PERANCANGAN GAIT ROBOT DENGAN EKSPANSI LINIER UNTUK ROBOT ULAR DENGAN SENDI 3 DERAJAT KEBEBASAN. Daniel, Mohammad Iman Alamsyah, Erwin, Sofyan

Ukuran: px
Mulai penontonan dengan halaman:

Download "PERANCANGAN GAIT ROBOT DENGAN EKSPANSI LINIER UNTUK ROBOT ULAR DENGAN SENDI 3 DERAJAT KEBEBASAN. Daniel, Mohammad Iman Alamsyah, Erwin, Sofyan"

Transkripsi

1 PERANCANGAN GAIT ROBOT DENGAN EKSPANSI LINIER UNTUK ROBOT ULAR DENGAN SENDI 3 DERAJAT KEBEBASAN Daniel, Mohammad Iman Alamsyah, Erwin, Sofyan Jurusan Sistem Komputer,Fakultas Ilmu Komputer, Universitas Bina Nusantara Jln. K.H. Syahdan No.9, Kemanggisan, Palmerah, Jakarta Barat sofyan@binus.edu ABSTRACT We made this gait design or movement type of a serpentine robot with 3-DOF joint using linear expansion mechanism. The purpose of this research is to be the foundation for further researches and to find the most effective gait to be used in helping the rescuer to do their job in explorating disaster area and saving the victims. The methods we used are literature studying and simulating using MATLAB. The results is a gait both in moving forward and doing manuvers.the conclusion is, when this design is finished, the serpentine robot will produce a gait both in moving forward and doing manuvers and it can be improved by modelling its dynamics and design until we get the physical shape. Keywords: serpentine robot, gait, linear expansion, inverse kinematics. ABSTRAK Penulis membuat perancangan gait atau model gerakan dari robot ular dengan sendi 3-DOF dengan mekanisme pergerakan ekspansi linear. Tujuan Penelitian adalah sebagai fondasi untuk penelitian selanjutnya dan mendapatkan gait yang efektif yang kelak akan digunakan untuk membantu tim penyelamat dalam menjalankan tugasnya mengeksplorasi area bencana dan menyelamatkan korban. Metode Penelitian menggunakan studi paper dan simulasi menggunakan MATLAB. Hasil Penelitian adalah berupa gait robot dalam bergerak maju dan melakukan manuver. Simpulannya setelah perancangan selesai, robot ular yang disimulasikan menghasilkan gait dalam bergerak maju dan melakukan manuver dan dapat dikembangkan dengan memodelkan dinamika dan perancangan hingga menghasilkan bentuk fisik. Kata kunci : robot serpentine, gait, linear expansion, inverse kinematik.

2 1. Pendahuluan Bencana alam seperti gempa bumi dan tanah longsor, maupun bencana akibat kecelakaan maupun kesengajaan manusia seperti kebakaran dan ledakan, seringkali mengakibatkan runtuhnya bangunan yang menimpa korban manusia. Pada bencana dengan skala yang besar umumnya sulit untuk menemukan seluruh korban dalam waktu yang cukup singkat sehingga korban masih dapat diselamatkan jiwanya. Pencarian korban umumnya dilakukan oleh sekelompok orang dalam tim search and rescue (SAR) dengan peralatan manual untuk membuka jalan bagi orang ataupun anjing terlatih khusus untuk masuk ke dalam puing-puing reruntuhan. Sebelum orang dapat memasuki reruntuhan, observasi dan tindakan untuk memperkokoh struktur reruntuhan perlu dilakukan untuk memastikan bahwa kemungkinan runtuhnya struktur lebih jauh adalah kecil. Seringkali untuk membuka jalan bagi tim penyelamat dibutuhkan alat berat untuk mengangkat puing-puing. Proses ini membutuhkan banyak orang, peralatan, dan membutuhkan waktu yang lama bila harus dilakukan pada area reruntuhan yang luas. Untuk itu akan sangat membantu apabila terdapat banyak robot yang dapat masuk ke celah-celah reruntuhan yang tidak dapat dimasuki oleh manusia dan memberikan informasi kepada manusia dalam mengambil keputusan untuk masuk ke dalam reruntuhan. Dalam skenario terburuk seperti pada reruntuhan gedung World Trade Center akibat serangan teroris pada 11 September 2001 [1], celah yang terbuka ke permukaan umumnya memiliki lebar kurang dari 1 meter. Di samping itu terdapat banyak puing-puing yang tidak kokoh seperti abu atau kertas yang dapat menenggelamkan robot ke lubang yang lebih dalam. Robot berbentuk ular cocok untuk kondisi yang seperti ini karena: bentuknya yang ramping dan sederhana membuatnya dapat bergerak melalui celah yang sempit; bentuknya yang memanjang membuatnya dapat mendaki halangan yang jauh lebih tinggi dari tinggi badan robot, bahkan halangan yang vertikal ke atas; lebarnya permukaan robot yang menyentuh tanah ketika bergerak membuatnya lebih stabil dan memiliki daya dorong yang lebih baik; dan jumlah segmennya yang banyak membuat robot lebih handal menghadapi kegagalan pada salah satu atau lebih segmennya [2]. Lebih jauh lagi robot juga harus dapat bergerak di antara puing-puing yang berbentuk panjang dan tipis, sehingga robot dengan bentuk luar yang kompleks menjadi tidak menguntungkan karena dapat tersangkut pada puing [3]. Berawal dari niat untuk meningkatkan efisiensi tim SAR dalam menyelamatkan korban bencana alam, kami merancang gait robot serpentine (robot ular) yang dapat beroperasi di medan berat untuk memetakan sekaligus mencari korban yang selamat. Berdasarkan hasil studi paper dan latar belakang yang ada, maka diputuskan untuk membuat model robot berbentuk ular dengan sendi 3-DOF untuk menghadapi area bencana. Model robot ini dipilih karena dengan sendi 3-DOF dan multi-joint yang dimiliki, dapat memudahkan robot untuk melakukan gerakan dengan manuver yang diinginkan. Area bencana yang dimaksud adalah area bencana pada bidang daratan seperti gempa bumi, kebakaran, dan beberapa bencana lain yang mengharuskan robot bergerak masuk melalui jalan alternatif tanpa mengakibatkan kerusakan lebih lanjut pada area bencana. Sebagai contoh, robot harus masuk ke dalam saluran pipa yang meliuk dengan diameter yang relatif kecil dan rapat dengan ukuran robot di mana robot berkaki akan sulit untuk melalui bidang tersebut atau masuk melalui puing-puing reruntuhan. Dengan menggunakan ekspansi linear, robot tidak membutuhkan roda/tread maupun kaki sehingga seluruh badan robot dapat tertutup rapat, menghindari masuknya partikel atau bahkan air dari luar. Masuknya partikel atau bahkan air sangat mengganggu kinerja robot yang menggunakan roda/tread atau kaki [4]. 2. Metode Metodologi penelitian yang penulis gunakan secara menyeluruh adalah studi pustaka. Penulis mendapatkan beberapa paper internasional dari IEEE yang dijadikan acuan dalam proses pembuatan buku dan simulasi. Metode lainnya adalah metode praktikal menggunakan AutoCAD Inventor untuk memodelkan bentuk 3D (tiga dimensi) dari robot dan menggunakan MATLAB untuk melakukan simulasi dan analisa kinematika.

3 3. Rancangan Sistem 3.1. Pemodelan Robot Dengan Software Autocad Inventor Robot ular yang kami jadikan sebagai basis perancangan gait adalah robot ular 3-DOF yang terdapat di paper [5]. Berdasarkan [5], kami merancang model 3D robot menggunakan software Autocad Inventor Perancangan model 3D hanya sebatas pemodelan kinematik robot.model 3D kinematika robot diperlukan untuk mengekspor parameter-parameter kinematika seperti panjang linkage dan posisi joint-joint terhadap koordinat World ke SimMechanics. Pemodelan 3D yang telah dibuat kemudian diekspor ke SIMULINK (SimMechanics) menggunakan add-on SMLink. Toolbox SimMechanics yang berjalan di platform SIMULINK dipakai untuk mensimulasikan sistem kinematik yang parameter-parameternya sudah diberikan oleh Autocad Inventor. Gambar 3.1 Segmentnama robot beserta parameter-parameternya yang diambil dari [5] Keterangan Gambar : K 0 : lower plate K 1 : upper plate R : jari jari plate L : panjang linkage B 1 : spherical joint 1 pada folding linkage 1 B 2 : spherical joint 2 pada folding linkage 2 B 3 : spherical joint 3 pada folding linkage 3 O 0 : origin frame lower plate terhadap world O 1 : origin frame upper plate terhadap lower plate α 1 : sudut yang harus dibentuk oleh lower linkage A terhadap lower plate α 2 : sudut yang harus dibentuk oleh lower linkage B terhadap lower plate α 3 : sudut yang harus dibentuk oleh lower linkage C terhadap lower plate Robot serpentine ini mempunyai 4 buah segmen yang masing-masing segmen dibentuk oleh upper plate dan lower plateyang berbentuk lingkaran. Dalam sebuah segmen, diantara upper plate dan lower plate disangga oleh tiga buah folding linkage yang terpisah sebesar 120 derajat.

4 Gambar 3.2 Penampang Atas Segment Folding linkage yang menghubungkan antara upper plate dan lower plate terdiri dari dua buah link, yaitu upper linkage dan lower linkage yang dihubungkan oleh sendi spherical. Untuk menghubungkan antara link dengan upper maupun lower plate, digunakan sendi revolute. Gambar 3.3 Penampang 3-Dimensi Segment Robot Berikut ini adalah keterangan dimensi robot 50mm 50mm 50mm Gambar 3.4 Dimensi Robot

5 Dalam perancangan ini, software Autocad Inventor digunakan untuk mendesain parameter kinematik robot. Parameter seperti radius segment, panjang linkage, sudut awal yang dibentuk oleh linkage, dan posisi masing-masing komponen terhadap koordinat World kami desain di Autocad Inventor. Alur perancangan dalam Autocad Inventor adalah: Diagram 3.1 Alur perancangan model robot Perancangan model sistem secara lengkap tidak bisa dilakukan secara langsung tetapi harus bertahap dimulai dari menentukan komponen mana yang digunkan untuk membentuk sebuah sistem lengkap. Pada perancangan robot kami, komponen yang membentuk sistem robot lengkap adalah: Segment atas dan segment bawah Upper linkage dan lower linkage Komponen-komponen tersebut kami desain satu-persatu didalam file yang terpisah. Tahap selanjutnya dalam perancangan model 3-Dimensi adalah menggabungkan komponen-komponen yang telah dibuat dengan menggunakan fitur Constraint. Fitur constraint digunakan untuk membentuk joint. Joint dibentuk dengan mengaplikasikan beberapa constraint terhadap komponen. Proses penggabungan ini menghasilkan bentuk lengkap robot yang terdiri dari 4 buah segment. Setelah robot lengkap, tahap selanjutnya adalah mengekspor model robot ke SimMechanics menggunakan add-on SMLink Implementasi pada Autocad Inventor Gambar 3.5 Model 3D Lower linkage

6 Gambar 3.6Model 3D Upper linkage Gambar 3.7 Model Plate

7 Gambar 3.8Desain kinematik segment robot menggunakan Autocad Inventor berdasarkan referensi [5] Gambar 3.9 Desain kinematik robot dengan 4 buah segment menggunakan Autocad Inventor SIMULINK/SimMechanics SIMULINK adalah platform yang digunakan untuk mensimulasikan sistem dinamis, tetapi dapat juga digunakan untuk mensimulasikan sistem kinematik seperti pada penelitian kami. Terdapat banyak toolbox yang dapat digunakan untuk mensimulasikan sistem, tetapi dalam perancangan ini kami hanya menggunakan toolbox SimMechanics dan toolbox umum sebagai pendukung. Toolbox SimMechanics berisi part-part yang digunakan untuk mensimulasikan sistem mekanik seperti Rigid Body, Joint, Machine Environment, dan lain lain.

8 Gambar 3.10 Potongan tampilan model forward kinematik robot hasil export dari Autocad Inventor (Detil gambar pada lampiran 1) Model robot terdiri dari empat buah segment yang direpresentasikan oleh block Body. Setiap block body terhubung ke tiga buah folding linkage yang masing-masing terdapat didalam block link. Gambar 3.11 Model dari salah satu folding linkage (Link 1A) Pada model linkage di atas, dapat dilihat secara berurutan dari sebelah kiri bahwa upper linkage terhubung dengan revolute joint yang merupakan joint penghubung upper linkage dengan upper plate. Selain itu, upper linkage terhubung dengan spherical joint yang menjadi sendi antara upper linkage dengan lower linkage. Seperti upper linkage, lower linkage juga terhubung dengan revolute joint yang menjadi penghubung linkage pada lower plate. Pada revolute joint bagian bawah, terdapat joint actuator untuk menggerakkan linkage dengan input berupa degree atau besar sudut yang harus dibentuk oleh linkage.

9 B Gambar 3.12(a) Model demux input dari model inverse kinematik ke masing-masing linkage A B Gambar 3.12(b) Model inverse kinematik beserta inputnya

10 A Gambar 3.12(c) Scope yang digunakan untuk membaca output inverse kinematik masing-masing linkage Keterangan Gambar : A[n]A : sudut α pada segment [n] linkage A A[n]B : sudut α pada segment [n] linkage B A[n]C : sudut α pada segment [n] linkage C Gambar 3.13 Model Invers Kinematik (gambar selengkapnya terlampir di Lampiran)

11 Gambar di atas menunjukkan skema perumusan inverse kinematik sesuai dengan [5]. Blok diagram di atas merupakan model persamaan inverse kinematik menggunakan simulink berdasarkan persamaan di bawah ini: (3.1) Dimana q i0,q i1, dan q i2 adalah sebagai berikut, (3.2) (3.3) (3.4) (3.5) Pada rumus diatas, s berarti sin dan c berarti cos. Gamma (γ) adalah sudut yang dibentuk antara folding linkage yang pada robot ini yang berarti 0 o untuk γ 1, 120 o untuk γ 2, dan 240 o untuk γ 3. α i adalah sudut yang harus dibentuk oleh lower linkage terhadap segment tempatnya menempel. Variabel θ menunjukkan besarnya sudut yang harus dibentuk antara upper plate dengan lower plate. Sedangkan variabel φ menunjukkan orientasi sumbu gerak antara upper plate dengan lower plate. Pada model kami, nilai φ selalu 0 karena simulasi pergerakan robot kami hanya di bidang planar. Variabel U,V, u, dan v adalah hasil dari perkalian elemen matriks. Untuk variabel U berasal dari perkalian antara Rdengan cos γ i, sedangkan V berasal dari perkalian antara R dengan sinγ i. Variabel u adalah hasil perkalian antara L dengan sin(γ i +γ 0 ) dan variabel v adalah hasil perkalian antara L dengan cos(γ i +γ 0 ). Variabel L dan R merujuk pada radius segment dan panjang linkage. Pada robot yang dirancang, nilai L dan L adalah 50mm. Variabel ω i adalah hasil perkalian antara L dengan sinα i. Gambar 3.14 diagram Phi, Theta dan r dalam sistem koordinat spherical

12 Pada gambar 3.14, terdapat 3(tiga) buah blok Q yang masing-masing berisi subsystem yang menggambarkan pengaruh gerakan salah satu linkage terhadap posisi dan orientasi dari linkage lainnya. Detil isi blok q1, q2 dan q3 terdapat di Lampiran. Ruang Lingkup Ruang lingkup kami dalam pengembangan Serpentine Robot ini adalah hanya melakukan desain dan analisa kinematik&pose estimation dari robot serpentine segi tiga menggunakan simulasi komputer. 4. Penelitian dan Evaluasi 4.1. Evaluasi Inverse Kinematik Internal Segment Hasil simulasi yang didapat adalah berupa sudut sudut α yang di bentuk oleh masing masing folding linkage untuk mencapai pose yang diinginkan. Gambar 4.1Contoh Hasil Output berupa pose robot dan sudut sudut α pada setiap linkage Inverse kinematik digunakan didalam sistem agar dapat menggerakkan masing-masing segment dapat memenuhi dua variabel input (θ untuk sudut antara upper plate dengan lower plate, dan untuk jarak antara upper plate dengan lower plate)

13 Tabel 4.1 Sudut Alpha masing-masing linkage segment sesuai dengan Theta α Theta 1A (derajat) α 1B (derajat) α 1C (derajat) Hasil Perhitungan Hasil Perhitungan Hasil Perhitungan (derajat) Simulasi Manual Simulasi Manual Simulasi Manual , Grafik 4.1 Plot Pergerakan sudut Alpha masing-masing linkage segmen 1 terhadap Theta

14 4.2. Evaluasi Forward Kinematik untuk Pose Robot Keterangan : Xt = posisi akhir ujung segment terhadap sumbu X Yt = posisi akhir ujung segment terhadap sumbu Y Gambar 4.2Model forward kinematik Xt = (r1 sin θ1) + (r2 sin (θ1 + θ2)) + (r3 sin (θ1 + θ2 +θ3)) + (r4 sin (θ1 +θ2 + θ3 + θ4)) Yt = (r1 cos θ1) + (r2 cos (θ1 + θ2)) + (r3 cos (θ1 + θ2 +θ3)) + (r4 cos (θ1 +θ2 + θ3 + θ4)) Berdasarkan rumus di atas, maka dapat diketahui posisi akhir dari ujung segment (head) berdasarkan koordinat (Xt, Yt). Rumus di atas dapat di sederhanakan menjadi:

15 Tabel 4.2 Data perhitungan manual posisi segment pada bidang kartesian berdasarkan input theta (satuan dalam derajat) Segment theta=5 o theta=10 o theta=15 o theta=20 o x y x y x y x y 1 4, ,81 8,68 49,24 12,94 48,296 17,101 46, ,68 49,24 17,101 46, ,3 32,14 38, ,94 48, ,3 35,35 35,35 43, ,101 46,985 32,14 38,302 43, ,24 8,68 Tabel 4.3 Data perhitungan simulasi posisi Segment pada bidang kartesian berdasarkan input theta(satuan dalam derajat) Segment theta=5 o theta=10 o theta=15 o theta=20 o x y x y x y x y 1 4, ,81 8,68 49,24 12,94 48,296 17,101 46, ,68 49,24 17,101 46, ,3 32,14 38, ,94 48, ,3 35,35 35,35 43, ,101 46,985 32,14 38,302 43, ,24 8, Evaluasi inverse kinematik untuk Pose Melingkar Pada rumus inverse kinematik (3.1), sudut α untuk masing-masing folding linkage diperoleh berdasarkan perhitungan parameter-parameter yang saling berpengaruh pada setiap segment robot. Dalam menentukan manuver dari robot, penulis mendapatkan rumus untuk menhasilkan sudut maksimal dari robot agar dapat membentuk pose mendekati lingkaran. θ= 90 - a a = 90 - θ θ 1 = 90 - (a-θ) θ 1 = 90 - (90 - θ- θ) θ 1 = 2θ Gambar 4.3 Rumus Perhitungan Pose Lingkaran

16 Berdasarkan rumus di atas, penulis menentukan radius yang di bentuk robot dalam mencapai pose mendekati lingkaran adalah 100 (R=100, dalam satuan milimeter), dan jarak antar plate ( ) adalah 75 (dalam satuan milimeter). Selanjutnya, θ merupakan sudut yang harus dibentuk oleh garis pusat titik tengah robot (center of gravity, yang membentuk garis lurus) terhadap garis pelurus dari lingkaran. Namun, nilai θ tersebut hanya berlaku pada satu segment pertama saja. Sedangkan untuk segment segment selanjutnya berlaku 2θ terhadap titik pusat massa dari segment sebelumnya. Perhitungan untuk nilai θ dapat di lihat pada gambar Grafik 4.2 Plot theta dan theta2 terhadap nilai R yang berbeda-beda Setelah di lakukan perhitungan dengan nilai R = 100, maka didapatkan hasil bahwa nilai θ yang ideal agar robot dapat membentuk manuver menyerupai lingkaran adalah 22,02 0. Secara teori, penulis dapat menyatakan bahwa apabila nilai R semakin besar, maka nilai θ yang di hasilkan juga akan semakin kecil, yang akan membuat robot membutuhkan waktu lama dan jumlah segment yang banyak untuk memcapai pose menyerupai lingkaran. Sebaliknya, jika nilai R semakin kecil, maka nilai θ juga akan semakin besar, namun hal ini tidak dapat dilakukan karena dalam simulasi di berikan batasan nilai θ maksimal, yaitu 12 0 agar tidak terjadi over constraint Evaluasi inverse kinematik pose Manuver Pada pengujian melakukan simulasi, robot harus melakukan manuver yang terbagi menjadi dua macam manuver, yaitu gerakan maju secara normal dan gerakan maju sambil berbelok. Dalam bergerak maju secara normal, robot bergerak secara bergantian di mana per dua segment bergerak paralel dengan beda fase 180 o antara segment ganjil dengan segment genap. Diasumsikan pada saat segment bergerak maju, maka bagian segment yang bersentuhan dengan bidang alas memiliki koefisien friksi minimum (mendekati nol), sedangakan ketika segment bergerak mundur, maka bagian segment yang bersentuhan dengan bidang alas memiliki koefisien friksi maksimum.

17 segment IV (head) segment III segment II segment I (tail) Gambar 4.4 Gerakan Maju secara normal di mana segment bergerak secara bergantian dengan beda fase 180 o (warna merah menunjukkan bagian segment yang bergerak maju) Dalam melakukan manuver maju, robot melakukan gerakan: segment ganjil dan genap bergerak secara bergantian dengan beda fase 180 o antara keduanya. segment IV segment III segment II segment I time step

18 time step Gambar 4.5Tahapan Robot dalam melakukan manuver maju sambil berbelok secara berurutan dari kiri ke kanan berdasarkan time step (1-4). Keterangan Gambar 4.5: Nilai rmaksimal masing-masing segment adalah 20 mm Perubahan nilai r masing-masing segment dilihat berdasarkan time step yang dibaca dari kiri ke kanan Grafik di atas di buat berdasarkan pergerakan di mana segment ganjil dan genap bergerak bergantian dengan beda fase 180 o. Dalam melakukan manuver maju sambil berbelok, robot harus melalui beberapa tahap bersamaan dengan gerakan maju. Berikut ini adalah tahapan yang di lakukan robot: 1. Saat pasangan segment IV (head) dan segment II bergerak maju, maka bagian head berbelok dengan sudut (n) o. 2. Gerakan selanjutnya disusul oleh pasangan segment III dan segment I (tail) yang bergerak maju, sehingga secara perlahan akan membentuk pose seperti yang terlihat pada gambar 4.5. Tabel 4.4 Data masing-masing segment ketika robot bergerak maju sambil berbelok Time Step Theta ( o ) r (mm) Theta ( o ) r (mm) Theta ( o ) r (mm) Theta ( o ) r (mm) Segment , , , ,071 Segment , , , ,063 Segment , , , ,071 Segment , , , ,717

19 Grafik 4.3 Plot r terhadap waktu saat manuver maju sambil berbelok berdasarkan pergerakan pada gambar 4.9 Keterangan Grafik 4.3: Nilai r maksimal masing-masing segment adalah 20 mm Perubahan nilai r masing-masing segment dilihat berdasarkan time step yang dibaca dari kiri ke kanan Grafik di atas di buat berdasarkan pergerakan pada gambar 4.5 di mana segment ganjil dan genap bergerak bergantian dengan beda fase 180 o. Berikut ini adalah sistematika perhitungan yang di lakukan dalam menentukan sudut yang harus dibentuk pada saaat robot bergerak maju sambil berbelok: Gambar 4.6Model perhitungan saat Robot melakukan Manuver Maju sambil berbelok Pada Gambar di atas, θ 2o, r 1, r 1o dan r 2o sudah diketahui, maka sistematika perhitungannya menjadi : θ 2 = 180 θ 1 (180 - θ 2o ) A = r 10 B = tan θ 2o atau θ 2 = θ 2o θ 1

20 Berdasarkan rumus di atas, maka dapat dihitung nilai theta (θ) untuk masing masing segment apabila robot bergerak dengan nilai θ 2o tertentu. Sebagai contoh, untuk nilai θ 2o = (n) o, perhitungan dilakukan dengan propagasi dari segment paling depan (head) hingga segment paling belakang (tail) dengan asumsi segment III dan segment I bergerak memanjang secara bersamaan, dan kemudian segment IV dan segment II bergerak memanjang secara bersamaan juga setelah segment III dan II selesai memanjang (beda fase 180 o ). Dengan menggunakan rumus di atas, maka dapat dihasilkan parameter parameter yang di perlukan pada gambar di samping. Untuk bagian segment I dan II, nilai theta ( θ ) adalah nol karena hanya melakukan gerakan memanjang untuk segment I dan segment II memendek akibat segment I yang memanjang. Karena tidak melakukan gerakan berbelok, maka besar perubahan panjang r 1 dan r 2 adalah sama. Gambar 4.7 Ilustrasi perhitungan saat Robot melakukan manuver maju sambil berbelok 5. Simpulan Berhasil membangun model kinematika robot ular dengan multi-segment memanfaatkan inverse kinematik internal segment sesuai dengan [5]. Berdasarkan tabel 4.1, dapat disimpulkan jika nilai θ semakin besar, maka nilai α akan berubah-ubah sesuai dengan arah pergerakannya yang mengakibatkan ada beberapa folding linkage yang harus membesar atau mengecil untuk menyesuaikan arah pergerakan tersebut. Pada tabel 4.2 dan 4.3, dapat dilihat pose robot yang akan terbentuk apabila diberikan input θ yang berbeda-beda pada bidang kartesian 2 dimensi. Tabel 4.4 merepresentasikan data perubahan bentuk dan besar sudut θ ketika robot melakukan manuver maju sambil berbelok.

21 Referensi 1 Murphy, R. R. (2004). Trial By Fire. IEEE Robotics and Automation Magazine, Hopkins, J. K., Spranklin, B., & Gupta, S. (2009). A survey of Snake-inspired Robot Designs. 3 Kinagasa, T., Otani, I., Haji, T., Yoshida, K., Osuka, K., & Amano, H. (2010). Flexible Monothread Mobile Track (FMT). Robotics 2010: Current and Future Challenges, Borenstein, J., Hansen, M., & Borrell, A. M. (2007). The OmniThread OT-4 Serpentine Robot - Design and Performance. Journal of Field Robotics, Behrens, R., Kuchler, C., Forster, T., & Elkmann, N. (2011). Kinematik Analysis of a 3-DOF Joint for a Novel Hyper-Redundant Robot Arm. IEEE International Conference on Robotics and Automation, (p. 3224). Shanghai Riwayat Penulis Daniel lahir di Serang pada tanggal 27 April Penulis menamatkan pendidikan S1 di Universitas Bina Nusantara dalam bidang Sistem Komputer pada tahun Mohammad Iman Alamsyah lahir di Malang pada tanggal 1 Mei Penulis menamatkan pendidikan S1 di Universitas Bina Nusantara dalam bidang Sistem Komputer pada tahun 2012 Erwin lahir di Pontianak pada tanggal 27 April Penulis menamatkan pendidikan S1 di Universitas Bina Nusantara dalam bidang Sistem Komputer pada tahun 2012

BAB 3 PERANCANGAN SISTEM Pemodelan Robot Dengan Software Autocad Inventor. robot ular 3-DOF yang terdapat di paper [5].

BAB 3 PERANCANGAN SISTEM Pemodelan Robot Dengan Software Autocad Inventor. robot ular 3-DOF yang terdapat di paper [5]. BAB 3 PERANCANGAN SISTEM 3.1 Metodologi Penelitian Pada bab ini, dibahas mengenai tahapan perancangan robot dimulai dari perancangan model 3D robot menggunakan Autocad Inventor hingga simulasi dan pengambilan

Lebih terperinci

GAIT ROBOT ULAR DENGAN EKSPANSI LINIER YANG MEMILIKI SENDI DENGAN TIGA DERAJAT KEBEBASAN

GAIT ROBOT ULAR DENGAN EKSPANSI LINIER YANG MEMILIKI SENDI DENGAN TIGA DERAJAT KEBEBASAN GAIT ROBOT ULAR DENGAN EKSPANSI LINIER YANG MEMILIKI SENDI DENGAN TIGA DERAJAT KEBEBASAN Daniel; Mohammad Iman Alamsyah; Erwin; Sofyan Tan; Handy Muljoredjo Computer Engineering Department, Faculty of

Lebih terperinci

BAB 4 EVALUASI DAN ANALISA DATA

BAB 4 EVALUASI DAN ANALISA DATA BAB 4 EVALUASI DAN ANALISA DATA Pada bab ini akan dibahas tentang evaluasi dan analisa data yang terdapat pada penelitian yang dilakukan. 4.1 Evaluasi inverse dan forward kinematik Pada bagian ini dilakukan

Lebih terperinci

BAB 2 LANDASAN TEORI. MATLAB adalah singkatan dari MATRIX LABORATORY, yang biasanya di. Pengembangan Algoritma matematika dan komputasi

BAB 2 LANDASAN TEORI. MATLAB adalah singkatan dari MATRIX LABORATORY, yang biasanya di. Pengembangan Algoritma matematika dan komputasi BAB 2 LANDASAN TEORI 2.1 MATLAB MATLAB adalah singkatan dari MATRIX LABORATORY, yang biasanya di gunakan dalam : Pengembangan Algoritma matematika dan komputasi Pemodelan, simulasi, dan pembuatan prototype

Lebih terperinci

UNIVERSITAS BINA NUSANTARA SIMULASI KINEMATIKA LENGAN ROBOT INDUSTRI DENGAN 6 DERAJAT KEBEBASAN

UNIVERSITAS BINA NUSANTARA SIMULASI KINEMATIKA LENGAN ROBOT INDUSTRI DENGAN 6 DERAJAT KEBEBASAN UNIVERSITAS BINA NUSANTARA Jurusan Sistem Komputer Skripsi Sarjana Komputer Semester Genap tahun 2003/2004 SIMULASI KINEMATIKA LENGAN ROBOT INDUSTRI DENGAN 6 DERAJAT KEBEBASAN Andy Rosady 0400530056 Riza

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Latar Belakang

BAB I PENDAHULUAN. 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Robot merupakan perangkat otomatis yang dirancang untuk mampu bergerak sendiri sesuai dengan yang diperintahkan dan mampu menyelesaikan suatu pekerjaan yang diberikan.

Lebih terperinci

BAB III ANALISA DINAMIK DAN PEMODELAN SIMULINK CONNECTING ROD

BAB III ANALISA DINAMIK DAN PEMODELAN SIMULINK CONNECTING ROD BAB III ANALISA DINAMIK DAN PEMODELAN SIMULINK CONNECTING ROD Dalam tugas akhir ini, peneliti melakukan analisa dinamik connecting rod. Geometri connecting rod sepeda motor yang dianalisis berdasarkan

Lebih terperinci

BAB 4 ANALISIS SIMULASI KINEMATIKA ROBOT. Dengan telah dibangunnya model matematika robot dan robot sesungguhnya,

BAB 4 ANALISIS SIMULASI KINEMATIKA ROBOT. Dengan telah dibangunnya model matematika robot dan robot sesungguhnya, 92 BAB 4 ANALISIS SIMULASI KINEMATIKA ROBOT Dengan telah dibangunnya model matematika robot dan robot sesungguhnya, maka diperlukan analisis kinematika untuk mengetahui seberapa jauh model matematika itu

Lebih terperinci

BAB 4 ANALISA SISTEM

BAB 4 ANALISA SISTEM 52 BAB 4 ANALISA SISTEM 4.1 Analisa Input Seperti yang dijelaskan pada bab sebelumnya, variabel - variabel input yang digunakan dalam program disesuaikan dengan rumus yang sudah didapat. Hal ini dimaksudkan

Lebih terperinci

BAB 3 PERANCANGAN SISTEM

BAB 3 PERANCANGAN SISTEM BAB 3 PERANCANGAN SISTEM 3.1 Metode Perancangan Perancangan sistem didasarkan pada teknologi computer vision yang menjadi salah satu faktor penunjang dalam perkembangan dunia pengetahuan dan teknologi,

Lebih terperinci

BAB 3 DESAIN HUMANOID ROBOT

BAB 3 DESAIN HUMANOID ROBOT BAB 3 DESAIN HUMANOID ROBOT Dalam bab ini berisi tentang tahapan dalam mendesain humanoid robot, diagaram alir penelitian, pemodelan humanoid robot dengan software SolidWorks serta pemodelan kinematik

Lebih terperinci

Tugas Besar 1. Mata Kuliah Robotika. Forward dan Inverse Kinematics Robot Puma 560, Standford Manipulator, dan Cincinnati Milacron

Tugas Besar 1. Mata Kuliah Robotika. Forward dan Inverse Kinematics Robot Puma 560, Standford Manipulator, dan Cincinnati Milacron Tugas Besar 1 Mata Kuliah Robotika Forward dan Inverse Kinematics Robot Puma 560, Standford Manipulator, dan Cincinnati Milacron Oleh : DWIKY HERLAMBANG.P / 2212105022 1. Forward Kinematics Koordinat posisi

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar Belakang

BAB I PENDAHULUAN 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Perkembangan dunia robotika memiliki unsur yang sedikit berbeda dengan ilmu-ilmu dasar atau terapan lainnya. Ilmu dasar biasanya berkembang dari suatu asas atau hipotesa

Lebih terperinci

BAB II DASAR TEORI 2.1. Metode Trial and Error

BAB II DASAR TEORI 2.1. Metode Trial and Error BAB II DASAR TEORI Pada bab ini akan dibahas teori-teori pendukung yang digunakan sebagai acuan dalam merancang robot menggunakan algoritma kinematika balik. 2.1. Metode Trial and Error Metode trial and

Lebih terperinci

Universitas Bina Nusantara SISTEM NAVIGASI MOBIL ROBOT TRICYCLE

Universitas Bina Nusantara SISTEM NAVIGASI MOBIL ROBOT TRICYCLE Universitas Bina Nusantara Jurusan Sistem Komputer Skripsi Sarjana Komputer Semester Genap tahun 2003/2004 SISTEM NAVIGASI MOBIL ROBOT TRICYCLE Hendy (0300445735) Ivandy Wijaya (0300464186) Hardiansen

Lebih terperinci

DESAIN DAN PEMODELAN HUMANOID ROBOT

DESAIN DAN PEMODELAN HUMANOID ROBOT Available online at Website http://ejournal.undip.ac.id/index.php/rotasi DESAIN DAN PEMODELAN HUMANOID ROBOT *Munadi, Beni Anggoro Jurusan Teknik Mesin, Fakultas Teknik, Universitas Diponegoro Jl. Prof.

Lebih terperinci

BAB 3 PENANGANAN JARINGAN KOMUNIKASI MULTIHOP TERKONFIGURASI SENDIRI UNTUK PAIRFORM-COMMUNICATION

BAB 3 PENANGANAN JARINGAN KOMUNIKASI MULTIHOP TERKONFIGURASI SENDIRI UNTUK PAIRFORM-COMMUNICATION BAB 3 PENANGANAN JARINGAN KOMUNIKASI MULTIHOP TERKONFIGURASI SENDIRI UNTUK PAIRFORM-COMMUNICATION Bab ini akan menjelaskan tentang penanganan jaringan untuk komunikasi antara dua sumber yang berpasangan.

Lebih terperinci

Gambar 2.1 Mekanisme berjalan pada manusia [5].

Gambar 2.1 Mekanisme berjalan pada manusia [5]. BAB II DASAR TEORI 2.1 Konsep Dasar Manusia mempunyai dua macam pola perpindahan tempat yang berhubungan dengan kecepatan, yaitu berjalan dan berlari. Berjalan dikarakterisasikan dengan fase tegak dimana

Lebih terperinci

ABSTRAK. Toolbox Virtual Reality. Sistem robot pengebor PCB dengan batasan posisi,

ABSTRAK. Toolbox Virtual Reality. Sistem robot pengebor PCB dengan batasan posisi, ABSTRAK Industri robot saat ini sedang berkembang dengan pesat. Perancangan sebuah robot harus direncanakan sebaik mungkin karena tingkat kesulitan dan biaya pada saat pembuatan. Perangkat simulasi dapat

Lebih terperinci

UNIVERSITAS BINA NUSANTARA SIMULASI KINEMATIKA ROBOT MOBIL DENGAN FUZZY LOGIC

UNIVERSITAS BINA NUSANTARA SIMULASI KINEMATIKA ROBOT MOBIL DENGAN FUZZY LOGIC UNIVERSITAS BINA NUSANTARA Jurusan Sistem Komputer Program Studi Robotika dan Otomasi Skripsi Sarjana Komputer Semester Genap tahun 2003/2004 SIMULASI KINEMATIKA ROBOT MOBIL DENGAN FUZZY LOGIC Denal 0400530592

Lebih terperinci

PENGEMBANGAN DESAIN, SIMULASI DAN PENGUJIAN ROBOT TANGAN MENGGUNAKAN FLEX SENSOR TERINTEGRASI DENGAN 3D ANIMATION SIMMECHANICS

PENGEMBANGAN DESAIN, SIMULASI DAN PENGUJIAN ROBOT TANGAN MENGGUNAKAN FLEX SENSOR TERINTEGRASI DENGAN 3D ANIMATION SIMMECHANICS PENGEMBANGAN DESAIN, SIMULASI DAN PENGUJIAN ROBOT TANGAN MENGGUNAKAN FLEX SENSOR TERINTEGRASI DENGAN 3D ANIMATION SIMMECHANICS *Ahmad Nurmiranto, Mochammad Ariyanto Mahasiswa Jurusan Teknik Mesin, Fakultas

Lebih terperinci

Bab 3 Algoritma Feature Pengurangan

Bab 3 Algoritma Feature Pengurangan Bab 3 Algoritma Feature Pengurangan Sebelum membahas pemodelan produk berbasis yang disusun berdasarkan algoritma pengurang terlebih dahulu akan dijelaskan hal-hal yang mendasari pembuatan algoritma tersebut,

Lebih terperinci

BAB 1 PENDAHULUAN. manufaktur. Seiring dengan perkembangan teknologi, pengertian robot tak lagi hanya

BAB 1 PENDAHULUAN. manufaktur. Seiring dengan perkembangan teknologi, pengertian robot tak lagi hanya BAB 1 PENDAHULUAN 1.1 Latar Belakang Perkembangan seputar dunia robot umumnya difokuskan pada industri. Robot jenis ini banyak digunakan untuk membantu dalam proses produksi di pabrik-pabrik manufaktur.

Lebih terperinci

Perancangan Kontroler State Dependent Riccati Equation Untuk Stabilisasi Pendulum Terbalik Dua Tingkat

Perancangan Kontroler State Dependent Riccati Equation Untuk Stabilisasi Pendulum Terbalik Dua Tingkat Perancangan Kontroler State Dependent Riccati Equation Untuk Stabilisasi Pendulum Terbalik Dua Tingkat Dyah Tri Utami 22659 Jurusan Teknik Elektro FTI, Institut Teknologi Sepuluh Nopember Kampus ITS, Keputih

Lebih terperinci

KATA PENGANTAR. 1. Bapak Dr. Ir. I Ketut Gede Sugita,MT selaku Ketua Jurusan Teknik Mesin Fakultas Teknik Universitas Udayana.

KATA PENGANTAR. 1. Bapak Dr. Ir. I Ketut Gede Sugita,MT selaku Ketua Jurusan Teknik Mesin Fakultas Teknik Universitas Udayana. KATA PENGANTAR Puji syukur penulis panjatkan kepada Tuhan Yang Maha Esa, karena atas berkat rahmat-nya penulis dapat menyelesaikan skripsi yang berjudul Simulasi Sistem Kontrol Gerak Kinematika Robot Manipulator

Lebih terperinci

Gambar 3.50 Simulator arm robot 5 dof menjepit kardus... 59

Gambar 3.50 Simulator arm robot 5 dof menjepit kardus... 59 DAFTAR GAMBAR Gambar 2.1 Robot manipulator... 5 Gambar 2.2 Robot beroda... 6 Gambar 2.3 Beberapa jenis robot berkaki... 7 Gambar 2.4 Autonomous robot... 7 Gambar 2.5 Mobile robot dan remote control...

Lebih terperinci

IMPLEMENTASI INVERSE KINEMATIC PADA PERGERAKAN MOBILE ROBOT KRPAI DIVISI BERKAKI

IMPLEMENTASI INVERSE KINEMATIC PADA PERGERAKAN MOBILE ROBOT KRPAI DIVISI BERKAKI IMPLEMENTASI INVERSE KINEMATIC PADA PERGERAKAN MOBILE ROBOT KRPAI DIVISI BERKAKI Publikasi Jurnal Skripsi Disusun oleh : EKY PRASETYA NIM. 0910633047-63 KEMENTERIAN PENDIDIKAN DAN KEBUDAYAAN UNIVERSITAS

Lebih terperinci

DESAIN, SIMULASI DAN PENGUJIAN MANIPULATOR ROBOT YANG TERINTEGRASI DENGAN REAL TIME POSITION JOYSTICK INPUT DAN 3D VIEW SIMMECHANICS

DESAIN, SIMULASI DAN PENGUJIAN MANIPULATOR ROBOT YANG TERINTEGRASI DENGAN REAL TIME POSITION JOYSTICK INPUT DAN 3D VIEW SIMMECHANICS Jurnal Teknik Mesin S-, Vol. 4, No. 4, Tahun 05 DESAIN, SIMULASI DAN PENGUJIAN MANIPULATOR ROBOT YANG TERINTEGRASI DENGAN REAL TIME POSITION JOYSTICK INPUT DAN D VIEW SIMMECHANICS *Rahmana Muhammad Fajri,

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar Belakang

BAB I PENDAHULUAN 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Perkembangan dunia robotika terjadi sangat cepat pada era ini. Ketertarikan manusia terhadap perkembangan robot semakin tinggi dan penelitian yang berkaitan dengan

Lebih terperinci

OPTIMALISASI UKURAN MANIPULABILITAS ROBOT STANFORD MENGGUNAKAN METODE PSEUDO-INVERSE

OPTIMALISASI UKURAN MANIPULABILITAS ROBOT STANFORD MENGGUNAKAN METODE PSEUDO-INVERSE OPTIMALISASI UKURAN MANIPULABILITAS ROBOT STANFORD MENGGUNAKAN METODE PSEUDO-INVERSE Gina Fahrina ), Elang Derdian Marindani ), Muhammad Saleh ) Control Systems Laboratory, Engineering Faculty, Tanjungpura

Lebih terperinci

B.1. Menjumlah Beberapa Gaya Sebidang Dengan Cara Grafis

B.1. Menjumlah Beberapa Gaya Sebidang Dengan Cara Grafis BAB II RESULTAN (JUMLAH) DAN URAIAN GAYA A. Pendahuluan Pada bab ini, anda akan mempelajari bagaimana kita bekerja dengan besaran vektor. Kita dapat menjumlah dua vektor atau lebih dengan beberapa cara,

Lebih terperinci

Analisa Kinematik secara spatial untuk Rack and pinion pada Kendaraan hybrid roda 3 Sapujagad 2

Analisa Kinematik secara spatial untuk Rack and pinion pada Kendaraan hybrid roda 3 Sapujagad 2 Analisa Kinematik secara spatial untuk Rack and pinion pada Kendaraan hybrid roda 3 Sapujagad 2 Oleh : Fachri Nugrahasyah Putra Nrp : 2108100107 Dosen Pembimbing : Dr. Unggul Wasiwitono, ST, M.Eng Keamanan

Lebih terperinci

Gambar 4.1 Macam-macam Komponen dengan Bentuk Kompleks

Gambar 4.1 Macam-macam Komponen dengan Bentuk Kompleks BAB 4 HASIL DA A ALISA Banyak komponen mesin yang memiliki bentuk yang cukup kompleks. Setiap komponen tersebut bisa jadi memiliki CBV, permukaan yang berkontur dan fitur-fitur lainnya. Untuk bagian implementasi

Lebih terperinci

UNIVERSITAS BINA NUSANTARA

UNIVERSITAS BINA NUSANTARA UNIVERSITAS BINA NUSANTARA Jurusan Sistem Komputer Skripsi Sarjana computer Semester Genap tahun 2004/2005 Simulasi Kine matika dari Integrasi Robot Mitsubishi RV-M1 Dengan Festo Modular Production System

Lebih terperinci

BAB III LANDASAN TEORI

BAB III LANDASAN TEORI BAB III LANDASAN TEORI 3.1 Stabilitas Lereng Pada permukaan tanah yang miring, komponen gravitasi cenderung untuk menggerakkan tanah ke bawah. Jika komponen gravitasi sedemikian besar sehingga perlawanan

Lebih terperinci

VIRTUAL REALITY AND REAL TIME SIMULATION WITH SIMMECHANICS AS REAL VISUALIZATION OF MECHANISMS Case Study: Material Handling Robot With 6 DoF

VIRTUAL REALITY AND REAL TIME SIMULATION WITH SIMMECHANICS AS REAL VISUALIZATION OF MECHANISMS Case Study: Material Handling Robot With 6 DoF VIRTUAL REALITY AND REAL TIME SIMULATION WITH SIMMECHANICS AS REAL VISUALIZATION OF MECHANISMS Case Study: Material Handling Robot With 6 DoF Hariyanto Gunawan (1, Ian Hardianto Siahaan (2, Willyanto Anggono

Lebih terperinci

BAB II LANDASAN TEORI. Pada bab ini berisi tentang teori mengenai permasalahan yang akan dibahas

BAB II LANDASAN TEORI. Pada bab ini berisi tentang teori mengenai permasalahan yang akan dibahas BAB II LANDASAN TEORI Pada bab ini berisi tentang teori mengenai permasalahan yang akan dibahas dalam pembuatan tugas akhir ini. Secara garis besar teori penjelasan akan dimulai dari definisi logika fuzzy,

Lebih terperinci

Analisa Kinematik Secara Spatial Untuk Rack and Pinion pada Kendaraan Hybrid Roda Tiga Sapujagad 2

Analisa Kinematik Secara Spatial Untuk Rack and Pinion pada Kendaraan Hybrid Roda Tiga Sapujagad 2 JURNAL TEKNIK POMITS Vol. 1, No. 2, (214) ISSN: 231-9271 1 Analisa Kinematik Secara Spatial Untuk Rack and Pinion pada Kendaraan Hybrid Roda Tiga Sapujagad 2 Fachri Nugrahasyah Putra dan Unggul Wasiwitono

Lebih terperinci

DAFTAR GAMBAR. Gambar 2.19 Grafik simulasi double pendulum dengan Simulink dan. SimMechanics xiii

DAFTAR GAMBAR. Gambar 2.19 Grafik simulasi double pendulum dengan Simulink dan. SimMechanics xiii DAFTAR GAMBAR Gambar 1.1 Macam-macam bipedal walking robot... 2 Gambar 1.2 Diagram alir penelitian... 5 Gambar 2.1 Mekanisme berjalan pada manusia... 7 Gambar 2.2 Model dinamik dari swing leg... 8 Gambar

Lebih terperinci

BAB III PERANCANGAN SISTEM

BAB III PERANCANGAN SISTEM BAB III PERANCANGAN SISTEM Pada bab ini akan dijelaskan mengenai perancangan dari perangkat keras, serta perangkat lunak dari algoritma robot. 3.1. Gambaran Sistem Sistem yang dibuat untuk tugas akhir

Lebih terperinci

BAB 3 PERANCANGAN SISTEM

BAB 3 PERANCANGAN SISTEM BAB 3 PERANCANGAN SISTEM Bab ini berisi pembahasan mengenai perancangan terhadap sistem yang akan dibuat. Dalam merancang sebuah sistem, dilakukan beberapa pendekatan dan analisis mengenai sistem yang

Lebih terperinci

BAB 3 METODE PENELITIAN. Bab ini membahas perancangan sistem yang digunakan pada robot hexapod.

BAB 3 METODE PENELITIAN. Bab ini membahas perancangan sistem yang digunakan pada robot hexapod. BAB 3 METODE PENELITIAN Bab ini membahas perancangan sistem yang digunakan pada robot hexapod. Perancangan sistem terdiri dari perancangan perangkat keras, perancangan struktur mekanik robot, dan perancangan

Lebih terperinci

BAB IV HASIL DAN PEMBAHASAN

BAB IV HASIL DAN PEMBAHASAN 23 BAB IV HASIL DAN PEMBAHASAN 4.1 Visualisasi Gelombang di Dalam Domain Komputasi Teknis penelitian yang dilakukan dalam menguji disain sensor ini adalah dengan cara menembakkan struktur sensor yang telah

Lebih terperinci

BAB IV PENGUJIAN DAN ANALISIS

BAB IV PENGUJIAN DAN ANALISIS BAB IV PENGUJIAN DAN ANALISIS Pada bab ini akan ditampilkan dan dijelaskan mengenai pengujian sistem dan dokumuentasi data-data percobaan yang telah direalisasikan sesuai dengan spesifikasi yang telah

Lebih terperinci

BAB IV PENGUJIAN DAN ANALISIS

BAB IV PENGUJIAN DAN ANALISIS BAB IV PENGUJIAN DAN ANALISIS Pada bab ini akan dijelaskan tentang pengujian dimensi robot, algoritma dari robot yang telah dibuat dan analisis mengenai kinerja dari algoritma tersebut. 4.1. Pengujian

Lebih terperinci

Penerapan Logika Fuzzy Pada Sistem Parkir Truk

Penerapan Logika Fuzzy Pada Sistem Parkir Truk Penerapan Logika Fuzzy Pada Sistem Parkir Truk Kuswara Setiawan Program Studi Sistem Informasi Universitas Pelita Harapan Surabaya, Indonesia Abstrak Suatu sistem dinamis dalam kehidupan sehari-hari seringkali

Lebih terperinci

BAB III PERANCANGAN 3.1. Bagian Perangkat Keras Robot Humanoid Kondo KHR-3HV

BAB III PERANCANGAN 3.1. Bagian Perangkat Keras Robot Humanoid Kondo KHR-3HV BAB III PERANCANGAN Pada bab ini akan dibahas perancangan tugas akhir yang meliputi mekanik robot yang dibuat, sistem kontrol robot, dan algoritma perangkat lunak pada robot. 3.1. Bagian Perangkat Keras

Lebih terperinci

SIMULASI GERAK WAHANA PELUNCUR POLYOT

SIMULASI GERAK WAHANA PELUNCUR POLYOT BAB SIMULASI GERAK WAHANA PELUNCUR POLYOT. Pendahuluan Simulasi gerak wahana peluncur Polyot dilakukan dengan menggunakan perangkat lunak Simulink Matlab 7.. Dalam simulasi gerak ini dimodelkan gerak roket

Lebih terperinci

PENERAPAN ALGORITMA PENGENDALI LANGKAH ROBOT HUMANOID R2C-R9 KONDO KHR-3HV BERBASIS KINEMATIKA BALIK. Oleh Bangkit Meirediansyah NIM:

PENERAPAN ALGORITMA PENGENDALI LANGKAH ROBOT HUMANOID R2C-R9 KONDO KHR-3HV BERBASIS KINEMATIKA BALIK. Oleh Bangkit Meirediansyah NIM: PENERAPAN ALGORITMA PENGENDALI LANGKAH ROBOT HUMANOID R2C-R9 KONDO KHR-3HV BERBASIS KINEMATIKA BALIK Oleh Bangkit Meirediansyah NIM: 612012025 Skripsi Untuk melengkapi salah satu syarat memperoleh Gelar

Lebih terperinci

Oleh Wiwik Wiharti Jurusan Teknik Elektro Politeknik Negeri Padang ABSTRACT

Oleh Wiwik Wiharti Jurusan Teknik Elektro Politeknik Negeri Padang ABSTRACT ISSN :285-6989 Perancangan Neural Network Control Untuk Menggerakkan Posisi Laras Meriam Pada Platform Yang Bergerak (Neural Network Design To Control Cannon Barrel Position On The Movement Platform) Oleh

Lebih terperinci

BAB IV HASIL YANG DICAPAI DAN POTENSI KHUSUS

BAB IV HASIL YANG DICAPAI DAN POTENSI KHUSUS 47 BAB IV HASIL YANG DICAPAI DAN POTENSI KHUSUS 4.1 PENDAHULUAN Bab ini menampilkan hasil penelitian dan pembahasan berdasarkan masing-masing variabel yang telah ditetapkan dalam penelitian. Hasil pengukuran

Lebih terperinci

Bab 3 PERUMUSAN MODEL KINEMATIK DDMR

Bab 3 PERUMUSAN MODEL KINEMATIK DDMR Ba 3 PERUMUSAN MODEL KINEMATIK DDMR Model kinematika diperlukan dalam menganalisis pergerakan suatu root moil. Model kinematik merupakan analisis pergerakan sistem yang direpresentasikan secara matematis

Lebih terperinci

DESAIN SISTEM KENDALI GERAK SURGE DAN ROLL PADA SISTEM AUTONOMOUS UNDERWATER VEHICLE DENGAN METODE SLIDING MODE CONTROL (SMC)

DESAIN SISTEM KENDALI GERAK SURGE DAN ROLL PADA SISTEM AUTONOMOUS UNDERWATER VEHICLE DENGAN METODE SLIDING MODE CONTROL (SMC) PROSEDING DESAIN SISTEM KENDALI GERAK SURGE DAN ROLL PADA SISTEM AUTONOMOUS UNDERWATER VEHICLE DENGAN METODE SLIDING MODE CONTROL (SMC) Teguh Herlambang, Hendro Nurhadi Program Studi Sistem Informasi Universitas

Lebih terperinci

GERAKAN BERJALAN OMNIDIRECTIONAL UNTUK ROBOT HUMANOID PEMAIN BOLA

GERAKAN BERJALAN OMNIDIRECTIONAL UNTUK ROBOT HUMANOID PEMAIN BOLA GERAKAN BERJALAN OMNIDIRECTIONAL UNTUK ROBOT HUMANOID PEMAIN BOLA Disusun oleh : Nama : Christian Hadinata NRP : 0822017 Jurusan Teknik Elektro, Fakultas Teknik,, Jl.Prof.Drg.Suria Sumantri, MPH No. 65,

Lebih terperinci

KONTROL TRACKING FUZZY UNTUK SISTEM PENDULUM KERETA MENGGUNAKAN PENDEKATAN LINEAR MATRIX INEQUALITIES

KONTROL TRACKING FUZZY UNTUK SISTEM PENDULUM KERETA MENGGUNAKAN PENDEKATAN LINEAR MATRIX INEQUALITIES JURNAL TEKNIK ITS Vol. 4, No. 1, (15) ISSN: 337-3539 (31-971 Print) A-594 KONTROL TRACKING FUZZY UNTUK SISTEM PENDULUM KERETA MENGGUNAKAN PENDEKATAN LINEAR MATRIX INEQUALITIES Rizki Wijayanti, Trihastuti

Lebih terperinci

BAB II TEORI DASAR. unloading. Berdasarkan sistem penggeraknya, excavator dibedakan menjadi. efisien dalam operasionalnya.

BAB II TEORI DASAR. unloading. Berdasarkan sistem penggeraknya, excavator dibedakan menjadi. efisien dalam operasionalnya. BAB II TEORI DASAR 2.1 Hydraulic Excavator Secara Umum. 2.1.1 Definisi Hydraulic Excavator. Excavator adalah alat berat yang digunakan untuk operasi loading dan unloading. Berdasarkan sistem penggeraknya,

Lebih terperinci

PENGEMBANGAN MOTION CAPTURE SYSTEM UNTUK TRAJECTORY PLANNING

PENGEMBANGAN MOTION CAPTURE SYSTEM UNTUK TRAJECTORY PLANNING PENGEMBANGAN MOTION CAPTURE SYSTEM UNTUK TRAJECTORY PLANNING ELVA SUSIANTI 2209204802 Pembimbing: 1. ACHMAD ARIFIN, ST., M. Eng., Ph.D 2. Ir. DJOKO PURWANTO, M. Eng., Ph.D. Bidang Keahlian Teknik Elektronika

Lebih terperinci

BAB 4 IMPLEMENTASI DAN EVALUASI. Pada Bab IV ini menjelaskan tentang spesifikasi sistem, rancang bangun

BAB 4 IMPLEMENTASI DAN EVALUASI. Pada Bab IV ini menjelaskan tentang spesifikasi sistem, rancang bangun BAB 4 IMPLEMENTASI DAN EVALUASI Pada Bab IV ini menjelaskan tentang spesifikasi sistem, rancang bangun keseluruhan sistem, prosedur pengoperasian sistem, implementasi dari sistem dan evaluasi hasil pengujian

Lebih terperinci

Simulasi Peredaman Getaran Bangunan dengan Model Empat Tumpuan

Simulasi Peredaman Getaran Bangunan dengan Model Empat Tumpuan JURNAL TEKNIK POMITS Vol. 1, No. 1, (2013) 1-5 1 Simulasi Peredaman Getaran Bangunan dengan Model Empat Tumpuan Fitriana Ariesta Dewi dan Ir. Yerri Susatio, MT Teknik Fisika, Fakultas Teknologi Industri,

Lebih terperinci

DASAR DASAR PENGGUNAAN SAP2000

DASAR DASAR PENGGUNAAN SAP2000 Halaman 1 dari Bab 1 Bab 1 DASAR DASAR PENGGUNAAN SAP2000 1. KEMAMPUAN SAP2000 Program SAP merupakan salah satu software yang telah dikenal luas dalam dunia teknik sipil, terutama dalam bidang analisis

Lebih terperinci

IMPLEMENTASI INVERSE KINEMATICS TERHADAP POLA GERAK HEXAPOD ROBOT 2 DOF

IMPLEMENTASI INVERSE KINEMATICS TERHADAP POLA GERAK HEXAPOD ROBOT 2 DOF 14 Dielektrika, [P-ISSN 086-9487] [E-ISSN 79-60X] Vol. 4, No. : 14-146, Agustus 017 IMPLEMENTASI INVERSE KINEMATICS TERHADAP POLA GERAK HEXAPOD ROBOT DOF Selamat Muslimin1 1, Kharis Salahuddin 1, Ekawati

Lebih terperinci

OPTIMASI PERGERAKAN ROBOT PLANAR 3 SENDI PADA ROBOT PENGGENGGAM MENGGUNAKAN METODE PEMROGRAMAN GENETIKA. Abstrak

OPTIMASI PERGERAKAN ROBOT PLANAR 3 SENDI PADA ROBOT PENGGENGGAM MENGGUNAKAN METODE PEMROGRAMAN GENETIKA. Abstrak OPTIMASI PERGERAKAN ROBOT PLANAR 3 SENDI PADA ROBOT PENGGENGGAM MENGGUNAKAN METODE PEMROGRAMAN GENETIKA Endah S. Ningrum, Bambang Sumantri, Ardik Wijayanto, Choirul Yanuar, Moch. Iskandar Riansyah Politeknik

Lebih terperinci

Pengembangan Robot Hexapod untuk Melacak Sumber Gas

Pengembangan Robot Hexapod untuk Melacak Sumber Gas 12 Pengembangan Robot Hexapod untuk Melacak Sumber Hani Avrilyantama, Muhammad Rivai, Djoko Purwanto Jurusan Teknik Elektro, Fakultas Teknologi Industri, Institut Teknologi Sepuluh Nopember (ITS) Jl. Arief

Lebih terperinci

BAB III PERENCANAAN DAN GAMBAR

BAB III PERENCANAAN DAN GAMBAR BAB III PERENCANAAN DAN GAMBAR 3.1 Diagram Alir Proses Perencanaan Proses perencanaan mesin pembuat es krim dari awal sampai akhir ditunjukan seperti Gambar 3.1. Mulai Studi Literatur Gambar Sketsa Perhitungan

Lebih terperinci

Koordinat Kartesius, Koordinat Tabung & Koordinat Bola. Tim Kalkulus II

Koordinat Kartesius, Koordinat Tabung & Koordinat Bola. Tim Kalkulus II Koordinat Kartesius, Koordinat Tabung & Koordinat Bola Tim Kalkulus II Koordinat Kartesius Sistem Koordinat 2 Dimensi Sistem koordinat kartesian dua dimensi merupakan sistem koordinat yang terdiri dari

Lebih terperinci

ABSTRAK. Inverted Pendulum, Proporsional Integral Derivative, Simulink Matlab. Kata kunci:

ABSTRAK. Inverted Pendulum, Proporsional Integral Derivative, Simulink Matlab. Kata kunci: PROJECT OF AN INTELLIGENT DIFFERENTIALY DRIVEN TWO WHEELS PERSONAL VEHICLE (ID2TWV) SUBTITLE MODELING AND EXPERIMENT OF ID2TWV BASED ON AN INVERTED PENDULUM MODEL USING MATLAB SIMULINK Febry C.N*, EndraPitowarno**

Lebih terperinci

IMPLEMENTASI INVERS KINEMATICS PADA SISTEM PERGERAKAN MOBILE ROBOT RODA MEKANUM

IMPLEMENTASI INVERS KINEMATICS PADA SISTEM PERGERAKAN MOBILE ROBOT RODA MEKANUM IMPLEMENTASI INVERS KINEMATICS PADA SISTEM PERGERAKAN MOBILE ROBOT RODA MEKANUM Publikasi Jurnal Skripsi Disusun Oleh : VERI HENDRAYAWAN NIM : 105060301111004-63 KEMENTERIAN PENDIDIKAN DAN KEBUDAYAAN UNIVERSITAS

Lebih terperinci

Bab IV Analisis dan Diskusi

Bab IV Analisis dan Diskusi Bab IV Analisis dan Diskusi IV.1 Hasil Perhitungan Permeabilitas Pemodelan Fisis Data yang diperoleh dari kelima model fisis saluran diolah dengan menggunakan hukum Darcy seperti tertulis pada persamaan

Lebih terperinci

PENERAPAN ALGORITMA TRIPOD GAIT

PENERAPAN ALGORITMA TRIPOD GAIT PENERAPAN ALGORITMA TRIPOD GAIT PADA ROBOT HEXAPOD BERBASIS ARDUINO MEGA128 Muhammad Fachrizal, Prihastuti Harsani, Andi Chairunnas Email: joefachrizal@unpak.ac.id Program Studi Ilmu Komputer FMIPA Universitas

Lebih terperinci

INTEGRASI MATH DAN CAD TOOL UNTUK MERANCANG KINEMATIKA MANIPULATOR SERI ROBOT INDUSTRI

INTEGRASI MATH DAN CAD TOOL UNTUK MERANCANG KINEMATIKA MANIPULATOR SERI ROBOT INDUSTRI INTEGRASI MATH DAN CAD TOOL UNTUK MERANCANG KINEMATIKA MANIPULATOR SERI ROBOT INDUSTRI Roche Alimin Jurusan Teknik Mesin Universitas Kristen Petra Jalan. Siwalankerto 121-131, Surabaya 60236. Indonesia

Lebih terperinci

Bab 1. Pendahuluan. menggunakan bantuan aplikasi CAD (Computer-Aided Design) untuk. menggunakan komputer ini disebut sebagai mesin Computer based

Bab 1. Pendahuluan. menggunakan bantuan aplikasi CAD (Computer-Aided Design) untuk. menggunakan komputer ini disebut sebagai mesin Computer based Bab 1 Pendahuluan 1.1 Latar Belakang Masalah Seiring dengan kemajuan teknologi, komputer digunakan untuk berbagai keperluan, baik sebagai sarana untuk membantu pekerjaan maupun sarana hiburan. Penggunaannya

Lebih terperinci

BAB III ALGORITMA PENAMBAHAN FEATURE DAN METODA PENCAHAYAAN

BAB III ALGORITMA PENAMBAHAN FEATURE DAN METODA PENCAHAYAAN BAB III ALGORITMA PENAMBAHAN FEATURE DAN METODA PENCAHAYAAN Pada pemodelan produk berbasis feature, produk didefinisikan sebagai benda kerja yang memiliki satu atau lebih feature yang terasosiasi pada

Lebih terperinci

BAB I PENDAHULUAN 1. 1 LATAR BELAKANG MASALAH

BAB I PENDAHULUAN 1. 1 LATAR BELAKANG MASALAH BAB I PENDAHULUAN 1. 1 LATAR BELAKANG MASALAH Seiring dengan pertumbuhan penduduk di kota Semarang, maka diperlukan sarana jalan raya yang aman dan nyaman. Dengan semakin bertambahnya volume lalu lintas,

Lebih terperinci

BAB V HASIL DAN PEMBAHASAN

BAB V HASIL DAN PEMBAHASAN BAB V HASIL DAN PEMBAHASAN A. Data Penelitian Pengujian dilakukan di Laboratorium Keairan dan Lingkungan Universitas Muhammadiyah Yogyakarta. Didapatkan hasil dari penelitian dengan aliran superkritik

Lebih terperinci

PENDAHULUAN BAB I PENDAHULUAN

PENDAHULUAN BAB I PENDAHULUAN BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Pesatnya perkembangan ilmu pengetahuan dan teknologi pada zaman sekarang, menuntut manusia untuk terus menciptakan inovasi baru di bidang teknologi. Hal ini

Lebih terperinci

Perancangan Model Alat Pemotong Rumput Otomatis Berbasis Mikrokontroler AT89C51

Perancangan Model Alat Pemotong Rumput Otomatis Berbasis Mikrokontroler AT89C51 21 Perancangan Model Alat Pemotong Rumput Otomatis Berbasis Mikrokontroler AT89C51 Ahmad Yusup, Muchlas Arkanuddin, Tole Sutikno Program Studi Teknik Elektro, Universitas Ahmad Dahlan Abstrak Penggunaan

Lebih terperinci

BAB I PENDAHULUAN. I.1 Latar Belakang

BAB I PENDAHULUAN. I.1 Latar Belakang BAB I PENDAHULUAN I.1 Latar Belakang Robot manipulator adalah sebuah robot yang secara mekanik dapat difungsikan untuk memindahkan, mengangkat dan memanipulasi benda kerja[11]. Model dinamika dari robot

Lebih terperinci

Kontrol Tracking Fuzzy untuk Sistem Pendulum Kereta Menggunakan Pendekatan Linear Matrix Inequalities

Kontrol Tracking Fuzzy untuk Sistem Pendulum Kereta Menggunakan Pendekatan Linear Matrix Inequalities JURNAL TEKNIK ITS Vol. 6, No. (17), 337-35 (31-98X Print) A49 Kontrol Tracking Fuzzy untuk Sistem Pendulum Kereta Menggunakan Pendekatan Linear Matrix Inequalities Rizki Wijayanti, Trihastuti Agustinah

Lebih terperinci

PENENTUAN SUDUT LENGAN ROBOT HUMANOID BERDASARKAN KOORDINAT YANG DIKIRIM DARI PC MENGGUNAKAN USER INTERFACE YANG DIBUAT DARI Qt

PENENTUAN SUDUT LENGAN ROBOT HUMANOID BERDASARKAN KOORDINAT YANG DIKIRIM DARI PC MENGGUNAKAN USER INTERFACE YANG DIBUAT DARI Qt PENENTUAN SUDUT LENGAN ROBOT HUMANOID BERDASARKAN KOORDINAT YANG DIKIRIM DARI PC MENGGUNAKAN USER INTERFACE YANG DIBUAT DARI Qt Adiyatma Ghazian Pratama¹, Ir. Nurussa adah, MT. 2, Mochammad Rif an, ST.,

Lebih terperinci

Dosen Pembimbing : Hendro Nurhadi, Dipl. Ing. Ph.D. Oleh : Bagus AR

Dosen Pembimbing : Hendro Nurhadi, Dipl. Ing. Ph.D. Oleh : Bagus AR Dosen Pembimbing : Hendro Nurhadi, Dipl. Ing. Ph.D. Oleh : Bagus AR 2105100166 PENDAHULUAN LATAR BELAKANG Control system : keluaran (output) dari sistem sesuai dengan referensi yang diinginkan Non linear

Lebih terperinci

BAB III METODOLOGI PENELITIAN

BAB III METODOLOGI PENELITIAN BAB III METODOLOGI PENELITIAN A. Waktu Dan Tempat Penelitian Penelitian ini dilakukan di Lab. Mekanika Struktur Jurusan Teknik Mesin Universitas Lampung untuk mensimulasikan kemampuan tangki toroidal penampang

Lebih terperinci

BAB III PEMODELAN DAN HASIL PEMODELAN

BAB III PEMODELAN DAN HASIL PEMODELAN BAB III PEMODELAN DAN HASIL PEMODELAN Data-data yang telah didapatkan melalui studi literatur dan pencarian data di lokasi penambangan emas pongkor adalah : 3.1 Lokasi Penelitian Penelitian dilakukaan

Lebih terperinci

METODE PENELITIAN. Model tabung gas LPG dibuat berdasarkan tabung gas LPG yang digunakan oleh

METODE PENELITIAN. Model tabung gas LPG dibuat berdasarkan tabung gas LPG yang digunakan oleh III. METODE PENELITIAN Model tabung gas LPG dibuat berdasarkan tabung gas LPG yang digunakan oleh rumah tangga yaitu tabung gas 3 kg, dengan data: Tabung 3 kg 1. Temperature -40 sd 60 o C 2. Volume 7.3

Lebih terperinci

Pemodelan Gerak Belok Steady State dan Transient pada Kendaraan Empat Roda

Pemodelan Gerak Belok Steady State dan Transient pada Kendaraan Empat Roda E97 Pemodelan Gerak Belok Steady State dan Transient pada Kendaraan Empat Roda Yansen Prayitno dan Unggul Wasiwitono Jurusan Teknik Mesin, Fakultas Teknologi Industri, Institut Teknologi Sepuluh Nopember

Lebih terperinci

APLIKASI LOCALIZATION & MAPPING MENGGUNAKAN 2D LASER SCANNER PADA ROBOT RESCUE ALL-TERRAIN

APLIKASI LOCALIZATION & MAPPING MENGGUNAKAN 2D LASER SCANNER PADA ROBOT RESCUE ALL-TERRAIN APLIKASI LOCALIZATION & MAPPING MENGGUNAKAN 2D LASER SCANNER PADA ROBOT RESCUE ALL-TERRAIN Kevin Reinaldo Mulyono 1022003 Jurusan Teknik Elektro, Fakultas Teknik Jl. Prof. Drg. Surya Sumantri 65, Bandung

Lebih terperinci

ANALISIS INVERSE KINEMATICS TERSEGMENTASI PADA DANCING ROBOT HUMANOID MENGGUNAKAN METODE FUZZY TAKAGI-SUGENO

ANALISIS INVERSE KINEMATICS TERSEGMENTASI PADA DANCING ROBOT HUMANOID MENGGUNAKAN METODE FUZZY TAKAGI-SUGENO TUGAS AKHIR - TE141599 ANALISIS INVERSE KINEMATICS TERSEGMENTASI PADA DANCING ROBOT HUMANOID MENGGUNAKAN METODE FUZZY TAKAGI-SUGENO Thri Noerma Agil Rhomadhoni NRP 2213106025 Dosen Pembimbing Ir. Rusdhianto

Lebih terperinci

BAB IV INTERPRETASI KUANTITATIF ANOMALI SP MODEL LEMPENGAN. Bagian terpenting dalam eksplorasi yaitu pengidentifikasian atau

BAB IV INTERPRETASI KUANTITATIF ANOMALI SP MODEL LEMPENGAN. Bagian terpenting dalam eksplorasi yaitu pengidentifikasian atau BAB IV INTERPRETASI KUANTITATIF ANOMALI SP MODEL LEMPENGAN Bagian terpenting dalam eksplorasi yaitu pengidentifikasian atau pengasumsian bentuk dan kedalaman benda yang tertimbun. Berbagai macam metode

Lebih terperinci

DAFTAR ISI. Judul DAFTAR GAMBAR DAFTAR LAMPIRAN DAFTAR NOTASI DAN SINGKATAN BAB I PENDAHULUAN RUMUSAN MASALAH TUJUAN PENELITIAN 2

DAFTAR ISI. Judul DAFTAR GAMBAR DAFTAR LAMPIRAN DAFTAR NOTASI DAN SINGKATAN BAB I PENDAHULUAN RUMUSAN MASALAH TUJUAN PENELITIAN 2 DAFTAR ISI Halaman Judul i Pengesahan ii Persetujuan iii KATA PENGANTAR iv ABSTRAK vi ABSTRACT vii DAFTAR TABEL viii DAFTAR GAMBAR x DAFTAR LAMPIRAN xiii DAFTAR NOTASI DAN SINGKATAN xiv BAB I PENDAHULUAN

Lebih terperinci

BAB III PERANCANGAN SISTEM

BAB III PERANCANGAN SISTEM BAB III PERANCANGAN SISTEM Pada bab ini akan dijelaskan mengenai perancangan mekanik robot, perangkat lunak dari algoritma robot, serta metode pengujian robot. 3.1. Perancangan Mekanik Robot Bagian ini

Lebih terperinci

Perancangan dan Implementasi Sistem Pola Berjalan Pada Robot Humanoid Menggunakan Metode Inverse Kinematic

Perancangan dan Implementasi Sistem Pola Berjalan Pada Robot Humanoid Menggunakan Metode Inverse Kinematic Jurnal Pengembangan Teknologį Įnformasį dan Įlmu Komputer e-įssn: 2548-964X Vol. 2, No. 8, Agustus 2018, hlm. 2753-2760 http://j-ptįįk.ub.ac.įd Perancangan dan Implementasi Sistem Pola Berjalan Pada Robot

Lebih terperinci

Soal-Jawab Fisika Teori OSN 2013 Bandung, 4 September 2013

Soal-Jawab Fisika Teori OSN 2013 Bandung, 4 September 2013 Soal-Jawab Fisika Teori OSN 0 andung, 4 September 0. (7 poin) Dua manik-manik masing-masing bermassa m dan dianggap benda titik terletak di atas lingkaran kawat licin bermassa M dan berjari-jari. Kawat

Lebih terperinci

ABSTRAK. Dewasa ini kemajuan teknologi sudah berkembang pesat dengan

ABSTRAK. Dewasa ini kemajuan teknologi sudah berkembang pesat dengan ABSTRAK Dewasa ini kemajuan teknologi sudah berkembang pesat dengan mengunakan video digital, data yang diperoleh dapat dianalisa oleh suatu simulasi komputer sehingga perhitungan yang rumit dapat dihindarkan.

Lebih terperinci

BAB IV METODE PENELITIAN

BAB IV METODE PENELITIAN 17 BAB IV METODE PENELITIAN A. Studi Literatur Penelitian ini mengambil sumber dari jurnal jurnal dan segala referensi yang mendukung guna kebutuhan penelitian. Sumber yang diambil adalah sumber yang berkaitan

Lebih terperinci

PENERPAN PETRI-NET PADA MODEL GERAKAN BERJALAN TROTTING ROBOT BERKAKI EMPAT (QUADRUPED)

PENERPAN PETRI-NET PADA MODEL GERAKAN BERJALAN TROTTING ROBOT BERKAKI EMPAT (QUADRUPED) PENERPAN PETRI-NET PADA MODEL GERAKAN BERJALAN TROTTING ROBOT BERKAKI EMPAT (QUADRUPED) Tony Yulianto Universitas Islam Madura, toni_yulianto65@ymail.com Abstract. Nowadays many robots has produced not

Lebih terperinci

BAB III METODE KAJIAN

BAB III METODE KAJIAN 24 BAB III METODE KAJIAN 3.1 Persiapan Memasuki tahap persiapan ini disusun hal-hal penting yang harus dilakukan dalam rangka penulisan tugas akhir ini. Adapun tahap persiapan ini meliputi hal-hal sebagai

Lebih terperinci

BAB 3 PERANCANGAN. 3.1 Desain Alur Penentuan Keputusan Robot

BAB 3 PERANCANGAN. 3.1 Desain Alur Penentuan Keputusan Robot BAB 3 PERANCANGAN 3.1 Desain Alur Penentuan Keputusan Robot Aplikasi ini bertujuan untuk menentukan perilaku robot yang diinginkan dalam pertandingan sepak bola antar robot. Dari berbagai kondisi lapangan,

Lebih terperinci

BAB III PEMODELAN SISTEM POROS-ROTOR

BAB III PEMODELAN SISTEM POROS-ROTOR BAB III PEMODELAN SISTEM POROS-ROTOR 3.1 Pendahuluan Pemodelan sistem poros-rotor telah dikembangkan oleh beberapa peneliti. Adam [2] telah menggunakan formulasi Jeffcot rotor dalam pemodelan sistem poros-rotor,

Lebih terperinci

SIMULASI DAN PERHITUNGAN SPIN ROKET FOLDED FIN BERDIAMETER 200 mm

SIMULASI DAN PERHITUNGAN SPIN ROKET FOLDED FIN BERDIAMETER 200 mm Simulasi dan Perhitungan Spin Roket... (Ahmad Jamaludin Fitroh et al.) SIMULASI DAN PERHITUNGAN SPIN ROKET FOLDED FIN BERDIAMETER 00 mm Ahmad Jamaludin Fitroh *), Saeri **) *) Peneliti Aerodinamika, LAPAN

Lebih terperinci

SIMULASI PENGENDALIAN SUDUT KEMIRINGAN BELOK SEPEDA MOTOR MELALUI PENAMBAHAN KOMPONEN GYROSCOPIC

SIMULASI PENGENDALIAN SUDUT KEMIRINGAN BELOK SEPEDA MOTOR MELALUI PENAMBAHAN KOMPONEN GYROSCOPIC SIMULASI PENGENDALIAN SUDUT KEMIRINGAN BELOK SEPEDA MOTOR MELALUI PENAMBAHAN KOMPONEN GYROSCOPIC I Ketut Adi Atmika, I DG Ary Subagia Jurusan Teknik Mesin, Fakultas Teknik, Universitas Udayana E-mail :

Lebih terperinci

Saat mempelajari gerak melingkar, kita telah membahas hubungan antara kecepatan sudut (ω) dan kecepatan linear (v) suatu benda

Saat mempelajari gerak melingkar, kita telah membahas hubungan antara kecepatan sudut (ω) dan kecepatan linear (v) suatu benda 1 Benda tegar Pada pembahasan mengenai kinematika, dinamika, usaha dan energi, hingga momentum linear, benda-benda yang bergerak selalu kita pandang sebagai benda titik. Benda yang berbentuk kotak misalnya,

Lebih terperinci