumen dan bahkan sebuah rumus sekalipun tidak hanya sekedar dibaca. PENDAHULUAN INDUKSI MATEMATIKA Di dalam Matematika, sebuah pernyataan atau argumen dan bahkan sebuah rumus sekalipun tidak hanya sekedar dibaca. Karena hampir semua rumus dan hukum yang berlaku tidak tercipta

Lebih terperinci

B I L A N G A N 1.1 SKEMA DARI HIMPUNAN BILANGAN. Bilangan Kompleks. Bilangan Nyata (Riil) Bilangan Khayal (Imajiner)

B I L A N G A N 1.1 SKEMA DARI HIMPUNAN BILANGAN. Bilangan Kompleks. Bilangan Nyata (Riil) Bilangan Khayal (Imajiner) 1 B I L A N G A N 1.1 SKEMA DARI HIMPUNAN BILANGAN Bilangan Kompleks Bilangan Nyata (Riil) Bilangan Khayal (Imajiner) Bilangan Rasional Bilangan Irrasional Bilangan Pecahan Bilangan Bulat Bilangan Bulat

Lebih terperinci

Barisan dan Deret. Bab. Pola Bilangan Beda Rasio Suku Jumlah n suku pertama A. KOMPETENSI DASAR DAN PENGALAMAN BELAJAR

Barisan dan Deret. Bab. Pola Bilangan Beda Rasio Suku Jumlah n suku pertama A. KOMPETENSI DASAR DAN PENGALAMAN BELAJAR Bab Barisan dan Deret A. KOMPETENSI DASAR DAN PENGALAMAN BELAJAR Kompetensi Dasar Setelah mengikuti pembelajaran barisan dan deret, siswa mampu:. menghayati pola hidup disiplin, kritis, bertanggungjawab,

Lebih terperinci

Pengantar Analisis Real

Pengantar Analisis Real Modul Pengantar Analisis Real Dr Endang Cahya, MA, MSi P PENDAHULUAN ada Modul ini disajikan beberapa topik pengantar mata kuliah Analisis Real, yang terbagi dalam beberapa kegiatan belajar yang harus

Lebih terperinci

BAB 1. PENDAHULUAN KALKULUS

BAB 1. PENDAHULUAN KALKULUS BAB. PENDAHULUAN KALKULUS (Himpunan,selang, pertaksamaan, dan nilai mutlak) Pembicaraan kalkulus didasarkan pada sistem bilangan nyata. Sebagaimana kita ketahui sistem bilangan nyata dapat diklasifikasikan

Lebih terperinci

Teori Dasar Himpunan. Julan HERNADI. December 27, Program Studi Pendidikan Matematika Universitas Muhammadiyah, Ponorogo

Teori Dasar Himpunan. Julan HERNADI. December 27, Program Studi Pendidikan Matematika Universitas Muhammadiyah, Ponorogo 1 Program Studi Pendidikan Matematika Universitas Muhammadiyah, Ponorogo December 27, 2012 PENGERTIAN DASAR Denition Himpunan merupakan koleksi objek-objek yang disebut anggota atau elemen himpunan tersebut.

Lebih terperinci

G a a = e = a a. b. Berdasarkan Contoh 1.2 bagian b diperoleh himpunan semua bilangan bulat Z. merupakan grup terhadap penjumlahan bilangan.

G a a = e = a a. b. Berdasarkan Contoh 1.2 bagian b diperoleh himpunan semua bilangan bulat Z. merupakan grup terhadap penjumlahan bilangan. 2. Grup Definisi 1.3 Suatu grup < G, > adalah himpunan tak-kosong G bersama-sama dengan operasi biner pada G sehingga memenuhi aksioma- aksioma berikut: a. operasi biner bersifat asosiatif, yaitu a, b,

Lebih terperinci

TINJAUAN PUSTAKA. Pada bagian ini akan diberikan konsep dasar graf dan bilangan kromatik lokasi pada

TINJAUAN PUSTAKA. Pada bagian ini akan diberikan konsep dasar graf dan bilangan kromatik lokasi pada II. TINJAUAN PUSTAKA Pada bagian ini akan diberikan konsep dasar graf dan bilangan kromatik lokasi pada suatu graf sebagai landasan teori penelitian ini. 2. Konsep Dasar Graf Teori dasar mengenai graf

Lebih terperinci

Solusi Pengayaan Matematika Edisi 14 April Pekan Ke-2, 2006 Nomor Soal:

Solusi Pengayaan Matematika Edisi 14 April Pekan Ke-2, 2006 Nomor Soal: Solusi Pengayaan Matematika Edisi 4 April Pekan Ke-, 006 Nomor Soal: 3-40 3. Manakah yang paling besar di antara bilangan-bilangan 0 9 b, 5 c, 0 d 5, dan 0 e 4 3? A. e B. d C. c D. b E. a Solusi: [E] 5

Lebih terperinci

Bilangan Prima dan Teorema Fundamental Aritmatika

Bilangan Prima dan Teorema Fundamental Aritmatika Pembaharuan Terakhir: 28 Maret 2017 Pengantar Teori Bilangan (Bagian 5): Bilangan Prima dan Teorema Fundamental Aritmatika M. Zaki Riyanto Program Studi Matematika Fakultas Sains dan Teknologi UIN Sunan

Lebih terperinci

BILANGAN CACAH. b. Langkah 1: Jumlahkan angka satuan (4 + 1 = 5). tulis 5. Langkah 2: Jumlahkan angka puluhan (3 + 5 = 8), tulis 8.

BILANGAN CACAH. b. Langkah 1: Jumlahkan angka satuan (4 + 1 = 5). tulis 5. Langkah 2: Jumlahkan angka puluhan (3 + 5 = 8), tulis 8. BILANGAN CACAH a. Pengertian Bilangan Cacah Bilangan cacah terdiri dari semua bilangan asli (bilangan bulat positif) dan unsur (elemen) nol yang diberi lambang 0, yaitu 0, 1, 2, 3, Bilangan cacah disajikan

Lebih terperinci

Mata Pelajaran Wajib. Disusun Oleh: Ngapiningsih

Mata Pelajaran Wajib. Disusun Oleh: Ngapiningsih Mata Pelajaran Wajib Disusun Oleh: Ngapiningsih Disklaimer Daftar isi Disklaimer Powerpoint pembelajaran ini dibuat sebagai alternatif guna membantu Bapak/Ibu Guru melaksanakan pembelajaran. Materi powerpoint

Lebih terperinci

Soal-Soal dan Pembahasan SBMPTN - SNMPTN Matematika Dasar Tahun Pelajaran 2010/2011

Soal-Soal dan Pembahasan SBMPTN - SNMPTN Matematika Dasar Tahun Pelajaran 2010/2011 Soal-Soal dan Pembahasan SBMPTN - SNMPTN Matematika Dasar Tahun Pelajaran 2010/2011 Tanggal Ujian: 31 Mei 2011 1. Jika 6(3 40 ) ( 2 log a) + 3 41 ( 2 log a) = 3 43, maka nilai a adalah... A. B. C. 4 D.

Lebih terperinci

Pertemuan Ke 2 SISTEM PERSAMAAN LINEAR (SPL) By SUTOYO,ST.,MT

Pertemuan Ke 2 SISTEM PERSAMAAN LINEAR (SPL) By SUTOYO,ST.,MT Pertemuan Ke SISTEM PERSAMAAN LINEAR (SPL) By SUTOYO,ST,MT Pendahuluan Suatu sistem persamaan linier (atau himpunan persaman linier simultan) adalah satu set persamaan dari sejumlah unsur yang tak diketahui

Lebih terperinci

SISTEM BILANGAN REAL

SISTEM BILANGAN REAL SISTEM BILANGAN REAL Materi : 1.1 Pendahuluan Sistem Bilangan Real adalah himpunan bilangan real yang disertai dengan operasi penjumlahan dan perkalian sehingga memenuhi aksioma tertentu, ini merupakan

Lebih terperinci

Persamaan Diferensial Biasa

Persamaan Diferensial Biasa Persamaan Diferensial Biasa Pendahuluan, Persamaan Diferensial Orde-1 Toni Bakhtiar Departemen Matematika IPB September 2012 Toni Bakhtiar (m@thipb) PDB September 2012 1 / 37 Pendahuluan Konsep Dasar Beberapa

Lebih terperinci

RUMUS-RUMUS TAUTOLOGI. (Minggu ke-5 dan 6)

RUMUS-RUMUS TAUTOLOGI. (Minggu ke-5 dan 6) RUMUS-RUMUS TAUTOLOGI (Minggu ke-5 dan 6) 1 1 Rumus-rumus tautologi Rumus 1.1 (Komutatif) 1. p q q p 2. p q q p Bukti: p q p q q p T T T T T F F F F T F F F F F F 2 Rumus 1.2 (Distributif) 1. p (q r) (p

Lebih terperinci

EKSPLORASI BILANGAN. 1.1 Barisan Bilangan

EKSPLORASI BILANGAN. 1.1 Barisan Bilangan EKSPLORASI BILANGAN Fokus eksplorasi bilangan ini adalah mencari pola dari masalah yang disajikan. Mencari pola merupakan bagian penting dari pemecahan masalah matematika. Eksplorasi pola-pola bilangan

Lebih terperinci

Antiremed Kelas 09 Matematika

Antiremed Kelas 09 Matematika Antiremed Kelas 09 Matematika Latihan Ulangan Barisan dan Deret Bilangan Doc. Name: AR09MAT0698 Version: 03- halaman 0. Suku ke-40 dari barisan 7, 5, 3,, adalah (UAN 003) -69 (B) -7 (C) -73 (D) -75 0a

Lebih terperinci

5.3 RECURSIVE DEFINITIONS AND STRUCTURAL INDUCTION

5.3 RECURSIVE DEFINITIONS AND STRUCTURAL INDUCTION 5.3 RECURSIVE DEFINITIONS AND STRUCTURAL INDUCTION Rekursif Ada kalanya kita mengalami kesulitan untuk mendefinisikan suatu obyek secara eksplisit. Mungkin lebih mudah untuk mendefinisikan obyek tersebut

Lebih terperinci

BARISAN DAN DERET MATERI PENDAMPING OLIMPIADE MATEMATIKA MA/SMA

BARISAN DAN DERET MATERI PENDAMPING OLIMPIADE MATEMATIKA MA/SMA BARISAN DAN DERET MATERI PENDAMPING OLIMPIADE MATEMATIKA MA/SMA I. SISTEM BILANGAN REAL DAN OPERASINYA II. NOTASI SIGMA III. BARISAN BILANGAN IV. DERET BILANGAN V. INDUKSI MATEMATIKA DISUSUN OLEH : AHAMD

Lebih terperinci

BAB I TEORI KETERBAGIAN DALAM BILANGAN BULAT

BAB I TEORI KETERBAGIAN DALAM BILANGAN BULAT BAB I TEORI KETERBAGIAN DALAM BILANGAN BULAT. Pendahuluan Well-Ordering Principle Jika S himpunan bagian dari himpunan bilangan bulat positif yang tidak kosong, maka S memiliki sebuah unsur terkecil. Unsur

Lebih terperinci

SELEKSI OLIMPIADE MATEMATIKA INDONESIA 2005 TINGKAT PROVINSI

SELEKSI OLIMPIADE MATEMATIKA INDONESIA 2005 TINGKAT PROVINSI SELEKSI OLIMPIADE MATEMATIKA INDONESIA 2005 TINGKAT PROVINSI Bidang Matematika Bagian Pertama Waktu : 90 Menit DEPARTEMEN PENDIDIKAN NASIONAL DIREKTORAT JENDERAL PENDIDIKAN DASAR DAN MENENGAH DIREKTORAT

Lebih terperinci

8 MATRIKS DAN DETERMINAN

8 MATRIKS DAN DETERMINAN 8 MATRIKS DAN DETERMINAN Matriks merupakan pengembangan lebih lanjut dari sistem persamaan linear. Oleh karenanya aljabar matriks sering juga disebut dengan aljabar linear. Matriks dapat digunakan untuk

Lebih terperinci