GEOMETRI PROJEKTIF DAN APLIKASINYA. Sangadji dan Marsodi *

Ukuran: px
Mulai penontonan dengan halaman:

Download "GEOMETRI PROJEKTIF DAN APLIKASINYA. Sangadji dan Marsodi *"

Transkripsi

1 (43-52) GEOMETRI PROJEKTIF DAN APLIKASINYA Sangadji dan Marsodi * ABSTRAK GEOMETRI PROJEKTIF DAN APLIKASINYA. Geometri projektif adalah cabang geometri yang mempelajari sifat-sifat dan konfigurasi geometri yang tidak mengalami perubahan bila diprojeksikan. Geometri projekif juga disebut geometri posisi atau geometri deskriptif. Geometri ini digunakan di engineering khususnya di bidang konstruksi. Makalah ini membahas antara lain teorema Pascal, dualitas, teorema Brianchon, dan juga aplikasinya. Kata-kata kunci: teorema Pascal, dualitas, teorema Brianchon ABSTRACT PROJECTIVE GEOMETRY AND ITS APPLICATIONS. Projective geometry is a branch of geometry dealing with the properties and invariants of geometric figures under projection. Projective geometry is also called geometry of position or descriptive geometry. It is used in engineering, especially in construction. The paper discusses. Pascal s theorem, duality, Brianchon s theorem and some others, as well as the applications. Keywords: Pascal s theorem, duality, Brianchon s theorem PENDAHULUAN Arti Geometri Projektif Geometri projektif adalah cabang geometri yang mempelajari sifat-sifat dari konfigurasi geometri yang tidak mengalami perubahan bila konfigurasi geometri tersebut diprojeksikan. Sebagai contoh, pengertian panjang, luas, volume jelas mengalami perubahan bila diprojeksikan, sehingga pengertian tersebut tidak dibicarakan dalam geometri projektif. Sedangkan pengertian titik terletak pada garis dan garis terletak pada bidang dibicarakan dalam geometri projektif. * Pusat Pengembangan Teknologi Informasi dan Komputasi - BATAN 43

2 Prinsip Dualitas Hasil yang mengagumkan dari geometri projektif adalah prinsip dualitas yang menyatakan bahwa teorema-teorema misalnya teorema Pascal dan teorema Brianchon dapat ditransformasikan dari satu ke yang lain. Secara umum, semua proposisi dalam geometri projektif terjadi dalam pasangan dual, dengan pertukaran titik dan garis. Aksioma-aksioma dalam Geometri Projektif Aksioma-aksioma dalam geometri projektif adalah:. Bila A dan B adalah dua titik yang berlainan pada bidang, terdapatlah sekurangkurangnya satu garis yang memuat kedua titik tersebut. 2. Bila A dan B adalah dua titik yang berlainan pada bidang, terdapatlah tidak lebih dari satu garis yang memuat kedua titik tersebut. 3. Setiap dua garis pada bidang mempunyai paling sedikit satu titik (mungkin titik di tak berhingga) berserikat pada bidang tersebut. 4. Terdapat paling sedikit satu garis pada suatu bidang. 5. Setiap garis memuat paling sedikit tiga titik pada bidang yang memuatnya. 6. Semua titik-titik pada bidang bukan kepunyaan satu garis yang sama. BEBERAPA TEOREMA Dalam geometri projektif dikenal beberapa teorema penting. Di bawah ini diberikan teorema-teorema dari Pappus, Desargues, Pascal dan Brianchon. Teorema Pappus Misalkan P, P2, P3 tiga titik pada garis g dan Q, Q2, Q3 tiga titik pada garis g 2. Misalkan R perpotongan P 2Q3 dan P 3Q2, S perpotongan PQ 3 dan P 3Q, dan T perpotongan P Q2 dan P 2Q. Maka R, S, T kolinier. 44

3 P P2 P3 T S R Q Q2 Q3 Teorema Desargues Misalkan titik P tidak terletak pada segitiga ABC. Misalkan A, B, C berturutturut titik-titik pada garis-garis PA, PB, PC. Misalkan perpanjangan garis-garis BC dan B C berpotongan di R. Juga, AC dan A C berpotongan di S serta AB dan A B berpotongan di T. Maka R, S dan T kolinier. P A R B C A C S B T 45

4 Teorema Pascal Misalkan ABCDEF adalah segienam dengan titik-titik sudutnya terletak pada konik (irisan kerucut dengan bidang datar). Misalkan R adalah titik potong sisi-sisi AB dan DE, S titik potong sisi-sisi BC dan EF, T titik potong sisi-sisi CD dan FA. Maka titik-titik R, S dan T kolinier. A F B T E D C S R Teorema Brianchon Misalkan dimungkinkan untuk melingkupi irisan kerucut dalam segienam ABCDEF. Maka diagonal-diagonal AD, BE, CF konkuren. B A C F E D 46

5 APLIKASI Di bawah ini diberikan problem-problem yang sederhana tentang aplikasi dari geometri projektif menggunakan hasil pembahasan di muka. Contoh Bagian dari garis-garis g dan g 2 terletak pada sepotong kertas dan titik potong mereka terletak di luar sepotong kertas tersebut. Titik P terletak pada sepotong kertas tersebut dan tidak terletak pada g maupun g 2. Konstruksikan suatu garis yang melalui P dan konkuren dengan g dan g 2. g P. g 2 47

6 Contoh 2 Bagian dari garis-garis g dan g 2 terletak pada sepotong kertas dan titik potong mereka (titik P) terletak di luar sepotong kertas tersebut. Demikian juga, bagian dari garis-garis h dan h 2 terletak pada sepotong kertas itu dan titik potong mereka (titik Q) terletak di luar sepotong kertas tersebut. Konstruksikan bagian dari garis PQ yang terletak pada sepotong kertas tersebut. g g 2 h h 2 48

7 KESIMPULAN. Telah diberikan empat teorema-teorema Pappus, Desargues, Pascal dan Brianchon. Teorema Pascal dan teorema Brianchon saling dual. 2. Dengan teorema-teorema tersebut dapat digunakan untuk membantu dalam masalah konstruksi. 49

8 DAFTAR PUSTAKA. BARAGAR, ARTHUR., A Survey of Classical and Modern Geometries with Computer Activities. New Jersey, USA, Prentice Hall, Upper Saddle River, COURANT, RICHARD and HERBERT ROBBINS, What is Mathematics? An Elementary Approach to Ideas and Methods. New York, Oxford University Press, USA Projective Geometry. Mathworld.wolfram.com. Wolfram Research

9 DISKUSI ALVANO YULIAN Melalui Himpunan Matematika Indonesia agar diusulkan ke Departemen Pendidikan Nasional bahwa Mata Pelajaran Ilmu Ukur Sudut, Ilmu Ukur Ruang, Ilmu Ukur Bayangan (Stereometri) dapat diajarkan kembali di SMU-IPA karena sampai saat ini perangkat lunak khususnya image processing masih tetap menggunakan prinsipprinsip tersebut. SANGADJI Usulan yang baik dan tugas kita bersama untuk merealisasikannya melalui jalur atau prosedur yang ada. 5

10 DAFTAR RIWAYAT HIDUP. Nama : Sangadji 2. Tempat/Tanggal Lahir : Solo, 6 Juni Instansi : P2TIK-BATAN 4. Pekerjaan / Jabatan : Peneliti 5. Riwayat Pendidikan : S Matematika FMIPA UGM S2 Matematika University of Arizona,USA S3 Matematika University of Montana,USA 6. Pengalaman Kerja : 974-Sekarang,BATAN 998-Sekarang, UBINUS 7. Organisasi Professional : Himpunan Matematika Indonesia 52

GEOMETRI EUKLID VERSUS GEOMETRI SFERIK. Sangadji *

GEOMETRI EUKLID VERSUS GEOMETRI SFERIK. Sangadji * GEOMETRI EUKLID VERSUS GEOMETRI SFERIK Sangadji * ABSTRAK GEOMETRI EUKLID VERSUS GEOMETRI SFERIK. Pada makalah ini akan dibahas hubungan antara formula Pythagoras dan formula sinus dari segitiga pada geometri

Lebih terperinci

TRANSFORMASI MOBIUS 1. Sangadji *

TRANSFORMASI MOBIUS 1. Sangadji * Transformasi Mobius (Sangadji) TRANSFORMASI MOBIUS 1 Sangadji * ABSTRAK TRANSFORMASI MOBIUS. Transformasi Mobius atau bilinear, sudah lama dikenal. Topik ini muncul pada beberapa bidang, misalnya pada

Lebih terperinci

FUNGSI-FUNGSI PADA TEORI BILANGAN DAN APLIKASINYA PADA PERHITUNGAN KALENDER. Sangadji *

FUNGSI-FUNGSI PADA TEORI BILANGAN DAN APLIKASINYA PADA PERHITUNGAN KALENDER. Sangadji * FUNGSI-FUNGSI PADA TEORI BILANGAN DAN APLIKASINYA PADA PERHITUNGAN KALENDER Sangadji * ABSTRAK FUNGSI-FUNGSI PADA TEORI BILANGAN DAN APLIKASINYA PADA PERHITUNGAN KALENDER. Dalam makalah ini dibahas fungsi-fungsi

Lebih terperinci

GEOMETRI Geometri Dasar Oleh: WIDOWATI Jurusan Matematika FMIPA UNDIP

GEOMETRI Geometri Dasar Oleh: WIDOWATI Jurusan Matematika FMIPA UNDIP GEOMETRI Geometri Dasar Oleh: WIDOWATI Jurusan Matematika FMIPA UNDIP 1 Geometri dasar Himpunan berbentuk beserta sistem aksioma yang melibatkan 5 aksioma disebut Struktur Geometri Euclid, dengan unsurunsur

Lebih terperinci

QUATERNION DAN APLIKASINYA. Sangadji *

QUATERNION DAN APLIKASINYA. Sangadji * QUATERNION DAN APLIKASINYA Sangadji * ABSTRAK QUATERNION DAN APLIKASINYA.Dalam matematika, quaternion merupakan perluasan dari bilangan-bilangan kompleks yang tidak komutatif, dan diterapkan dalam mekanika

Lebih terperinci

Hubungan Kekongruenan Dalam Geometri Terhingga

Hubungan Kekongruenan Dalam Geometri Terhingga Prosiding Semirata FMIPA Universitas Lampung, 2013 Hubungan Kekongruenan Dalam Geometri Terhingga Lina Ardila Sari, Suharsono, Muslim Ansori Jurusan Matematika FMIPA Universitas Lampung Alamat Email :

Lebih terperinci

TEOREMA PAPPUS PADA ELIPS, PARABOLA DAN HIPERBOLA. Fakultas Matematika dan Ilmu Pengetahuan Alam Univeritas Riau Kampus Bina Widya Indonesia

TEOREMA PAPPUS PADA ELIPS, PARABOLA DAN HIPERBOLA. Fakultas Matematika dan Ilmu Pengetahuan Alam Univeritas Riau Kampus Bina Widya Indonesia TEOREMA PAPPUS PADA ELIPS, PARABOLA DAN HIPERBOLA Ardiansyah Yan Hakim Nst. 1*, Sri Gemawati 2, Musraini M. 2 1 Mahasiswa Program S1 Matematika 2 Dosen Jurusan Matematika Fakultas Matematika dan Ilmu Pengetahuan

Lebih terperinci

Modul 3 SIMETRI, PERSEGIPANJANG, PERSEGI, DAN KESEJAJARAN GARIS

Modul 3 SIMETRI, PERSEGIPANJANG, PERSEGI, DAN KESEJAJARAN GARIS Modul 3 SIMETRI, PERSEGIPANJANG, PERSEGI, DAN KESEJAJARAN GARIS A. Pengantar Materi yang akan di bahas pada kegiatan pembelajaran ini terdiri atas pengertian simetri lipat, simetri putar, setengah putaran,

Lebih terperinci

ISOMETRI TERHADAP GEOMETRI INSIDENSI TERURUT

ISOMETRI TERHADAP GEOMETRI INSIDENSI TERURUT Prosiding Semirata FMIPA Universitas Lampung, 2013 ISOMETRI TERHADAP GEOMETRI INSIDENSI TERURUT Damay Lisdiana, Muslim Ansori, Amanto Jurusan Matematika FMIPA Universitas Lampung Email: [email protected]

Lebih terperinci

Oleh : Sutopo, S.Pd., M.Pd. Prodi P Mat-Jurusan PMIPA FKIP UNS

Oleh : Sutopo, S.Pd., M.Pd. Prodi P Mat-Jurusan PMIPA FKIP UNS Oleh : Sutopo, S.Pd., M.Pd. Prodi P Mat-Jurusan PMIPA FKIP UNS Materi KKD I Konsep dasar geometri dan segitiga (termasuk teorema dan aksioma terkait) KKD II Poligon dan Lingkaran (sifat dan luas) KKD III

Lebih terperinci

Geometri Insidensi. Modul 1 PENDAHULUAN

Geometri Insidensi. Modul 1 PENDAHULUAN Modul 1 Geometri Insidensi M PENDAHULUAN Drs. Rawuh odul Geometri Insidensi ini berisi pembahasan tentang pembentukkan sistem aksioma dan sifat-sifat yang mendasari geometri tersebut. Sebelumnya Anda akan

Lebih terperinci

Rasio. atau 20 : 10. Contoh: Tiga sudut memiliki rasio 4 : 3 : 2. tentukan sudut-sudutnya jika:

Rasio. atau 20 : 10. Contoh: Tiga sudut memiliki rasio 4 : 3 : 2. tentukan sudut-sudutnya jika: Rasio Rasio adalah perbandingan ukuran. Rasio digunakan untuk membandingkan besaran dengan pembagian. Misal dua segitiga memiliki bentuk yang sama tetapi ukurannya berbeda. Salah satu sisinya yang seletak

Lebih terperinci

FORMULA HERON: TINJAUAN DI GEOMETRI EUKLID DAN GEOMETRI SFERIK 1. Sangadji 2

FORMULA HERON: TINJAUAN DI GEOMETRI EUKLID DAN GEOMETRI SFERIK 1. Sangadji 2 PROSIDING ISBN : 978 979 16353 3 FORMUL HERON: TINJUN DI GEOMETRI EUKLID DN GEOMETRI SFERIK 1 T 8 Sangadji strak Formula Heron mempunyai dua versi. Versi pertama adalah Formula Heron dalam geometri Euklid

Lebih terperinci

Geometri Dimensi Dua

Geometri Dimensi Dua Geometri Dimensi Dua Materi Pelatihan Guru SMK Model Seni/Pariwisata/Bisnis Manajemen Yogyakarta, 28 November 23 Desember 2010 Oleh Dr. Ali Mahmudi JURUSAN PENDIDIKAN MATEMATIKA FAKULTAS MATEMATIKA DAN

Lebih terperinci

LOGO JARAK DUA TITIK

LOGO JARAK DUA TITIK LOGO JARAK DUA TITIK JARAK TITIK A KE TITIK B Jakarta Bandung Lintasan yang ditempuh kereta-api Lintasan yang ditempuh sebuah mobil Ruas garis yang menghubungkan kedua kota LOGO www.themegallery.com POSTULAT

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Latar Belakang Masalah

BAB I PENDAHULUAN. 1.1 Latar Belakang Masalah 1 BAB I PENDAHULUAN 1.1 Latar Belakang Masalah Kata geometri berasal dari bahasa Yunani yaitu geos yang berarti bumi dan metron yang berarti pengukuran. Orang-orang dahulu baik yang berbangsa Mesir, Cina,

Lebih terperinci

MEMBUKTIKAN KETAKSAMAAN ERDŐS-MORDELL DENGAN MENGGUNAKAN JARAK BERTANDA. ABSTRACT

MEMBUKTIKAN KETAKSAMAAN ERDŐS-MORDELL DENGAN MENGGUNAKAN JARAK BERTANDA. ABSTRACT MEMBUKTIKAN KETAKSAMAAN ERDŐS-MORDELL DENGAN MENGGUNAKAN JARAK BERTANDA Riva Atul Wahidah 1), Mashadi 2), Hasriati 2) [email protected] 1) Mahasiswa Program S1 Matematika FMIPA-UR 2) Dosen Matematika

Lebih terperinci

MEMOTIVASI SISWA BELAJAR GEOMETRI DENGAN LINGKARAN TITIK SEMBILAN. Sugiyono Jurusan Pendidikan Matematika FMPA Universitas Negeri Yogyakarta.

MEMOTIVASI SISWA BELAJAR GEOMETRI DENGAN LINGKARAN TITIK SEMBILAN. Sugiyono Jurusan Pendidikan Matematika FMPA Universitas Negeri Yogyakarta. MEMOTIVASI SISWA BELAJAR GEOMETRI DENGAN LINGKARAN TITIK SEMBILAN Sugiyono Jurusan Pendidikan Matematika FMPA Universitas Negeri Yogyakarta Abstrak Sudah tidak asing lagi jika ada siswa SMP atau SMA yang

Lebih terperinci

SILABUS PEMBELAJARAN

SILABUS PEMBELAJARAN SILABUS PEMBELAJARAN Sekolah :... Kelas : VIII (Delapan) Mata Pelajaran : Matematika Semester : I (satu) ALJABAR Standar : 1. Memahami bentuk aljabar, relasi,, dan persamaan garis lurus Indikator Kegiatan

Lebih terperinci

Bab 3 KONSTRUKSI GEOMETRIS 3.1. KONSTRUKSI-KONSTRUKSI DASAR.

Bab 3 KONSTRUKSI GEOMETRIS 3.1. KONSTRUKSI-KONSTRUKSI DASAR. Bab 3 KONSTRUKSI GEOMETRIS Materi : Konstruksi-konstruksi dasar. Garis-garis lengkung. Gambar proyeksi. Gambar pandangan tunggal. Proyeksi ortogonal (gambar pandangan majemuk). 3.1. KONSTRUKSI-KONSTRUKSI

Lebih terperinci

RUAS GARIS BERARAH. Andaikan sekarang ada 2 ruas garis berarah AB dan CD. Dalam

RUAS GARIS BERARAH. Andaikan sekarang ada 2 ruas garis berarah AB dan CD. Dalam RUAS GARIS BERARAH 9.1 Definisi dan Sifat-sifat ang Sederhana Untuk melajutkan penelidikan tentang isometri diperlukan pengertian tentang ruas garis berarah sebagai berikut: Definisi: Suatu ruas garis

Lebih terperinci

Beberapa Benda Ruang Yang Beraturan

Beberapa Benda Ruang Yang Beraturan Beberapa Benda Ruang Yang Beraturan Kubus Tabung rusuk kubus = a volume = a³ panjang diagonal bidang = a 2 luas = 6a² panjang diagonal ruang = a 3 r = jari-jari t = tinggi volume = π r² t luas = 2πrt Prisma

Lebih terperinci

HUBUNGAN SEGITIGA NAGEL DENGAN SEGITIGA ASALNYA. Fakultas Matematika dan Ilmu Pengetahuan Alam Univeritas Riau Kampus Bina Widya Indonesia

HUBUNGAN SEGITIGA NAGEL DENGAN SEGITIGA ASALNYA. Fakultas Matematika dan Ilmu Pengetahuan Alam Univeritas Riau Kampus Bina Widya Indonesia HUBUNGAN SEGITIGA NAGEL DENGAN SEGITIGA ASALNYA Reni Widya 1*, Hasriati 2, M. Natsir 2 1 Mahasiswa Program S1 Matematika 2 Dosen Jurusan Matematika Fakultas Matematika dan Ilmu Pengetahuan Alam Univeritas

Lebih terperinci

PROYEKSI GEOMETRI FUZZY PADA RUANG

PROYEKSI GEOMETRI FUZZY PADA RUANG PROYEKSI GEOMETRI FUZZY PADA RUANG Muhammad Izzat Ubaidillah Mahasiswa Jurusan Matematika UIN Maulana Malik Ibrahim Malang e-mail: [email protected] ABSTRAK Geometri fuzzy merupakan perkembangan dari

Lebih terperinci

II. TINJAUAN PUSTAKA. sebuah geometri selain aksioma diperlukan juga unsur-unsur tak terdefinisi. Untuk. 2. Himpunan titik-titik yang dinamakan garis.

II. TINJAUAN PUSTAKA. sebuah geometri selain aksioma diperlukan juga unsur-unsur tak terdefinisi. Untuk. 2. Himpunan titik-titik yang dinamakan garis. 5 II. TINJAUAN PUSTAKA 2.1 Geometri Insidensi Suatu geometri dibentuk berdasarkan aksioma yang berlaku dalam geometrigeometri tersebut. Geometri insidensi didasari oleh aksioma insidensi. Di dalam sebuah

Lebih terperinci

MAKALAH. GEOMETRI BIDANG Oleh Asmadi STKIP Muhammadiyah Pagaralam

MAKALAH. GEOMETRI BIDANG Oleh Asmadi STKIP Muhammadiyah Pagaralam MAKALAH GEOMETRI BIDANG Oleh Asmadi STKIP Muhammadiyah Pagaralam 1 BAB I PENDAHULUAN A. Latar Belakang Kata geometri berasal dari bahasa Yunani yang berarti ukuran bumi. Maksudnya mencakup segala sesuatu

Lebih terperinci

DALIL PYTHAGORAS DAN PEMECAHAN MASALAH GEOMETRI

DALIL PYTHAGORAS DAN PEMECAHAN MASALAH GEOMETRI DALIL PYTHAGORAS DAN PEMECAHAN MASALAH GEOMETRI Segitiga 1. Beberapa sifat yang berlaku pada segitiga adalah : Jumlah sudut-sudut sembarang segitiga adalah 180 0 Pada segitiga ABC berlaku AC = BC B = A

Lebih terperinci

OPTIMISASI KONVEKS: KONSEP-KONSEP

OPTIMISASI KONVEKS: KONSEP-KONSEP Prosiding Seminar Nasional Penelitian, Pendidikan dan Penerapan MIPA, Fakultas MIPA, Universitas Negeri Yogyakarta, 14 Mei 2011 OPTIMISASI KONVEKS: KONSEP-KONSEP Caturiyati 1 dan Himmawati Puji Lestari

Lebih terperinci

PEMANFAATAN KOMPUTER PROGRAM CABRI DALAM PEMBELAJARAN GEOMETRI (II)

PEMANFAATAN KOMPUTER PROGRAM CABRI DALAM PEMBELAJARAN GEOMETRI (II) Prosiding Seminar Nasional Penelitian, Pendidikan dan Penerapan MIPA Fakultas MIPA, Universitas Negeri Yogyakarta, 16 Mei 2009 PEMANFAATAN KOMPUTER PROGRAM CABRI DALAM PEMBELAJARAN GEOMETRI (II) Sugiyono

Lebih terperinci

Himpunan dan Sistem Bilangan Real

Himpunan dan Sistem Bilangan Real Modul 1 Himpunan dan Sistem Bilangan Real Drs. Sardjono, S.U. PENDAHULUAN M odul himpunan ini berisi pembahasan tentang himpunan dan himpunan bagian, operasi-operasi dasar himpunan dan sistem bilangan

Lebih terperinci

BAB I PENDAHULUAN A. Latar Belakang B. Rumusan Masalah

BAB I PENDAHULUAN A. Latar Belakang B. Rumusan Masalah BAB I PENDAHULUAN A. Latar Belakang Membandingkan dua benda secara geometris dapat dilihat dari dua aspek, yaitu bentuk dan ukurannya. Satu benda yang memiliki bentuk yang sama tapi dengan ukuran berbeda

Lebih terperinci

SIMETRI BAHAN BELAJAR MANDIRI 3

SIMETRI BAHAN BELAJAR MANDIRI 3 BAHAN BELAJAR MANDIRI 3 SIMETRI PENDAHULUAN Secara umum bahan belajar mandiri ini menjelaskan tentang konsep simetri lipat dan simetri putar serta penerapannya ke dalam papan geoboard. Setelah mempelajari

Lebih terperinci

Matematika Proyek Perintis I Tahun 1979

Matematika Proyek Perintis I Tahun 1979 Matematika Proyek Perintis I Tahun 979 MA-79-0 Irisan himpunan : A = { x x < } dan himpunan B = { x < x < 8 } ialah himpunan A. { x x < 8 } { x x < } { x < x < 8 } { x < x < } { x < x } MA-79-0 Apabila

Lebih terperinci

termasuk pembahasan hubungan lingkaran dengan segiempat, misalnya pembahasan tentang segiempat siklik (segiempat talibusur).

termasuk pembahasan hubungan lingkaran dengan segiempat, misalnya pembahasan tentang segiempat siklik (segiempat talibusur). KATA PENGANGAR Buku ini merupakan penyempurnaan materi kuliah Geometri Bidang selama 3 tahun terakhir. Karena adanya perubahan kurikulum di tingkat sekolah menengah, maka materi yang ada di dalam buku

Lebih terperinci

KAJIAN SEGIEMPAT TALI BUSUR DAN SEGIEMPAT GARIS SINGGUNG PADA SATU LINGKARAN

KAJIAN SEGIEMPAT TALI BUSUR DAN SEGIEMPAT GARIS SINGGUNG PADA SATU LINGKARAN 1 Kajian Segiempat Tali (Izza Nur Sabila) KAJIAN SEGIEMPAT TALI BUSUR DAN SEGIEMPAT GARIS SINGGUNG PADA SATU LINGKARAN STUDY OF INSCRIBED QUADRILATERAL AND CIRCUMSCRIBED QUADRILATERAL IN ONE CIRCLE Oleh:

Lebih terperinci

KONGRUENSI PADA SEGITIGA

KONGRUENSI PADA SEGITIGA KONGRUENSI PADA SEGITIGA (Jurnal 6) Memen Permata Azmi Mahasiswa S2 Pendidikan Matematika Universitas Pendidikan Indonesia Perkuliah geometri kembali pada materi dasar yang kita anggap remeh selama ini.

Lebih terperinci

A. Jumlah Sudut dalam Segitiga. Teorema 1 Jumlah dua sudut dalam segitiga kurang dari Bukti:

A. Jumlah Sudut dalam Segitiga. Teorema 1 Jumlah dua sudut dalam segitiga kurang dari Bukti: Geometri Netral? Geometri yang dilengkapi dengan sistem aksioma-aksioma insidensi, sistem aksioma-aksioma urutan, sistem aksioma kekongruenan (ruas garis, sudut, segitiga) dan sistem aksioma-aksioma archiemedes

Lebih terperinci

Pembahasan OSN Matematika SMA Tahun 2013 Seleksi Tingkat Nasional Tutur Widodo

Pembahasan OSN Matematika SMA Tahun 2013 Seleksi Tingkat Nasional Tutur Widodo Tutur Widodo OSN Matematika SMA 01 Pembahasan OSN Matematika SMA Tahun 01 Seleksi Tingkat Nasional Tutur Widodo 1. Diketahui bangun persegi panjang berukuran 4 6 dengan beberapa ruas garis, seperti pada

Lebih terperinci

Vektor dan Operasi Dasarnya

Vektor dan Operasi Dasarnya Modul 1 Vektor dan Operasi Dasarnya Drs. Sukirman, M.Pd. D PENDAHULUAN alam modul ini disajikan pengertian vektor, aljabar vektor dan aplikasinya dalam geometri. Aljabar vektor membicarakan penjumlahan

Lebih terperinci

PERSIAPAN UN MATEMATIKA SMP 2014

PERSIAPAN UN MATEMATIKA SMP 2014 PERSIAPAN UN MATEMATIKA SMP 014 Berilah tanda silang (x) pada huruf a, b, c, atau d di depan jawaban yang benar! 1. Di suatu daerah yang berada pada ketinggian.500 meter di atas permukaan laut suhunya

Lebih terperinci

GEOMETRI TRANSFORMASI SETENGAH PUTARAN

GEOMETRI TRANSFORMASI SETENGAH PUTARAN GEOMETRI TRANSFORMASI SETENGAH PUTARAN Disusun Oleh : Kelompok Empat (V1 A) 1. Purna Irawan (4007178 ) 2. Sudarsono (4007028 p) 3. Mellyza Vemi R. (4007217 ) 4. Kristina Nainggolan (4007013 ) 5. Desi Kartini

Lebih terperinci

TOPIK 3 : GEOMETRI KOORDINAT

TOPIK 3 : GEOMETRI KOORDINAT SPA 04 Peta Konsep KOORDINAT Koordinat suatu titik A ( 1 ) x y Titik tengah Titik yang membahagikan suatu garis lurus kepada dua bahagian yang sama panjang. Titik tengah Jarak antara dua titik Jarak (x

Lebih terperinci

SELEKSI OLIMPIADE MATEMATIKA INDONESIA 2005 TINGKAT PROVINSI

SELEKSI OLIMPIADE MATEMATIKA INDONESIA 2005 TINGKAT PROVINSI SELEKSI OLIMPIADE MATEMATIKA INDONESIA 2005 TINGKAT PROVINSI Bidang Matematika Bagian Pertama Waktu : 90 Menit DEPARTEMEN PENDIDIKAN NASIONAL DIREKTORAT JENDERAL PENDIDIKAN DASAR DAN MENENGAH DIREKTORAT

Lebih terperinci

Modul ini adalah modul ke-7 dalam mata kuliah Matematika. Isi modul ini

Modul ini adalah modul ke-7 dalam mata kuliah Matematika. Isi modul ini PENDAHULUAN Modul ini adalah modul ke-7 dalam mata kuliah Matematika. Isi modul ini membahas tentang transformasi. Modul ini terdiri dari 2 kegiatan belajar. Pada kegiatan belajar 1 akan dibahas mengenai

Lebih terperinci

BAB IV KONSTRUKSI GEOMETRIS

BAB IV KONSTRUKSI GEOMETRIS BAB IV KONSTRUKSI GEOMETRIS Panduan Menggambar Teknik Mesin 1 A. Membuat Segilima Beraturan Gambar 4.1 menunjukkan cara membuat suatu segi lima yang panjang salah satu sisinya sudah diketahui. Garis AB

Lebih terperinci

MENUNJUKKAN SIFAT SIFAT AFFINITAS PERSPEKTIF DENGAN MENGGUNAKAN PROGRAM CABRI. Oleh Sugiyono Jurusan Pendidikan Matematika FMIPA UNY ABSTRAK

MENUNJUKKAN SIFAT SIFAT AFFINITAS PERSPEKTIF DENGAN MENGGUNAKAN PROGRAM CABRI. Oleh Sugiyono Jurusan Pendidikan Matematika FMIPA UNY ABSTRAK MENUNJUKKAN SIFAT SIFAT AFFINITAS PERSPEKTIF DENGAN MENGGUNAKAN PROGRAM CABRI Oleh Sugiyono Jurusan Pendidikan Matematika FMIPA UNY ABSTRAK Misalkan s suatu garis dalam bidang (Euclides), α menyatakan

Lebih terperinci

KISI-KISI SOAL OLIMPIADE MATEMATIA VEKTOR NASIONAL (OMVN) 2015 HIMPUNAN MAHASISWA JURUSAN MATEMATIKA UNIVERSITAS NEGERI MALANG

KISI-KISI SOAL OLIMPIADE MATEMATIA VEKTOR NASIONAL (OMVN) 2015 HIMPUNAN MAHASISWA JURUSAN MATEMATIKA UNIVERSITAS NEGERI MALANG KISI-KISI SOAL OLIMPIADE MATEMATIA VEKTOR NASIONAL (OMVN) 2015 HIMPUNAN MAHASISWA JURUSAN MATEMATIKA UNIVERSITAS NEGERI MALANG TINGKAT SD 1. Bilangan dan Operasinya 2. Kelipatan dan Faktor 3. Angka Romawi,

Lebih terperinci

OPTIMISASI KONVEKS: Konsep-konsep

OPTIMISASI KONVEKS: Konsep-konsep OPTIMISASI KONVEKS: Konsep-konsep Caturiyati, M.Si 1 dan Himmawati Puji Lestari, M.Si 2 1,2 Jurdik Matematika FMIPA UNY 1 [email protected] 2 [email protected] Abstrak Pada masalah optimisasi konveks

Lebih terperinci

UKURAN RUAS-RUAS GARIS PADA SEGITIGA SKRIPSI

UKURAN RUAS-RUAS GARIS PADA SEGITIGA SKRIPSI UKURAN RUAS-RUAS GARIS PADA SEGITIGA SKRIPSI Diajukan kepada Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Negeri Yogyakarta untuk Memenuhi Sebagian Persyaratan guna Memperoleh Gelar Sarjana

Lebih terperinci

C. 9 orang B. 7 orang

C. 9 orang B. 7 orang 1. Dari 42 siswa kelas IA, 24 siswa mengikuti ekstra kurikuler pramuka, 17 siswa mengikuti ekstrakurikuler PMR, dan 8 siswa tidak mengikuti kedua ekstrakurikuler tersebut. Banyak siswa yang mengikuti kedua

Lebih terperinci

Sumber Belajar 2x40mnt Buku teks. 2x40mnt. 2x40mnt. (2x + 3) + (-5x 4) (-x + 6)(6x 2) Tes tulis Tes uraian Berapakah: berikut: Teknik Bentuk

Sumber Belajar 2x40mnt Buku teks. 2x40mnt. 2x40mnt. (2x + 3) + (-5x 4) (-x + 6)(6x 2) Tes tulis Tes uraian Berapakah: berikut: Teknik Bentuk Sekolah : SMP Kelas : VIII Mata Pelajaran : Matematika Semester : I(satu) SILABUS Standar : ALJABAR 1. Memahami bentuk aljabar, relasi, fungsi, dan persamaan garis lurus 1.1 Melakukan operasi aljabar Bentuk

Lebih terperinci

Geometri Ruang (Dimensi 3)

Geometri Ruang (Dimensi 3) Geometri Ruang (Dimensi 3) Beberapa Benda Ruang Yang Beraturan Kubus Tabung volume = a³ luas = 6a² rusuk kubus = a panjang diagonal = a 2 panjang diagonal ruang = a 3 r = jari-jari t = tinggi volume =

Lebih terperinci

Bab II TINJAUAN PUSTAKA. Aksioma-aksioma yang membentuk geometri Affin disebut dengan aksioma playfair

Bab II TINJAUAN PUSTAKA. Aksioma-aksioma yang membentuk geometri Affin disebut dengan aksioma playfair Bab II TINJAUAN PUSTAKA 2.1 Konsep Dasar Geometri Affin ( Rawuh, 2009) Aksioma-aksioma yang membentuk geometri Affin disebut dengan aksioma playfair yaitu aksioma yang menyatakan bahwa melalui suatu titik

Lebih terperinci

TEOREMA PYTHAGORAS PADA BIDANG TAXICAB

TEOREMA PYTHAGORAS PADA BIDANG TAXICAB TEOREMA PYTHAGORAS PADA BIDANG TAXICAB ZULVIATI PUTRI Program Studi Matematika, Fakultas Matematika dan Ilmu Pengetahuan Alam, Universitas Andalas Padang, Kampus UNAND Limau Manis Padang, Indonesia [email protected]

Lebih terperinci

Modul 2 SEGITIGA & TEOREMA PYTHAGORAS

Modul 2 SEGITIGA & TEOREMA PYTHAGORAS Modul 2 SEGITIGA & TEOREMA PYTHAGORAS A. Pengantar Materi yang akan di bahas pada kegiatan pembelajaran ini terdiri atas pengertian segitiga, hubungan sisi-sisi segitiga, jenis-jenis segitiga ditinjau

Lebih terperinci

PEMBAHASAN UN SMA TAHUN PELAJARAN 2009/2010 MATEMATIKA PROGRAM STUDI IPA

PEMBAHASAN UN SMA TAHUN PELAJARAN 2009/2010 MATEMATIKA PROGRAM STUDI IPA PEMBAHASAN UN SMA TAHUN PELAJARAN 009/00 MATEMATIKA PROGRAM STUDI IPA PEMBAHAS :. Sigit Tri Guntoro, M.Si.. Jakim Wiyoto, S.Si. 3. Marfuah, M.T. 4. Rohmitawati, S.Si. PPPPTK MATEMATIKA 00 . Perhatikan

Lebih terperinci

SD kelas 6 - MATEMATIKA BAB 11. BIDANG DATARLatihan Soal 11.1

SD kelas 6 - MATEMATIKA BAB 11. BIDANG DATARLatihan Soal 11.1 SD kelas 6 - MATEMATIKA BAB 11. BIDANG DATARLatihan Soal 11.1 1. Perhatikan gambar di bawah ini! http://primemobile.co.id/assets/uploads/materi/123/1701_5.png Dari bangun datar di atas, maka sifat bangun

Lebih terperinci

PEWARNAAN PADA GRAF BINTANG SIERPINSKI. Siti Khabibah Departemen Matematika, FSM Undip

PEWARNAAN PADA GRAF BINTANG SIERPINSKI. Siti Khabibah Departemen Matematika, FSM Undip JMP : Vol. 9 No. 1, Juni 2017, hal. 37-44 PEWARNAAN PADA GRAF BINTANG SIERPINSKI Siti Khabibah Departemen Matematika, FSM Undip [email protected] ABSTRACT. This paper discuss about Sierpinski star

Lebih terperinci

PEMBUKTIAN RUMUS LUAS SEGITIGA BINTANG PERTAMA MORLEY DI DALAM SEGITIGA SEMBARANG Mahasiswa Program Studi Pendidikan Matematika FKIP UNSRI

PEMBUKTIAN RUMUS LUAS SEGITIGA BINTANG PERTAMA MORLEY DI DALAM SEGITIGA SEMBARANG Mahasiswa Program Studi Pendidikan Matematika FKIP UNSRI PEMBUKTIAN RUMUS LUAS SEGITIGA BINTANG PERTAMA MORLEY DI DALAM SEGITIGA SEMBARANG Mahasiswa Program Studi Pendidikan Matematika FKIP UNSRI Ambarsari Kusuma Wardani Email : ambarkusuma8@yahoocom Abstrak

Lebih terperinci

K13 Revisi Antiremed Kelas 12 Matematika

K13 Revisi Antiremed Kelas 12 Matematika K Revisi Antiremed Kelas Matematika Geometri Bidang Ruang - Latihan Soal Doc. Name: RKARMATWJB00 Version : 0-0 halaman 0. Diketahui kubus ABCD,EFGH dengan panjang rusuk. Jika P titik HG,Q titik tengah

Lebih terperinci

PEMBENTUKAN ELEMEN DAN NODE UNTUK MENDUKUNG PEMAKAIAN METODA ELEMEN HINGGA. Utaja *

PEMBENTUKAN ELEMEN DAN NODE UNTUK MENDUKUNG PEMAKAIAN METODA ELEMEN HINGGA. Utaja * PEMBENTUKAN ELEMEN DAN NODE UNTUK MENDUKUNG PEMAKAIAN METODA ELEMEN HINGGA Utaja * ABSTRAK PEMBENTUKAN ELEMEN DAN NODE UNTUK MENDUKUNG PEMAKAIAN METODA ELEMEN HINGGA. Salah satu kesulitan pemakaian meto-de

Lebih terperinci

PEMBUKTIAN TEOREMA BUTTERFLY DI GEOMETRI BOLA. Yuman Agistia. Mahasiswa Program Studi Pendidikan Matematika.

PEMBUKTIAN TEOREMA BUTTERFLY DI GEOMETRI BOLA. Yuman Agistia. Mahasiswa Program Studi Pendidikan Matematika. PEMBUKTIAN TEOREMA BUTTERFLY DI GEOMETRI BOLA Yuman Agistia Mahasiswa Program Studi Pendidikan Matematika e-mail: [email protected] Abstrak Makalah ini membahas tentang pembuktian Teorema Butterfly.

Lebih terperinci

1. Jika B = {bilangan prima kurang dari 13} maka jumlah himpunan penyelesaiannya... A. 4

1. Jika B = {bilangan prima kurang dari 13} maka jumlah himpunan penyelesaiannya... A. 4 1. Jika B = {bilangan prima kurang dari 13} maka jumlah himpunan penyelesaiannya... A. 4 C. 6 B. 5 D. 7 Kunci : B B = (bilangan prima kurang dan 13) Anggota himpunan B = (2, 3, 5, 7, 11) Sehingga banyaknya

Lebih terperinci

PENGAYAAN MATERI OLIMPIADE MATEMATIKA SD GEOMETRI. Oleh : Himmawati P.L

PENGAYAAN MATERI OLIMPIADE MATEMATIKA SD GEOMETRI. Oleh : Himmawati P.L PENGAYAAN MATERI OLIMPIADE MATEMATIKA SD GEOMETRI Oleh : Himmawati P.L Soal matematika yang diujikan di sekolah-sekolah maupun di Ujian Nasional pada umumnya dapat diselesaikan dengan cara-cara biasa.

Lebih terperinci

SOAL DAN PEMBAHASAN UJIAN NASIONAL MATEMATIKA SMP/MTs TAHUN PELAJARAN 2014/2015-TANGGAL 5 Mei 2015

SOAL DAN PEMBAHASAN UJIAN NASIONAL MATEMATIKA SMP/MTs TAHUN PELAJARAN 2014/2015-TANGGAL 5 Mei 2015 SOAL DAN PEMBAHASAN UJIAN NASIONAL MATEMATIKA SMP/MTs TAHUN PELAJARAN 04/05-TANGGAL 5 Mei 05. Dalam kompetisi matematika, setiap jawaban benar diberi nilai 4, salah dan tidak dijawab. Dari 40 soal yang

Lebih terperinci

Bab. Segitig. Mari menggunakan konsep keliling dan luas bangun datar sederhana dalam pemecahan masalah. Segitiga dan Jajargenjang 103

Bab. Segitig. Mari menggunakan konsep keliling dan luas bangun datar sederhana dalam pemecahan masalah. Segitiga dan Jajargenjang 103 Bab 4 Segitig gitiga dan Jajargenjang Mari menggunakan konsep keliling dan luas bangun datar sederhana dalam pemecahan masalah. Segitiga dan Jajargenjang 103 104 Ayo Belajar Matematika Kelas IV A. Keliling

Lebih terperinci

TEOREMA VIETA DAN JUMLAH NEWTON. 1. Pengenalan

TEOREMA VIETA DAN JUMLAH NEWTON. 1. Pengenalan TEOREMA VIETA DAN JUMLAH NEWTON TUTUR WIDODO. Pengenalan Sebelum berbicara banyak tentang Teorema Vieta dan Identitas Newton, terlebih dahulu saya beri penjelasan singkat mengenai polinomial. Di sekolah

Lebih terperinci

PENENTUAN POSISI KAMERA DENGAN GEODESIC DOME UNTUK PEMODELAN. M. Yoyok Ikhsan *

PENENTUAN POSISI KAMERA DENGAN GEODESIC DOME UNTUK PEMODELAN. M. Yoyok Ikhsan * PENENTUAN POSISI KAMERA DENGAN GEODESIC DOME UNTUK PEMODELAN M. Yoyok Ikhsan * ABSTRAK PENENTUAN POSISI KAMERA DENGAN GEODESIC DOME UNTUK PEMODELAN. Makalah ini memaparkan metode untuk menentukan posisi

Lebih terperinci

PENGEMBANGAN TEOREMA KOSNITA DENGAN MENGGUNAKAN INCENTER

PENGEMBANGAN TEOREMA KOSNITA DENGAN MENGGUNAKAN INCENTER PENGEMBANGAN TEOREMA KOSNITA DENGAN MENGGUNAKAN INCENTER Misra Herlina 1, Mashadi 2, Sri Gemawati 3, Hasriati 4 1 Pendidikan Matematika PPs Universitas Riau 2,3,4 Universitas Riau e-mail: [email protected]

Lebih terperinci

Silabus Matematika Kelas VII Semester Genap 44

Silabus Matematika Kelas VII Semester Genap  44 Indikator : 1. Menentukan banyaknya cara persegi panjang dapat menempati bingkainya. 2. Menggunakan sifat-sifat persegi panjang, sisi-sisi yang berhadapan sama panjang dalam perhitungan. 3. Menentukan

Lebih terperinci

KEGIATAN BELAJAR II SUDUT ANTARA GARIS DAN BIDANG

KEGIATAN BELAJAR II SUDUT ANTARA GARIS DAN BIDANG KEGIATAN BELAJAR II SUDUT ANTARA GARIS DAN BIDANG A. Pengantar g h 1 h 3 h 2 H Gambar 2.1 Pada Gambar 2 (ii) mana yang dimaksud sudut antara garis g dan bidang H? Sudut antara g dengan h 1, h 2, h 3, atau

Lebih terperinci

BAB 3 PENGENALAN GEOMETRI TERURUT

BAB 3 PENGENALAN GEOMETRI TERURUT 3 PENGENLN GEOMETRI TERURUT Lobachevsky Lahir di Nizhny Novgorad, Rusia. orangtuanya bernama Ivan Maksimovich Lobachevsky dan Praskovia lexan drovina Lobachevsky. Pada tahun 1800 ayahnya meninggal dan

Lebih terperinci

MENGGAMBAR BIDANG A. MEMBAGI GARIS DAN SUDUT

MENGGAMBAR BIDANG A. MEMBAGI GARIS DAN SUDUT MENGGAMBAR BIDANG A. MEMBAGI GARIS DAN SUDUT 1. MEMBAGI GARIS a. Membagi garis menjadi 2 bagian yang sama panjang Membagi garis menjadi 2 bagian yang sama panjang menggunakan jangka dapat diikuti melalui

Lebih terperinci

MAKALAH SEGITIGA BOLA. disusun guna memenuhi tugas mata kuliah Astronomi. Program Studi Pendidikan Fisika. oleh. 1. Dyah Larasati ( )

MAKALAH SEGITIGA BOLA. disusun guna memenuhi tugas mata kuliah Astronomi. Program Studi Pendidikan Fisika. oleh. 1. Dyah Larasati ( ) MAKALAH SEGITIGA BOLA disusun guna memenuhi tugas mata kuliah Astronomi Program Studi Pendidikan Fisika oleh 1. Dyah Larasati (4201412042) 2. Lina Kurniawati (4201412091) 3. Qonia Kisbata Rodiya (4201412116)

Lebih terperinci

TEOREMA CAYLEY DAN PEMBUKTIANNYA

TEOREMA CAYLEY DAN PEMBUKTIANNYA TEOREMA CAYLEY DAN PEMBUKTIANNYA Eddy Djauhari Departemen Matematika Fmipa Universitas Padjadjaran Jalan Raya Bandung-Sumedang km. 21, tlp./fax. : 022-7794696, Jatinangor, 45363 Email : [email protected]

Lebih terperinci

Jikax (2 x) = 57, maka jumlah semua bilangan bulat x yang memenuhi adalah A. -5 B. -1 C. 0 D. 1 E. 5

Jikax (2 x) = 57, maka jumlah semua bilangan bulat x yang memenuhi adalah A. -5 B. -1 C. 0 D. 1 E. 5 Soal Babak Penyisihan OMITS 011 BAGIAN I. PILIHAN GANDA 1. Hasil kali sebarang bilangan rasional dengan sebarang bilangan irasional selalu merupakan anggota dari himpunan bilangan A. Bulat B. Asli C. Rasional

Lebih terperinci

KEGIATAN BELAJAR SISWA

KEGIATAN BELAJAR SISWA KEGIATAN BELAJAR SISWA Bidang studi : Matematika Satuan Pendidikan: SLTP Kelas: 3 (tiga) Caturwulan: 1 (satu) Pokok Bahasan: Transformasi Subpokok Bahasan: Refleksi Waktu: 150 Menit Endang Mulyana 2003

Lebih terperinci

SILABUS PEMELAJARAN. Indikator Pencapaian Kompetensi. Menjelaskan jenisjenis. berdasarkan sisisisinya. berdasarkan besar sudutnya

SILABUS PEMELAJARAN. Indikator Pencapaian Kompetensi. Menjelaskan jenisjenis. berdasarkan sisisisinya. berdasarkan besar sudutnya 42 43 SILABUS PEMELAJARAN Sekolah :... Kelas : VII (Tujuh) Mata Pelajaran : Matematika Semester : II (dua) GEOMETRI Standar Kompetensi : 6. Memahami konsep segiempat dan segitiga serta menentukan ukurannya

Lebih terperinci

KATA PENGANGAR. Geometri :

KATA PENGANGAR. Geometri : KATA PENGANGAR Buku ini merupakan penyempurnaan materi kuliah Geometri Lanjut pada prodi S2 Matematika FMIPA Universitas Riau selama 3 tahun terakhir. Materi ini juga memuat beberapa hasil penelitian hibah

Lebih terperinci

Bab 7. Bangun Ruang Sisi Datar. Standar Kompetensi. Memahami sifat-sifat kubus, balok, prisma, limas dan bagian-bagiannya serta menentukan ukurannya

Bab 7. Bangun Ruang Sisi Datar. Standar Kompetensi. Memahami sifat-sifat kubus, balok, prisma, limas dan bagian-bagiannya serta menentukan ukurannya Bab 7 Bangun Ruang Sisi Datar Standar Kompetensi Memahami sifat-sifat kubus, balok, prisma, limas dan bagian-bagiannya serta menentukan ukurannya Kompetensi Dasar 4.1 Menentukan unsur dan bagian-bagian

Lebih terperinci

KONSISTENSI PADA GEOMETRI EUCLID DAN GEOMETRI HIPERBOLIK

KONSISTENSI PADA GEOMETRI EUCLID DAN GEOMETRI HIPERBOLIK KONSISTENSI PADA GEOMETRI EUCLID DAN GEOMETRI HIPERBOLIK (Jurnal 9) Memen Permata Azmi Mahasiswa S2 Pendidikan Matematika Universitas Pendidikan Indonesia Setelah beberapa pertemuan mempelajari tentang

Lebih terperinci

LOMBA MATEMATIKA NASIONAL KE-25

LOMBA MATEMATIKA NASIONAL KE-25 LOMBA MATEMATIKA NASIONAL KE-5 Babak Penyisihan Tingkat SMP Minggu, 9 November 04 HIMPUNAN MAHASISWA MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS GADJAH MADA SEKIP UTARA UNIT III

Lebih terperinci

50 LAMPIRAN NILAI SISWA SOAL INSTRUMEN Nama : Kelas : No : BERILAH TANDA SILANG (X) PADA JAWABAN YANG DIANGGAP BENAR! 1. Persegi adalah.... a. Bangun segiempat yang mempunyai empat sisi dan panjang

Lebih terperinci

SOAL PREDIKSI ULANGAN KENAIKAN KELAS MATEMATIKA TINGKAT SMP KELAS 8 TAHUN 2014 WAKTU 120 MENIT

SOAL PREDIKSI ULANGAN KENAIKAN KELAS MATEMATIKA TINGKAT SMP KELAS 8 TAHUN 2014 WAKTU 120 MENIT SOAL PREDIKSI ULANGAN KENAIKAN KELAS MATEMATIKA TINGKAT SMP KELAS 8 TAHUN 2014 WAKTU 120 MENIT Pilihan 1. Pada gambar berikut, tali busur ditunjukkan oleh A. AO B. CO C. BO D. BC 2. Panjang jari jari suatu

Lebih terperinci

A. Pengantar B. Tujuan Pembelajaran Umum C. Tujuan Pembelajaran Khusus

A. Pengantar B. Tujuan Pembelajaran Umum C. Tujuan Pembelajaran Khusus Modul 5 LINGKARAN A. Pengantar Materi yang akan di bahas pada kegiatan pembelajaran ini terdiri atas pengertian berbagai macam segiempat: jajargenjang, belah ketupat, layang-layang dan trapesium. Disamping

Lebih terperinci

MENUNJUKKAN SIFAT SIFAT AFFINITAS PERSPEKTIF DENGAN MENGGUNAKAN PROGRAM CABRI

MENUNJUKKAN SIFAT SIFAT AFFINITAS PERSPEKTIF DENGAN MENGGUNAKAN PROGRAM CABRI Prosiding Seminar Nasional Penelitian, Pendidikan dan Penerapan MIPA Fakultas MIPA, Universitas Negeri Yogyakarta, 16 Mei 2009 MENUNJUKKAN SIFAT SIFAT AFFINITAS PERSPEKTIF DENGAN MENGGUNAKAN PROGRAM CABRI

Lebih terperinci

MULTIPLE KOSNITA MENGGUNAKAN CIRCUMCENTER MELALUI EXCENTER

MULTIPLE KOSNITA MENGGUNAKAN CIRCUMCENTER MELALUI EXCENTER MULTIPLE KOSNITA MENGGUNAKAN CIRCUMCENTER MELALUI EXCENTER Sylvi Karlia 1, Mashadi 2, M. D. H. Gamal 3, Hasriati 4 1 Pendidikan Matematika PPs Universitas Riau 2,3,4 Universitas Riau e-mail: [email protected]

Lebih terperinci

Teorema Dasar Aljabar Mochamad Rofik ( )

Teorema Dasar Aljabar Mochamad Rofik ( ) Teorema Dasar Aljabar Mochamad Rofik (20110060311101) Program Studi Pendidikan Matematika Fakultas Keguruan dan Ilmu Pendidikan Universitas Muhammadiyah Malang Teorema Dasar Aljabar Mochamad Rofik Program

Lebih terperinci

Lingkaran adalah tempat kedudukan titik-titik pada bidang yang berjarak

Lingkaran adalah tempat kedudukan titik-titik pada bidang yang berjarak 4 Lingkaran 4.1. Persamaan Lingkaran Bentuk Baku. Lingkaran adalah tempat kedudukan titik-titik pada bidang yang berjarak tetap dari suatu titik tetap. Titik tetap dari lingkaran disebut pusat lingkaran,

Lebih terperinci

JARING-JARING BANGUN RUANG

JARING-JARING BANGUN RUANG BAHAN BELAJAR MANDIRI 6 JARING-JARING BANGUN RUANG PENDAHULUAN Bahan Belajar mandiri 6 mempelajari tentang Jaring-jaring Bangun ruang : maksudnya jika bangun ruang seperti kubus, balok, kerucut dan yang

Lebih terperinci

Pembahasan Soal UN Matematika SMP Tahun Ajaran 2010/2011 Paket 12

Pembahasan Soal UN Matematika SMP Tahun Ajaran 2010/2011 Paket 12 Pembahasan Soal UN Matematika SMP Tahun Ajaran 2010/2011 Paket 12 Tim Pembahas : Th. Widyantini Untung Trisna Suwaji Wiworo Choirul Listiani Estina Ekawati Nur Amini Mustajab PPPPTK Matematika Yogyakarta

Lebih terperinci

Pelatihan-osn.com Konsultan Olimpiade Sains Nasional contact person : ALJABAR

Pelatihan-osn.com Konsultan Olimpiade Sains Nasional  contact person : ALJABAR ALJABAR 1. Diberikan a 4 + a 3 + a 2 + a + 1 = 0. Tentukan a 2000 + a 2010 + 1. 2. Diberikan sistem persamaan 2010(x y) + 2011(y z) + 2012(z x) = 0 2010 2 (x y) + 2011 2 (y z) + 2012 2 (z x) = 2011 Tentukan

Lebih terperinci

LINGKARAN. Lingkaran. pusat lingkaran diskriminan posisi titik posisi garis garis kutub gradien. sejajar tegak lurus persamaan lingkaran

LINGKARAN. Lingkaran. pusat lingkaran diskriminan posisi titik posisi garis garis kutub gradien. sejajar tegak lurus persamaan lingkaran LINGKARAN Persamaan Persamaan garis singgung lingkaran Persamaan lingkaran berpusat di (0, 0) dan (a, b) Kedudukan titik dan garis terhadap lingkaran Merumuskan persamaan garis singgung yang melalui suatu

Lebih terperinci

II. LANDASAN TEORI. Dalam bab ini akan didiskusikan unsur tak terdefinisi, aksioma-aksioma, istilahistilah,

II. LANDASAN TEORI. Dalam bab ini akan didiskusikan unsur tak terdefinisi, aksioma-aksioma, istilahistilah, 3 II. LANDASAN TEORI Dalam bab ini akan didiskusikan unsur tak terdefinisi, aksioma-aksioma, istilahistilah, definisi-definisi dan teorema-teorema yang berhubungan dengan penelitian ini. 2.1 Geometri Insidensi

Lebih terperinci

abcde dengan a, c, e adalah bilangan genap dan b, d adalah bilangan ganjil? A B C D E. 3000

abcde dengan a, c, e adalah bilangan genap dan b, d adalah bilangan ganjil? A B C D E. 3000 Hal. 1 / 7 METHODIST-2 EDUCATION EXPO LOMBA SAINS PLUS ANTAR PELAJAR TINGKAT SMA SE-SUMATERA UTARA TAHUN 2015 BIDANG WAKTU : MATEMATIKA : 120 MENIT PETUNJUK : 1. Pilihlah jawaban yang benar dan tepat.

Lebih terperinci

Keywords : Galois Field GF (p n ), Euclidean Geometry EG (2, p n ), Projective Geometry PG (2, p n ).

Keywords : Galois Field GF (p n ), Euclidean Geometry EG (2, p n ), Projective Geometry PG (2, p n ). GEOMETRI BERHINGGA ATAS GF(P N ) UNTUK MEMBENTUK ORTHOGONAL SERIES DESIGNS Bambang Irawanto,Anisah Jurusan Matematika FMIPA UNDIP ABSTRACT---Galois Fields GF (p n ) where p n is a number of elements with

Lebih terperinci

SELEKSI OLIMPIADE TINGKAT PROVINSI 2007 TIM OLIMPIADE MATEMATIKA INDONESIA 2008

SELEKSI OLIMPIADE TINGKAT PROVINSI 2007 TIM OLIMPIADE MATEMATIKA INDONESIA 2008 Dapatkan soal-soal lainnya di http://forum.pelatihan-osn.com SELEKSI OLIMPIADE TINGKAT PROVINSI 2007 TIM OLIMPIADE MATEMATIKA INDONESIA 2008 Bidang Matematika Bagian Pertama Waktu : 90 Menit DEPARTEMEN

Lebih terperinci

RENCANA PEMBELAJARAN SEMESTER (RPS)

RENCANA PEMBELAJARAN SEMESTER (RPS) RENCANA PEMBELAJARAN SEMESTER (RPS) MSH1B3 LOGIKA MATEMATIKA PROGRAM STUDI S1 ILMU KOMPUTASI FAKULTAS INFORMATIKA TELKOM UNIVERSITY LEMBAR PENGESAHAN Rencana Semester (RPS) ini telah disahkan untuk mata

Lebih terperinci

A. Titik, Garis, dan Bidang dalam Ruang. Definisi 1 (Space) Ruang (space) adalah himpunan semua titik.

A. Titik, Garis, dan Bidang dalam Ruang. Definisi 1 (Space) Ruang (space) adalah himpunan semua titik. Dalam geometri bidang atau geometri dimensi-2 perhatian kita pada dua dimensi, yaitu dimensi-1 dan dimensi-2. Ketika kita mempelajarinya, imajinasi kita pada selembar kertas tipis yang terhampar tak terbatas.

Lebih terperinci