PERTEMUAN VIII SISTEM PER UNIT DAN DIAGRAM SEGARIS

Ukuran: px
Mulai penontonan dengan halaman:

Download "PERTEMUAN VIII SISTEM PER UNIT DAN DIAGRAM SEGARIS"

Transkripsi

1 PERTEMUAN VIII SISTEM PER UNIT DAN DIAGRAM SEGARIS 8.1 UMUM Saluran transmisi tenaga dioperasikan pada tingkat tegangan di mana kilovolt (kv) merupakan unit yang sangat memudahkan untuk menyatakan tegangan. Karena besarnya daya yang harus disalurkan, kilowatt atau megawatt dan kilovolt-ampere atau megavoltampere adalah istilah-istilah yang sudah biasa dipakai. Tetapi, kuantitas-kuantitas tersebut di atas bersama-sama dengan ampere dan ohm sering juga dinyatakan sebagai suatu persentase atau per unit dari suatu nilai dasar atau referensi yang ditentukan (specified) untuk masingmasing. Misalnya, jika sebagai tegangan dasar dipilih 1 kv, maka tegangan-tegangan sebesar 18, 1, dan 16 kv berturut-turut menjadi,9; 1,; dan 1,5 per unit, atau 9, 1, dan 15%. Definisi nilai per unit untuk suatu kuantitas ialah perbandingan kuantitas tersebut terhadap nilai dasarnya yang dinyatakan dalam desimal. Perbandingan (ratio) dalam persentase adalah 1 kali nilai dalam per unit. Kedua metode perhitungan tersebut, baik dengan persentase maupun dengan per unit, lebih sederhana bila menggunakan langsung nilai-nilai ampere, ohm, dan volt yang sebenarnya. Metode per unit mempunyai sedikit kelebihan dari metode persentase, karena hasil perkalian dari dua kuantitas yang dinyatakan dalam per unit sudah langsung diperoleh dalam per unit juga, sedangkan hasil perkalian dari dua kuantitas yang dinyatakan dalam persentase masih harus dibagi dengan 1 untuk mendapatkan hasil dalam persentase. Tegangan, arus, kilovolt-amper dan impedansi mempunyai hubungan sedemikian rupa sehingga pemilihan nilai dasar untuk dua saja dari kuantitas-kuantitas tersebut sudah dengan sendirinya menentukan nilai dasar untuk kedua kuantitas yang lainnya. Jika nilai dasar dari arus dan tegangan sudah dipilih, maka nilai dasar dari impedansi dan kilovoltamper dapat ditentukan. adalah impedansi yang akan menimbulkan jatuhtegangan (voltage drop) padanya sendiri sebesar tegangan dasar jika arus yang mengalirinya sama dengan arus dasar. Kilovolt-amper dasar pada sistem fasa-tunggal adalah hasil perkalian dari tegangan dasar dalam kilovolt dan arus dasar dalam amper. Biasanya megavolt-amper dasar dan tegangan dasar dalam kilovolt adalah kuantitas yang dipilih untuk menentukan dasar atau referensi. Jadi untuk sistem fasa tunggal atau sistem fasa tiga di mana istilah arus berarti arus saluran, istilah tegangan berarti tegangan ke netral, dan istilah kilovolt-amper berarti kilovolt-amper per fasa, berlaku rumus-rumus berikut ini untuk hubungan bermacam-macam kuantitas: Arus dasar, A dasar kva = (8.1) tegangan dasar, 1φ kv LN PUSAT PENGEMBANGAN BAHAN AJAR-UMB Dr. Ir. Hamzah Hillal M.Sc ANALISA SISTEM TENAGA LISTRIK I 63

2 tegangan dasar, VLN = (8.) arus dasar, A (tegangan dasar, kvln ) x1 = (8.3) dasar, kva 1φ (tegangan dasar, kvln ) = (8.4) dasar, MVA 1φ Daya Dasar, kw 1φ = Dasar, kva 1φ (8.5) Daya Dasar, MW 1φ = Dasar, MVA 1φ (8.6) (8.7) Dalam persamaan-persamaan di atas, subkrip 1φ dan LN berturut-turut menunjukkan "per fasa" dan "saluran-ke-netral", untuk persamaan-persamaan yang berlaku bagi rangkaian fasa tiga. Jika persamaan-persamaan tersebut dipakai untuk rangkaian berfasa-tunggal, kv LN berarti tegangan pada saluran berfasa-tunggal, atau tegangan saluran-ke-tanah jika salah satu salurannya diketanahkan. Suatu contoh dengan angka-angka akan memperjelas hubungan-hubungan yang baru raja dibicarakan. Misalnya, jika kva 3φ dasar = 3.kVA; dan kv LL dasar = 1 kv di mana subskrip 3 dan LL berturut-turut berarti "fasa tiga" dan "antar-saluran," maka 3. kva 1φ dasar = 3 1 =1. kva; dan kv LN dasar = = 69, kv 3 Untuk tegangan antar-saluran yang sebenarnya sebesar 18 kv, tegangan salurankenetral adalah 18/ 3 = 6,3 kv, dan 18 6,3 Tegangan per-unit = = =, , Untuk daya fasa tiga total sebesar 18. kw, daya per fasa adalah 6 kw, dan Daya per-unit = = =, Sudah tentu, nilai megawatt dan megavolt-amper dapat saja menggantikan nilai kilowatt dan kilovolt-amper untuk seluruh pembahasan di atas. Jika tidak dinyatakan lain, suatu nilai dasar tegangan dalam suatu sistem fasa tiga adalah tegangan antar-saluran, dan suatu nilai dasar kilovolt-amper atau megavolt-amper adalah nilai dasar untuk total fasa tiga. PUSAT PENGEMBANGAN BAHAN AJAR-UMB Dr. Ir. Hamzah Hillal M.Sc ANALISA SISTEM TENAGA LISTRIK I 64

3 dan arus dasar dapat langsung dihitung dari nilai nilai fasa tiga untuk kilovolt dasar dan kilovolt amper dasar. Jika diartikan bahwa kilovolt-amper dasar dan tegangan dasar dalam kilovolt secara berturut-turut sama dengan kilovolt-ampere dasar untuk total tiga-fasa dan tegangan dasar antar-saluran, maka diperoleh: Arus dasar, A kvaφ3 dasar = (8.8) 3 x tegangan dasar, kv LL dan dari persamaan (8.3) (tegangan dasar, kvll / 3) x1 = (8.9) kva /3 dasar φ 3 (tegangan dasar, kvll ) x1 = (8.1) kva dasar φ 3 (tegangan dasar, kvll ) x1 = (8.11) MVA dasar Contoh 8.1: Tegangan terminal dari sebuah beban terhubung Y yang terdiri atas tiga impedansi yang sama sebesar 3 Ω adalah 4,4 kv antar-saluran. Impedansi pada masing-masing saluran dari ketiga saluran yang menghubungkan beban ke rel dan sebuah substantion adalah Z L = 1,4 75 Ω. Tentukanlah tegangan antar-saluran pada rel substation dengan cara kerja per unit dan dengan dasar 4,4 kv, 17 A sehingga baik besarnya tegangan maupun besarnya arus menjadi 1, per unit. Dalam contoh ini ditentukan arus, dan bukannya kilovolt-amper, karena kuantitas yang disebut belakangan ini tidak masuk ke dalam permasalahan. Gambar 8.1 memperlihatkan rangkaian dan kuantitas-kuantitas yang dibicarakan. φ 3 Gambar 8.1 Diagram rangkaian dengan nilai-nilai untuk contoh 8.1. Solusi: adalah: dan karena itu besarnya impedansi beban adalah juga 1, per unit. Impedansi kawat adalah: Z 1,4 75 = =,7 pu PUSAT PENGEMBANGAN BAHAN AJAR-UMB Dr. Ir. Hamzah Hillal M.Sc ANALISA SISTEM TENAGA LISTRIK I 65

4 V an = 1, x,7 75 = 1 +,7 45 = 1,495 + j,495 = 1,51,7 pu 44 V LN = 1,51x = 67 V, atau,67 kv 3 Jika soal yang harus dipecahkan menjadi lebih kompleks dan terutama jika menyangkut transformator, keuntungan dari perhitungan dalam per unit akan menjadi lebih jelas. 8. MENGUBAH DASAR KUANTITAS PER-UNIT Kadang-kadang impedansi per-unit untuk suatu komponen dari suatu sistem dinyatakan menurut dasar yang berbeda dengan dasar yang dipilih untuk bagian dari sistem di mana komponen tersebut berada. Karena semua impedansi dalam bagian mana pun dari suatu sistem harus dinyatakan dengan dasar impedansi yang sama, maka dalam melakukan perhitungan mengubah impedansi per-unit dari suatu dasar ke dasar yang lain. Dengan mensubstitusikan impedansi dasar yang diberikan dalam persamaan (8.3) atau (8.1) ke dalam persamaan (8.7), maka akan diperoleh impedansi per-unit dari suatu elemen rangkaian: (impedansi sebenarnya, Ω) x (kva dasar) = (8.1) (tegangan dasar, kv) x 1 Rumus (8.1) memperlihatkan bahwa impedansi per-unit berbanding lurus dengan kilovolt-amper dasar dan berbanding terbalik dengan kuadrat tegangan dasar. Karena itu, untuk mengubah dari impedansi per-unit menurut suatu dasar yang diberikan menjadi impedansi per-unit menurut suatu dasar yang baru, dapat dipakai persamaan berikut: kv diberikan dasar kvabaru dasar Z = baru pu Z diberikan pu x (8.13) kvbaru dasar kva diberikan dasar Persamaan ini tidak ada sangkut pautnya dengan transfer nilai-ohm suatu impedansi dari satu sisi ke sisi yang lain pada sebuah transformator. Persamaan ini sangat berguna untuk mengubah suatu impedansi per-unit yang diberikan menurut suatu dasar tertentu ke suatu dasar yang baru. Tetapi, selain dengan menggunakan persamaan (8.13), perubahan dasar dapat juga diperoleh dengan mengubah nilai per-unit menurut suatu dasar menjadi nilai-ohm dan membaginya dengan impedansi dasar yang baru. Contoh 8.: X adalah reaktansi sebuah generator yang diketahui sama dengan,5 per unit didasarkan atas peringkat (rating) yang tertera pada pelat-nama generator tersebut, yaitu 18 kv, 5 MVA. Dasar untuk perhitungannya adalah kv, 1 MVA. Hitungan X " dengan dasar yang baru. PUSAT PENGEMBANGAN BAHAN AJAR-UMB Dr. Ir. Hamzah Hillal M.Sc ANALISA SISTEM TENAGA LISTRIK I 66

5 18 Solusi: Dari persamaan (8.13) diperoleh: X" =,5 8.3 DIAGRAM SEGARIS 1 x = 5,45 pu Selanjutnya akan dilihat bagaimana melukiskan suatu rakitan komponen-komponen untuk membuat model suatu sistem yang lengkap. Karena sistem fasa tiga yang seimbang selalu diselesaikan sebagai suatu rangkaian fasa-tunggal yang terdiri atas salah satu dari ketiga salurannya dan suatu jalur kembali netral, jarang diperlukan untuk menunjukkan lebih dari satu fasa dan sebuah jalur kembali bila melukiskan diagram rangkaian itu. Bahkan diagram semacam ini masih sering disederhanakan lebih lanjut dengan menghilangkan rangkaian pelengkap melalui netralnya dan dengan menunjukkan bagian-bagian komponen dengan lambang standar yang menggantikan rangkaian ekivalennya. Parameter rangkaian tidak ditunjukkan, dan sebuah saluran transmisi dilukiskan sebagai satu garis saja di antara kedua ujung-ujungnya. Diagram sistem listrik yang disederhanakan semacam ini disebut diagram segaris (one-line diagram). Dengan suatu garis tunggal dan lambang standar, diagram ini menunjukkan saluran transmisi dan peralatan-peralatan yang berhubungan dari suatu sistem listrik. Kegunaan diagram segaris ini ialah untuk memberikan keterangan-keterangan yang penting tentang sistem dalam bentuk yang ringkas. Pentingnya berbagai ciri suatu sistem berbeda menurut masalah yang ditinjau, dan banyaknya keterangan yang dimasukkan dalam diagram tergantung pada maksud diagram tersebut dibuat. Misalnya, letak pemutusrangkaian dan relai adalah tidak penting dalam mengerjakan suatu studi beban. Pemutus dan Rilei tidak diperlihatkan jika fungsi utama diagram itu adalah untuk memberikan keterangan untuk studi semacam itu. Sebaliknya, penentuan kestabilan suatu sistem dalam keadaan peralihan yang disebabkan oleh suatu gangguan tergantung pada kecepatan relairelai dan pemutus rangkaian itu bekerja untuk memisahkan bagian sistem yang mengalami gangguan. Karena itu keterangan mengenai pemutus-rangkaian menjadi sangat penting. Kadang-kadang diagram segaris memberikan keterangan mengenai transformator arus dan transformator potensial yang menghubungkan relai-relai ke sistem atau yang dipasang untuk keperluan pengukuran. Keterangan yang didapat dari suatu diagram segaris dapat diharapkan berubah-ubah menurut masalah yang sedang ditangai dan sesuai dengan praktek atau kebiasaan perusahaan tertentu yang menyediakan diagram itu. Adalah penting untuk mengetahui letak titik-titik di mana suatu sistem dihubungkan ke tanah supaya banyaknya arus yang mengalir dapat dihitung jika terjadi suatu gangguan tidak simetris yang melibatkan tanah. Jika suatu tahanan (resistor) atau reaktor diselipkan di antara netral Y dan tanah untuk membatasi aliran arus ke tanah pada waktu ada gangguan, lambang-lambang yang PUSAT PENGEMBANGAN BAHAN AJAR-UMB Dr. Ir. Hamzah Hillal M.Sc ANALISA SISTEM TENAGA LISTRIK I 67

6 sesuai untuk resistansi atau induktansi dapat ditambahkan pada lambang standar untuk Y yang ditanahkan. Kebanyakan netral transformator dalam sistem transmisi selalu ditanahkan dengan langsung. Netral generator biasanya ditanahkan melalui resistansi yang cukup tinggi dan kadang-kadang melalui kumparan induktansi. Gambar 8.3 adalah diagram segaris suatu sistem daya yang sangat sederhana. Dua generator, yang satu ditanahkan melalui sebuah reaktor dan yang satu lagi melalui sebuah resistor, dihubungkan ke sebuah rel dan melalui sebuah transformator peningkat tegangan (step-up transformasi) ke saluran transmisi. Sebuah generator yang lain, yang ditanahkan melalui sebuah reaktor, dihubungkan ke sebuah rel dan melalui sebuah transformator pada ujung yang lain dari saluran transmisi itu. Sebuah beban dihubungkan ke masing-masing rel. Pada diagram itu keterangan mengenai beban, rating generator, transformator, dan reaktansi bermacam-macam komponen rangkaian sering juga diberikan. Gambar 8.3 Diagram segaris suatu sistem listrik 8.4 DIAGRAM IMPEDANSI DAN DIAGRAM REAKTANSI Untuk dapat menghitung prestasi suatu sistem dalam keadaan berbeban atau terjadinya suatu gangguan, diagram segaris digunakan untuk menggambar rangkaian ekivalen fasatunggal dari sistem tersebut. Gambar 8.4 menggabungkan rangkaian-rangkaian ekivalen dari berbagai komponen yang diperlihatkan pada gambar 8.3 untuk membentuk diagram impedansi sistem. Jika diinginkan untuk melakukan studi beban, beban tertinggal A dan B dilukiskan dengan resistansi dan reaktansi induktif dalam hubungan seri. Diagram impedansi tidak memasukkan impedansi pembatas arus yang ditunjukkan pada diagram segaris di antara netral generator dan tanah karena dalam keadaan seimbang tidak ada arus yang mengalir dalam tanah dan netral generator berada pada potensial yang sama dengan netral sistem. Gambar 8.4 Diagram impedansi yang berhubungan dengan diagram segaris dari gambar 8.3. Hal-hal berikut ini perlu selalu diperhatikan: a. Suatu kilovolt dasar dan kilovolta-mper dasar dipilih pada bagian sistem. Nilai-nilai PUSAT PENGEMBANGAN BAHAN AJAR-UMB Dr. Ir. Hamzah Hillal M.Sc ANALISA SISTEM TENAGA LISTRIK I 68

7 dasar untuk suatu sistem fasa tiga diartikan sebagai kilovolt antar-saluran dan kilovoltamper atau megavolt-amper fasa tiga. b. Pada bagian-bagian lain dari sistem, yaitu pada sisi lain dari transformator, kilovolt dasar untuk masing-masing bagian ditentukan menurut perbandingan tegangan antarsaluran transformator. Kilovolt-amper dasar adalah sama di semua bagian sistem. Akan sangat memudahkan jika kilovolt dasar masing-masing bagian sistem ditunjukkan pula pada diagram segaris. c. Keterangan yang tersedia tentang impedansi transformator fasa tiga biasanya adalah dalam per satuan atau persen atas dasar yang ditentukan menurut rating transformator. d. Untuk tiga buah transformator fasa-tunggal yang dihubungkan sebagai suatu satuan fasa tiga, rating fasa tiganya ditentukan dari rating fasa-tunggal masing-masing transformator. Impedansi dalam persen untuk satuan fasa tiga adalah sama dengan impedansi dalam persen untuk masing-masing transformator itu sendiri. e. Impedansi per satuan yang diberikan atas dasar yang lain daripada yang ditentukan untuk bagian dari sistem di mana elemen itu berada harus diubah ke dasar yang semestinya. Contoh 8.3: Sebuah generator fasa tiga kv, 3 MVA mempunyai reaktansi sub-peralihan sebesar %. Generator itu mencatu beberapa motor serempak melalui saluran transmisi sepanjang 64 km (4 mil) yang mempunyai transformator pada kedua ujungnya, seperti diperlihatkan pada diagram segaris dari Gambar 8.5. Motor yang semuanya mempunyai rating 13, kv, dilukiskan sebagai dua buah motor ekivalen saja. Netral dari salah satu motor tersebut, M1, dihubungkan ke tanah melalui reaktansi. Netral dari motor kedua, M, tidak dihubungkan ke tanah (suatu keadaan yang tidak biasa). Masukan nominal untuk M1 dan M berturut-turut adalah MVA dan 1 MVA. Untuk kedua motor itu X" = %. Transformator fasa tiga T1 mempunyai rating 35 MVA, 3/ kv dengan reaktansi bocor sebesar 1%. Transformator T terdiri atas tiga buah transformator fasa tunggal masingmasing dengan rating 17/13, kv, 1 MVA dengan reaktansi bocor sebesar 1%. Reaktansi seri saluran transmisi adalah,5 Ω/km. Gambarlah diagram reaktansi dengan memilih rating generator sebagai dasar pada rangkaian generator. Solusi: Gambar 8.5 Diagram segaris untuk contoh 8.3 PUSAT PENGEMBANGAN BAHAN AJAR-UMB Dr. Ir. Hamzah Hillal M.Sc ANALISA SISTEM TENAGA LISTRIK I 69

8 Rating transformator (3 buah fasa tunggal) T adalah 3 x 1 = 3 kva, dan perbandingan tegangan antar-salurannya adalah: x 17/13, = /13, kv Suatu dasar dari 3 MVA, kv pada rangkaian generator memerlukan dasar 3 MVA di semua bagian sistem, dan dasar-dasar tegangan sebagai berikut: a. Pada saluran transmisi: 3 kv (karena T 1 mempunyai rating 3/ kv) b. = 13,8 kv Dasar-dasar ini diperlihatkan di antara tanda kurung pada diagram-segaris gambar 8.5. Reaktansi transformator yang diubah ke dasar yang semestinya adalah: Transformator T 1 : X =,1 x =,857 per satuan Transformator T : X = =,915 per satuan saluran transmisi adalah: = 176, Ω Reaktansi motor M 1 = =,745 per satuan Reaktansi motor M = =,549 per satuan Gambar 8.6 adalah diagram reaktansi yang diminta. Gambar 8.6 Diagram reaktansi untuk contoh 8.3 (Reaktansi dinyatakan dalam per satuan dengan dasar yang ditentukan) PUSAT PENGEMBANGAN BAHAN AJAR-UMB Dr. Ir. Hamzah Hillal M.Sc ANALISA SISTEM TENAGA LISTRIK I 7

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB LANDASAN TEOR. Gangguan Pada Sistem Tenaga Listrik Gangguan dapat mengakibatkan kerusakan yang cukup besar pada sistem tenaga listrik. Banyak sekali studi, pengembangan alat dan desain sistem perlindungan

Lebih terperinci

Bahan Ajar Ke 1 Mata Kuliah Analisa Sistem Tenaga Listrik. Diagram Satu Garis

Bahan Ajar Ke 1 Mata Kuliah Analisa Sistem Tenaga Listrik. Diagram Satu Garis 24 Diagram Satu Garis Dengan mengasumsikan bahwa sistem tiga fasa dalam keadaan seimbang, penyelesaian rangkaian dapat dikerjakan dengan menggunakan rangkaian 1 fasa dengan sebuah jalur netral sebagai

Lebih terperinci

MODEL SISTEM.

MODEL SISTEM. MODEL SISTEM MESIN SEREMPAK KONTRUKSI MESIN SEREMPAK Kedua bagian utama sebuah mesin serempak adalah susunan ferromagnetik. Bagian yang diam, yang pada dasarnya adalah sebuah silinder kosong dinamakan

Lebih terperinci

TEGANGAN DAN ARUS DALAM RANGKAIAN TIGA- FASA YANG SEIMBANG

TEGANGAN DAN ARUS DALAM RANGKAIAN TIGA- FASA YANG SEIMBANG TEGANGAN DAN ARUS DALAM RANGKAIAN TIGA- FASA YANG SEIMBANG Sistem tenaga listrik biasanya disuplai oleh generator berfasa tiga. Biasanya generatorgenerator mensuplai beban-beban berfasa tiga yang seimbang,

Lebih terperinci

KOMPONEN SIMETRIS DAN IMPEDANSI URUTAN. toto_sukisno@uny.ac.id

KOMPONEN SIMETRIS DAN IMPEDANSI URUTAN. toto_sukisno@uny.ac.id KOMPONEN SIMETRIS DAN IMPEDANSI URUTAN A. Sintesis Fasor Tak Simetris dari Komponen-Komponen Simetrisnya Menurut teorema Fortescue, tiga fasor tak seimbang dari sistem tiga-fasa dapat diuraikan menjadi

Lebih terperinci

atau pengaman pada pelanggan.

atau pengaman pada pelanggan. 16 b. Jaringan Distribusi Sekunder Jaringan distribusi sekunder terletak pada sisi sekunder trafo distribusi, yaitu antara titik sekunder dengan titik cabang menuju beban (Lihat Gambar 2.1). Sistem distribusi

Lebih terperinci

KOMPONEN-KOMPONEN SIMETRIS. A. Sintesis Fasor Tak Simetris dari Komponen-Komponen Simetrisnya

KOMPONEN-KOMPONEN SIMETRIS. A. Sintesis Fasor Tak Simetris dari Komponen-Komponen Simetrisnya Modul Mata Kuliah Proteksi Sistem Tenaga, F. TEKNIK ELEKTRO UNISMA KOMPONEN-KOMPONEN SIMETRIS Pada tahun 1918 salah satu cara yang paling ampuh untuk menangani rangkaian fasamajemuk (poly-phase = berfasa

Lebih terperinci

BAB III KETIDAKSEIMBANGAN BEBAN

BAB III KETIDAKSEIMBANGAN BEBAN 39 BAB III KETIDAKSEIMBANGAN BEBAN 3.1 Sistem Distribusi Awalnya tenaga listrik dihasilkan di pusat-pusat pembangkit seperti PLTA, PLTU, PLTG, PLTGU, PLTP, dan PLTP dan yang lainnya, dengan tegangan yang

Lebih terperinci

Rangkaian seri paralel

Rangkaian seri paralel Rangkaian seri paralel Apa itu rangakain seri-paralel? Perhatikan rangkaian seri sederhana berikut, masing-masing komponen terhubung ujung ke ujung membentuk jalur tunggal bagi aliran elektron. Untuk rangkaian

Lebih terperinci

BAB II LANDASAN TEORI ANALISA HUBUNG SINGKAT DAN MOTOR STARTING

BAB II LANDASAN TEORI ANALISA HUBUNG SINGKAT DAN MOTOR STARTING BAB II LANDASAN TEORI ANALISA HUBUNG SINGKAT DAN MOTOR STARTING 2.1 Jenis Gangguan Hubung Singkat Ada beberapa jenis gangguan hubung singkat dalam sistem tenaga listrik antara lain hubung singkat 3 phasa,

Lebih terperinci

BAB II. PROTEKSI TRAFO 60 MVA 150/20 kv. DAN PENYULANG 20 kv

BAB II. PROTEKSI TRAFO 60 MVA 150/20 kv. DAN PENYULANG 20 kv BAB II PROTEKSI TRAFO 60 MVA 150/20 kv DAN PENYULANG 20 kv 2.1. Transformator Daya Transformator adalah suatu alat listrik statis yang erfungsi meruah tegangan guna penyaluran daya listrik dari suatu rangkaian

Lebih terperinci

BAB II LANDASAN TEORI. Suatu sistem tenaga listrik terdiri dari tiga bagian utama : pusat-pusat

BAB II LANDASAN TEORI. Suatu sistem tenaga listrik terdiri dari tiga bagian utama : pusat-pusat BAB II LANDASAN TEORI 2.1. Saluran Transmisi ( 1, 5, 7 ) Suatu sistem tenaga listrik terdiri dari tiga bagian utama : pusat-pusat pembangkit listrik, saluran-saluran transmisi, dan sistem-sistem distribusi.

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA BAB 2 TINJAUAN PUSTAKA 2.1 Distributed Generation Distributed Generation adalah sebuah pembangkit tenaga listrik yang bertujuan menyediakan sebuah sumber daya aktif yang terhubung langsung dengan jaringan

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI 6 BAB II LANDASAN TEORI 2.1 Umum Untuk menjaga agar faktor daya sebisa mungkin mendekati 100 %, umumnya perusahaan menempatkan kapasitor shunt pada tempat yang bervariasi seperti pada rel rel baik tingkat

Lebih terperinci

BAB III GANGGUAN PADA JARINGAN LISTRIK TEGANGAN MENENGAH

BAB III GANGGUAN PADA JARINGAN LISTRIK TEGANGAN MENENGAH BAB III GANGGUAN PADA JARINGAN LISTRIK TEGANGAN MENENGAH 3.1 KOMPONEN KOMPONEN SIMETRIS Tiga fasor tak seimbang dari sistem fasa tiga dapat diuraikan menjadi tiga sistem fasor yang seimbang. Himpunan seimbang

Lebih terperinci

BAB III SISTEM PROTEKSI DAN ANALISA HUBUNG SINGKAT

BAB III SISTEM PROTEKSI DAN ANALISA HUBUNG SINGKAT 23 BAB III SISTEM PROTEKSI DAN ANALISA HUBUNG SINGKAT 3.1. Sistem Proteksi SUTT Relai jarak digunakan sebagai pengaman utama (main protection) pada SUTT/SUTET dan sebagai backup untuk seksi didepan. Relai

Lebih terperinci

2 BAB II TINJAUAN PUSTAKA

2 BAB II TINJAUAN PUSTAKA 2 BAB II TINJAUAN PUSTAKA 2.1 Saluran Transmisi Saluran transmisi merupakan bagian dari sistem tenaga listrik yang berperan menyalurkan daya listrik dari pusat-pusat pembangkit listrik ke gardu induk.

Lebih terperinci

Penentuan Nilai Arus Pemutusan Pemutus Tenaga Sisi 20 KV pada Gardu Induk 30 MVA Pangururan

Penentuan Nilai Arus Pemutusan Pemutus Tenaga Sisi 20 KV pada Gardu Induk 30 MVA Pangururan Yusmartato, Ramayulis, Abdurrozzaq Hsb., Penentuan... ISSN : 598 1099 (Online) ISSN : 50 364 (Cetak) Penentuan Nilai Arus Pemutusan Pemutus Tenaga Sisi 0 KV pada Gardu Induk 30 MVA Pangururan Yusmartato

Lebih terperinci

BAB II TINJAUAN PUSTAKA. 2.1 Penelitian Terdahulu Tentang Pentanahan Netral

BAB II TINJAUAN PUSTAKA. 2.1 Penelitian Terdahulu Tentang Pentanahan Netral 5 BAB II TINJAUAN PUSTAKA 2.1 Penelitian Terdahulu Tentang Pentanahan Netral Dalam kaitan dengan pentanahan netral sistem tenaga, beberapa penelitian terdahulu telah diidentifikasi, misalnya dalam pemilihan

Lebih terperinci

No Fasa/Line Tegangan(Volt) 1 Vrs Vst Vtr Vrn Vsn Vtn

No Fasa/Line Tegangan(Volt) 1 Vrs Vst Vtr Vrn Vsn Vtn BAB IV ANALISIS DAN KESIMPULAN 4.1. Hasil Pengukuran Tegangan Transformator Tiga Fasa Tanpa Beban konfigurasi hubungan kumparan Y-Y diperlihatkan pada tabel 4.1. berikut ini : Tabel.4.1. Tegangan transformator

Lebih terperinci

RANGKAIAN ARUS SEARAH

RANGKAIAN ARUS SEARAH BAB VII RANGKAIAN ARUS SEARAH Tujuan Pembelajaran : Memahami perbedaan pada rangkaian seri dan paralel Mengerti tentang perhitungan pada rangkaian seri dan paralel Dalam bab ini kita akan membahas aturan

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA 7 BAB II TINJAUAN PUSTAKA 2.1 Gardu Induk Gardu Induk (GI) adalah salah satu komponen yang penting dalam menunjang kebutuhan listrik konsumen maupun sebagai pengatur pelayanan tenaga listrik yang didapatkan

Lebih terperinci

BAB II PERHITUNGAN ARUS HUBUNGAN SINGKAT

BAB II PERHITUNGAN ARUS HUBUNGAN SINGKAT 13 BAB II PERHITUNGAN ARUS HUBUNGAN SINGKAT 2.1. Pendahuluan Sistem tenaga listrik pada umumnya terdiri dari pembangkit, gardu induk, jaringan transmisi dan distribusi. Berdasarkan konfigurasi jaringan,

Lebih terperinci

Teknik Tenaga Listrik(FTG2J2)

Teknik Tenaga Listrik(FTG2J2) Teknik Tenaga Listrik(FTG2J2) Generator Sinkron Ahmad Qurthobi, MT. Teknik Fisika Telkom University Ahmad Qurthobi, MT. (Teknik Fisika Telkom University) Teknik Tenaga Listrik(FTG2J2) 1 / 35 Outline 1

Lebih terperinci

BAB III SISTEM KELISTRIKAN DAN PROTEKSI

BAB III SISTEM KELISTRIKAN DAN PROTEKSI BAB III SISTEM KELISTRIKAN DAN PROTEKSI 3.1 Generator dan Transformator Unit Generator Suatu alat listrik yang merubah energi gerak berupa putaran dari turbin yang dipasang seporos dengan generator, kemudian

Lebih terperinci

BAB III. Transformator

BAB III. Transformator BAB III Transformator Transformator merupakan suatu alat listrik yang mengubah tegangan arus bolak-balik dari satu tingkat ke tingkat yang lain melalui suatu gandengan magnet dan berdasarkan prinsipprinsip

Lebih terperinci

BAB II TRANSFORMATOR. magnet dan berdasarkan prinsip induksi elektromagnetik.

BAB II TRANSFORMATOR. magnet dan berdasarkan prinsip induksi elektromagnetik. BAB II TRANSFORMATOR II.1 Umum Transformator atau trafo adalah suatu peralatan listrik yang dapat memindahkan energi listrik atau memindahkan dan mengubah energi listrik bolakbalik dari satu level ke level

Lebih terperinci

TINJAUAN PUSTAKA. Dalam menyalurkan daya listrik dari pusat pembangkit kepada konsumen

TINJAUAN PUSTAKA. Dalam menyalurkan daya listrik dari pusat pembangkit kepada konsumen TINJAUAN PUSTAKA 2.1. Sistem Distribusi Sistem distribusi merupakan keseluruhan komponen dari sistem tenaga listrik yang menghubungkan secara langsung antara sumber daya yang besar (seperti gardu transmisi)

Lebih terperinci

BAB III PERENCANAAN INSTALASI SISTEM TENAGA LISTRIK

BAB III PERENCANAAN INSTALASI SISTEM TENAGA LISTRIK BAB III PERENCANAAN INSTALASI SISTEM TENAGA LISTRIK 3.1 Tahapan Perencanaan Instalasi Sistem Tenaga Listrik Tahapan dalam perencanaan instalasi sistem tenaga listrik pada sebuah bangunan kantor dibagi

Lebih terperinci

JOB SHEET MESIN LISTRIK 2. Percobaan Paralel Trafo

JOB SHEET MESIN LISTRIK 2. Percobaan Paralel Trafo JOB SHEET MESIN LISTRIK 2 Percobaan Paralel Trafo UNIVERSITAS NEGERI MALANG FAKULTAS TEKNIK JURUSAN TEKNIK ELEKTRO JOB SHEET PRAKTIKUM MESIN LISTRIK 2 Materi Judul Percobaan Waktu : Transformator : Percobaan

Lebih terperinci

BAB II TINJAUAN PUSTAKA. dibangkitkan oleh pembangkit harus dinaikkan dengan trafo step up. Hal ini

BAB II TINJAUAN PUSTAKA. dibangkitkan oleh pembangkit harus dinaikkan dengan trafo step up. Hal ini 2.1 Sistem Transmisi Tenaga Listrik BAB II TINJAUAN PUSTAKA Sistem transmisi adalah sistem yang menghubungkan antara sistem pembangkitan dengan sistem distribusi untuk menyalurkan tenaga listrik yang dihasilkan

Lebih terperinci

BAB IV ANALISIS DATA

BAB IV ANALISIS DATA BAB IV ANALISIS DATA 4.1. Pengumpulan Data Sebelum dilakukan perhitungan dalam analisa data, terlebih dahulu harus mengetahui data data apa saja yang dibutuhkan dalam perhitungan. Data data yang dikumpulkan

Lebih terperinci

BAB IV 4.1. UMUM. a. Unit 1 = 100 MW, mulai beroperasi pada tanggal 20 januari 1979.

BAB IV 4.1. UMUM. a. Unit 1 = 100 MW, mulai beroperasi pada tanggal 20 januari 1979. BAB IV PERHITUGA ARUS GAGGUA HUBUG SIGKAT FASA TUGGAL KE TAAH TERHADAP GEERATOR YAG TITIK ETRALYA DI BUMIKA DEGA TAHAA TIGGI PADA PLTU MUARA KARAG 4.1. UMUM Pembangkit Listrik Tenaga Uap (PLTU) Muara Karang

Lebih terperinci

BAB II JARINGAN DISTRIBUSI TENAGA LISTRIK

BAB II JARINGAN DISTRIBUSI TENAGA LISTRIK 2.1 Umum BAB II JARINGAN DISTRIBUSI TENAGA LISTRIK Kehidupan moderen salah satu cirinya adalah pemakaian energi listrik yang besar. Besarnya pemakaian energi listrik itu disebabkan karena banyak dan beraneka

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA 6 BAB II TINJAUAN PUSTAKA 2.1 Sistem Tenaga Listrik Sistem Tenaga Listrik dikatakan sebagai kumpulan/gabungan yang terdiri dari komponen-komponen atau alat-alat listrik seperti generator, transformator,

Lebih terperinci

BAB III METODE PENELITIAN

BAB III METODE PENELITIAN 24 BAB III METODE PENELITIAN 3.1 Metode Penelitian Metodologi yang digunakan dalam penelitian Tugas Akhir Skripsi ini antara lain adalah sebagai berikut : a. Studi literatur, yaitu langkah pertaman yang

Lebih terperinci

BAB IV ANALISIS KINERJA GENERATOR DENGAN MENGGUNAKAN AVR. Analisis kinerja generator dengan menggunakan Automatic

BAB IV ANALISIS KINERJA GENERATOR DENGAN MENGGUNAKAN AVR. Analisis kinerja generator dengan menggunakan Automatic 42 BAB IV ANALISIS KINERJA GENERATOR DENGAN MENGGUNAKAN AVR 4.1 Pendahuluan Analisis kinerja generator dengan menggunakan Automatic Voltage Regulator (AVR) dalam tugas akhir ini dilakukan pada generator

Lebih terperinci

Pemasangan Kapasitor Bank untuk Perbaikan Faktor Daya

Pemasangan Kapasitor Bank untuk Perbaikan Faktor Daya Ahmad Yani, Pemasangan... Pemasangan untuk Perbaikan Faktor Daya Ahmad Yani Staf Pengajar Teknik Elektro STT-Harapan email: yani.ahmad34@yahoo.com Abstrak seri dan parallel pada system daya menimbulkan

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1.Transformator distribusi Transformator distribusi yang sering digunakan adalah jenis transformator step up down 20/0,4 kv dengan tegangan fasa sistem JTR adalah 380 Volt karena

Lebih terperinci

FAKULTAS TEKNIK UNIVERSITAS NEGERI YOGYAKARTA

FAKULTAS TEKNIK UNIVERSITAS NEGERI YOGYAKARTA A. TUJUAN Setelah praktik, saya dapat : 1. Membuat rangkaian sistem tenaga listrik menggunakan software Power Station ETAP 4.0 dengan data data yang lengkap. 2. Mengatasi berbagai permasalahan yang terjadi

Lebih terperinci

MODUL FISIKA. TEGANGAN DAN ARUS BOLAK-BALIK (AC) DISUSUN OLEH : NENIH, S.Pd SMA ISLAM PB. SOEDIRMAN

MODUL FISIKA. TEGANGAN DAN ARUS BOLAK-BALIK (AC) DISUSUN OLEH : NENIH, S.Pd SMA ISLAM PB. SOEDIRMAN MODUL ISIKA TEGANGAN DAN ARUS BOLAK-BALIK (AC) DISUSUN OLEH : NENIH, S.Pd SMA ISLAM PB. SOEDIRMAN TEGANGAN DAN ARUS BOLAK-BALIK (AC) 1. SUMBER TEGANGAN DAN ARUS BOLAK-BALIK Sumber tegangan bolak-balik

Lebih terperinci

BAB II TRANSFORMATOR DAYA DAN PENGUBAH SADAPAN BERBEBAN. Tenaga listrik dibangkitkan dipusat pusat listrik (power station) seperti

BAB II TRANSFORMATOR DAYA DAN PENGUBAH SADAPAN BERBEBAN. Tenaga listrik dibangkitkan dipusat pusat listrik (power station) seperti 6 BAB II TRANSFORMATOR DAYA DAN PENGUBAH SADAPAN BERBEBAN 2.1 Sistem Tenaga Listrik Tenaga listrik dibangkitkan dipusat pusat listrik (power station) seperti PLTA, PLTU, PLTD, PLTP dan PLTGU kemudian disalurkan

Lebih terperinci

BAB II TRANSFORMATOR. elektromagnet. Pada umumnya transformator terdiri atas sebuah inti yang terbuat

BAB II TRANSFORMATOR. elektromagnet. Pada umumnya transformator terdiri atas sebuah inti yang terbuat BAB II TRANSFORMATOR 2.1 UMUM Transformator merupakan suatu alat listrik yang dapat memindahkan dan mengubah energi listrik dari satu atau lebih rangkain listrik ke rangkaian listrik lainnya melalui suatu

Lebih terperinci

SIMULASI DAN ANALISIS ALIRAN DAYA PADA SISTEM TENAGA LISTRIK MENGGUNAKAN PERANGKAT LUNAK ELECTRICAL TRANSIENT ANALYSER PROGRAM (ETAP) VERSI 4.

SIMULASI DAN ANALISIS ALIRAN DAYA PADA SISTEM TENAGA LISTRIK MENGGUNAKAN PERANGKAT LUNAK ELECTRICAL TRANSIENT ANALYSER PROGRAM (ETAP) VERSI 4. SIMULASI DAN ANALISIS ALIRAN DAYA PADA SISTEM TENAGA LISTRIK MENGGUNAKAN PERANGKAT LUNAK ELECTRICAL TRANSIENT ANALYSER PROGRAM (ETAP) VERSI 4.0 Rudi Salman 1) Mustamam 2) Arwadi Sinuraya 3) Abstrak Penelitian

Lebih terperinci

BAB II TRANSFORMATOR

BAB II TRANSFORMATOR BAB II TRANSFORMATOR 2.1 Umum Transformator merupakan suatu alat listrik statis yang mengubah suatu nilai arus maupun tegangan (energi listrik AC) pada satu rangkaian listrik atau lebih ke rangkaian listrik

Lebih terperinci

BAB III LANDASAN TEORI

BAB III LANDASAN TEORI 15 BAB III LANDASAN TEORI Tenaga listrik dibangkitkan dalam Pusat-pusat Listrik seperti PLTA, PLTU, PLTG, PLTP dan PLTD kemudian disalurkan melalui saluran transmisi yang sebelumnya terlebih dahulu dinaikkan

Lebih terperinci

BAB II DASAR TEORI. Universitas Sumatera Utara

BAB II DASAR TEORI. Universitas Sumatera Utara BAB II DASAR TEORI 2.1.Studi Aliran Daya Studi aliran daya di dalam sistem tenaga listrik merupakan studi yang penting.studi aliran daya merupakan studi yang mengungkapkan kinerja dan aliran daya (nyata

Lebih terperinci

STUDI PENGGUNAAN SISTEM PENDINGIN UDARA TEKAN UNTUK MENINGKATKAN EFISIENSI TRANSFORMATOR PADA BEBAN LEBIH

STUDI PENGGUNAAN SISTEM PENDINGIN UDARA TEKAN UNTUK MENINGKATKAN EFISIENSI TRANSFORMATOR PADA BEBAN LEBIH STUDI PENGGUNAAN SISTEM PENDINGIN UDARA TEKAN UNTUK MENINGKATKAN EFISIENSI TRANSFORMATOR PADA BEBAN LEBIH (Aplikasi pada PLTU Labuhan Angin, Sibolga) Yohannes Anugrah, Eddy Warman Konsentrasi Teknik Energi

Lebih terperinci

Materi dan Evaluasi. Materi: Evaluasi

Materi dan Evaluasi. Materi: Evaluasi Materi dan Evaluasi Materi: -Pendahuluan & Konsep Dasar -Transformator -Mesin Sinkron -Saluran Transmisi -Penyelesaian Aliran Daya (Metode Gauss Seidel, Newton Raphson) Evaluasi -Absensi -Tugas -Quiz 1

Lebih terperinci

RANGKAIAN SERI-PARALEL

RANGKAIAN SERI-PARALEL RANGKAIAN SERI-PARALEL 1. Contoh Rangkaian Seri-Paralel Contoh 1 Rangkaian pada Gambar 1, hitunglah : a. arus pada setiap elemen b. tegangan pada setiap elemen c. gunakan hukum tegangan Kirchhoff Contoh

Lebih terperinci

Berikut proses transformasi dari rangkaian delta ke rangkaian star.

Berikut proses transformasi dari rangkaian delta ke rangkaian star. Tujuan 1. Mahasiswa dapat menyederhanakan rangkaian dengan menggunakan tranformasi Delta Wye. 2. Mahasiswa dapat mengaplikasikan penggunaan tranformasi Delta Wye. 3. Mahasiswa dapat mengerjakan soal-soal

Lebih terperinci

BAB II TRANSFORMATOR. dan mengubah tegangan dan arus bolak-balik dari satu atau lebih rangkaian listrik ke

BAB II TRANSFORMATOR. dan mengubah tegangan dan arus bolak-balik dari satu atau lebih rangkaian listrik ke BAB II TRANSFORMATOR II.1. Umum Transformator merupakan suatu alat listrik statis yang dapat memindahkan dan mengubah tegangan dan arus bolak-balik dari satu atau lebih rangkaian listrik ke rangkaian listrik

Lebih terperinci

DAYA ELEKTRIK ARUS BOLAK-BALIK (AC)

DAYA ELEKTRIK ARUS BOLAK-BALIK (AC) DAYA ELEKRIK ARUS BOLAK-BALIK (AC) 1. Daya Sesaat Daya adalah energi persatuan waktu. Jika satuan energi adalah joule dan satuan waktu adalah detik, maka satuan daya adalah joule per detik yang disebut

Lebih terperinci

ANALISIS KETIDAKSEIMBANGAN BEBAN TRANSFORMATOR DISTRIBUSI UNTUK IDENTIFIKASI BEBAN LEBIH DAN ESTIMASI RUGI-RUGI PADA JARINGAN TEGANGAN RENDAH

ANALISIS KETIDAKSEIMBANGAN BEBAN TRANSFORMATOR DISTRIBUSI UNTUK IDENTIFIKASI BEBAN LEBIH DAN ESTIMASI RUGI-RUGI PADA JARINGAN TEGANGAN RENDAH SINGUDA ENSIKOM VOL. 7 NO. 3/ Juni ANALISIS KETIDAKSEIMBANGAN BEBAN TRANSFORMATOR DISTRIBUSI UNTUK IDENTIFIKASI BEBAN LEBIH DAN ESTIMASI RUGI-RUGI PADA JARINGAN TEGANGAN RENDAH Yoakim Simamora, Panusur

Lebih terperinci

BAB II TRANSFORMATOR

BAB II TRANSFORMATOR 7 BAB II TRANSFORMATOR 2.1 Umum Transformator merupakan suatu alat listrik statis yang dapat memindahkan dan mengubah tegangan dan arus bolak-balik dari suatu atau lebih rangkaian listrik ke rangkaian

Lebih terperinci

Perkuliahan PLPG Fisika tahun D.E Tarigan Drs MSi Jurusan Fisika FPMIPA UPI 1

Perkuliahan PLPG Fisika tahun D.E Tarigan Drs MSi Jurusan Fisika FPMIPA UPI 1 Perkuliahan PLPG Fisika tahun 2009 Jurusan Fisika FPMIPA UPI 1 Muatan Listrik Dua jenis muatan listrik: positif dan negatif Satuan muatan adalah coulomb [C] Muatan elektron (negatif) atau proton (positif)

Lebih terperinci

ANALISIS GANGGUAN HUBUNG SINGKAT TIGA PHASA PADA SISTEM TENAGA LISTRIK DENGAN METODE THEVENIN

ANALISIS GANGGUAN HUBUNG SINGKAT TIGA PHASA PADA SISTEM TENAGA LISTRIK DENGAN METODE THEVENIN AALISIS GAGGUA HUBUG SIGKAT TIGA PHASA PADA SISTEM TEAGA LISTRIK DEGA METODE THEVEI Jurusan Teknik Elektro T USU Abstrak: Analisis gangguan hubung singkat tiga phasa pada sistem tenaga listrik yang memnyai

Lebih terperinci

BAB III PENGAMANAN TRANSFORMATOR TENAGA

BAB III PENGAMANAN TRANSFORMATOR TENAGA 41 BAB III PENGAMANAN TRANSFORMATOR TENAGA 3.1 Pengamanan Terhadap Transformator Tenaga Sistem pengaman tenaga listrik merupakan sistem pengaman pada peralatan - peralatan yang terpasang pada sistem tenaga

Lebih terperinci

BAB II JARINGAN DISTRIBUSI TENAGA LISTRIK. karena terdiri atas komponen peralatan atau mesin listrik seperti generator,

BAB II JARINGAN DISTRIBUSI TENAGA LISTRIK. karena terdiri atas komponen peralatan atau mesin listrik seperti generator, BAB II JARINGAN DISTRIBUSI TENAGA LISTRIK II.1. Sistem Tenaga Listrik Struktur tenaga listrik atau sistem tenaga listrik sangat besar dan kompleks karena terdiri atas komponen peralatan atau mesin listrik

Lebih terperinci

BAB IV PENGGUNAAN PENGUBAH SADAPAN BERBEBAN TERHADAP PERBAIKAN TEGANGAN JARINGAN 20 KV. 4.1 Perhitungan Jatuh Tegangan di Jaringan 20 kv

BAB IV PENGGUNAAN PENGUBAH SADAPAN BERBEBAN TERHADAP PERBAIKAN TEGANGAN JARINGAN 20 KV. 4.1 Perhitungan Jatuh Tegangan di Jaringan 20 kv 39 BAB IV PENGGUNAAN PENGUBAH SADAPAN BERBEBAN TERHADAP PERBAIKAN TEGANGAN JARINGAN 20 KV 4.1 Perhitungan Jatuh Tegangan di Jaringan 20 kv persamaan 3.2 Untuk mencari jatuh tegangan di delapan penyulang

Lebih terperinci

III. METODE PENELITIAN

III. METODE PENELITIAN III. METODE PENELITIAN A. Tempat Penelitian Penelitian tugas akhir ini dilakukan di Gardu Induk 150 KV Teluk Betung Tragi Tarahan, Bandar Lampung, Provinsi Lampung. B. Data Penelitian Untuk mendukung terlaksananya

Lebih terperinci

Gambar 2.1 Skema Sistem Tenaga Listrik

Gambar 2.1 Skema Sistem Tenaga Listrik Generator Transformator Pemutus Tenaga Distribusi sekunder Distribusi Primer 5 BAB II TINJAUAN PUSTAKA 2.1 Sistem Distribusi Tenaga Listrik Secara garis besar, suatu sistem tenaga listrik yang lengkap

Lebih terperinci

BAB III PROTEKSI TRANSFORMATOR DAYA MENGGUNAKAN TRANSFORMASI HILBERT

BAB III PROTEKSI TRANSFORMATOR DAYA MENGGUNAKAN TRANSFORMASI HILBERT BAB III PROTEKSI TRANSFORMATOR DAYA MENGGUNAKAN TRANSFORMASI HILBERT Pada bab ini akan dijelaskan tentang metoda panggunaan transformasi Hilbert untuk analisis gangguan pada transformator daya dan implementasi

Lebih terperinci

Percobaan 1 Hubungan Lampu Seri Paralel

Percobaan 1 Hubungan Lampu Seri Paralel Percobaan 1 Hubungan Lampu Seri Paralel A. Tujuan Mahasiswa mampu dan terampil melakukan pemasangan instalasi listrik secara seri, paralel, seri-paralel, star, dan delta. Mahasiswa mampu menganalisis rangkaian

Lebih terperinci

BAB III PERANCANGAN ALAT

BAB III PERANCANGAN ALAT BAB III PERANCANGAN ALAT 3.1 Flow Chart Pengujian Deskripsi sistem rancang rangkaian untuk pengujian transformator ini digambarkan dalam flowchart sebagai berikut : Mulai Peralatan Uji Merakit Peralatan

Lebih terperinci

PERHITUNGAN ARUS GANGGUAN HUBUNG SINGKAT PADA JARINGAN DISTRIBUSI DI KOTA PONTIANAK

PERHITUNGAN ARUS GANGGUAN HUBUNG SINGKAT PADA JARINGAN DISTRIBUSI DI KOTA PONTIANAK PERHTUNGAN ARUS GANGGUAN HUBUNG SNGKAT PADA JARNGAN DSTRBUS D KOTA PONTANAK Hendriyadi Program Studi Teknik Elektro Jurusan Teknik Elektro Fakultas Teknik Universitas Tanjungra adekhendri77@gmail.com Abstrak

Lebih terperinci

Politeknik Negeri Sriwijaya

Politeknik Negeri Sriwijaya BAB II TINJAUAN PUSTAKA 2.1 Transformator Daya Transformator merupakan peralatan listrik yang berfungsi untuk menyalurkan daya/tenaga dari tegangan tinggi ke tegangan rendah atau sebaliknya. Transformator

Lebih terperinci

BAB III KONSEP PERHITUNGAN JATUH TEGANGAN

BAB III KONSEP PERHITUNGAN JATUH TEGANGAN 26 BAB KONSEP PERHTUNGAN JATUH TEGANGAN studi kasus: Berikut ini proses perencanan yang dilakukan oleh peneliti dalam melakukan Mulai Pengumpulan data : 1. Spesifikasi Transformator 2. Spesifikasi Penyulang

Lebih terperinci

TEKNIK TENAGA LISTRIK DASAR

TEKNIK TENAGA LISTRIK DASAR TEKNIK TENAGA LISTRIK DASAR Oleh : Hamzah Berahim Edisi Pertama Cetakan Pertama, 2011 Hak Cipta 2011 pada penulis, Hak Cipta dilindungi undang-undang. Dilarang memperbanyak atau memindahkan sebagian atau

Lebih terperinci

BAB III TAPPING DAN TAP CHANGER 3.1 Penentuan Jumlah Tap Pusat-pusat pembangkit tenaga listrik berada jauh dari pusat beban, hal ini mengakibatkan kerugian yang cukup besar dalam penyaluran daya listrik.

Lebih terperinci

PENGUJIAN TAPPING TRANSFORMATOR DISTRIBUSI 20

PENGUJIAN TAPPING TRANSFORMATOR DISTRIBUSI 20 Laporan Penelitian PENGUJIAN TAPPING TRANSFORMATOR DISTRIBUSI 20 Oleh : Ir. Leonardus Siregar, MT Dosen Tetap Fakultas Teknik LEMBAGA PENELITIAN UNIVERSITAS HKABP NOMMENSEN MEDAN 2013 Kata Pengantar Puji

Lebih terperinci

A. Kompetensi Mengukur beban R, L, C pada sumber tegangan DC dan AC

A. Kompetensi Mengukur beban R, L, C pada sumber tegangan DC dan AC Revisi : 01 Tgl : 1 Maret 2008 Hal 1 dari 8 A. Kompetensi Mengukur beban R, L, C pada sumber tegangan DC dan AC B. Sub Kompetensi 1. Mengukur besarnya arus dan daya pada beban RLC pada sumber tenaga tegangan

Lebih terperinci

BAB III KEBUTUHAN GENSET

BAB III KEBUTUHAN GENSET BAB III KEBUTUHAN GENSET 3.1 SUMBER DAYA LISTRIK Untuk mensuplai seluruh kebutuhan daya listrik pada bangunan ini maka direncanakan sumber daya listrik dari : A. Perusahaan Umum Listrik Negara (PLN) B.

Lebih terperinci

BAB II TRANSFORMATOR. sistem ketenagalistrikan. Transformator adalah suatu peralatan listrik. dan berbanding terbalik dengan perbandingan arusnya.

BAB II TRANSFORMATOR. sistem ketenagalistrikan. Transformator adalah suatu peralatan listrik. dan berbanding terbalik dengan perbandingan arusnya. BAB II TRANSFORMATOR II.. Umum Transformator merupakan komponen yang sangat penting peranannya dalam sistem ketenagalistrikan. Transformator adalah suatu peralatan listrik elektromagnetis statis yang berfungsi

Lebih terperinci

Politeknik Negeri Sriwijaya BAB II TINJAUAN PUSTAKA

Politeknik Negeri Sriwijaya BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Deskripsi Sistem Tenaga Listrik Sekalipun tidak terdapat suatu sistem tenaga listrik yang tipikal, namun pada umumnya dapat dikembalikan batasan pada suatu sistem yang lengkap

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA. Pada suatu jaringan distribusi arus bolak-balik dengan tegangan (V), daya

BAB 2 TINJAUAN PUSTAKA. Pada suatu jaringan distribusi arus bolak-balik dengan tegangan (V), daya BAB TINJAUAN PUSTAKA.. Faktor Daya Pada suatu jaringan distribusi arus bolak-balik dengan tegangan (V), daya aktif (P) dan daya reaktif (Q), maka besarnya daya semu (S) adalah sebanding dengan arus (I)

Lebih terperinci

ANALISIS PENYEBAB KEGAGALAN KERJA SISTEM PROTEKSI PADA GARDU AB

ANALISIS PENYEBAB KEGAGALAN KERJA SISTEM PROTEKSI PADA GARDU AB ANALISIS PENYEBAB KEGAGALAN KERJA SISTEM PROTEKSI PADA GARDU AB 252 Oleh Vigor Zius Muarayadi (41413110039) Jurusan Teknik Elektro, Fakultas Teknik, Universitas Mercu Buana Sistem proteksi jaringan tenaga

Lebih terperinci

Studi Hubung Singkat pada Beban Pemakaian Sendiri Sistem Pembangkitan di PT Indonesia Power UBP Kamojang

Studi Hubung Singkat pada Beban Pemakaian Sendiri Sistem Pembangkitan di PT Indonesia Power UBP Kamojang Jurnal Reka Elkomika 2337-439X Januari 2017 Jurnal Online Institut Teknologi Nasional Teknik Elektro Itenas Vol.5 No.1 Studi Hubung Singkat pada Beban Pemakaian Sendiri Sistem Pembangkitan di PT Indonesia

Lebih terperinci

LANDASAN TEORI Sistem Tenaga Listrik Tegangan Menengah. adalah jaringan distribusi primer yang dipasok dari Gardu Induk

LANDASAN TEORI Sistem Tenaga Listrik Tegangan Menengah. adalah jaringan distribusi primer yang dipasok dari Gardu Induk II LANDASAN TEORI 2.1. Sistem Tenaga Listrik Tegangan Menengah Sistem Distribusi Tenaga Listrik adalah kelistrikan tenaga listrik mulai dari Gardu Induk / pusat listrik yang memasok ke beban menggunakan

Lebih terperinci

TEORI LISTRIK TERAPAN

TEORI LISTRIK TERAPAN TEORI LISTRIK TERAPAN 1. RUGI TEGANGAN 1.1. PENDAHULUAN Kerugian tegangan atau susut tegangan dalam saluran tenaga listrik adalah berbanding lurus dengan panjang saluran dan beban, berbanding terbalik

Lebih terperinci

BAB II TRANSFORMATOR

BAB II TRANSFORMATOR BAB II TRANSFORMATOR II.1 Umum Transformator atau trafo adalah suatu peralatan listrik yang dapat memindahkan energi listrik atau memindahkan dan mengubah energi listrik bolak-balik dari satu level ke

Lebih terperinci

JADWAL KEGIATAN PER TATAP MUKA (TM) Tatap Muka

JADWAL KEGIATAN PER TATAP MUKA (TM) Tatap Muka JADWAL KEGIATAN PER TATAP MUKA (TM) Tatap Muka Kompetensi ke- 1. - Memahami aturan dan kontrak perkuliahan. - Memahami ruang lingkup matakuliah dan pembagian waktunya (Rencana Program & Kegiatan Pembelajaran

Lebih terperinci

Outline. Generator models Line models Transformer models Load models Single line diagram Per unit system. Electric Power Systems L3 - Olof Samuelsson

Outline. Generator models Line models Transformer models Load models Single line diagram Per unit system. Electric Power Systems L3 - Olof Samuelsson Outline Generator models Line models Transformer models Load models Single line diagram Per unit system 1 KOMPONEN UTAMA SISTEM TENAGA LISTRIK 1. GENERATOR SEREMPAK. SALURAN TRANSMISI 3. TRANSFORMATOR

Lebih terperinci

BAB III METODE PENELITIAN

BAB III METODE PENELITIAN 1 BAB III METODE PENELITIAN 3.1. Diagram Alir Penelitian Skripsi Dalam menyelesaikan penelitian diperlukan kerangka/tahapan pengerjaan penelitian dari mulai memulai sampai selesai agar memudahkan penulis

Lebih terperinci

BAB II TRANSFORMATOR. maupun untuk menyalurkan energi listrik arus bolak-balik dari satu atau lebih

BAB II TRANSFORMATOR. maupun untuk menyalurkan energi listrik arus bolak-balik dari satu atau lebih BAB II TRASFORMATOR II. UMUM Transformator merupakan suatu alat listrik statis yang mampu mengubah maupun untuk menyalurkan energi listrik arus bolak-balik dari satu atau lebih rangkaian listrik ke rangkaian

Lebih terperinci

Rangkaian Tiga Fasa 1

Rangkaian Tiga Fasa 1 1 Sistem dihubungankan Wye O Titik netral di-tanahkan Va n O Tegangan 3-fasa mempunyai a magnitudo yg sama. Vb n O Perbedaan fasa antar tegangan adalah 120. Va b n Vc a b Vc n Van V 0 V Vb c c Vbn V 120

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Daya 2.1.1 Pengertian Daya Daya adalah energi yang dikeluarkan untuk melakukan usaha. Dalam sistem tenaga listrik, daya merupakan jumlah energi yang digunakan untuk melakukan

Lebih terperinci

Analisis Rangkaian Listrik Di Kawasan Waktu

Analisis Rangkaian Listrik Di Kawasan Waktu Sudaryatno Sudirham Analisis Rangkaian Listrik Di Kawasan Waktu Sudaryatno Sudirham, Analisis Rangkaian Listrik () BAB 4 Model Piranti Pasif Suatu piranti mempunyai karakteristik atau perilaku tertentu.

Lebih terperinci

TRAFO. Induksi Timbal Balik

TRAFO. Induksi Timbal Balik DASAR TENAGA LISTRIK 23 TRAFO Induksi Timbal Balik Trafo adalah alat elektromagnetik yang memindahkan tenaga listrik dari satu sirkuit ke sirkuit lainnya dengan induksi timbal balik. Trafo satu fasa mempunyai

Lebih terperinci

SIMULASI DAN ANALISIS ALIRAN DAYA PADA SISTEM TENAGA LISTRIK MENGGUNAKAN PERANGKAT LUNAK ELECTRICAL TRANSIENT ANALYSER PROGRAM (ETAP) VERSI 4.

SIMULASI DAN ANALISIS ALIRAN DAYA PADA SISTEM TENAGA LISTRIK MENGGUNAKAN PERANGKAT LUNAK ELECTRICAL TRANSIENT ANALYSER PROGRAM (ETAP) VERSI 4. SIMULASI DAN ANALISIS ALIRAN DAYA PADA SISTEM TENAGA LISTRIK MENGGUNAKAN PERANGKAT LUNAK ELECTRICAL TRANSIENT ANALYSER PROGRAM (ETAP) VERSI 4.0 Rudi Salman 1) Mustamam 2) Arwadi Sinuraya 3) mustamam1965@gmail.com

Lebih terperinci

BAB III GANGGUAN SIMPATETIK TRIP PADA GARDU INDUK PUNCAK ARDI MULIA. Simpatetik Trip adalah sebuah kejadian yang sering terjadi pada sebuah gardu

BAB III GANGGUAN SIMPATETIK TRIP PADA GARDU INDUK PUNCAK ARDI MULIA. Simpatetik Trip adalah sebuah kejadian yang sering terjadi pada sebuah gardu BAB III GANGGUAN SIMPATETIK TRIP PADA GARDU INDUK PUNCAK ARDI MULIA 3.1. Pengertian Simpatetik Trip adalah sebuah kejadian yang sering terjadi pada sebuah gardu induk, dimana pemutus tenaga dari penyulang-penyulang

Lebih terperinci

BAB III PERHITUNGAN ARUS GANGGUAN HUBUNG SINGKAT

BAB III PERHITUNGAN ARUS GANGGUAN HUBUNG SINGKAT BAB III PERHITUNGAN ARUS GANGGUAN HUBUNG SINGKAT 3.1. JENIS GANGGUAN HUBUNG SINGKAT Gangguan hubung singkat yang mungkin terjadi di dalam Jaringan (Sistem Kelistrikan) ada 3, yaitu: a. Gangguan Hubung

Lebih terperinci

BAB II ELEMEN RANGKAIAN LISTRIK

BAB II ELEMEN RANGKAIAN LISTRIK 14 BAB II ELEMEN RANGKAIAN LISTRIK Seperti dijelaskan pada bab sebelumnya, bahwa pada tidak dapat dipisahkan dari penyusunnya sendiri, yaitu berupa elemen atau komponen. Pada bab ini akan dibahas elemen

Lebih terperinci

PERENCANAAN PEMASANGAN GARDU SISIP P117

PERENCANAAN PEMASANGAN GARDU SISIP P117 Jurnal Desiminasi Teknologi, Volume 1, Nomor 1, Januari 2013, Hal 17-26 PERENCANAAN PEMASANGAN GARDU SISIP P117 Di PT PLN (PERSERO) AREA BANGKA Lisma [1], Yusro Hakimah [2] Jurusan Teknik Elektro, Fakultas

Lebih terperinci

Kemampuan yang dibangun dalam laboratorium inquiry : Mampu menyusun rangkaian jembatan Wheatstone Menjelaskan sifat rangkaian jembatan Wheatstone Mamp

Kemampuan yang dibangun dalam laboratorium inquiry : Mampu menyusun rangkaian jembatan Wheatstone Menjelaskan sifat rangkaian jembatan Wheatstone Mamp LABORATORIUM INQUIRY JEMBATAN WHEATSTONE DAN RANGKAIAN LR SERI Kemampuan yang dibangun dalam laboratorium inquiry : Mampu menyusun rangkaian jembatan Wheatstone Menjelaskan sifat rangkaian jembatan Wheatstone

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1. Sistem Distribusi 1 Bagian dari sistem tenaga listrik yang paling dekat dengan pelanggan adalah sistem distribusi. Sistem distribusi adalah bagian sistem tenaga listrik yang

Lebih terperinci

ANALISIS GANGGUAN HUBUNG SINGKAT TIGA FASE PADA SISTEM DISTRIBUSI STANDAR IEEE 13 BUS

ANALISIS GANGGUAN HUBUNG SINGKAT TIGA FASE PADA SISTEM DISTRIBUSI STANDAR IEEE 13 BUS NASKAH PUBLIKASI ANALISIS GANGGUAN HUBUNG SINGKAT TIGA FASE PADA SISTEM DISTRIBUSI STANDAR IEEE 13 BUS DENGAN MENGGUNAKAN PROGRAM ETAP POWER STATION 7.0 Diajukan oleh: FAJAR WIDIANTO D 400 100 060 JURUSAN

Lebih terperinci

ANALISIS SISTEM TENAGA. Analisis Gangguan

ANALISIS SISTEM TENAGA. Analisis Gangguan ANALISIS SISTEM TENAGA Analisis Gangguan Dr. Muhammad Nurdin Ir. Nanang Hariyanto, MSc Departemen Teknik Elektro ITB Pendahuluan Sistem tenaga listrik pasti mengalami gangguan dengan arus yang besar Alat

Lebih terperinci

SOAL DAN PEMBAHASAN ARUS BOLAK BALIK

SOAL DAN PEMBAHASAN ARUS BOLAK BALIK SOAL DAN PEMBAHASAN ARUS BOLAK BALIK Berikut ini ditampilkan beberapa soal dan pembahasan materi Fisika Listrik Arus Bolak- Balik (AC) yang dibahas di kelas 12 SMA. (1) Diberikan sebuah gambar rangkaian

Lebih terperinci

BAB II DASAR TEORI. melalui gandengan magnet dan prinsip induksi elektromagnetik [1].

BAB II DASAR TEORI. melalui gandengan magnet dan prinsip induksi elektromagnetik [1]. BAB II DASAR TEORI 2.1 Umum Transformator merupakan suatu alat listrik statis yang dapat memindahkan dan mengubah energi listrik dari satu rangkaian listrik ke rangkaian listrik lainnya melalui gandengan

Lebih terperinci