GEOMETRI PROJEKTIF DAN APLIKASINYA. Sangadji dan Marsodi *
|
|
|
- Teguh Budiman
- 9 tahun lalu
- Tontonan:
Transkripsi
1 (43-52) GEOMETRI PROJEKTIF DAN APLIKASINYA Sangadji dan Marsodi * ABSTRAK GEOMETRI PROJEKTIF DAN APLIKASINYA. Geometri projektif adalah cabang geometri yang mempelajari sifat-sifat dan konfigurasi geometri yang tidak mengalami perubahan bila diprojeksikan. Geometri projekif juga disebut geometri posisi atau geometri deskriptif. Geometri ini digunakan di engineering khususnya di bidang konstruksi. Makalah ini membahas antara lain teorema Pascal, dualitas, teorema Brianchon, dan juga aplikasinya. Kata-kata kunci: teorema Pascal, dualitas, teorema Brianchon ABSTRACT PROJECTIVE GEOMETRY AND ITS APPLICATIONS. Projective geometry is a branch of geometry dealing with the properties and invariants of geometric figures under projection. Projective geometry is also called geometry of position or descriptive geometry. It is used in engineering, especially in construction. The paper discusses. Pascal s theorem, duality, Brianchon s theorem and some others, as well as the applications. Keywords: Pascal s theorem, duality, Brianchon s theorem PENDAHULUAN Arti Geometri Projektif Geometri projektif adalah cabang geometri yang mempelajari sifat-sifat dari konfigurasi geometri yang tidak mengalami perubahan bila konfigurasi geometri tersebut diprojeksikan. Sebagai contoh, pengertian panjang, luas, volume jelas mengalami perubahan bila diprojeksikan, sehingga pengertian tersebut tidak dibicarakan dalam geometri projektif. Sedangkan pengertian titik terletak pada garis dan garis terletak pada bidang dibicarakan dalam geometri projektif. * Pusat Pengembangan Teknologi Informasi dan Komputasi - BATAN 43
2 Prinsip Dualitas Hasil yang mengagumkan dari geometri projektif adalah prinsip dualitas yang menyatakan bahwa teorema-teorema misalnya teorema Pascal dan teorema Brianchon dapat ditransformasikan dari satu ke yang lain. Secara umum, semua proposisi dalam geometri projektif terjadi dalam pasangan dual, dengan pertukaran titik dan garis. Aksioma-aksioma dalam Geometri Projektif Aksioma-aksioma dalam geometri projektif adalah:. Bila A dan B adalah dua titik yang berlainan pada bidang, terdapatlah sekurangkurangnya satu garis yang memuat kedua titik tersebut. 2. Bila A dan B adalah dua titik yang berlainan pada bidang, terdapatlah tidak lebih dari satu garis yang memuat kedua titik tersebut. 3. Setiap dua garis pada bidang mempunyai paling sedikit satu titik (mungkin titik di tak berhingga) berserikat pada bidang tersebut. 4. Terdapat paling sedikit satu garis pada suatu bidang. 5. Setiap garis memuat paling sedikit tiga titik pada bidang yang memuatnya. 6. Semua titik-titik pada bidang bukan kepunyaan satu garis yang sama. BEBERAPA TEOREMA Dalam geometri projektif dikenal beberapa teorema penting. Di bawah ini diberikan teorema-teorema dari Pappus, Desargues, Pascal dan Brianchon. Teorema Pappus Misalkan P, P2, P3 tiga titik pada garis g dan Q, Q2, Q3 tiga titik pada garis g 2. Misalkan R perpotongan P 2Q3 dan P 3Q2, S perpotongan PQ 3 dan P 3Q, dan T perpotongan P Q2 dan P 2Q. Maka R, S, T kolinier. 44
3 P P2 P3 T S R Q Q2 Q3 Teorema Desargues Misalkan titik P tidak terletak pada segitiga ABC. Misalkan A, B, C berturutturut titik-titik pada garis-garis PA, PB, PC. Misalkan perpanjangan garis-garis BC dan B C berpotongan di R. Juga, AC dan A C berpotongan di S serta AB dan A B berpotongan di T. Maka R, S dan T kolinier. P A R B C A C S B T 45
4 Teorema Pascal Misalkan ABCDEF adalah segienam dengan titik-titik sudutnya terletak pada konik (irisan kerucut dengan bidang datar). Misalkan R adalah titik potong sisi-sisi AB dan DE, S titik potong sisi-sisi BC dan EF, T titik potong sisi-sisi CD dan FA. Maka titik-titik R, S dan T kolinier. A F B T E D C S R Teorema Brianchon Misalkan dimungkinkan untuk melingkupi irisan kerucut dalam segienam ABCDEF. Maka diagonal-diagonal AD, BE, CF konkuren. B A C F E D 46
5 APLIKASI Di bawah ini diberikan problem-problem yang sederhana tentang aplikasi dari geometri projektif menggunakan hasil pembahasan di muka. Contoh Bagian dari garis-garis g dan g 2 terletak pada sepotong kertas dan titik potong mereka terletak di luar sepotong kertas tersebut. Titik P terletak pada sepotong kertas tersebut dan tidak terletak pada g maupun g 2. Konstruksikan suatu garis yang melalui P dan konkuren dengan g dan g 2. g P. g 2 47
6 Contoh 2 Bagian dari garis-garis g dan g 2 terletak pada sepotong kertas dan titik potong mereka (titik P) terletak di luar sepotong kertas tersebut. Demikian juga, bagian dari garis-garis h dan h 2 terletak pada sepotong kertas itu dan titik potong mereka (titik Q) terletak di luar sepotong kertas tersebut. Konstruksikan bagian dari garis PQ yang terletak pada sepotong kertas tersebut. g g 2 h h 2 48
7 KESIMPULAN. Telah diberikan empat teorema-teorema Pappus, Desargues, Pascal dan Brianchon. Teorema Pascal dan teorema Brianchon saling dual. 2. Dengan teorema-teorema tersebut dapat digunakan untuk membantu dalam masalah konstruksi. 49
8 DAFTAR PUSTAKA. BARAGAR, ARTHUR., A Survey of Classical and Modern Geometries with Computer Activities. New Jersey, USA, Prentice Hall, Upper Saddle River, COURANT, RICHARD and HERBERT ROBBINS, What is Mathematics? An Elementary Approach to Ideas and Methods. New York, Oxford University Press, USA Projective Geometry. Mathworld.wolfram.com. Wolfram Research
9 DISKUSI ALVANO YULIAN Melalui Himpunan Matematika Indonesia agar diusulkan ke Departemen Pendidikan Nasional bahwa Mata Pelajaran Ilmu Ukur Sudut, Ilmu Ukur Ruang, Ilmu Ukur Bayangan (Stereometri) dapat diajarkan kembali di SMU-IPA karena sampai saat ini perangkat lunak khususnya image processing masih tetap menggunakan prinsipprinsip tersebut. SANGADJI Usulan yang baik dan tugas kita bersama untuk merealisasikannya melalui jalur atau prosedur yang ada. 5
10 DAFTAR RIWAYAT HIDUP. Nama : Sangadji 2. Tempat/Tanggal Lahir : Solo, 6 Juni Instansi : P2TIK-BATAN 4. Pekerjaan / Jabatan : Peneliti 5. Riwayat Pendidikan : S Matematika FMIPA UGM S2 Matematika University of Arizona,USA S3 Matematika University of Montana,USA 6. Pengalaman Kerja : 974-Sekarang,BATAN 998-Sekarang, UBINUS 7. Organisasi Professional : Himpunan Matematika Indonesia 52
GEOMETRI EUKLID VERSUS GEOMETRI SFERIK. Sangadji *
GEOMETRI EUKLID VERSUS GEOMETRI SFERIK Sangadji * ABSTRAK GEOMETRI EUKLID VERSUS GEOMETRI SFERIK. Pada makalah ini akan dibahas hubungan antara formula Pythagoras dan formula sinus dari segitiga pada geometri
TRANSFORMASI MOBIUS 1. Sangadji *
Transformasi Mobius (Sangadji) TRANSFORMASI MOBIUS 1 Sangadji * ABSTRAK TRANSFORMASI MOBIUS. Transformasi Mobius atau bilinear, sudah lama dikenal. Topik ini muncul pada beberapa bidang, misalnya pada
FUNGSI-FUNGSI PADA TEORI BILANGAN DAN APLIKASINYA PADA PERHITUNGAN KALENDER. Sangadji *
FUNGSI-FUNGSI PADA TEORI BILANGAN DAN APLIKASINYA PADA PERHITUNGAN KALENDER Sangadji * ABSTRAK FUNGSI-FUNGSI PADA TEORI BILANGAN DAN APLIKASINYA PADA PERHITUNGAN KALENDER. Dalam makalah ini dibahas fungsi-fungsi
GEOMETRI Geometri Dasar Oleh: WIDOWATI Jurusan Matematika FMIPA UNDIP
GEOMETRI Geometri Dasar Oleh: WIDOWATI Jurusan Matematika FMIPA UNDIP 1 Geometri dasar Himpunan berbentuk beserta sistem aksioma yang melibatkan 5 aksioma disebut Struktur Geometri Euclid, dengan unsurunsur
QUATERNION DAN APLIKASINYA. Sangadji *
QUATERNION DAN APLIKASINYA Sangadji * ABSTRAK QUATERNION DAN APLIKASINYA.Dalam matematika, quaternion merupakan perluasan dari bilangan-bilangan kompleks yang tidak komutatif, dan diterapkan dalam mekanika
Hubungan Kekongruenan Dalam Geometri Terhingga
Prosiding Semirata FMIPA Universitas Lampung, 2013 Hubungan Kekongruenan Dalam Geometri Terhingga Lina Ardila Sari, Suharsono, Muslim Ansori Jurusan Matematika FMIPA Universitas Lampung Alamat Email :
TEOREMA PAPPUS PADA ELIPS, PARABOLA DAN HIPERBOLA. Fakultas Matematika dan Ilmu Pengetahuan Alam Univeritas Riau Kampus Bina Widya Indonesia
TEOREMA PAPPUS PADA ELIPS, PARABOLA DAN HIPERBOLA Ardiansyah Yan Hakim Nst. 1*, Sri Gemawati 2, Musraini M. 2 1 Mahasiswa Program S1 Matematika 2 Dosen Jurusan Matematika Fakultas Matematika dan Ilmu Pengetahuan
Modul 3 SIMETRI, PERSEGIPANJANG, PERSEGI, DAN KESEJAJARAN GARIS
Modul 3 SIMETRI, PERSEGIPANJANG, PERSEGI, DAN KESEJAJARAN GARIS A. Pengantar Materi yang akan di bahas pada kegiatan pembelajaran ini terdiri atas pengertian simetri lipat, simetri putar, setengah putaran,
ISOMETRI TERHADAP GEOMETRI INSIDENSI TERURUT
Prosiding Semirata FMIPA Universitas Lampung, 2013 ISOMETRI TERHADAP GEOMETRI INSIDENSI TERURUT Damay Lisdiana, Muslim Ansori, Amanto Jurusan Matematika FMIPA Universitas Lampung Email: [email protected]
Oleh : Sutopo, S.Pd., M.Pd. Prodi P Mat-Jurusan PMIPA FKIP UNS
Oleh : Sutopo, S.Pd., M.Pd. Prodi P Mat-Jurusan PMIPA FKIP UNS Materi KKD I Konsep dasar geometri dan segitiga (termasuk teorema dan aksioma terkait) KKD II Poligon dan Lingkaran (sifat dan luas) KKD III
Geometri Insidensi. Modul 1 PENDAHULUAN
Modul 1 Geometri Insidensi M PENDAHULUAN Drs. Rawuh odul Geometri Insidensi ini berisi pembahasan tentang pembentukkan sistem aksioma dan sifat-sifat yang mendasari geometri tersebut. Sebelumnya Anda akan
Rasio. atau 20 : 10. Contoh: Tiga sudut memiliki rasio 4 : 3 : 2. tentukan sudut-sudutnya jika:
Rasio Rasio adalah perbandingan ukuran. Rasio digunakan untuk membandingkan besaran dengan pembagian. Misal dua segitiga memiliki bentuk yang sama tetapi ukurannya berbeda. Salah satu sisinya yang seletak
FORMULA HERON: TINJAUAN DI GEOMETRI EUKLID DAN GEOMETRI SFERIK 1. Sangadji 2
PROSIDING ISBN : 978 979 16353 3 FORMUL HERON: TINJUN DI GEOMETRI EUKLID DN GEOMETRI SFERIK 1 T 8 Sangadji strak Formula Heron mempunyai dua versi. Versi pertama adalah Formula Heron dalam geometri Euklid
Geometri Dimensi Dua
Geometri Dimensi Dua Materi Pelatihan Guru SMK Model Seni/Pariwisata/Bisnis Manajemen Yogyakarta, 28 November 23 Desember 2010 Oleh Dr. Ali Mahmudi JURUSAN PENDIDIKAN MATEMATIKA FAKULTAS MATEMATIKA DAN
LOGO JARAK DUA TITIK
LOGO JARAK DUA TITIK JARAK TITIK A KE TITIK B Jakarta Bandung Lintasan yang ditempuh kereta-api Lintasan yang ditempuh sebuah mobil Ruas garis yang menghubungkan kedua kota LOGO www.themegallery.com POSTULAT
BAB I PENDAHULUAN. 1.1 Latar Belakang Masalah
1 BAB I PENDAHULUAN 1.1 Latar Belakang Masalah Kata geometri berasal dari bahasa Yunani yaitu geos yang berarti bumi dan metron yang berarti pengukuran. Orang-orang dahulu baik yang berbangsa Mesir, Cina,
MEMBUKTIKAN KETAKSAMAAN ERDŐS-MORDELL DENGAN MENGGUNAKAN JARAK BERTANDA. ABSTRACT
MEMBUKTIKAN KETAKSAMAAN ERDŐS-MORDELL DENGAN MENGGUNAKAN JARAK BERTANDA Riva Atul Wahidah 1), Mashadi 2), Hasriati 2) [email protected] 1) Mahasiswa Program S1 Matematika FMIPA-UR 2) Dosen Matematika
MEMOTIVASI SISWA BELAJAR GEOMETRI DENGAN LINGKARAN TITIK SEMBILAN. Sugiyono Jurusan Pendidikan Matematika FMPA Universitas Negeri Yogyakarta.
MEMOTIVASI SISWA BELAJAR GEOMETRI DENGAN LINGKARAN TITIK SEMBILAN Sugiyono Jurusan Pendidikan Matematika FMPA Universitas Negeri Yogyakarta Abstrak Sudah tidak asing lagi jika ada siswa SMP atau SMA yang
SILABUS PEMBELAJARAN
SILABUS PEMBELAJARAN Sekolah :... Kelas : VIII (Delapan) Mata Pelajaran : Matematika Semester : I (satu) ALJABAR Standar : 1. Memahami bentuk aljabar, relasi,, dan persamaan garis lurus Indikator Kegiatan
Bab 3 KONSTRUKSI GEOMETRIS 3.1. KONSTRUKSI-KONSTRUKSI DASAR.
Bab 3 KONSTRUKSI GEOMETRIS Materi : Konstruksi-konstruksi dasar. Garis-garis lengkung. Gambar proyeksi. Gambar pandangan tunggal. Proyeksi ortogonal (gambar pandangan majemuk). 3.1. KONSTRUKSI-KONSTRUKSI
RUAS GARIS BERARAH. Andaikan sekarang ada 2 ruas garis berarah AB dan CD. Dalam
RUAS GARIS BERARAH 9.1 Definisi dan Sifat-sifat ang Sederhana Untuk melajutkan penelidikan tentang isometri diperlukan pengertian tentang ruas garis berarah sebagai berikut: Definisi: Suatu ruas garis
Beberapa Benda Ruang Yang Beraturan
Beberapa Benda Ruang Yang Beraturan Kubus Tabung rusuk kubus = a volume = a³ panjang diagonal bidang = a 2 luas = 6a² panjang diagonal ruang = a 3 r = jari-jari t = tinggi volume = π r² t luas = 2πrt Prisma
HUBUNGAN SEGITIGA NAGEL DENGAN SEGITIGA ASALNYA. Fakultas Matematika dan Ilmu Pengetahuan Alam Univeritas Riau Kampus Bina Widya Indonesia
HUBUNGAN SEGITIGA NAGEL DENGAN SEGITIGA ASALNYA Reni Widya 1*, Hasriati 2, M. Natsir 2 1 Mahasiswa Program S1 Matematika 2 Dosen Jurusan Matematika Fakultas Matematika dan Ilmu Pengetahuan Alam Univeritas
PROYEKSI GEOMETRI FUZZY PADA RUANG
PROYEKSI GEOMETRI FUZZY PADA RUANG Muhammad Izzat Ubaidillah Mahasiswa Jurusan Matematika UIN Maulana Malik Ibrahim Malang e-mail: [email protected] ABSTRAK Geometri fuzzy merupakan perkembangan dari
II. TINJAUAN PUSTAKA. sebuah geometri selain aksioma diperlukan juga unsur-unsur tak terdefinisi. Untuk. 2. Himpunan titik-titik yang dinamakan garis.
5 II. TINJAUAN PUSTAKA 2.1 Geometri Insidensi Suatu geometri dibentuk berdasarkan aksioma yang berlaku dalam geometrigeometri tersebut. Geometri insidensi didasari oleh aksioma insidensi. Di dalam sebuah
MAKALAH. GEOMETRI BIDANG Oleh Asmadi STKIP Muhammadiyah Pagaralam
MAKALAH GEOMETRI BIDANG Oleh Asmadi STKIP Muhammadiyah Pagaralam 1 BAB I PENDAHULUAN A. Latar Belakang Kata geometri berasal dari bahasa Yunani yang berarti ukuran bumi. Maksudnya mencakup segala sesuatu
DALIL PYTHAGORAS DAN PEMECAHAN MASALAH GEOMETRI
DALIL PYTHAGORAS DAN PEMECAHAN MASALAH GEOMETRI Segitiga 1. Beberapa sifat yang berlaku pada segitiga adalah : Jumlah sudut-sudut sembarang segitiga adalah 180 0 Pada segitiga ABC berlaku AC = BC B = A
OPTIMISASI KONVEKS: KONSEP-KONSEP
Prosiding Seminar Nasional Penelitian, Pendidikan dan Penerapan MIPA, Fakultas MIPA, Universitas Negeri Yogyakarta, 14 Mei 2011 OPTIMISASI KONVEKS: KONSEP-KONSEP Caturiyati 1 dan Himmawati Puji Lestari
PEMANFAATAN KOMPUTER PROGRAM CABRI DALAM PEMBELAJARAN GEOMETRI (II)
Prosiding Seminar Nasional Penelitian, Pendidikan dan Penerapan MIPA Fakultas MIPA, Universitas Negeri Yogyakarta, 16 Mei 2009 PEMANFAATAN KOMPUTER PROGRAM CABRI DALAM PEMBELAJARAN GEOMETRI (II) Sugiyono
Himpunan dan Sistem Bilangan Real
Modul 1 Himpunan dan Sistem Bilangan Real Drs. Sardjono, S.U. PENDAHULUAN M odul himpunan ini berisi pembahasan tentang himpunan dan himpunan bagian, operasi-operasi dasar himpunan dan sistem bilangan
BAB I PENDAHULUAN A. Latar Belakang B. Rumusan Masalah
BAB I PENDAHULUAN A. Latar Belakang Membandingkan dua benda secara geometris dapat dilihat dari dua aspek, yaitu bentuk dan ukurannya. Satu benda yang memiliki bentuk yang sama tapi dengan ukuran berbeda
SIMETRI BAHAN BELAJAR MANDIRI 3
BAHAN BELAJAR MANDIRI 3 SIMETRI PENDAHULUAN Secara umum bahan belajar mandiri ini menjelaskan tentang konsep simetri lipat dan simetri putar serta penerapannya ke dalam papan geoboard. Setelah mempelajari
Matematika Proyek Perintis I Tahun 1979
Matematika Proyek Perintis I Tahun 979 MA-79-0 Irisan himpunan : A = { x x < } dan himpunan B = { x < x < 8 } ialah himpunan A. { x x < 8 } { x x < } { x < x < 8 } { x < x < } { x < x } MA-79-0 Apabila
termasuk pembahasan hubungan lingkaran dengan segiempat, misalnya pembahasan tentang segiempat siklik (segiempat talibusur).
KATA PENGANGAR Buku ini merupakan penyempurnaan materi kuliah Geometri Bidang selama 3 tahun terakhir. Karena adanya perubahan kurikulum di tingkat sekolah menengah, maka materi yang ada di dalam buku
KAJIAN SEGIEMPAT TALI BUSUR DAN SEGIEMPAT GARIS SINGGUNG PADA SATU LINGKARAN
1 Kajian Segiempat Tali (Izza Nur Sabila) KAJIAN SEGIEMPAT TALI BUSUR DAN SEGIEMPAT GARIS SINGGUNG PADA SATU LINGKARAN STUDY OF INSCRIBED QUADRILATERAL AND CIRCUMSCRIBED QUADRILATERAL IN ONE CIRCLE Oleh:
KONGRUENSI PADA SEGITIGA
KONGRUENSI PADA SEGITIGA (Jurnal 6) Memen Permata Azmi Mahasiswa S2 Pendidikan Matematika Universitas Pendidikan Indonesia Perkuliah geometri kembali pada materi dasar yang kita anggap remeh selama ini.
A. Jumlah Sudut dalam Segitiga. Teorema 1 Jumlah dua sudut dalam segitiga kurang dari Bukti:
Geometri Netral? Geometri yang dilengkapi dengan sistem aksioma-aksioma insidensi, sistem aksioma-aksioma urutan, sistem aksioma kekongruenan (ruas garis, sudut, segitiga) dan sistem aksioma-aksioma archiemedes
Pembahasan OSN Matematika SMA Tahun 2013 Seleksi Tingkat Nasional Tutur Widodo
Tutur Widodo OSN Matematika SMA 01 Pembahasan OSN Matematika SMA Tahun 01 Seleksi Tingkat Nasional Tutur Widodo 1. Diketahui bangun persegi panjang berukuran 4 6 dengan beberapa ruas garis, seperti pada
Vektor dan Operasi Dasarnya
Modul 1 Vektor dan Operasi Dasarnya Drs. Sukirman, M.Pd. D PENDAHULUAN alam modul ini disajikan pengertian vektor, aljabar vektor dan aplikasinya dalam geometri. Aljabar vektor membicarakan penjumlahan
PERSIAPAN UN MATEMATIKA SMP 2014
PERSIAPAN UN MATEMATIKA SMP 014 Berilah tanda silang (x) pada huruf a, b, c, atau d di depan jawaban yang benar! 1. Di suatu daerah yang berada pada ketinggian.500 meter di atas permukaan laut suhunya
GEOMETRI TRANSFORMASI SETENGAH PUTARAN
GEOMETRI TRANSFORMASI SETENGAH PUTARAN Disusun Oleh : Kelompok Empat (V1 A) 1. Purna Irawan (4007178 ) 2. Sudarsono (4007028 p) 3. Mellyza Vemi R. (4007217 ) 4. Kristina Nainggolan (4007013 ) 5. Desi Kartini
TOPIK 3 : GEOMETRI KOORDINAT
SPA 04 Peta Konsep KOORDINAT Koordinat suatu titik A ( 1 ) x y Titik tengah Titik yang membahagikan suatu garis lurus kepada dua bahagian yang sama panjang. Titik tengah Jarak antara dua titik Jarak (x
SELEKSI OLIMPIADE MATEMATIKA INDONESIA 2005 TINGKAT PROVINSI
SELEKSI OLIMPIADE MATEMATIKA INDONESIA 2005 TINGKAT PROVINSI Bidang Matematika Bagian Pertama Waktu : 90 Menit DEPARTEMEN PENDIDIKAN NASIONAL DIREKTORAT JENDERAL PENDIDIKAN DASAR DAN MENENGAH DIREKTORAT
Modul ini adalah modul ke-7 dalam mata kuliah Matematika. Isi modul ini
PENDAHULUAN Modul ini adalah modul ke-7 dalam mata kuliah Matematika. Isi modul ini membahas tentang transformasi. Modul ini terdiri dari 2 kegiatan belajar. Pada kegiatan belajar 1 akan dibahas mengenai
BAB IV KONSTRUKSI GEOMETRIS
BAB IV KONSTRUKSI GEOMETRIS Panduan Menggambar Teknik Mesin 1 A. Membuat Segilima Beraturan Gambar 4.1 menunjukkan cara membuat suatu segi lima yang panjang salah satu sisinya sudah diketahui. Garis AB
MENUNJUKKAN SIFAT SIFAT AFFINITAS PERSPEKTIF DENGAN MENGGUNAKAN PROGRAM CABRI. Oleh Sugiyono Jurusan Pendidikan Matematika FMIPA UNY ABSTRAK
MENUNJUKKAN SIFAT SIFAT AFFINITAS PERSPEKTIF DENGAN MENGGUNAKAN PROGRAM CABRI Oleh Sugiyono Jurusan Pendidikan Matematika FMIPA UNY ABSTRAK Misalkan s suatu garis dalam bidang (Euclides), α menyatakan
KISI-KISI SOAL OLIMPIADE MATEMATIA VEKTOR NASIONAL (OMVN) 2015 HIMPUNAN MAHASISWA JURUSAN MATEMATIKA UNIVERSITAS NEGERI MALANG
KISI-KISI SOAL OLIMPIADE MATEMATIA VEKTOR NASIONAL (OMVN) 2015 HIMPUNAN MAHASISWA JURUSAN MATEMATIKA UNIVERSITAS NEGERI MALANG TINGKAT SD 1. Bilangan dan Operasinya 2. Kelipatan dan Faktor 3. Angka Romawi,
OPTIMISASI KONVEKS: Konsep-konsep
OPTIMISASI KONVEKS: Konsep-konsep Caturiyati, M.Si 1 dan Himmawati Puji Lestari, M.Si 2 1,2 Jurdik Matematika FMIPA UNY 1 [email protected] 2 [email protected] Abstrak Pada masalah optimisasi konveks
UKURAN RUAS-RUAS GARIS PADA SEGITIGA SKRIPSI
UKURAN RUAS-RUAS GARIS PADA SEGITIGA SKRIPSI Diajukan kepada Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Negeri Yogyakarta untuk Memenuhi Sebagian Persyaratan guna Memperoleh Gelar Sarjana
C. 9 orang B. 7 orang
1. Dari 42 siswa kelas IA, 24 siswa mengikuti ekstra kurikuler pramuka, 17 siswa mengikuti ekstrakurikuler PMR, dan 8 siswa tidak mengikuti kedua ekstrakurikuler tersebut. Banyak siswa yang mengikuti kedua
Sumber Belajar 2x40mnt Buku teks. 2x40mnt. 2x40mnt. (2x + 3) + (-5x 4) (-x + 6)(6x 2) Tes tulis Tes uraian Berapakah: berikut: Teknik Bentuk
Sekolah : SMP Kelas : VIII Mata Pelajaran : Matematika Semester : I(satu) SILABUS Standar : ALJABAR 1. Memahami bentuk aljabar, relasi, fungsi, dan persamaan garis lurus 1.1 Melakukan operasi aljabar Bentuk
Geometri Ruang (Dimensi 3)
Geometri Ruang (Dimensi 3) Beberapa Benda Ruang Yang Beraturan Kubus Tabung volume = a³ luas = 6a² rusuk kubus = a panjang diagonal = a 2 panjang diagonal ruang = a 3 r = jari-jari t = tinggi volume =
Bab II TINJAUAN PUSTAKA. Aksioma-aksioma yang membentuk geometri Affin disebut dengan aksioma playfair
Bab II TINJAUAN PUSTAKA 2.1 Konsep Dasar Geometri Affin ( Rawuh, 2009) Aksioma-aksioma yang membentuk geometri Affin disebut dengan aksioma playfair yaitu aksioma yang menyatakan bahwa melalui suatu titik
TEOREMA PYTHAGORAS PADA BIDANG TAXICAB
TEOREMA PYTHAGORAS PADA BIDANG TAXICAB ZULVIATI PUTRI Program Studi Matematika, Fakultas Matematika dan Ilmu Pengetahuan Alam, Universitas Andalas Padang, Kampus UNAND Limau Manis Padang, Indonesia [email protected]
Modul 2 SEGITIGA & TEOREMA PYTHAGORAS
Modul 2 SEGITIGA & TEOREMA PYTHAGORAS A. Pengantar Materi yang akan di bahas pada kegiatan pembelajaran ini terdiri atas pengertian segitiga, hubungan sisi-sisi segitiga, jenis-jenis segitiga ditinjau
PEMBAHASAN UN SMA TAHUN PELAJARAN 2009/2010 MATEMATIKA PROGRAM STUDI IPA
PEMBAHASAN UN SMA TAHUN PELAJARAN 009/00 MATEMATIKA PROGRAM STUDI IPA PEMBAHAS :. Sigit Tri Guntoro, M.Si.. Jakim Wiyoto, S.Si. 3. Marfuah, M.T. 4. Rohmitawati, S.Si. PPPPTK MATEMATIKA 00 . Perhatikan
SD kelas 6 - MATEMATIKA BAB 11. BIDANG DATARLatihan Soal 11.1
SD kelas 6 - MATEMATIKA BAB 11. BIDANG DATARLatihan Soal 11.1 1. Perhatikan gambar di bawah ini! http://primemobile.co.id/assets/uploads/materi/123/1701_5.png Dari bangun datar di atas, maka sifat bangun
PEWARNAAN PADA GRAF BINTANG SIERPINSKI. Siti Khabibah Departemen Matematika, FSM Undip
JMP : Vol. 9 No. 1, Juni 2017, hal. 37-44 PEWARNAAN PADA GRAF BINTANG SIERPINSKI Siti Khabibah Departemen Matematika, FSM Undip [email protected] ABSTRACT. This paper discuss about Sierpinski star
PEMBUKTIAN RUMUS LUAS SEGITIGA BINTANG PERTAMA MORLEY DI DALAM SEGITIGA SEMBARANG Mahasiswa Program Studi Pendidikan Matematika FKIP UNSRI
PEMBUKTIAN RUMUS LUAS SEGITIGA BINTANG PERTAMA MORLEY DI DALAM SEGITIGA SEMBARANG Mahasiswa Program Studi Pendidikan Matematika FKIP UNSRI Ambarsari Kusuma Wardani Email : ambarkusuma8@yahoocom Abstrak
K13 Revisi Antiremed Kelas 12 Matematika
K Revisi Antiremed Kelas Matematika Geometri Bidang Ruang - Latihan Soal Doc. Name: RKARMATWJB00 Version : 0-0 halaman 0. Diketahui kubus ABCD,EFGH dengan panjang rusuk. Jika P titik HG,Q titik tengah
PEMBENTUKAN ELEMEN DAN NODE UNTUK MENDUKUNG PEMAKAIAN METODA ELEMEN HINGGA. Utaja *
PEMBENTUKAN ELEMEN DAN NODE UNTUK MENDUKUNG PEMAKAIAN METODA ELEMEN HINGGA Utaja * ABSTRAK PEMBENTUKAN ELEMEN DAN NODE UNTUK MENDUKUNG PEMAKAIAN METODA ELEMEN HINGGA. Salah satu kesulitan pemakaian meto-de
PEMBUKTIAN TEOREMA BUTTERFLY DI GEOMETRI BOLA. Yuman Agistia. Mahasiswa Program Studi Pendidikan Matematika.
PEMBUKTIAN TEOREMA BUTTERFLY DI GEOMETRI BOLA Yuman Agistia Mahasiswa Program Studi Pendidikan Matematika e-mail: [email protected] Abstrak Makalah ini membahas tentang pembuktian Teorema Butterfly.
1. Jika B = {bilangan prima kurang dari 13} maka jumlah himpunan penyelesaiannya... A. 4
1. Jika B = {bilangan prima kurang dari 13} maka jumlah himpunan penyelesaiannya... A. 4 C. 6 B. 5 D. 7 Kunci : B B = (bilangan prima kurang dan 13) Anggota himpunan B = (2, 3, 5, 7, 11) Sehingga banyaknya
PENGAYAAN MATERI OLIMPIADE MATEMATIKA SD GEOMETRI. Oleh : Himmawati P.L
PENGAYAAN MATERI OLIMPIADE MATEMATIKA SD GEOMETRI Oleh : Himmawati P.L Soal matematika yang diujikan di sekolah-sekolah maupun di Ujian Nasional pada umumnya dapat diselesaikan dengan cara-cara biasa.
SOAL DAN PEMBAHASAN UJIAN NASIONAL MATEMATIKA SMP/MTs TAHUN PELAJARAN 2014/2015-TANGGAL 5 Mei 2015
SOAL DAN PEMBAHASAN UJIAN NASIONAL MATEMATIKA SMP/MTs TAHUN PELAJARAN 04/05-TANGGAL 5 Mei 05. Dalam kompetisi matematika, setiap jawaban benar diberi nilai 4, salah dan tidak dijawab. Dari 40 soal yang
Bab. Segitig. Mari menggunakan konsep keliling dan luas bangun datar sederhana dalam pemecahan masalah. Segitiga dan Jajargenjang 103
Bab 4 Segitig gitiga dan Jajargenjang Mari menggunakan konsep keliling dan luas bangun datar sederhana dalam pemecahan masalah. Segitiga dan Jajargenjang 103 104 Ayo Belajar Matematika Kelas IV A. Keliling
TEOREMA VIETA DAN JUMLAH NEWTON. 1. Pengenalan
TEOREMA VIETA DAN JUMLAH NEWTON TUTUR WIDODO. Pengenalan Sebelum berbicara banyak tentang Teorema Vieta dan Identitas Newton, terlebih dahulu saya beri penjelasan singkat mengenai polinomial. Di sekolah
PENENTUAN POSISI KAMERA DENGAN GEODESIC DOME UNTUK PEMODELAN. M. Yoyok Ikhsan *
PENENTUAN POSISI KAMERA DENGAN GEODESIC DOME UNTUK PEMODELAN M. Yoyok Ikhsan * ABSTRAK PENENTUAN POSISI KAMERA DENGAN GEODESIC DOME UNTUK PEMODELAN. Makalah ini memaparkan metode untuk menentukan posisi
PENGEMBANGAN TEOREMA KOSNITA DENGAN MENGGUNAKAN INCENTER
PENGEMBANGAN TEOREMA KOSNITA DENGAN MENGGUNAKAN INCENTER Misra Herlina 1, Mashadi 2, Sri Gemawati 3, Hasriati 4 1 Pendidikan Matematika PPs Universitas Riau 2,3,4 Universitas Riau e-mail: [email protected]
Silabus Matematika Kelas VII Semester Genap 44
Indikator : 1. Menentukan banyaknya cara persegi panjang dapat menempati bingkainya. 2. Menggunakan sifat-sifat persegi panjang, sisi-sisi yang berhadapan sama panjang dalam perhitungan. 3. Menentukan
KEGIATAN BELAJAR II SUDUT ANTARA GARIS DAN BIDANG
KEGIATAN BELAJAR II SUDUT ANTARA GARIS DAN BIDANG A. Pengantar g h 1 h 3 h 2 H Gambar 2.1 Pada Gambar 2 (ii) mana yang dimaksud sudut antara garis g dan bidang H? Sudut antara g dengan h 1, h 2, h 3, atau
BAB 3 PENGENALAN GEOMETRI TERURUT
3 PENGENLN GEOMETRI TERURUT Lobachevsky Lahir di Nizhny Novgorad, Rusia. orangtuanya bernama Ivan Maksimovich Lobachevsky dan Praskovia lexan drovina Lobachevsky. Pada tahun 1800 ayahnya meninggal dan
MENGGAMBAR BIDANG A. MEMBAGI GARIS DAN SUDUT
MENGGAMBAR BIDANG A. MEMBAGI GARIS DAN SUDUT 1. MEMBAGI GARIS a. Membagi garis menjadi 2 bagian yang sama panjang Membagi garis menjadi 2 bagian yang sama panjang menggunakan jangka dapat diikuti melalui
MAKALAH SEGITIGA BOLA. disusun guna memenuhi tugas mata kuliah Astronomi. Program Studi Pendidikan Fisika. oleh. 1. Dyah Larasati ( )
MAKALAH SEGITIGA BOLA disusun guna memenuhi tugas mata kuliah Astronomi Program Studi Pendidikan Fisika oleh 1. Dyah Larasati (4201412042) 2. Lina Kurniawati (4201412091) 3. Qonia Kisbata Rodiya (4201412116)
TEOREMA CAYLEY DAN PEMBUKTIANNYA
TEOREMA CAYLEY DAN PEMBUKTIANNYA Eddy Djauhari Departemen Matematika Fmipa Universitas Padjadjaran Jalan Raya Bandung-Sumedang km. 21, tlp./fax. : 022-7794696, Jatinangor, 45363 Email : [email protected]
Jikax (2 x) = 57, maka jumlah semua bilangan bulat x yang memenuhi adalah A. -5 B. -1 C. 0 D. 1 E. 5
Soal Babak Penyisihan OMITS 011 BAGIAN I. PILIHAN GANDA 1. Hasil kali sebarang bilangan rasional dengan sebarang bilangan irasional selalu merupakan anggota dari himpunan bilangan A. Bulat B. Asli C. Rasional
KEGIATAN BELAJAR SISWA
KEGIATAN BELAJAR SISWA Bidang studi : Matematika Satuan Pendidikan: SLTP Kelas: 3 (tiga) Caturwulan: 1 (satu) Pokok Bahasan: Transformasi Subpokok Bahasan: Refleksi Waktu: 150 Menit Endang Mulyana 2003
SILABUS PEMELAJARAN. Indikator Pencapaian Kompetensi. Menjelaskan jenisjenis. berdasarkan sisisisinya. berdasarkan besar sudutnya
42 43 SILABUS PEMELAJARAN Sekolah :... Kelas : VII (Tujuh) Mata Pelajaran : Matematika Semester : II (dua) GEOMETRI Standar Kompetensi : 6. Memahami konsep segiempat dan segitiga serta menentukan ukurannya
KATA PENGANGAR. Geometri :
KATA PENGANGAR Buku ini merupakan penyempurnaan materi kuliah Geometri Lanjut pada prodi S2 Matematika FMIPA Universitas Riau selama 3 tahun terakhir. Materi ini juga memuat beberapa hasil penelitian hibah
Bab 7. Bangun Ruang Sisi Datar. Standar Kompetensi. Memahami sifat-sifat kubus, balok, prisma, limas dan bagian-bagiannya serta menentukan ukurannya
Bab 7 Bangun Ruang Sisi Datar Standar Kompetensi Memahami sifat-sifat kubus, balok, prisma, limas dan bagian-bagiannya serta menentukan ukurannya Kompetensi Dasar 4.1 Menentukan unsur dan bagian-bagian
KONSISTENSI PADA GEOMETRI EUCLID DAN GEOMETRI HIPERBOLIK
KONSISTENSI PADA GEOMETRI EUCLID DAN GEOMETRI HIPERBOLIK (Jurnal 9) Memen Permata Azmi Mahasiswa S2 Pendidikan Matematika Universitas Pendidikan Indonesia Setelah beberapa pertemuan mempelajari tentang
LOMBA MATEMATIKA NASIONAL KE-25
LOMBA MATEMATIKA NASIONAL KE-5 Babak Penyisihan Tingkat SMP Minggu, 9 November 04 HIMPUNAN MAHASISWA MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS GADJAH MADA SEKIP UTARA UNIT III
50 LAMPIRAN NILAI SISWA SOAL INSTRUMEN Nama : Kelas : No : BERILAH TANDA SILANG (X) PADA JAWABAN YANG DIANGGAP BENAR! 1. Persegi adalah.... a. Bangun segiempat yang mempunyai empat sisi dan panjang
SOAL PREDIKSI ULANGAN KENAIKAN KELAS MATEMATIKA TINGKAT SMP KELAS 8 TAHUN 2014 WAKTU 120 MENIT
SOAL PREDIKSI ULANGAN KENAIKAN KELAS MATEMATIKA TINGKAT SMP KELAS 8 TAHUN 2014 WAKTU 120 MENIT Pilihan 1. Pada gambar berikut, tali busur ditunjukkan oleh A. AO B. CO C. BO D. BC 2. Panjang jari jari suatu
A. Pengantar B. Tujuan Pembelajaran Umum C. Tujuan Pembelajaran Khusus
Modul 5 LINGKARAN A. Pengantar Materi yang akan di bahas pada kegiatan pembelajaran ini terdiri atas pengertian berbagai macam segiempat: jajargenjang, belah ketupat, layang-layang dan trapesium. Disamping
MENUNJUKKAN SIFAT SIFAT AFFINITAS PERSPEKTIF DENGAN MENGGUNAKAN PROGRAM CABRI
Prosiding Seminar Nasional Penelitian, Pendidikan dan Penerapan MIPA Fakultas MIPA, Universitas Negeri Yogyakarta, 16 Mei 2009 MENUNJUKKAN SIFAT SIFAT AFFINITAS PERSPEKTIF DENGAN MENGGUNAKAN PROGRAM CABRI
MULTIPLE KOSNITA MENGGUNAKAN CIRCUMCENTER MELALUI EXCENTER
MULTIPLE KOSNITA MENGGUNAKAN CIRCUMCENTER MELALUI EXCENTER Sylvi Karlia 1, Mashadi 2, M. D. H. Gamal 3, Hasriati 4 1 Pendidikan Matematika PPs Universitas Riau 2,3,4 Universitas Riau e-mail: [email protected]
Teorema Dasar Aljabar Mochamad Rofik ( )
Teorema Dasar Aljabar Mochamad Rofik (20110060311101) Program Studi Pendidikan Matematika Fakultas Keguruan dan Ilmu Pendidikan Universitas Muhammadiyah Malang Teorema Dasar Aljabar Mochamad Rofik Program
Lingkaran adalah tempat kedudukan titik-titik pada bidang yang berjarak
4 Lingkaran 4.1. Persamaan Lingkaran Bentuk Baku. Lingkaran adalah tempat kedudukan titik-titik pada bidang yang berjarak tetap dari suatu titik tetap. Titik tetap dari lingkaran disebut pusat lingkaran,
JARING-JARING BANGUN RUANG
BAHAN BELAJAR MANDIRI 6 JARING-JARING BANGUN RUANG PENDAHULUAN Bahan Belajar mandiri 6 mempelajari tentang Jaring-jaring Bangun ruang : maksudnya jika bangun ruang seperti kubus, balok, kerucut dan yang
Pembahasan Soal UN Matematika SMP Tahun Ajaran 2010/2011 Paket 12
Pembahasan Soal UN Matematika SMP Tahun Ajaran 2010/2011 Paket 12 Tim Pembahas : Th. Widyantini Untung Trisna Suwaji Wiworo Choirul Listiani Estina Ekawati Nur Amini Mustajab PPPPTK Matematika Yogyakarta
Pelatihan-osn.com Konsultan Olimpiade Sains Nasional contact person : ALJABAR
ALJABAR 1. Diberikan a 4 + a 3 + a 2 + a + 1 = 0. Tentukan a 2000 + a 2010 + 1. 2. Diberikan sistem persamaan 2010(x y) + 2011(y z) + 2012(z x) = 0 2010 2 (x y) + 2011 2 (y z) + 2012 2 (z x) = 2011 Tentukan
LINGKARAN. Lingkaran. pusat lingkaran diskriminan posisi titik posisi garis garis kutub gradien. sejajar tegak lurus persamaan lingkaran
LINGKARAN Persamaan Persamaan garis singgung lingkaran Persamaan lingkaran berpusat di (0, 0) dan (a, b) Kedudukan titik dan garis terhadap lingkaran Merumuskan persamaan garis singgung yang melalui suatu
II. LANDASAN TEORI. Dalam bab ini akan didiskusikan unsur tak terdefinisi, aksioma-aksioma, istilahistilah,
3 II. LANDASAN TEORI Dalam bab ini akan didiskusikan unsur tak terdefinisi, aksioma-aksioma, istilahistilah, definisi-definisi dan teorema-teorema yang berhubungan dengan penelitian ini. 2.1 Geometri Insidensi
abcde dengan a, c, e adalah bilangan genap dan b, d adalah bilangan ganjil? A B C D E. 3000
Hal. 1 / 7 METHODIST-2 EDUCATION EXPO LOMBA SAINS PLUS ANTAR PELAJAR TINGKAT SMA SE-SUMATERA UTARA TAHUN 2015 BIDANG WAKTU : MATEMATIKA : 120 MENIT PETUNJUK : 1. Pilihlah jawaban yang benar dan tepat.
Keywords : Galois Field GF (p n ), Euclidean Geometry EG (2, p n ), Projective Geometry PG (2, p n ).
GEOMETRI BERHINGGA ATAS GF(P N ) UNTUK MEMBENTUK ORTHOGONAL SERIES DESIGNS Bambang Irawanto,Anisah Jurusan Matematika FMIPA UNDIP ABSTRACT---Galois Fields GF (p n ) where p n is a number of elements with
SELEKSI OLIMPIADE TINGKAT PROVINSI 2007 TIM OLIMPIADE MATEMATIKA INDONESIA 2008
Dapatkan soal-soal lainnya di http://forum.pelatihan-osn.com SELEKSI OLIMPIADE TINGKAT PROVINSI 2007 TIM OLIMPIADE MATEMATIKA INDONESIA 2008 Bidang Matematika Bagian Pertama Waktu : 90 Menit DEPARTEMEN
RENCANA PEMBELAJARAN SEMESTER (RPS)
RENCANA PEMBELAJARAN SEMESTER (RPS) MSH1B3 LOGIKA MATEMATIKA PROGRAM STUDI S1 ILMU KOMPUTASI FAKULTAS INFORMATIKA TELKOM UNIVERSITY LEMBAR PENGESAHAN Rencana Semester (RPS) ini telah disahkan untuk mata
A. Titik, Garis, dan Bidang dalam Ruang. Definisi 1 (Space) Ruang (space) adalah himpunan semua titik.
Dalam geometri bidang atau geometri dimensi-2 perhatian kita pada dua dimensi, yaitu dimensi-1 dan dimensi-2. Ketika kita mempelajarinya, imajinasi kita pada selembar kertas tipis yang terhampar tak terbatas.
