BAB II TINJAUAN PUSTAKA. dibangkitkan oleh pembangkit harus dinaikkan dengan trafo step up. Hal ini

Ukuran: px
Mulai penontonan dengan halaman:

Download "BAB II TINJAUAN PUSTAKA. dibangkitkan oleh pembangkit harus dinaikkan dengan trafo step up. Hal ini"

Transkripsi

1 2.1 Sistem Transmisi Tenaga Listrik BAB II TINJAUAN PUSTAKA Sistem transmisi adalah sistem yang menghubungkan antara sistem pembangkitan dengan sistem distribusi untuk menyalurkan tenaga listrik yang dihasilkan pembangkit ke sistem distribusi. Dalam penyalurannya tegangan yang dibangkitkan oleh pembangkit harus dinaikkan dengan trafo step up. Hal ini dilakukan untuk mengurangi rugi-rugi selama penyaluran tenaga listrik. Kemudian diujung saluran transmisi diturunkan dengan menggunakan trafo step down sehingga tegangannya dapat digunakan oleh pelanggan Saluran Transmisi Saluran transmisi adalah saluran yang menghantarkan energi listrik dari pusat-pusat pembangkitan tenaga listrik kepada pelanggan. Komponen-komponen utama saluran transmisi adalah struktur pendukung, konduktor sebagai penghantar energi, dan isolator 4]. Struktur pendukung terdiri dari tiang atau menara listrik yang akan menopang konduktor dan isolator. Suatu saluran transmisi terdapat empat parameter yang akan mempengaruhi kemampuannya untuk berfungsi sebagai bagian dari sistem tenaga, yaitu : resistansi, induktansi, kapasitansi, dan konduktansi. Konduktansi antar-penghantar dan tanah menyebabkan terjadinya arus bocor (leakage current) pada isolator saluran atas-tiang (overhead lines) dan yang melalui isolasi kabel. Karena kebocoran pada isolator atas-tiang sangat kecil sehingga dapat diabaikan, konduktansi antar-penghantar pada saluran atas-tiang dianggap sama dengan nol 6]. 6

2 7 A. Resistansi Resistansi penghantar adalah penyebab utama terjadinya rugi-rugi daya pada saluran transmisi. Terdapat dua macam tahanan, yaitu tahanan arus searah dan tahanan arus bolak-balik. Tahanan arus searah ditentukan oleh nilai resistivitas material konduktor: (2.1) dimana: R= tahanan arus searah = resistivitas L=panjang konduktor A= luas penampang bidang. Nilai tahanan ini berubah dengan suhu menurut rumus:, - (2.2) dimana: =tahanan pada suhu t =tahanan pada suhu to =koefisien suhu massa konstan. Resistansi arus searah terbagi merata pada penampang konduktor, namun tidak demikian untuk resistansi arus bolak balik, dimana terdapat kecenderungan arus lebih berkonsentrasi pada permukaan konduktor. Fenomena ini sering disebut dengan efek kulit (skin effect), dan mengakibatkan resistansi sedikit meningkat, terutama bila konduktor memiliki garis tengah yang besar. Efek kulit ini sangat kecil untuk frekuensi yang rendah 5].

3 8 B. Induktansi Ada dua persamaan dasar yang dapat digunakan untuk menjelaskan dan merumuskan induktansi. Persamaan yang pertama menghubungkan tegangan imbas dengan kecepatan perubahan fluks yang meliputi suatu rangkaian. Tegangan imbas adalah (2.3) Dimana: = tegangan imbas dalam volt =banyaknya fluks gandeng (flux linkages) rangkaian dalam weber-turns Banyaknya weber-turns adalah hasil perkalian masing-masing weber dari fluks dan jumlah lilitan dari rangkaian yang digandengkannya. Pada suatu kumparan, sebagian besar dari garis-garis fluks yang ditimbulkan akan menggandeng lebih dari satu lilitan kumparan. Jika beberapa fluks hanya menghubungkan sebagian dari lilitan kumparan, maka jumlah fluks gandeng akan berkurang. Sesuai dengan banyaknya garis fluks, masing-masing garis dikalikan dengan jumlah lilitan yang digandengkannya, dan hasil-hasil perkalian ini seluruhnya dijumlahkan untuk mendapatkan fluks gandeng total (total flux linkage). Jika arus pada rangkaian berubah-ubah, medan magnet yang ditimbulkannya pasti berubah-ubah. Jika dimisalkan bahwa media medan magnet ditimbulkan mempunyai permeabilitas yang konstan, banyaknya fluks gandeng berbanding lurus dengan arus, dan karena itu tegangan imbasnya sebanding dengan kecepatan perubahan arus. Jadi persamaan dasar yang kedua adalah: (2.4)

4 9 Dimana, = induktansi rangkaian, H =tegangan imbas, V =kecepatan perubahan arus, A/s Persamaan 2.3 dapat juga dipakai jika permeabilitasnya tidak konstan, tetapi dalam hal itu induktasninya juga menjadi tidak konstan. Persamaan 2.3 dan persamaan 2.4 diselesaikan untuk mendapatkan L, hasilnya yaitu (2.5) Jika fluks gandeng dari rangkaian berubah secara linear sesuai dengan arus, yang berarti bahwa rangkaian magnetis itu mempunyai permeabilitas konstan, maka (2.6) Dan dari sini timbullah definisi induktansi-sendiri (self-inductance) dari suatu rangkaian listrik, yaitu fluks gandeng dari rangkaian per satuan arus. Dengan induktansi sebagai faktornya, fluks gandeng menjadi (2.7) C. Kapasitansi Kapasitansi suatu saluran transmisi adalah akibat beda potensial antara penghantar (konduktor), kapasitansi menyebabkan penghantar tersebut bermuatan seperti yang terjadi pada pelat kapasitor bila terjadi beda potensial diantaranya. Kapasitansi antara penghantar adalah muatan per unit beda potensial. Kapasitansi antara penghantar sejajar adalah suatu konstanta yang tergantung pada ukuran dan jarak pemisah antara penghantar. Untuk saluran daya yang panjangnya 80 km (50

5 10 mil), pengaruh kapasitansinya kecil dan biasanya dapat diabaikan. Untuk saluransaluran yang lebih panjang dengan tegangan yang lebih tinggi, kapasitansi menjadi bertambah penting. Suatu tegangan bolak balik yang terpasang pada saluran transmisi akan menyebabkan muatan pada penghantar-penghantarnya di setiap titik bertambah dan berkurang sesuai dengan kenaikan dan penurunan nilai sesaat tegangan antara penghantar pada titik tersebut. Aliran muatan adalah arus, dan arus yang disebabkan oleh pengisian dan pengosongan bolak-balik (alternate charging and discharging) saluran karena tegangan bolak-balik disebut arus pengisian saluran. Arus pengisian mengalir dalam saluran transmisi meskipun saluran tersebut dalam keadaan terbuka. Hal ini mempengaruhi jatuh tegangan sepanjang saluran, effisiensi dan faktor daya saluran serta kestabilan sistem dimana saluran tersebut merupakan salah satu bagiannya. Kapasitansi antara dua penghantar pada saluran dua kawat didefinisikan sebagai muatan pada penghantar itu per unit beda potensial diantara keduanya. Dalam bentuk persamaan, kapasitansi persatuan panjang saluran adalah (2.8) Dimana q adalah muatan pada saluran dalam coulomb per meter dan v adalah beda potensial antar kedua penghantar dalam volt.

6 Busbar Busbar adalah sebagai terminal tempat pengambilan sumber listrik. Semua peralatan pada gardu induk dihubungkan ke bus dan berada disekelilingnya. Pada umumnya konfigurasi busbar terbagi menjadi empat yaitu : Single breaker, single bus; single breaker, double bus with tie; 1½ breaker configuration; and Ring Bus. Single breaker, single bus adalah susunan busbar yang paling sederhana dan paling murah. Kelemahan dari konfigurasi ini yaitu memiliki keterbatasan operasi. Apabila ada gangguan yang menyebabkan breker terbuka maka seluruh beban pada saluran itu akan padam. Single breaker, double bus with tie yaitu konfigurasi dua busbar yang dihubungkan dengan satu pemutus tenaga. Konfigurasi ini memiliki fleksibilitas operasi, yaitu apabila pada salah satu busbar terjadi gangguan maka pemutus tenaga akan membuka konfigurasinya sehingga gangguan tersebut tidak mengganggu busbar yang satu. Sistem ring bus digunakan bila ada dua sumber yang mensuplai, kelebihan konfigurasi ini yaitu apabila terjadi gangguan pada salah satu sumber akan langsung mengisolir gangguan tersebut. Pada keadaan normal semua breaker pada ring bus berada dalam keadaan tertutup. Sistem satu setengah breaker memiliki tiga breaker yang terhubung seri diantara dua bus. Susunan ini mempunyai faktor pengamanan yang tinggi, karena bila suatu lokasi mengalami gangguan, tidak akan mempengaruhi bagian lain yang sedang beroperasi.

7 12 Gambar 2.1 Konfigurasi Busbar 2.3 Studi Aliran Daya Studi aliran daya bertujuan untuk kepentingan perencanaan dan perancangan guna kondisi operasi optimal pada sistem yang ada dan untuk pengembangan sistem yang akan datang secara optimal. Keterangan yang diperoleh dari studi aliran daya adalah besar dan sudut fasa tegangan pada setiap bus dan daya nyata dan reaktif yang mengalir pada setiap saluran. Dalam studi aliran daya terdapat tiga penggolongan bus, yaitu 7]: 1. Bus beban; pada bus ini terhubung beban-beban yang permintaan daya nyata (P) dan daya reaktif (Q), sedangkan besar tegangan (V) dan sudut fasanya (δ) dihitung. Bus beban sering juga disebut bus P-Q. 2. Bus generator; pada bus generator terdapat generator-generator yang besaran tegangan (V) dan daya aktif (P) diketahui, sedangkan sudut fasa tegangan (δ) dan daya reaktif (Q) tidak diketahui. Bus generator sering juga disebut bus P- V.

8 13 3. Bus referensi(slack bus); pada bus referensi besar tegangan (V) dan sudut fasanya (δ) diketahui, sudut fasa δ pada bus referensi menjadi acuan untuk sudut fasa tegangan pada bus yang lain Persamaan Aliran Daya Suatu sistem tenaga listrik terdapat banyak bus. Berikut gambar 2.2 menunjukkan diagram satu garis beberapa bus dari sistem tenaga 8]: I i V i y i1 y i2 V 1 V 2 y in V n y i0 Gambar 2.2 Diagram satu garis dari n-bus dalam suatu sistem tenaga Arus pada bus i dapat ditulis: (2.9) Sehingga dapat didefinisikan sebagai berikut: Admitansi Y dapat ditulis dalam bentuk persamaan matriks sebagai berikut:

9 14 ] (2.10) Sehingga I i pada Persamaan (2.9) dapat ditulis: (2.11) Atau dapat ditulis menjadi: (2.12) Persamaan daya pada bus i adalah: ; dimana adalah V conjugate pada bus i (2.13) Dengan mensubsitusikan Persamaan (2.13) ke Persamaan (2.12), maka diperoleh: (2.14) Dari Persamaan (2.14) terlihat bahwa persamaan aliran daya bersifat tidak linear dan harus diselesaikan dengan metode iterasi Metode Penyelesaian Aliran Daya Metode yang umum digunakan untuk menyelesaikan aliran daya adalah metode Gauss-Seidel, Newton-Raphson, dan Fast Decoupled. Metode yang akan digunakan untuk menyelesaikan studi aliran daya pada Tugas Akhir ini adalah Newton-Raphson Metode Newton-Raphson Untuk sistem yang sangat luas, metode ini ditemukan untuk memudahkan perhitungan aliran daya pada sistem tersebut. Pada suatu bus, dimana besarnya

10 15 tegangan dan daya reaktif tidak diketahui, unsur nyata dan khayal tegangan untuk setiap iterasi didapatkan dengan pertama-tama menghitung nilai daya aktif dan reaktif. Dari Persamaan (2.14) kita peroleh: ( ) (2.15) Dimana, sehingga diperoleh: (2.16) * + (2.17) Penyelesaian persamaan aliran daya dengan metode ini tegangan bus dan admitansi saluran dinyatakan dalam bentuk polar. Jika kita pilih bentuk polar dan kita uraikan Persamaan (2.15) kedalam unsur nyata dan khayalnya dengan: Maka diperoleh : (2.18) (2.19) Atau P i dapat ditulis dalam Persamaan (2.20), - (2.20) (2.21) Atau Q i dapat ditulis dalam Persamaan (2.22)., - (2.22) Persamaan (2.19) dan (2.21) merupakan langkah awal perhitungan aliran daya dengan metode Newton Raphson. Penyelesaian aliran menggunakan proses

11 16 iterasi (k+1), untuk iterasi pertama nilai k = 0, pada iterasi merupakan nilai perkiraan awal yang ditetapkan sebelum dimulai perhitungan aliran daya. Hasil perhitungan daya menggunakan Persamaan (2.19) dan (2.21) akan diperoleh nilai dan. Hasil ini digunakan untuk menghitung nilai dan menggunakan persamaan berikut: (2.23) (2.24) Hasil perhitungan Persamaan (2.23) dan (2.24) digunakan untuk membentuk matriks Jacobian, persamaan matriks Jacobian dapat dilihat pada Persamaan (2.25). (2.25) ] ] ] Secara umum Persamaan (2.25) dapat kita sederhanakan ke dalam Persamaan (2.26). ] ] ] (2.26) Unsur Jacobian diperoleh dengan membuat turunan parsial dari Persamaan (2.19) dan (2.21) dan memasukkan nilai tegangan perkiraan pada iterasi pertama atau yang diperhitungkan dalam yang terdahulu dan terakhir. Dari Persamaan (2.19) dan (2.21) kita dapat menulis matriks Jacobian sebagai berikut:

12 17 (2.27) (2.28) Bentuk umum yang serupa dapat diperoleh dari Persamaan (2.20) dan (2.22), sehingga dapat dicari untuk submatriks Jacobian yang lain. Setelah itu menghitung nilai dan dengan cara menginvers matriks Jacobian yang telah diperoleh sebelumnya. Sehingga diperoleh Persamaan (2.29). ] ] ] (2.29) Setelah nilai dan didapat, kita dapat menghitung nilai tersebut untuk iterasi berikutnya, yaitu dengan menambahkan nilai ( dan ), sehingga diperoleh Persamaan (2.30) dan (2.31). (2.30) (2.31) Hasil perhitungan Persamaan (2.27) dan (2.28) digunakan lagi untuk proses iterasi selanjutnya, yaitu dengan memasukkan nilai ini ke dalam Persamaan (2.19) dan (2.21) sebagai langkah awal perhitungan aliran daya. Proses ini dilakukan terus menerus yaitu n-iterasi sampai diperoleh nilai yang konvergen. Secara ringkas metode perhitungan aliran daya menggunkan metode Newton-Raphson dapat dilakukan dengan langkah-langkah sebagai berikut: 1. Hitung nilai dan yang mengalir ke dalam sistem pada setiap bus untuk nilai yang diperkirakan dari besar tegangan (V) dan sudut fasanya δ

13 18 untuk iterasi pertama atau nilai tegangan yang ditentukan paling akhir untuk iterasi berikutnya. 2. Hitung pada setiap rel. 3. Hitunglah nilai-nilai untuk Jacobian dengan menggunakan nilai-nilai perkiraan atau yang ditentukan dari besar dan sudut fasa tegangan dalam persamaan untuk turunan parsial yang ditentukan dengan persamaan diferensial Persamaan (2.19) dan (2.21) 4. Invers matriks Jacobian dan hitung koreksi-koreksi tegangan dan pada setiap rel 5. Hitung nilai yang baru dari dan dengan menambahkan nilai dan pada nilai sebelumnya. 6. Kembali ke langkah 1 dan ulangi proses itu dengan menggunakan nilai besar dan sudut fasa tegangan yang ditentukan paling akhir sehingga semua nilai yang diperoleh lebih kecil dari indeks ketepatan yang telah dipilih Rugi-rugi pada Jaringan berikut 8]: Rugi rugi pada jaringan dapat dicari melalui representasi Gambar 2.3

14 19 Gambar 2.3 Representasi Rugi-rugi Jaringan Dari gambar di atas dapat dinyatakan bahwa arus yang mengalir dari i ke j adalah: (2.32) Begitu pula sebaliknya, arus yang mengalir dari j ke I dapat dinyatakan dengan : (2.33) Daya Semu yang terjadi dari bus i ke j dan dari bus j ke i adalah : (2.34) (2.35) Sedangkan rugi rugi daya yang terjadi dari i ke j secara aljabar dapat ditulis sebagai : (2.36) Dengan begitu, untuk menghitung nilai rugi rugi secara keseluruhan dari jaringan dapat dihitung dengan menjumlahkan seluruh rugi rugi yang diperoleh pada setiap saluran. (2.37)

15 Contoh Penyelesaian Studi Aliran Daya Newton Raphson Gambar 2.4 menunjukkan gambar oneline diagram sistem tenaga dengan 3 bus. Bus 1 adalah slack bus, bus 2 adalah bus beban dan bus 3 adalah bus generator. Nilai yang diketahui masing-masing bus dan impedansi penghantar terdapat pada gambar tersebut. Base daya sama dengan 100 MVA. G1 Bus-1 Bus-2 z, j, 4 P 4 MW z, j, z, 5 j, 5 Q 5 MVAR Slack bus v, 5 Bus-3 v P MW G1 Gambar 2. 4 diagram satu garis dengan tiga bus Untuk melakukan studi aliran daya pada contoh tersebut, langkah pertama yang dilakukan yaitu mencari nilai matriks admitansi. ]

16 , - ], ] dalam radian. Mengubah nilai matriks bus admitansi ke dalam bentuk polar dengan sudut 5,85,9 9, 6 7, 4,6,89 5, -, 6, 4 58, 7, 7 5,77, 4 ],6,89 5 5,77, 4 67,, 7 Kemudian langkah selanjutnya menghitung nilai daya aktif dan daya reaktif dengan menggunakan persamaan dibawah ini.

17 22 Langkah selanjutnya yaitu membentuk matriks jacobian.

18 23 Beban dan daya yang dibangkitkan diubah ke dalam bentuk per unit. (4 5 ) 4 5 Tegangan pada slack bus, 5, tegangan pada bus 3 =1,04 pu. Estimasi awal untuk nilai =1.0, =0. Selanjutnya yaitu menghitung nilai residu daya. 4 (, 4),86 (,56 6),4 8,5 (, 8), Langkah selanjutnya yaitu mencari nilai-nilai dari matriks jacobian. Berikut hasil dari perhitungan dalam bentuk matriks : ] 54, 8, 8 4,86, 8 66, 4 6,64] 7, 4 6,64 49,7 ] 54, 8, 8 4,86, 8 66, 4 6,64] 7, 4 6,64 49,7 ] ] 54, 8, 8 4,86, 8 66, 4 6,64] 7, 4 6,64 49,7,86,4 8],

19 24, , 6548 Maka, (, 45 6), 45 6 ( 77 8), 77 8 (, 6548),97 45 Nilai tersebut kembali disubstitusikan untuk mencari nilai,,, dan nilai matriks jacobian. Berikut adalah hasil iterasi kedua :, 99 8, 7 5 ], 5 9 5,7 46,765, 5, ,656 5, 79] 8,5 85 7,4 8 48, 6 ] Sehingga diperoleh nilai,, 795, 985, 767, 45 6 (, 795), 47 6, 77 8 (, 985), 87 Untuk Iterasi ketiga :,97 45 (, 767),97 68

20 25, 6, 8 ], 4 5,5967,69 86, 4744, , , 5 6] 8,548 7, ,95487 ] Sehingga didapat nilai,, 8, 4, 44, 47 6 (, 8), 47 6, 87 (, 4), 87 5,97 68 (, 44),97 68 Solusi untuk studi aliran daya ini konvergen pada iterasi ketiga. Sehingga diperoleh nilai,97 68,696, 4,4988 Maka nilai daya aktif dan reaktif pada slack bus, dan daya reaktif pada bus 3 dapat dicari dengan rumus dibawah ini:

21 26 Setelah disubstitusi setiap nilai dalam persamaan diatas, maka diperoleh nilai:, 84 8,4,4 85 4,85, , 7 Langkah selanjutnya yaitu menghitung rugi-rugi dalam saluran. Pertama sekali yaitu menghitung arus di setiap saluran.,(, 5, ) (,97 6, 4568)-,7 757,,7 757,,(, 5, ) (, 4, 87 5)-, 7 87, 69, 7 87, 69 ( 6 ),(,97 68, 47 6) (, 4, 87 5)-, 8,9 95, 8,9 95 Aliran daya pada saluran adalah : (, 5, )(,7 75, ) (,79 6, 87 4) 79, 6 8,7 4 (,97 68, 47 6)(,7 757, ) (,7 968, 947) 7,968,947 (, 5, )(, 7 87, 69) (, 9 6, 8) 9, 6, 8

22 27 (, 4, 87 5)(, 7 87, 69), 878, 569 8,878,569 (,97 68, 47 6)(, 8,9 95), 9, , 7,7 8 (, 4, 87 5)(, 8,9 95), 8878, ,878 67,746 Sehingga total rugi-rugi adalah : 8,4 7, Artificial Bee Colony (ABC) Metode optimisasi yang digunakan untuk menentukan letak slack bus adalah dengan metode Artificial Bee Colony (ABC). ABC adalah sebuah metode optimisasi yang terinspirasi oleh perilaku mencari makan lebah madu diperkenalkan oleh Karaboga pada tahun ]. Metode ini mensimulasikan perilaku lebah untuk menentukan slack bus yang terbaik. Dalam metode ini terdapat tiga kelompok lebah, yaitu: lebah pekerja, lebah onlooker, dan lebah scout. Lebah pekerja yaitu lebah yang pergi ke sumber makanan yang yang pernah dikunjung sendiri sebelumnya, lebah onlooker adalah lebah yang membuat keputusan dalam memilih sumber makanan,dan yang mencari sumber makanan secara acak yaitu lebah scout. Setiap sumber makanan hanya ada satu lebah pekerja. Lebah pekerja yang sumber makananya telah habis akan menjadi lebah scout.

23 28 Adapun tahapan yang dilakukan oleh lebah dalam menentukan tempat makanan adalah : 1. Mengirim lebah scout ke sumber makanan, 2. Mengirim lebah pekerja menuju sumber makanan dan mengidentifikasikan jumlah nektar yang ada. 3. Lebah lebah on-looker menghitung nilai probabilitas tempat dari sumber makanan yang telah diperoleh oleh lebah pekerja. 4. Lebah lebah On-looker memutuskan tempat yang akan dituju, dan ikut ke lokasi untuk melihat jumlah nectar yang ada. Lebah on-looker mengingat tempat yang dituju. 5. Bila sumber makanan pada tempat yang dituju telah habis, eksploitasi nectar dihentikan. 6. Kemudian lebah scout dikirim untuk mencari tempat sumber makanan baru 7. Lebah scout datang kepada lebah on-looker memberitahukan informasi tentang sumber makanan terdekat. 8. Lalu mengulang ke prosedur nomor Hingga diperoleh letak sumber makanan terbaik, lebah-lebah on-looker menentukan tempat makanan terbaik dan meminta lebah lainnya hanya menuju ke tempat makanan yang terbaik. Adapun secara sederhana, tahapan tahapan di atas dapat dibentuk dalam bentuk flowchart pada Gambar 2.5:

24 29 Gambar 2.5 Flowchart Artificial Bee Colony Metode di atas tersebut akan digunakan dalam tugas akhir ini sebagai metode yang digunakan untuk menentukan slack bus yang terbaik. Penggunaan metode Artificial Bee Colony dalam penentuan slack bus dapat direpresentasikan dalam Tabel 2.1.

25 30 Tabel 2.1 Representasi Penggunaan Metode ABC Algoritma ABC Posisi Sumber Makanan Jumlah Sumber Makanan Penentuan Slack Bus Kandidat bus yang akan dijadikan slack bus Jumlah Bus yang menjadi kandidat slack bus Fungsi Objektif Rugi rugi pada jaringan = Pada tabel di atas, dijelaskan bahwa posisi sumber makanan direpresentasikan sebagai kandidat bus yang akan dijadikan slack bus. Kandidat slack bus yaitu semua bus generator. Jumlah sumber makanan direpresentasikan sebagai jumlah bus yang menjadi kandidat slack bus. Kualitas sumber makanan direpresentasikan sebagai kualitas tegangan yang dihasilkan pada jaringan setelah penentuan slack bus. Dan fungsi objektif dari pemilihan titik optimum adalah nilai rugi rugi daya tekecil. Atau, bila dikonversikan menjadi fungsi fitness : (2.38)

PENENTUAN SLACK BUS PADA JARINGAN TENAGA LISTRIK SUMBAGUT 150 KV MENGGUNAKAN METODE ARTIFICIAL BEE COLONY

PENENTUAN SLACK BUS PADA JARINGAN TENAGA LISTRIK SUMBAGUT 150 KV MENGGUNAKAN METODE ARTIFICIAL BEE COLONY PENENTUAN SLACK BUS PADA JARINGAN TENAGA LISTRIK SUMBAGUT 150 KV MENGGUNAKAN METODE ARTIFICIAL BEE COLONY Tommy Oys Damanik, Yulianta Siregar Konsentrasi Teknik Energi Listrik, Departemen Teknik Elektro

Lebih terperinci

BAB II DASAR TEORI. Universitas Sumatera Utara

BAB II DASAR TEORI. Universitas Sumatera Utara BAB II DASAR TEORI 2.1.Studi Aliran Daya Studi aliran daya di dalam sistem tenaga listrik merupakan studi yang penting.studi aliran daya merupakan studi yang mengungkapkan kinerja dan aliran daya (nyata

Lebih terperinci

2 BAB II TINJAUAN PUSTAKA

2 BAB II TINJAUAN PUSTAKA 2 BAB II TINJAUAN PUSTAKA 2.1 Saluran Transmisi Saluran transmisi merupakan bagian dari sistem tenaga listrik yang berperan menyalurkan daya listrik dari pusat-pusat pembangkit listrik ke gardu induk.

Lebih terperinci

Penempatan Dan Penentuan Kapasitas Optimal Distributed Generator (DG) Menggunakan Artificial Bee Colony (ABC)

Penempatan Dan Penentuan Kapasitas Optimal Distributed Generator (DG) Menggunakan Artificial Bee Colony (ABC) Penempatan Dan Penentuan Kapasitas Optimal Distributed Generator (DG) Menggunakan Artificial Bee Colony (ABC) Oleh : Ahmad Zakaria H. 2207100177 Dosen Pembimbing : Prof. Dr.Ir. Imam Robandi, MT. Ir. Sjamsjul

Lebih terperinci

atau pengaman pada pelanggan.

atau pengaman pada pelanggan. 16 b. Jaringan Distribusi Sekunder Jaringan distribusi sekunder terletak pada sisi sekunder trafo distribusi, yaitu antara titik sekunder dengan titik cabang menuju beban (Lihat Gambar 2.1). Sistem distribusi

Lebih terperinci

PENENTUAN TITIK INTERKONEKSI DISTRIBUTED GENERATION

PENENTUAN TITIK INTERKONEKSI DISTRIBUTED GENERATION PENENTUAN TITIK INTERKONEKSI DISTRIBUTED GENERATION (DG) PADA JARINGAN 20 KV DENGAN BANTUAN METODE ARTIFICIAL BEE COLONY STUDI KASUS : PLTMH AEK SILAU 2 Syilvester Sitorus Pane, Zulkarnaen Pane Konsentrasi

Lebih terperinci

BAB II DASAR TEORI. Gardu Induk, Jaringan Distribusi, dan Beban seperti yang ditunjukkan Gambar 2.1

BAB II DASAR TEORI. Gardu Induk, Jaringan Distribusi, dan Beban seperti yang ditunjukkan Gambar 2.1 BAB II DASAR TEORI 2.1 UMUM Sistem Tenaga Listrik terdiri dari Pusat Pembangkit, Jaringan Transmisi, Gardu Induk, Jaringan Distribusi, dan Beban seperti yang ditunjukkan Gambar 2.1 di bawah ini. Gambar

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA 6 BAB II TINJAUAN PUSTAKA 2.1 Sistem Tenaga Listrik Sistem Tenaga Listrik dikatakan sebagai kumpulan/gabungan yang terdiri dari komponen-komponen atau alat-alat listrik seperti generator, transformator,

Lebih terperinci

Penempatan Dan Penentuan Kapasitas Optimal Distributed Generator (DG) Menggunakan Artificial Bee Colony (ABC)

Penempatan Dan Penentuan Kapasitas Optimal Distributed Generator (DG) Menggunakan Artificial Bee Colony (ABC) JURNAL TEKNIK ITS Vol. 1, No. 1, (Sept. 2012) ISSN: 2301-9271 B-16 Penempatan Dan Penentuan Kapasitas Optimal Distributed Generator (DG) Menggunakan Artificial Bee Colony (ABC) Ahmad Zakaria H, Sjamsjul

Lebih terperinci

BAB II SISTEM SALURAN TRANSMISI ( yang membawa arus yang mencapai ratusan kilo amper. Energi listrik yang

BAB II SISTEM SALURAN TRANSMISI ( yang membawa arus yang mencapai ratusan kilo amper. Energi listrik yang A II ITEM ALUAN TANMII ( 2.1 Umum ecara umum saluran transmisi disebut dengan suatu sistem tenaga listrik yang membawa arus yang mencapai ratusan kilo amper. Energi listrik yang dibawa oleh konduktor melalui

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1.Tinjauan Pustaka Semakin pesatnya pertumbuhan suatu wilayah menuntut adanya jaminan ketersediaannya energi listrik serta perbaikan kualitas dari energi listrik, menuntut para

Lebih terperinci

OPTIMASI PENEMPATAN DAN KAPASITAS SVC DENGAN METODE ARTIFICIAL BEE COLONY ALGORITHM

OPTIMASI PENEMPATAN DAN KAPASITAS SVC DENGAN METODE ARTIFICIAL BEE COLONY ALGORITHM OPTIMASI PENEMPATAN DAN KAPASITAS SVC DENGAN METODE ARTIFICIAL BEE COLONY ALGORITHM Khairina Noor.A. 1, Hadi Suyono, ST., MT., Ph.D. 2, Dr. Rini Nur Hasanah, ST., M.Sc. 3 1 Mahasiswa Teknik Elektro, 2,3

Lebih terperinci

STUDI ALIRAN DAYA PADA SISTEM KELISTRIKAN SUMATERA BAGIAN UTARA (SUMBAGUT) 150 kv DENGAN MENGGUNAKAN SOFTWARE POWERWORLD VERSI 17

STUDI ALIRAN DAYA PADA SISTEM KELISTRIKAN SUMATERA BAGIAN UTARA (SUMBAGUT) 150 kv DENGAN MENGGUNAKAN SOFTWARE POWERWORLD VERSI 17 STUDI ALIRAN DAYA PADA SISTEM KELISTRIKAN SUMATERA BAGIAN UTARA (SUMBAGUT) 50 kv DENGAN MENGGUNAKAN SOFTWARE POWERWORLD VERSI 7 Adly Lidya, Yulianta Siregar Konsentrasi Teknik Energi Listrik, Departemen

Lebih terperinci

BAB II TINJAUAN PUSTAKA. tegangannya menjadi tegangan tinggi, tegangan ekstra tinggi, dan tegangan ultra

BAB II TINJAUAN PUSTAKA. tegangannya menjadi tegangan tinggi, tegangan ekstra tinggi, dan tegangan ultra BAB II TINJAUAN PUSTAKA 2.1 Sistem Distribusi Tenaga Listrik Berdasarkan sistem tenaga listrik konvensional, energi listrik dibangkitkan pada pusat pembangkit dengan daya yang besar. Kemudian dinaikkan

Lebih terperinci

II. TINJAUAN PUSTAKA

II. TINJAUAN PUSTAKA II. TINJAUAN PUSTAKA 2.1 Pendahuluan Gambar 1. Diagram Satu Garis Sistem Daya Listrik [2] Gambar 2 menunjukkan bahwa sistem tenaga listrik terdiri dari tiga kelompok jaringan yaitu pembangkitan, transmisi

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Umum Gambar 2.1 dibawah ini menunjukkan diagram segaris suatu sistem tenaga listrik yang sederhana. Gambar ini menunjukkan bahwa sistem tenaga listrik terdiri atas lima sub-sistem

Lebih terperinci

LEMBAR KERJA SISWA (LKS) /TUGAS TERSTRUKTUR - - INDUKSI ELEKTROMAGNET - INDUKSI FARADAY DAN ARUS

LEMBAR KERJA SISWA (LKS) /TUGAS TERSTRUKTUR - - INDUKSI ELEKTROMAGNET - INDUKSI FARADAY DAN ARUS LEMBAR KERJA SISWA (LKS) /TUGAS TERSTRUKTUR Diberikan Tanggal :. Dikumpulkan Tanggal : Induksi Elektromagnet Nama : Kelas/No : / - - INDUKSI ELEKTROMAGNET - INDUKSI FARADAY DAN ARUS BOLAK-BALIK Induksi

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA BAB 2 TINJAUAN PUSTAKA 2.1 Static VAR Compensator Static VAR Compensator (SVC) pertama kali dipasang pada tahun 1978 di Gardu Induk Shannon, Minnesota Power and Light system dengan rating 40 MVAR. Sejak

Lebih terperinci

INDUKSI ELEKTROMAGNETIK

INDUKSI ELEKTROMAGNETIK INDUKSI ELEKTROMAGNETIK Hukum Faraday Persamaan Maxwell Keempat (Terakhir) Induksi Elektromagnetik Animasi 8.1 Fluks Magnet yang Menembus Loop Analog dengan Fluks Listrik (Hukum Gauss) (1) B Uniform (2)

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Static VAR Compensator 2.1.1 Teori Dasar Static VAR Compensator (SVC) adalah perangkat elektronika daya yang disusun secara paralel untuk mengatur aliran daya dan meningkatkan

Lebih terperinci

STUDI KESTABILAN SISTEM BERDASARKAN PREDIKSI VOLTAGE COLLAPSE PADA SISTEM STANDAR IEEE 14 BUS MENGGUNAKAN MODAL ANALYSIS

STUDI KESTABILAN SISTEM BERDASARKAN PREDIKSI VOLTAGE COLLAPSE PADA SISTEM STANDAR IEEE 14 BUS MENGGUNAKAN MODAL ANALYSIS STUDI KESTABILAN SISTEM BERDASARKAN PREDIKSI VOLTAGE COLLAPSE PADA SISTEM STANDAR IEEE 14 BUS MENGGUNAKAN MODAL ANALYSIS OLEH : PANCAR FRANSCO 2207100019 Dosen Pembimbing I Prof.Dr. Ir. Adi Soeprijanto,

Lebih terperinci

SIMULASI DAN ANALISIS ALIRAN DAYA PADA SISTEM TENAGA LISTRIK MENGGUNAKAN PERANGKAT LUNAK ELECTRICAL TRANSIENT ANALYSER PROGRAM (ETAP) VERSI 4.

SIMULASI DAN ANALISIS ALIRAN DAYA PADA SISTEM TENAGA LISTRIK MENGGUNAKAN PERANGKAT LUNAK ELECTRICAL TRANSIENT ANALYSER PROGRAM (ETAP) VERSI 4. SIMULASI DAN ANALISIS ALIRAN DAYA PADA SISTEM TENAGA LISTRIK MENGGUNAKAN PERANGKAT LUNAK ELECTRICAL TRANSIENT ANALYSER PROGRAM (ETAP) VERSI 4.0 Rudi Salman 1) Mustamam 2) Arwadi Sinuraya 3) Abstrak Penelitian

Lebih terperinci

BAB III LANDASAN TEORI

BAB III LANDASAN TEORI 15 BAB III LANDASAN TEORI Tenaga listrik dibangkitkan dalam Pusat-pusat Listrik seperti PLTA, PLTU, PLTG, PLTP dan PLTD kemudian disalurkan melalui saluran transmisi yang sebelumnya terlebih dahulu dinaikkan

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI 6 BAB II LANDASAN TEORI 2.1 Umum Untuk menjaga agar faktor daya sebisa mungkin mendekati 100 %, umumnya perusahaan menempatkan kapasitor shunt pada tempat yang bervariasi seperti pada rel rel baik tingkat

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar belakang

BAB I PENDAHULUAN 1.1 Latar belakang BAB I PENDAHULUAN 1.1 Latar belakang Transformator adalah suatu alat listrik yang dapat memindahkan dan mengubah energi listrik dari satu atau lebih rangkaian listrik ke rangkaian listrik yang lain melalui

Lebih terperinci

BAB II TRANSFORMATOR. sistem ketenagalistrikan. Transformator adalah suatu peralatan listrik. dan berbanding terbalik dengan perbandingan arusnya.

BAB II TRANSFORMATOR. sistem ketenagalistrikan. Transformator adalah suatu peralatan listrik. dan berbanding terbalik dengan perbandingan arusnya. BAB II TRANSFORMATOR II.. Umum Transformator merupakan komponen yang sangat penting peranannya dalam sistem ketenagalistrikan. Transformator adalah suatu peralatan listrik elektromagnetis statis yang berfungsi

Lebih terperinci

KOMPONEN SIMETRIS DAN IMPEDANSI URUTAN. toto_sukisno@uny.ac.id

KOMPONEN SIMETRIS DAN IMPEDANSI URUTAN. toto_sukisno@uny.ac.id KOMPONEN SIMETRIS DAN IMPEDANSI URUTAN A. Sintesis Fasor Tak Simetris dari Komponen-Komponen Simetrisnya Menurut teorema Fortescue, tiga fasor tak seimbang dari sistem tiga-fasa dapat diuraikan menjadi

Lebih terperinci

BAB III METODOLOGI PENELITIAN

BAB III METODOLOGI PENELITIAN BAB III METODOLOGI PENELITIAN 3.1 Alur Penelitian Menentukan lokasi dan kapasitas optimal SVC pada sistem transmisi 150 kv subsistem Bandung Selatan dan New Ujungberung menggunakan algoritma genetika membutuhkan

Lebih terperinci

Penempatan Dan Penentuan Kapasitas Optimal Distributed Generator (DG) Menggunakan Artificial Bee Colony (ABC)

Penempatan Dan Penentuan Kapasitas Optimal Distributed Generator (DG) Menggunakan Artificial Bee Colony (ABC) Penempatan Dan Penentuan Kapasitas Optimal Distributed Generator (DG) Menggunakan Artificial Bee Colony (ABC) Ahmad Zakaria H, Sjamsjul Anam, dan Imam Robandi Jurusan Teknik Elektro, Fakultas Teknologi

Lebih terperinci

5 Politeknik Negeri Sriwijaya BAB II TINJAUAN PUSTAKA

5 Politeknik Negeri Sriwijaya BAB II TINJAUAN PUSTAKA 5 BAB II TINJAUAN PUSTAKA 2.1 Sistem Tenaga Listrik Sistem tenaga listrik merupakan suatu sistem terpadu yang terbentuk oleh hubungan-hubungan peralatan dan komponen - komponen listrik, seperti generator,

Lebih terperinci

BAB I TEORI RANGKAIAN LISTRIK DASAR

BAB I TEORI RANGKAIAN LISTRIK DASAR BAB I TEORI RANGKAIAN LISTRIK DASAR I.1. MUATAN ELEKTRON Suatu materi tersusun dari berbagai jenis molekul. Suatu molekul tersusun dari atom-atom. Atom tersusun dari elektron (bermuatan negatif), proton

Lebih terperinci

Analisis Rangkaian Listrik

Analisis Rangkaian Listrik Sudaryatno Sudirham nalisis Rangkaian Listrik Jilid Sudaryatno Sudirham, nalisis Rangkaian Listrik () Rangkaian Pemroses Energi (rus Searah) Dalam bab ini kita akan melihat beberapa contoh aplikasi analisis

Lebih terperinci

Perkuliahan PLPG Fisika tahun D.E Tarigan Drs MSi Jurusan Fisika FPMIPA UPI 1

Perkuliahan PLPG Fisika tahun D.E Tarigan Drs MSi Jurusan Fisika FPMIPA UPI 1 Perkuliahan PLPG Fisika tahun 2009 Jurusan Fisika FPMIPA UPI 1 Muatan Listrik Dua jenis muatan listrik: positif dan negatif Satuan muatan adalah coulomb [C] Muatan elektron (negatif) atau proton (positif)

Lebih terperinci

ANALISIS KETIDAKSEIMBANGAN BEBAN TRANSFORMATOR DISTRIBUSI UNTUK IDENTIFIKASI BEBAN LEBIH DAN ESTIMASI RUGI-RUGI PADA JARINGAN TEGANGAN RENDAH

ANALISIS KETIDAKSEIMBANGAN BEBAN TRANSFORMATOR DISTRIBUSI UNTUK IDENTIFIKASI BEBAN LEBIH DAN ESTIMASI RUGI-RUGI PADA JARINGAN TEGANGAN RENDAH SINGUDA ENSIKOM VOL. 7 NO. 3/ Juni ANALISIS KETIDAKSEIMBANGAN BEBAN TRANSFORMATOR DISTRIBUSI UNTUK IDENTIFIKASI BEBAN LEBIH DAN ESTIMASI RUGI-RUGI PADA JARINGAN TEGANGAN RENDAH Yoakim Simamora, Panusur

Lebih terperinci

ANALISIS PEHITUNGAN RUGI-RUGI DAYA PADA GARDU INDUK PLTU 2 SUMUT PANGKALAN SUSU DENGAN MENGGUNAKAN PROGRAM SIMULASI ELECTRICAL TRANSIENT ANALYZER

ANALISIS PEHITUNGAN RUGI-RUGI DAYA PADA GARDU INDUK PLTU 2 SUMUT PANGKALAN SUSU DENGAN MENGGUNAKAN PROGRAM SIMULASI ELECTRICAL TRANSIENT ANALYZER ANALISIS PEHITUNGAN RUGI-RUGI DAYA PADA GARDU INDUK PLTU SUMUT PANGKALAN SUSU DENGAN MENGGUNAKAN PROGRAM SIMULASI ELECTRICAL TRANSIENT ANALYZER Asri Akbar, Surya Tarmizi Kasim Konsentrasi Teknik Energi

Lebih terperinci

SINGUDA ENSIKOM VOL. 7 NO. 2/Mei 2014

SINGUDA ENSIKOM VOL. 7 NO. 2/Mei 2014 PERBANDINGAN METODE FAST-DECOUPLE DAN METODE GAUSS-SEIDEL DALAM SOLUSI ALIRAN DAYA SISTEM DISTRIBUSI 20 KV DENGAN MENGGUNAKAN ETAP POWER STATION DAN MATLAB (Aplikasi Pada PT.PLN (Persero Cab. Medan) Ken

Lebih terperinci

BAB II JARINGAN DISTRIBUSI TENAGA LISTRIK. karena terdiri atas komponen peralatan atau mesin listrik seperti generator,

BAB II JARINGAN DISTRIBUSI TENAGA LISTRIK. karena terdiri atas komponen peralatan atau mesin listrik seperti generator, BAB II JARINGAN DISTRIBUSI TENAGA LISTRIK II.1. Sistem Tenaga Listrik Struktur tenaga listrik atau sistem tenaga listrik sangat besar dan kompleks karena terdiri atas komponen peralatan atau mesin listrik

Lebih terperinci

Materi dan Evaluasi. Materi: Evaluasi

Materi dan Evaluasi. Materi: Evaluasi Materi dan Evaluasi Materi: -Pendahuluan & Konsep Dasar -Transformator -Mesin Sinkron -Saluran Transmisi -Penyelesaian Aliran Daya (Metode Gauss Seidel, Newton Raphson) Evaluasi -Absensi -Tugas -Quiz 1

Lebih terperinci

BAB II DASAR TEORI. a. Pusat pusat pembangkit tenaga listrik, merupakan tempat dimana. ke gardu induk yang lain dengan jarak yang jauh.

BAB II DASAR TEORI. a. Pusat pusat pembangkit tenaga listrik, merupakan tempat dimana. ke gardu induk yang lain dengan jarak yang jauh. BAB II DASAR TEORI 2.1. Sistem Jaringan Distribusi Pada dasarnya dalam sistem tenaga listrik, dikenal 3 (tiga) bagian utama seperti pada gambar 2.1 yaitu : a. Pusat pusat pembangkit tenaga listrik, merupakan

Lebih terperinci

KOMPONEN-KOMPONEN SIMETRIS. A. Sintesis Fasor Tak Simetris dari Komponen-Komponen Simetrisnya

KOMPONEN-KOMPONEN SIMETRIS. A. Sintesis Fasor Tak Simetris dari Komponen-Komponen Simetrisnya Modul Mata Kuliah Proteksi Sistem Tenaga, F. TEKNIK ELEKTRO UNISMA KOMPONEN-KOMPONEN SIMETRIS Pada tahun 1918 salah satu cara yang paling ampuh untuk menangani rangkaian fasamajemuk (poly-phase = berfasa

Lebih terperinci

BAB II LANDASAN TEORI. Resistansi atau tahanan didefinisikan sebagai pelawan arus yang

BAB II LANDASAN TEORI. Resistansi atau tahanan didefinisikan sebagai pelawan arus yang BAB II LANDASAN TEORI Pada bab ini penulis menjelaskan kerangka teori yang digunakan dalam tugas akhir ini. Dimulai dengan definisi listrik dan elektromagnetik dasar, kemudian beralih ke daya nirkabel

Lebih terperinci

BAB II SALURAN DISTRIBUSI

BAB II SALURAN DISTRIBUSI BAB II SALURAN DISTRIBUSI 2.1 Umum Jaringan distribusi adalah salah satu bagian dari sistem penyaluran tenaga listrik dari pembangkit listrik ke konsumen. Secara umum, sistem penyaluran tenaga listrik

Lebih terperinci

GENERATOR SINKRON Gambar 1

GENERATOR SINKRON Gambar 1 GENERATOR SINKRON Generator sinkron merupakan mesin listrik arus bolak balik yang mengubah energi mekanik menjadi energi listrik arus bolak-balik. Energi mekanik diperoleh dari penggerak mula (prime mover)

Lebih terperinci

III. METODE PENELITIAN. Pengerjaan tugas akhir ini bertempat di Laboratorium Sistem Tenaga Elektrik

III. METODE PENELITIAN. Pengerjaan tugas akhir ini bertempat di Laboratorium Sistem Tenaga Elektrik III. METODE PENELITIAN A. Waktu dan Tempat Penelitian Pengerjaan tugas akhir ini bertempat di Laboratorium Sistem Tenaga Elektrik Jurusan Teknik Elektro Universitas Lampung pada bulan April 2012 sampai

Lebih terperinci

BAB II JARINGAN DISTRIBUSI TENAGA LISTRIK. Pusat tenaga listrik umumnya terletak jauh dari pusat bebannya. Energi listrik

BAB II JARINGAN DISTRIBUSI TENAGA LISTRIK. Pusat tenaga listrik umumnya terletak jauh dari pusat bebannya. Energi listrik BAB II JARINGAN DISTRIBUSI TENAGA LISTRIK 2.1. Umum Pusat tenaga listrik umumnya terletak jauh dari pusat bebannya. Energi listrik yang dihasilkan pusat pembangkitan disalurkan melalui jaringan transmisi.

Lebih terperinci

I. PENDAHULUAN. pertumbuhan ekonomi dan industri serta pertambahan penduduk. Listrik

I. PENDAHULUAN. pertumbuhan ekonomi dan industri serta pertambahan penduduk. Listrik I. PENDAHULUAN 1.1. Latar Belakang Kebutuhan tenaga listrik di Indonesia terus meningkat sesuai dengan laju pertumbuhan ekonomi dan industri serta pertambahan penduduk. Listrik merupakan bentuk energi

Lebih terperinci

Bahan Ajar Ke 1 Mata Kuliah Analisa Sistem Tenaga Listrik. Diagram Satu Garis

Bahan Ajar Ke 1 Mata Kuliah Analisa Sistem Tenaga Listrik. Diagram Satu Garis 24 Diagram Satu Garis Dengan mengasumsikan bahwa sistem tiga fasa dalam keadaan seimbang, penyelesaian rangkaian dapat dikerjakan dengan menggunakan rangkaian 1 fasa dengan sebuah jalur netral sebagai

Lebih terperinci

BAB III KETIDAKSEIMBANGAN BEBAN

BAB III KETIDAKSEIMBANGAN BEBAN 39 BAB III KETIDAKSEIMBANGAN BEBAN 3.1 Sistem Distribusi Awalnya tenaga listrik dihasilkan di pusat-pusat pembangkit seperti PLTA, PLTU, PLTG, PLTGU, PLTP, dan PLTP dan yang lainnya, dengan tegangan yang

Lebih terperinci

ANALISIS SUATU SISTEM JARINGAN LISTRIK DENGAN MENGGUNAKAN METODE GAUSS SEIDEL Z BUS

ANALISIS SUATU SISTEM JARINGAN LISTRIK DENGAN MENGGUNAKAN METODE GAUSS SEIDEL Z BUS ANALISIS SUATU SISTEM JARINGAN LISTRIK DENGAN MENGGUNAKAN METODE GAUSS SEIDEL Z BUS Disusun untuk memenuhi tugas mata kuliah Probabilitas dan Statistika Disusun oleh : M. IZZAT HARISI (0810630069) M. KHOLIFATULLOH

Lebih terperinci

Menu hari ini: Induktansi & Energi Magnetik Material Magnet

Menu hari ini: Induktansi & Energi Magnetik Material Magnet Induktans Menu hari ini: Induktansi & Energi Magnetik Material Magnet 2 Hukum Faraday tentang Induksi Perubahan fluks magnet menginduksi GGL Lenz: Induksi melawan perubahan 3 Cara untuk Menginduksi GGL

Lebih terperinci

TINJAUAN PUSTAKA. Dalam menyalurkan daya listrik dari pusat pembangkit kepada konsumen

TINJAUAN PUSTAKA. Dalam menyalurkan daya listrik dari pusat pembangkit kepada konsumen TINJAUAN PUSTAKA 2.1. Sistem Distribusi Sistem distribusi merupakan keseluruhan komponen dari sistem tenaga listrik yang menghubungkan secara langsung antara sumber daya yang besar (seperti gardu transmisi)

Lebih terperinci

ANALISA PERHITUNGAN SUSUT TEKNIS DENGAN PENDEKATAN KURVA BEBAN PADA JARINGAN DISTRIBUSI PT. PLN (PERSERO) RAYON MEDAN KOTA

ANALISA PERHITUNGAN SUSUT TEKNIS DENGAN PENDEKATAN KURVA BEBAN PADA JARINGAN DISTRIBUSI PT. PLN (PERSERO) RAYON MEDAN KOTA SINGUDA ENSIKOM VOL. 6 NO.2 /February ANALISA PERHITUNGAN SUSUT TEKNIS DENGAN PENDEKATAN KURVA BEBAN PADA JARINGAN DISTRIBUSI PT. PLN (PERSERO) RAYON MEDAN KOTA Bayu Pradana Putra Purba, Eddy Warman Konsentrasi

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA 5 BAB II TINJAUAN PUSTAKA 2.1 Umum Sistem Distribusi merupakan bagian dari sistem tenaga listrik. Sistem distribusi ini berguna untuk menyalurkan tenaga listrik dari sumber daya listrik besar (Bulk Power

Lebih terperinci

BAB III METODE PENELITIAN

BAB III METODE PENELITIAN 34 BAB III METODE PENELITIAN Penelitian ini bertujuan untuk mengetahui kondisi tegangan tiap bus, perubahan rugi-rugi daya pada masing-masing saluran dan indeks kestabilan tegangan yang terjadi dari suatu

Lebih terperinci

DASAR TEORI. Kata kunci: Kabel Single core, Kabel Three core, Rugi Daya, Transmisi. I. PENDAHULUAN

DASAR TEORI. Kata kunci: Kabel Single core, Kabel Three core, Rugi Daya, Transmisi. I. PENDAHULUAN ANALISIS PERBANDINGAN UNJUK KERJA KABEL TANAH SINGLE CORE DENGAN KABEL LAUT THREE CORE 150 KV JAWA MADURA Nurlita Chandra Mukti 1, Mahfudz Shidiq, Ir., MT. 2, Soemarwanto, Ir., MT. 3 ¹Mahasiswa Teknik

Lebih terperinci

ULANGAN AKHIR SEMESTER GANJIL 2015 KELAS XII. Medan Magnet

ULANGAN AKHIR SEMESTER GANJIL 2015 KELAS XII. Medan Magnet ULANGAN AKHIR SEMESTER GANJIL 2015 KELAS XII gaya F. Jika panjang kawat diperpendek setengah kali semula dan kuat arus diperbesar dua kali semula, maka besar gaya yang dialami kawat adalah. Medan Magnet

Lebih terperinci

PERBAIKAN REGULASI TEGANGAN

PERBAIKAN REGULASI TEGANGAN JURUSAN TEKNIK ELEKTRO FAKULTAS TEKNOLOGI INDUSTRI INSTITUT TEKNOLOGI SEPULUH NOPEMBER PERBAIKAN REGULASI TEGANGAN Distribusi Tenaga Listrik Ahmad Afif Fahmi 2209 100 130 2011 REGULASI TEGANGAN Dalam Penyediaan

Lebih terperinci

MODUL PRAKTIKUM RANGKAIAN LISTRIK

MODUL PRAKTIKUM RANGKAIAN LISTRIK MODUL PRAKTIKUM RANGKAIAN LISTRIK LABORATORIUM TTPL DEPARTEMEN TEKNIK ELEKTRO FAKULTAS TEKNIK UNIVERSITAS INDONESIA DEPOK 2014 PERCOBAAN I BRIEFING PRAKTIKUM Briefing praktikum dilaksanakan hari Selasa

Lebih terperinci

BAB III METODE PENELITIAN

BAB III METODE PENELITIAN 34 BAB III METODE PENELITIAN Penelitian ini bertujuan untuk mengetahui kondisi tegangan tiap bus, perubahan rugi-rugi daya pada masing-masing saluran dan indeks kestabilan tegangan yang terjadi dari suatu

Lebih terperinci

BAB II HARMONISA PADA GENERATOR. Generator sinkron disebut juga alternator dan merupakan mesin sinkron yang

BAB II HARMONISA PADA GENERATOR. Generator sinkron disebut juga alternator dan merupakan mesin sinkron yang BAB II HARMONISA PADA GENERATOR II.1 Umum Generator sinkron disebut juga alternator dan merupakan mesin sinkron yang digunakan untuk menkonversikan daya mekanis menjadi daya listrik arus bolak balik. Arus

Lebih terperinci

PERTEMUAN VIII SISTEM PER UNIT DAN DIAGRAM SEGARIS

PERTEMUAN VIII SISTEM PER UNIT DAN DIAGRAM SEGARIS PERTEMUAN VIII SISTEM PER UNIT DAN DIAGRAM SEGARIS 8.1 UMUM Saluran transmisi tenaga dioperasikan pada tingkat tegangan di mana kilovolt (kv) merupakan unit yang sangat memudahkan untuk menyatakan tegangan.

Lebih terperinci

MAKALAH INDUKTANSI DAN TRANSFORMATOR

MAKALAH INDUKTANSI DAN TRANSFORMATOR MAKALAH INDUKTANSI DAN TRANSFORMATOR Disusun oleh : Zahra Dhiyah Nafisa Kelas : XII IPA MADRASAH MULTITEKNIK ASIH PUTERA Jl. Muhammad Daeng Ardiwinata No. 199, Cimahi PEMBAHASAN A. INDUKTANSI I. SEJARAH

Lebih terperinci

II. TINJAUAN PUSTAKA. Transformator merupakan suatu peralatan listrik yang berfungsi untuk

II. TINJAUAN PUSTAKA. Transformator merupakan suatu peralatan listrik yang berfungsi untuk II. TINJAUAN PUSTAKA A. Transformator Transformator merupakan suatu peralatan listrik yang berfungsi untuk memindahkan dan mengubah tenaga listrik dari tegangan tinggi ke tegangan rendah atau sebaliknya,

Lebih terperinci

Jurnal Media Elektro Vol. V No. 2 ISSN: ANALISIS RUGI-RUGI DAYA JARINGAN DISTRIBUSI 20 kv PADA SISTEM PLN KOTA KUPANG

Jurnal Media Elektro Vol. V No. 2 ISSN: ANALISIS RUGI-RUGI DAYA JARINGAN DISTRIBUSI 20 kv PADA SISTEM PLN KOTA KUPANG ANALISIS RUGI-RUGI DAYA JARINGAN DISTRIBUSI 20 kv PADA SISTEM PLN KOTA KUPANG Sri Kurniati. A, Sudirman. S Jurusan Teknik Elektro, Fakultas Sains dan Teknik, Undana, AdiSucipto Penfui, Kupang, Indonesia,

Lebih terperinci

SIMULASI DAN ANALISIS ALIRAN DAYA PADA SISTEM TENAGA LISTRIK MENGGUNAKAN PERANGKAT LUNAK ELECTRICAL TRANSIENT ANALYSER PROGRAM (ETAP) VERSI 4.

SIMULASI DAN ANALISIS ALIRAN DAYA PADA SISTEM TENAGA LISTRIK MENGGUNAKAN PERANGKAT LUNAK ELECTRICAL TRANSIENT ANALYSER PROGRAM (ETAP) VERSI 4. SIMULASI DAN ANALISIS ALIRAN DAYA PADA SISTEM TENAGA LISTRIK MENGGUNAKAN PERANGKAT LUNAK ELECTRICAL TRANSIENT ANALYSER PROGRAM (ETAP) VERSI 4.0 Rudi Salman 1) Mustamam 2) Arwadi Sinuraya 3) mustamam1965@gmail.com

Lebih terperinci

BAB III PERENCANAAN INSTALASI SISTEM TENAGA LISTRIK

BAB III PERENCANAAN INSTALASI SISTEM TENAGA LISTRIK BAB III PERENCANAAN INSTALASI SISTEM TENAGA LISTRIK 3.1 Tahapan Perencanaan Instalasi Sistem Tenaga Listrik Tahapan dalam perencanaan instalasi sistem tenaga listrik pada sebuah bangunan kantor dibagi

Lebih terperinci

DAFTAR ISI LEMBAR PENGESAHAN PERNYATAAN...

DAFTAR ISI LEMBAR PENGESAHAN PERNYATAAN... DAFTAR ISI LEMBAR PENGESAHAN PERNYATAAN... i ABSTRAK... ii KATA PENGANTAR... iii DAFTAR ISI... v DAFTAR TABEL... vii DAFTAR GAMBAR... viii DAFTAR LAMPIRAN... ix BAB I PENDAHULUAN... 1 1.1. Latar Belakang

Lebih terperinci

BAB II PERHITUNGAN ARUS HUBUNGAN SINGKAT

BAB II PERHITUNGAN ARUS HUBUNGAN SINGKAT 13 BAB II PERHITUNGAN ARUS HUBUNGAN SINGKAT 2.1. Pendahuluan Sistem tenaga listrik pada umumnya terdiri dari pembangkit, gardu induk, jaringan transmisi dan distribusi. Berdasarkan konfigurasi jaringan,

Lebih terperinci

APLIKASI METODE NEWTON-RAPHSON UNTUK MENGHITUNG ALIRAN BEBAN MENGGUNAKAN PROGRAM MATLAB 7.0.1

APLIKASI METODE NEWTON-RAPHSON UNTUK MENGHITUNG ALIRAN BEBAN MENGGUNAKAN PROGRAM MATLAB 7.0.1 APLIKASI METODE NEWTON-RAPHSON UNTUK MENGHITUNG ALIRAN BEBAN MENGGUNAKAN PROGRAM MATLAB 7.0.1 TUGAS AKHIR Diajukan Untuk Memenuhi Salah Satu Syarat Menyelesaikan Pendidikan Strata 1 Fakultas Teknik Jurusan

Lebih terperinci

BAB III METODE PENELITIAN

BAB III METODE PENELITIAN 24 BAB III METODE PENELITIAN 3.1 Metode Penelitian Metodologi yang digunakan dalam penelitian Tugas Akhir Skripsi ini antara lain adalah sebagai berikut : a. Studi literatur, yaitu langkah pertaman yang

Lebih terperinci

Mesin Arus Bolak Balik

Mesin Arus Bolak Balik Teknik Elektro-ITS Surabaya share.its.ac.id 1 Mesin Arus Bolak balik TE091403 Institut Teknologi Sepuluh Nopember August, 2012 Teknik Elektro-ITS Surabaya share.its.ac.id ACARA PERKULIAHAN DAN KOMPETENSI

Lebih terperinci

BAB II TRANSFORMATOR. magnet dan berdasarkan prinsip induksi elektromagnetik.

BAB II TRANSFORMATOR. magnet dan berdasarkan prinsip induksi elektromagnetik. BAB II TRANSFORMATOR II.1 Umum Transformator atau trafo adalah suatu peralatan listrik yang dapat memindahkan energi listrik atau memindahkan dan mengubah energi listrik bolakbalik dari satu level ke level

Lebih terperinci

II. TINJAUAN PUSTAKA. utama yaitu pembangkit, penghantar (saluran transmisi), dan beban. Pada sistem

II. TINJAUAN PUSTAKA. utama yaitu pembangkit, penghantar (saluran transmisi), dan beban. Pada sistem II. TINJAUAN PUSTAKA A. Aliran Daya Tiga Fasa Menurut Marsudi, proses penyaluran tenaga listrik terdiri dari tiga komponen utama yaitu pembangkit, penghantar (saluran transmisi), dan beban. Pada sistem

Lebih terperinci

BAB II GENERATOR SINKRON

BAB II GENERATOR SINKRON BAB II GENERATOR SINKRON 2.1 Pendahuluan Generator arus bolak balik berfungsi mengubah tenaga mekanis menjadi tenaga listrik arus bolak balik. Generator arus bolak balik sering disebut juga sebagai alternator,

Lebih terperinci

Pengenalan Sistem Catu Daya (Teknik Tenaga Listrik)

Pengenalan Sistem Catu Daya (Teknik Tenaga Listrik) Prinsip dasar dari sebuah mesin listrik adalah konversi energi elektromekanik, yaitu konversi dari energi listrik ke energi mekanik atau sebaliknya dari energi mekanik ke energi listrik. Alat yang dapat

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA BAB 2 TINJAUAN PUSTAKA 2.1 Distributed Generation Distributed Generation adalah sebuah pembangkit tenaga listrik yang bertujuan menyediakan sebuah sumber daya aktif yang terhubung langsung dengan jaringan

Lebih terperinci

BAB II TRANSFORMATOR. elektromagnet. Pada umumnya transformator terdiri atas sebuah inti yang terbuat

BAB II TRANSFORMATOR. elektromagnet. Pada umumnya transformator terdiri atas sebuah inti yang terbuat BAB II TRANSFORMATOR 2.1 UMUM Transformator merupakan suatu alat listrik yang dapat memindahkan dan mengubah energi listrik dari satu atau lebih rangkain listrik ke rangkaian listrik lainnya melalui suatu

Lebih terperinci

1. Dalam suatu ruang terdapat dua buah benda bermuatan listrik yang sama besar seperti ditunjukkan pada gambar...

1. Dalam suatu ruang terdapat dua buah benda bermuatan listrik yang sama besar seperti ditunjukkan pada gambar... Kumpulan Soal Latihan UN UNIT LISTRIK & MAGNET Gaya Coulomb, Energi & Potensial Listrik 1. Dalam suatu ruang terdapat dua buah benda bermuatan listrik yang sama besar seperti ditunjukkan pada gambar....

Lebih terperinci

LEMBAR DISKUSI SISWA MATER : INDUKSI ELEKTROMAGNETIK IPA TERPADU KELAS 9 SEMESTER 2

LEMBAR DISKUSI SISWA MATER : INDUKSI ELEKTROMAGNETIK IPA TERPADU KELAS 9 SEMESTER 2 Halaman 1 LEMBAR DISKUSI SISWA MATER : INDUKSI ELEKTROMAGNETIK IPA TERPADU KELAS 9 SEMESTER 2 SMP NEGERI 55 JAKARTA A. GGL INDUKSI Sebelumnya telah diketahui bahwa kelistrikan dapat menghasilkan kemagnetan.

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1. Umum Lightning Arrester merupakan alat proteksi peralatan listrik terhadap tegangan lebih yang disebabkan oleh petir atau surja hubung (switching surge). Alat ini bersifat

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI Pada bab ini akan dibahas mengenai teori teori yang mendasari perancangan dan perealisasian inductive wireless charger untuk telepon seluler. Teori-teori yang digunakan dalam skripsi

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1.Transformator distribusi Transformator distribusi yang sering digunakan adalah jenis transformator step up down 20/0,4 kv dengan tegangan fasa sistem JTR adalah 380 Volt karena

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI 6 BAB II LANDASAN TEORI 2.1 Sistem tenaga listrik DC Arus listrik searah dikenal dengan singkatan DC (Direct Current). Sesuai dengan namanya listrik arus searah itu mengalir ke satu jurusan saja dalam

Lebih terperinci

BAB II JARINGAN DISTRIBUSI TENAGA LISTRIK

BAB II JARINGAN DISTRIBUSI TENAGA LISTRIK 2.1 Umum BAB II JARINGAN DISTRIBUSI TENAGA LISTRIK Kehidupan moderen salah satu cirinya adalah pemakaian energi listrik yang besar. Besarnya pemakaian energi listrik itu disebabkan karena banyak dan beraneka

Lebih terperinci

BAB III PERANCANGAN DAN PEMBUATAN ALAT

BAB III PERANCANGAN DAN PEMBUATAN ALAT BAB III PERANCANGAN DAN PEMBUATAN ALAT 3.1 Gambaran Umum Pada bab ini akan dibahas mengenai perencanaan perangkat keras elektronik dan pembuatan mekanik turbin. Sedangkan untuk pembuatan media putar untuk

Lebih terperinci

ANALISIS ALIRAN BEBAN SISTEM DISTRIBUSI MENGGUNAKAN ETAP POWER STATION TUGAS AKHIR. Jurusan Teknik Elektro Fakultas Teknik

ANALISIS ALIRAN BEBAN SISTEM DISTRIBUSI MENGGUNAKAN ETAP POWER STATION TUGAS AKHIR. Jurusan Teknik Elektro Fakultas Teknik ANALISIS ALIRAN BEBAN SISTEM DISTRIBUSI MENGGUNAKAN ETAP POWER STATION 4. 0. 0 TUGAS AKHIR Disusun Sebagai Salah Satu Syarat Menyelesaikan Program Studi Strata 1 Jurusan Teknik Elektro Fakultas Teknik

Lebih terperinci

BAB II KAJIAN PUSTAKA

BAB II KAJIAN PUSTAKA BAB II KAJIAN PUSTAKA 2.1 Tinjauan Mutakhir (State of The Art) Penelitian susut energi pada sistem kelistrikan Bali sudah banyak dilakukan. Dalam penelitian Juniastra Gina (2014) tentang Analisis Susut

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BB II TINJUN PUSTK Pada penelitian ini yang berjudul Perbandingan nalisa liran Daya dengan Menggunakan Metode lgoritma Genetika dan Metode Newton-Raphson. Dari hasil perbandingan dua metode diatas didapatkan

Lebih terperinci

MODUL PRAKTIKUM RANGKAIAN LISTRIK

MODUL PRAKTIKUM RANGKAIAN LISTRIK MODUL PRAKTIKUM RANGKAIAN LISTRIK LABORATORIUM TTPL DEPARTEMEN TEKNIK ELEKTRO FAKULTAS TEKNIK UNIVERSITAS INDONESIA DEPOK 2013 PERCOBAAN I DASAR KELISTRIKAN, LINEARITAS ANALISA MESH DAN SIMPUL I. TUJUAN

Lebih terperinci

BAB III SISTEM KELISTRIKAN MOTOR INDUKSI 3 PHASA. 3.1 Rangkaian Ekivalen Motor Induksi Tiga Fasa

BAB III SISTEM KELISTRIKAN MOTOR INDUKSI 3 PHASA. 3.1 Rangkaian Ekivalen Motor Induksi Tiga Fasa BAB III SISTEM KELISTRIKAN MOTOR INDUKSI 3 PHASA 3.1 Rangkaian Ekivalen Motor Induksi Tiga Fasa Telah disebutkan sebelumnya bahwa motor induksi identik dengan sebuah transformator, tentu saja dengan demikian

Lebih terperinci

TUGAS AKHIR. Oleh ARIF KUSUMA MANURUNG NIM : DEPARTEMEN TEKNIK ELEKTRO FAKULTAS TEKNIK UNIVERSITAS SUMATERA UTARA MEDAN 2016

TUGAS AKHIR. Oleh ARIF KUSUMA MANURUNG NIM : DEPARTEMEN TEKNIK ELEKTRO FAKULTAS TEKNIK UNIVERSITAS SUMATERA UTARA MEDAN 2016 TUGAS AKHIR PENEMPATAN OPTIMAL KAPASITOR BANK PADA SISTEM DISTRIBUSI RADIAL 20 kv MENGGUNAKAN METODE ARTIFICIAL BEE COLONY (ABC) ALGORITHM (STUDI KASUS : JARINGAN DISTRIBUSI PM1 PEMATANGSIANTAR) Diajukan

Lebih terperinci

Politeknik Negeri Sriwijaya BAB II TINJAUAN PUSTAKA

Politeknik Negeri Sriwijaya BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Deskripsi Sistem Tenaga Listrik Sekalipun tidak terdapat suatu sistem tenaga listrik yang tipikal, namun pada umumnya dapat dikembalikan batasan pada suatu sistem yang lengkap

Lebih terperinci

BAB II TINJAUAN PUSTAKA. Gambar 2.1 Tiga Bagian Utama Sistem Tenaga Listrik untuk Menuju Konsumen

BAB II TINJAUAN PUSTAKA. Gambar 2.1 Tiga Bagian Utama Sistem Tenaga Listrik untuk Menuju Konsumen BAB II TINJAUAN PUSTAKA 2.1 Sistem Distribusi Pada dasarnya, definisi dari sebuah sistem tenaga listrik mencakup tiga bagian penting, yaitu pembangkitan, transmisi, dan distribusi, seperti dapat terlihat

Lebih terperinci

LATIHAN UAS 2012 LISTRIK STATIS

LATIHAN UAS 2012 LISTRIK STATIS Muatan Diskrit LATIHAN UAS 2012 LISTRIK STATIS 1. Dua buah bola bermuatan sama (2 C) diletakkan terpisah sejauh 2 cm. Gaya yang dialami oleh muatan 1 C yang diletakkan di tengah-tengah kedua muatan adalah...

Lebih terperinci

TUGAS XIII LISTRIK DAN MAGNET

TUGAS XIII LISTRIK DAN MAGNET TUGAS XIII LISTRIK DAN MAGNET 1. Sebuah kapasitor keping sejajar yang tebalnya d mempunyai kapasitas C o. Ke dalam kapasitor ini dimasukkan dua bahan dielektrik yang masing-masing tebalnya d/2 dengan konstanta

Lebih terperinci

BAB II SALURAN TRANSMISI

BAB II SALURAN TRANSMISI BAB II SALURAN TRANSMISI 2.1 Umum Penyampaian informasi dari suatu sumber informasi kepada penerima informasi dapat terlaksana bila ada suatu sistem atau media penyampaian di antara keduanya. Jika jarak

Lebih terperinci

BAB II PRINSIP DASAR TRANSFORMATOR

BAB II PRINSIP DASAR TRANSFORMATOR BAB II PRINSIP DASAR TRANSFORMATOR 2.1 UMUM Transformator (trafo ) merupakan piranti yang mengubah energi listrik dari suatu level tegangan AC lain melalui gandengan magnet berdasarkan prinsip induksi

Lebih terperinci

Politeknik Negeri Sriwijaya BAB II TINJAUAN PUSTAKA

Politeknik Negeri Sriwijaya BAB II TINJAUAN PUSTAKA 5 BAB II TINJAUAN PUSTAKA 2.1 Sistem Distribusi Tenaga Listrik 1 Sistem distribusi merupakan bagian dari sistem tenaga listrik. Sistem distribusi ini berguna untuk menyalurkan tenaga listrik dari sumber

Lebih terperinci

Menganalisis rangkaian listrik. Mendeskripsikan konsep rangkaian listrik

Menganalisis rangkaian listrik. Mendeskripsikan konsep rangkaian listrik Menganalisis rangkaian listrik Mendeskripsikan konsep rangkaian listrik Listrik berasal dari kata elektron yang berarti batu ambar. Jika sebuah batu ambar digosok dengan kain sutra, maka batu akan dapat

Lebih terperinci

JADWAL KEGIATAN PER TATAP MUKA (TM) Tatap Muka

JADWAL KEGIATAN PER TATAP MUKA (TM) Tatap Muka JADWAL KEGIATAN PER TATAP MUKA (TM) Tatap Muka Kompetensi ke- 1. - Memahami aturan dan kontrak perkuliahan. - Memahami ruang lingkup matakuliah dan pembagian waktunya (Rencana Program & Kegiatan Pembelajaran

Lebih terperinci