BAB 2 TINJAUAN PUSTAKA

Ukuran: px
Mulai penontonan dengan halaman:

Download "BAB 2 TINJAUAN PUSTAKA"

Transkripsi

1 BAB 2 TINJAUAN PUSTAKA 2.1Pengertian Magnet Magnet adalah suatu materi yang mempunyai suatu medan magnet. Magnet juga merupakan material maju yang sangat penting untuk beragam aplikasi teknologi canggih, berfungsi sebagai komponen pengubah energi gerak menjadi listrik dan sebaliknya, seperti: otomotif, elektronik dan energy (Collocott, S.J.,2007). Peningkatan efisiensi energi seperti pada sistem generator listrik, sistem penggerak listrik/motor listrik, otomatisasi industri dan lainnya sangat ditentukan oleh sifat material magnet tersebut (Sardjono, 2012). Kata magnet berasal dari bahasa Yunani, magnitis lithos yang berarti batu Magnesian. Magnesia adalah nama sebuah wilayah Yunani pada masa lalu, dimana terdapat batu magnet yang ditemukan sejak zaman dulu di wilayah tersebut. Magnet selalu memiliki dua kutub yaitu kutub utara dan selatan. Walaupun magnet itu dipotong-potong sampai kecil, potongan tersebut akan tetap memiliki dua kutub (Vlack, 2014). Fenomena magnetisme (kemagnetan) sebenarnya telah diamati manusia sejak beberapa abad sebelum masehi. Pada masa lampau magnet dikenal sebagai sebuah material berwarna hitam yang disebut lodestone dan dapat menarik besi serta benda benda logam lainnya. Batu magnet ditemukan pertama kali di Magnesia, Asia kecil dan penggunaannya dalam praktek yang pertama dipertunjukkan oleh bangsa Cina pada tahun 2637 sebalum Masehi, berupa kompas kutub (kompas penunjuk kutub bumi (Julia, 2011). Magnet dapat dibuat dari bahan besi, baja, dan campuran logam. Sebuah magnet terdiri atas magnetmagnet kecil yang memiliki arah yang sama (tersusun teratur), magnet-magnet kecil ini disebut magnet elementer. Pada logam yang bukan magnet, magnet elementernya mempunyai arah sembarangan (tidak teratur) sehingga efeknya saling meniadakan, yang mengakibatkan tidak adanya kutub-kutub magnet pada ujung logam. Kutub magnet adalah daerah yang berada pada ujung-ujung magnet dengan kekuatan magnet yang paling besar berada pada kutub-kutubnya. Magnet

2 dapat menarik benda lain, bahkan ada yang tertarik lebih kuat dari benda lainnya, yaitu bahan logam. Namun tidak semua logam mempunyai daya tarik yang sama terhadap magnet. Besi dan baja adalah dua contoh materi yang mempunyai daya tarik magnet yang tinggi. Sedangkan oksigen cair adalah contoh materi yang mempunyai daya tarik magnet rendah (Julia, 2011). 2.2 Magnet Permanen Produk magnet permanen ada dua macam, dibagi berdasarkan teknik pembuatannya yaitu magnet permanen isotropi dan magnet permanen anisotropi. (a) (b) Gambar 2.1. Arah Partikel Pada Magnet, (a) Arah partikel acak (Isotropi). (b) Arah partikel searah (Anisotropi) (Masno G, 2006) Magnet permanen isotropi merupakan magnet dimana arah domain magnet partikel-partikelnya masih acak. Sedangkan magnet anisotropi pada pembentukkan dilakukan didalam medan magnet, sehingga arah domain magnet partikel-partikelnya mengarah pada satu arah tertentu seperti ditunjukkan pada Gambar 2.1. Magnet permanen isotropi memiliki sifat magnet atau remanensi magnet yang lebih rendah dibandingkan dengan magnet permanen anisotropi. Suatu magnet permanen harus mampu menghasilkan densitas fluks magnet, B yang tinggi dari suatu volume magnet tertentu. Sifat stabilitas magnetik yang baik terhadap efek temperatur dan waktu, serta memiliki ketahanan yang tinggi terhadap pengaruh demagnetisasi. Pada prinsipnya, suatu kemagnetan permanen haruslah memiliki karakteristik minimal dengan sifat kemagnetan remanen (Br) dan koersivitas intrinsik (JHc) serta temperatur curie (Tc) yang tinggi (Manaf, 2013).

3 2.3 Sifat-Sifat Magnet Permanen Sifat-sifat magnet permanen (hard ferrite) dipengaruhi oleh kemurnian bahan, ukuran bulir (grain size), dan orientsi kristal. Parameter kemagnetan juga dipengaruhi oleh temperatur. Koersivitas dan remanensi akan berkurang apabila temperaturnya mendekati temperatur curie (Tc) dan akan kehilangan sifat kemagnetannya temperaturnya sama dengan Tc (Kerista Sebayang, dkk, 2013). 2.4 Sifat Intrinsik Kemagnetan Fasa Magnetik Beberapa sifat kemagnetan dasar yang penting dari fasa magnetik dapat disebutkan antara lain koersifitas intrinsik (JH C ), remanen (Jr), polarisasi total (Js), medan anisotopi (H A ), produk energi maksimum (BH)max, dan temperatur Curie (T C ). Berikut ini merupakan latarbelakang teori dan sifat kemagnetan Loop Histeresis Remanen dan koersivitas adalah besaran kemagnetan yang dapat didefinisikan dari suatu loop histerisis magnet. Pada dasarnya loop tersebut merepresentasikan suatu proses magnetisasi dan demagnetisasi oleh suatu medan magnet luar, (H). Medan magnet luar yang digunakan untuk memagnetisasi ditingkatkan dari nol, maka magnetisasi M atau polarisasi J dari magnet akan bertambah besar dan mencapai tingkat saturasi pada suatu medan magnet luar tertentu. Dengan melakukan sederetan proses magnetisasi yaitu penurunan medan magnet luar menjadi nol dan meneruskannya pada arah yang bertentangan, serta meningkatkan besar medan magnet luar pada arah tersebut dan menurunkannya kembali ke nol kemudian membalikkan arah seperti semula, maka magnetisasi atau polarisasi dari magnet permanen terlihat membentuk suatu loop (Manaf, 2013). Material magnetik diklasifikasikan menjadi dua yaitu material magnetik lemah atau soft magnetic materials dan material magnetik kuat atau hard magnetic materials. Penggolongan ini berdasarkan kekuatan medan koersifitasnya. Soft magnetic memiliki medan koersifitas yang lemah, sedangkan hard magnetic materials memiliki medan koersifitas yang kuat. Hal ini lebih jelas digambarkan dengan kurva histerisis atau hysteresis loop pada Gambar 2.2.

4 Gambar 2.2. Kurva Histerisis (Hilda Ayu, 2013) Pada kurva histeresis (gambar 2.2) menunjukkan kurva histeresis untuk soft magnetic materials pada gambar (a) dan hard magnetic materials pada gambar (b). H adalah medan magnetik yang diperlukan untuk menginduksi medan berkekuatan B dalam material. Setelah medan H ditiadakan, dalam specimen tersisa magnetisme residual (Br), dan diperlukan medan magnet (Hc) yang disebut gaya koersifitas, diterapkan dalam arah berlawanan untuk meniadakannya. Soft magnetic materials mudah dimagnetisasi dan mudah pula mengalami demagnetisasi, seperti tampak pada Gambar 2.2 (a). Nilai H yang rendah sudah memadai untuk menginduksi medan B yang kuat dalam logam, dan diperlukan medan Hc yang kecil untuk menghilangkannya. Soft magnetic materials dapat mengalami magnetisasi dan tertarik ke magnet lain, namun sifat magnetiknya hanya akan bertahan apabila magnet berada dalam suatu medan magnetik. Soft magnetic materials tidak mengalami magnetisasi yang permanen. Perbedaan antara magnet permanen atau magnet keras, dengan magnet lunak jelas terlihat pada loop histeresis seperti pada Gambar 2.2. Magnet keras menarik domain material lain yang mengalami magnetisasi menuju dirinya. Magnet jenis ini dapat mempertahankan kemagnetannya dalam waktu yang sangat lama. Ketika suatu material magnetik dimasukkan ke dalam suatu medan magnetic (H), garis garis gaya yang berdekatan dihimpun dalam meterial tersebut sehingga meningkatkan densitas fluks. Secara teknis, terjadi peningkatan induksi magnetik, B. Tentu saja, besarnya induksi bergantung pada medan magnetik dan jenis material magnet tersebut. Peningkatan induksi tidak linear

5 tetapi mengikuti hubungan B H yang melonjak ke level yang lebih tinggi, dan kemudian bertahan mendekati konstan di dalam medan magnetik yang tetap lebih kuat. Kurva histerisis dari suatu magnet permanen memperlihatkan perbedaan yang sangat mencolok. Ketika medan magnetik dihilangkan, sebagian besar induksi dipertahankan agar menghasilkan induksi remanen (Br). Medan terbalik, disebut medan koersifitas (-Hc), diperlukan sebelum induksi turun menjadi nol. Sama dengan loop lengkap dari suatu magnet lunak, loop lengkap suatu magnet permanen mempunyai simetri 180. Hasil-kali antara medan magnetik (A/m) dan induksi (V.s/m 2 ) adalah energi persatuan volume, daerah terintegrasi di dalam loop histerisis adalah energi yang diperlukan untuk menyelesaikan satu siklus magnetisasi dari 0 ke (+H), ke ( H) dan kembali ke 0. Energi yang diperlukan magnet lunak sangat kecil, sedangkan magnet keras memerlukan energi yang cukup besar dan pada kondisi ruang demagnetisasi tidak akan terjadi. Magnetisasinya adalah magnetisasi yang permanen. Untuk itu, magnet keras (hard magnetic) dapat juga disebut sebagai magnet permanen. Beberapa sifat dari magnet permanen dapat dilihat pada Tabel 2.1. Tabel 2.1. Sifat Beberapa Magnet Keras (Hilda Ayu, 2013) Material Magnetik Medan Hasil Kali Remanensi Koersifitas Demagnetisasi B r -H c Maksimum (V.s/m 2 ) (ka/m) BH maks (kj/m 3 ) Baja karbon-biasa 1,0 4 1 Alnico V 1, Feroxdur (BaFe 12 O 19 ) 0, RE Co * 1, Nd 2 Fe 14 B 1600 * Tanah jarang kobalt, khususnya samarium Magnet permanen dapat ditandai dari medan koersifitas (-Hc), diperlukan untuk mengembalikan induksi ke nol. Suatu nilai sebesar -Hc = 1000 A/m sering digunakan untuk memisahkan magnet lunak dan magnet keras (permanen).

6 BHmaks merupakan satu ukuran yang lebih baik, karena hasil-kali ini menunjukkan hambatan energi kritis yang harus dilampaui agar demagnetisasi bisa terjadi (Manaf, 2013) Polarisasi Total Fasa Magnetik Polarisasi total (Js) atau magnetisasi total (Ms) dari suatu fasa didefinisikan sebagai jumlah total momen magnet atom-atom yang terdapat di dalam fasa magnetik perunit volume sebagaimana dituliskan pada persamaan (2.1) berikut ini. Ms= (2.1) dengan: Ms = jumlah total momen magnet atom-atom yang terdapat di dalam fasa magnetik perunit volume (A.m -1 ), = momen magnet per atom i (Bohr magneton), 1 μb = 9,273 x J.T -1 V = volume sel satuan fasa, dan N = jumlah jenis atom pada sel satuan fasa. Sedangkan Js mengambil bentuk seperti persamaan (2.2) dan memiliki satuan Tesla (T). Js = μ o Ms (2.2) dengan: μ o Js = permeabilitas udara (1 μ o = 4 π x 10-7 H.m -1 ), dan = polarisasi total (tesla) Medan Anisotropi (Anisotropy Field) Fasa Magnetik Anisotropi magnet dapat muncul dari berbagai sebab seperti bentuk magnet, struktur kristal, efek stress, dan lain sebagainya. Kebanyakan material feromagnetik memiliki anistropi kristal yang disebut magnetocrystalline anisotropy. Kristal ini memiliki arah magnetisasi yang disukai dan disebut sebagai arah mudah. Apabila magnetisasi dilakukan searah dengan sumbu mudah ini, maka keadaan jenuh dapat tercapai pada medan magnet luar yang relatif kecil. Sebaliknya, bila magnetisasi dilakukan searah sumbu keras, keadaan saturasi

7 dapat dicapai pada aplikasi medan magnet yang relatip tinggi. Oleh karena itu, untuk menimbulkan sifat anisotropi, magnet dibuat agar memiliki arah yang disukai tersebut (preferred direction). Pada keadaan stabil, arah momen magnet atau magnetisasi kristal adalah sama dengan arah sumbu mudah. Pada konfigurasi keaadan stabil ini energi total dalam magnet adalah minimum. Sumbu kristal yang lain disebut sumbu keras, dimana kemagnetan pada arah ini meningkatkan energi kristal. Oleh karena itu diperlukan suatu energi untuk mengubah arah vektor magnetisasi yang tadinya searah dengan sumbu mudah. Energi yang diperlukan untuk mengarahkan arah momen magnet menjauhi sumbu mudahnya disebut magnetocrystalline energy atau anisotropy energy (Manaf, 2013) Produk Energi Maksimum (BH)max (BH)max merupakan sifat yang paling utama dari suatu magnet permanen yang menunjukkan energi persatuan volume magnet yang dipertahankan di dalam magnet. Besaran ini diturunkan dari kurva kuadran (kurva demagnetisasi) dari loop histerisis sehingga diperoleh kurva (BH) yaitu perkalian antara B dan H sebagai fungsi H. Jadi, kurva (BH) sebagai fungsi H tersebut tidak lain adalah tempat kedudukan titik titik luasan di bawah kurva demagnetiasi. Secara skematik, penentuan kurva (BH) dari kurva demagnetisasi ditunjukkan pada Gambar 2.3. Gambar 2.3. Penentuan Nilai (BH)max dari Kuadran ke-ii Loop Histerisis (Manaf, 2013)

8 Sejak ditemukan fasa magnetik ReFeB pada tahun 1983, telah banyak penelitian yang dilakukan untuk mencapai nilai (BH)max tertinggi. Berbagai usahateknik preparasi telah dikembangkan dan disain mikrostruktur dioptimalkan. Namun, nilai (BH)max dari magnet permanen Nd-Fe-B tertinggi yang pernah dicapai pada skala laboraturium baru mencapai ~ 400 kj.m -3, yaitu kira-kira 78% dari nilai intrinsiknya (Manaf, 2013). Jelaslah, penelitian tentang magnet Re-Fe-B masih terus berlanjut meskipun pada saat ini magnet permanen kelas ini telah diproduksi secara komersial (Manaf, 2013) Temperatur Curie Fasa Magnetik Temperatur Curie (T C ) dapat didefinisikan sebagai temperatur kritis dimana terjadi perubahan dari keteraturan feromagnetik menjadi paramagnetik. Dengan kata lain, di atas T C, material magnet memiliki magnetisasi yang terlalu rendah. Dengan demikian T C juga merepresentasikan kekuatan interaksi pertukaran antar spin-spin elektron atom. Suatu magnet diharapakan memiliki ketahanan yang baik terhadap temperatur, terutama pada aplikasi-aplikasi dinamik, seperti pada: motor dan generator. Dalam kasus ini perubahan temperatur diharapkan tidak mengurangi sedikitpun magnetisasi magnet agar unjuk kerja magnet tetap tinggi. Hal ini mungkin dapat terjadi apabila magnet tersebut memiliki nilai T C yang tinggi (Hilda, 2013). 2.5 Magnet Keramik Magnet keramik memiliki peran yang sangat penting dalam berbagai aplikasi, khususnya dalam rangkaian-rangkaian frekuensi tinggi dimana rugi-rugi arus eddy dalam logam sangat tinggi. Keramik sendiri adalah bahan-bahan yang tersusun dari senyawa anorganik bukan logam yang pengolahannya melalui perlakuan dengan temperatur tinggi. Kegunaannya adalah untuk dibuat berbagai keperluan desain teknis khususnya dibidang kelistrikan, elektronika, dan mekanik, serta memanfaatkan material keramik tersebut sebagai bahan magnet permanen. Material ini dapat menghasilkan medan magnet tanpa harus diberi arus listrik yang mengalir dalam sebuah kumparan atau solenoida untuk mempertahankan medan magnet yang dimilikinya. Disamping itu, magnet permanen jenis ini juga

9 dapat memberikan medan yang konstan tanpa mengeluarkan daya yang terus menerus. Bahan keramik yang bersifat magnetik umumnya merupakan golongan ferit, merupakan oksida yang disusun oleh hematit (α-fe 2 O 3 ) sebagai komponen utama. Bahan ini menunjukkan induksi magnetik spontan meskipun medan magnet luar yang diberikan dihilangkan. Material ferit dikenal sebagai magnet keramik, bahan itu tidak lain adalah oksida besi yang disebut ferit besi (ferrous ferrite) dengan rumus kimia MO.(Fe 2 O 3 )6, dimana M adalah Ba, Sr atau Pb. 6Fe 2 O 3 + BaCO 3 BaO.6Fe 2 O 3 + CO 2 Pada umumnya ferit dibagi menjadi tiga kelas: 1. Ferit lunak, ferit ini mempunyai formula MFe 2O 4, dimana M = Cu, Zn, Ni, Co, Fe, Mn, dan Mg dengan struktur kristal seperti mineral spinel. Sifat bahan ini mempunyai permeabilitas dan hambatan jenis yang tinggi, serta koersivitas yang rendah. 2. Ferit keras, ferit jenis ini adalah turunan dari struktur magneto plumbit yang dapat ditulis sebagai MFe 12O 19, dimana M = Ba, Sr, Pb. Bahan ini mempunyai gaya koersivitas dan remanen yang tinggi dan mempunyai struktur kristal heksagonal dengan momen-momen magnetik yang sejajar dengan sumbu c. 3. Ferit berstruktur Garnet, magnet ini mempunyai magnetisasi spontan yang bergantung pada temperatur secara khas. Strukturnya sangat rumit, berbentuk kubik dengan sel satuan disusun tidak kurang dari 160 atom. Magnet keramik yang merupakan magnet permanen mempunyai struktur hexagonal close-pakced (HCP). Dalam hal ini bahan yang sering digunakan adalah Barrium Ferrite (BaO.6Fe 2O 3), dapat juga barium digantikan bahan yang menyerupai (segolongan) dengannya, yaitu seperti Strontium. Material magnetikferit yang memiliki sifat-sifat campuran beberapa oksida logam valensi II, dimana oksida besi valensi III (Fe 2O 3) merupakan komponen yang utama. Ferit lunak mempunyai struktur kristal kubik dengan rumus umum MO. Fe 2O 3dimana M adalah Fe, Mn, Ni, dan Zn atau gabungannya seperti Mn-Zn dan Ni-Zn. Bahan ini banyak digunakan untuk inti transformator, memori komputer, induktor, recording heads, microwave dan lain-lain. Ferit keras banyak digunakan dalam komponen elektronik, diantaranya motor-motor DC kecil, pengeras suara (loud

10 speaker), meteran air, KWH-meter, telephone receiver, circulator dan rice cooker(angelo, P.C., 2008). 2.6 Barium Heksaferit (BaFe 12 O 19 ) Barium Heksaferit adalah salah satu bahan magnetik yang sudah dipakai dalam waktu yang lama.bahkan Barium Heksaferit sudah mulai difabrikasi pada tahun Jadi Barium Heksaferit adalah barang lama dalam dunia kemagnetan dan sains. Barium Heksaferit memiliki struktur heksagonal, dengan nilai a dan b yang sama sedang c berbeda. Nilai sudut alfa dan beta 90, sedang nilai gamma adalah 120.Setiap satu Kristal Barium Heksaferit terdapat dua molekul Barium Heksaferit. Jadi setiap satu kristal barium heksaferit terdapat dua atom Ba, 24 atom Fe dan 38 atom O. Barium Heksaferit terdiri dari beberapa lapisan dengan arah momen magnet berbeda dan merupakan bahan ferimagnet. Setiap atom Fe pada Barium Heksaferit memiliki momen dipole magnet 5.9 magneton bohr (Syukur Daulay, 2012). Gambar 2.4 Struktur kristal Barium Heksaferit (Syukur Daulay, 2012) 2.7 Unsur Pemadu Pada FeB Paduan merupakan gabungan dari beberapa unsur pada skala mikrosopik, seperti

11 pada penyusunan FeB juga terdiri dari beberapa unsur pemadu yaitu Fe dan B. Paduan Ferro terdiri dari Besi (Fe) dan Boron dengan kandungan Boron (B) antara 17 % - 20 %, memiliki stuktur orthorhombic dengan titik lelehnya berkisar antara 1450 o C 1550 o C,dan parameter kisi a = 4,0530 Angstrom,b = 5,4950 dan c = 2,9460 Angstrom (Martin, 2006). Penggunaan Ferro Boron meliputi: 1. Peningkatan kekerasan paduan baja rendah. 2. Perawatan permukaan baja borat. 3. Pengurangan nitrogen. 4. Pembuatan NdFeB magnet permanen. 5. Pembuatan logam kaca (Sariyer, 2015) Besi (Fe) Besi adalah logam transisi yang paling banyak dipakai karena relatif melimpah di alam dan mudah diolah. Biji besi biasanya mengandung hematite (Fe 2 O 3 ) yang dikotori oleh pasir (SiO 2 ) sekitar 10 %, serta sedikit senyawa sulfur, posfor, aluminium dan mangan. Besi juga diketahui sebagai unsur yang paling banyak di permukaan bumi, yaitu kira-kira 4,7-5 % pada kerak bumi. Kebanyakan besi terdapat dalam batuan dan tanah sebagai oksida besi, seperti oksida besi magnetit (Fe 3 O 4 ) mengandung besi 65%, hematite (Fe 2 O 3 ) mengandung % besi, limonet (Fe 2 O 3.H 2 O) mengandung besi 20 % dan siderit (Fe 2 CO 3 ). Dari mineral mineral bijih besi, magnetit adalah mineral dengan kandungan Fe paling tinggi, tetapi terdapat dalam jumlah kecil (Nurul Anwar, 2011 ). Sementara hematite merupakan mineral bijih utama yang dibutuhkan dalam industri besi. Dalam kehidupan, besi merupakan logam paling umum digunakan dari pada logam-logam yang lain. Hal ini disebabkan karena harga yang murah dan kekuatannya yang baik serta penggunaannya yang luas (Abhijit P. Jadhav, 2014). Beberapa jenis genesa dan endapan yang memungkinkan besi bernilai ekonomis (Nurul Anwar, 2011): 1. Magnetik: magnetite dan titani ferrous magnetite 2. Metasomatik kontak: magnetite dan specularite 3. Pergantian/replacement: magnetite dan hematite

12 4. Sendimentasi/placer: hematite, limonite, dan siderite 5. Kosentrasi mekanik dan residual: hematite, magnetite, dan limonite 6. Oksidasi: limonite dan hematite. Pada Gambar 2.5 dan Tabel 2.2, diperlihatkan struktur atom dan informasi dasar unsur Fe. Gambar 2.5 Struktur Atom Unsur Besi Tabel 2.2 Informasi Dasar Unsur Besi (Abhijit P. Jadhav, 2014) Nama Unsur Besi Simbol Fe Nomor Atom 26 Massa Atom 55,845 g/mol Titik Didih 3134 K Titik Lebur 1811 K Struktur Kristal Body Centered Cubic (BCC) Warna Perak keabu-abuan Konfigurasi elektron [Ar]3d 6 4s Boron (B) Boron adalah unsur golongan tiga belas (13) dengan nomor atom lima (5). Boron (B) memiliki sifat diantara logam dan nonlogam (semi metalik). Boron lebih bersifat semikonduktor daripada sebuah konduktor logam lainnya. Boron juga merupakan unsur metaloid dan banyak ditemukan dalam bijih borax. Unsur ini tidak pernah ditemukan bebas dalam alam. Struktur atom dan informasi dasar dari Boron (B) diperlihatkan pada Gambar 2.6 dan Tabel 2.3.

13 Gambar 2.6 Struktur Atom Unsur Boron Tabel 2.3 Informasi Dasar Unsur Boron (Abhijit P. Jadhav, 2014) Nama Unsur Boron Simbol B Nomor Atom 5 Massa Atom 10,811 g/mol Titik Didih 4200 K Titik Lebur 2349 K Struktur Kristal Rhombohedral (Trigonal) Warna Hitam Konfigurasi electron [Ar]2s 2 2p Metalurgi Serbuk Secara prinsip ada dua metode utama yang digunakan untuk membuat magnet.pertama menggunakan teknologi pengecoran atau pelelehan, dan yang kedua adalah dengan menggunakan teknologi metalurgi serbuk. Produksi magnet dengan teknologi pengecoran biasanya menghasilkan bahan magnet yang lebih baik, tetapi dalam beberapa prosesnya memerlukan energi panas yang sangat besar sehingga dipandang tidak efisien. Sedangkan produksi dengan teknologi metalurgi serbuk, meski sifat magnet yang diperoleh bukan yang tertinggi, tetapi dalam pengerjaannya lebih mudah dan lebih efisien (Ridwan,2003). Pada pembuatan magnet dengan cara kedua ini memerlukan bahan dasar berupa serbuk yang berukuran sangat kecil, yaitu dalam orde micrometer(10-6 m). Ukuran serbuk sekecil ini diperlukan agar komponenkomponen pembentuk bahan magnet dapat saling berdeposisi (bereaksi), ketika bahan mengalami pemanasan (kalsinasi). Beberapa peneliti melakukan preparasi serbuk bahan magnetik yang halus biasanya dengan menggunakan mesin ball milling (Seri. D, 2013).

14 2.8.1 Mixing dan Milling Blending dan mixing merupakan istilah yang biasa digunakan dalam proses pembuatan material dengan menggunakan metode serbuk akan tetapi kedua proses tersebut memiliki arti yang berbeda. Menurut standar ISO, blending didefenisikan sebagai proses penggilingan suatu material tertentu hingga menjadi serbuk yang merata pada beberapa komposisi nominal. Mixing atau pencampuran bahan merupakan salah satu tahapan proses dari teknik metalurgi serbuk. Pada tahap ini, kehomogenan persebaran partikel penguat dalam matriks akansangat ditentukan dimana nantinya akan berpengaruh terhadap karakteristik porositas dan mekanik dari MMCs yang dihasilkan. Banyaknya variabel pada tahap mixing merupakan permasalahan yang lain dimana perlu upaya kontrol ekstra terhadap variabel-variabel tersebut apabila diinginkan produk memiliki kualitas yang sesuai dengan permintaan. Proses blending dilakukan untuk menghasilkan serbuk yang sesuai dengan komposisi dan ukuran yang diinginkan. Sedangkan mixing didefenisikan sebagai pencampuran dua atau lebih serbuk yang berbeda. Ada dua tipe milling serbuk, yaitu serbuk dimilling dengan media cairan dan dikenal dengan proses pengilingan basah. Dan jika dilakukan bukan dengan media cairan dikenal dengan penggilingan kering. Dan telah dilaporkan bahwa kecepatan atmosfir lebih cepat selama proses penggilingan basah daripada penggilingan kering. Kerugian dari penggilingan basah adalah meningkatnya kontaminasi serbuk. Maka dari itu proses mechanical alloying dilakukan dengan penggilingan kering (Lilis,2015) Annealing Proses annealing didefenisikan sebagai pengerjaan bijih pada temperatur tinggi tetapi masih di bawah titik leleh tanpa disertai penambahan reagen dengan maksud untuk mengubah bentuk senyawa dalam konsentrat. Annealing juga merupakan proses perlakuan panas yang dilakukan terhadap bijih agar terjadi dekomposisi dari senyawa yang berikatan secara kimia dengan bijih, yaitu karbon dioksida dan air, yang bertujuan mengubah suatu senyawa karbon menjadi senyawa oksida yang sesuai dengan keperluan pada proses selanjutnya. Proses

15 annealing dilakukan dengan pemanggangan pada temperatur yang bervariasi bergantung dari jenis senyawa karbonat yang ada (Febriana, 2011). Annealing ini bertujuan untuk melepaskan air yang terikat di dalam konsentrat dengan cara penguapan. Pelaksanaannya dilakukan dengan cara pemanasan sedikit di atas titik uap air, atau dengan mengatur tekanan uap air di dalam konsentrat harus lebih besar daripada tekanan uap air di sekitarnya. Pada prakteknya, tekanan uap air di dalam konsentrat harus lebih besar dari tekanan atmosfir agar kecepatan penguapan dapat berlangsung lebih cepat (Lalu, 2010). Annealing dilakukan pada suhu tinggi, tergantung pada jenis bahan dan merupakan tahapan perlakuan panas terhadap campuran serbuk. Annealing diperlukan sebagai penyiapan serbuk keramik untuk diproses lebih lanjut serta menguraikan senyawa-senyawa dalam bentuk garam atau dihidrat menjadi oksida, membentuk fase kristal. Peristiwa yang terjadi selama proses Annealing antara lain: a. Pelepasan air bebas (H 2 O) dan terikat (OH) berlangsung sekitar suhu 100 o C hingga 300 o C. b. Pelepasan gas-gas, seperti : CO 2 berlangsung sekitar suhu 600 o C dan pada tahap ini disertai terjadinya pengurangan berat yang cukup berarti. c. Pada suhu lebih tinggi, sekitar 800 o C struktur kristalnya sudah terbentuk, dimana pada kondisi ini ikatan diantara partikel serbuk belum kuat dan mudah lepas. Sebagai contoh, proses annealing pada pembentukan magnet permanen barium heksaferit BaFe 12 O 19 ditandai dengan terjadinya kristalisasi. Barium heksaferit akan membentuk struktur kristal heksagonal pada suhu minimal 600 o C. Dari hasil penelitian tersebut dengan suhu annealing 1000 o C didapatkan bahwa pembentukan magnet permanen barium ferit semakin baik. Karakteristik magnet terbaik dengan annealing pada suhu ºC didapat: nilai Br = 1,19 kg, Hc = 5,54 koe, dan BHmax = 0,33MGOe (Sudrajat,2007).

16 2.9Karakterisasi Hasil Pengujian Densitas Densitas merupakan ukuran kepadatan dari suatu material atau sering didefinisikan sebagai perbandingan antara massa (m) terhadap volume (v), dalam hubungannya dapat dituliskan sebagai berikut (M. Ristic, 1997). ρ = (2.3) dengan : ρ = Densitas (gram/cm 3 ) m = Massa sampel (gram) v = Volume sampel (cm 3 ) Ada dua macam densitas yaitu: true density dan bulk density (metode Archemedes). True density adalah kerapatan dari serbuk yang diukur dengan menggunakan piknometer. Densitas serbuk dapat dihitung dengan rumus: ρ= ( ) ( )( ) x ρ air (2.4) dengan: m 1 m 2 m 3 m 4 = massa piknometer dalam keadaan kosong (gram) = massa piknometer diisi dengan air (gram) = massa piknometer kering diisi dengan serbuk (gram) = massa piknometer diisi dengan serbuk dan air (gram) ρ = massa jenis air (1 gram/cm 3 ) Pengujian Optical Microscope (OM) Optical Microscope (OM) mempunyai fungsi yang hampir sama dengan Scanning Electron Microscope (SEM) yaitu untuk mengetahui bentuk dan ukuran dari butir-butir serta mengetahui interaksi satu butir dengan butir lainnya. Melalui observasi dengan OM dapat diamati seberapa jauh ikatan butiran yang satu dengan yang lainnya dan apakah terbentuk lapisan diantara butiran atau disebut grain boundary. Analisis morfologi dengan menggunakan OM bertujuan untuk mengetahui susunan partikel-partikel sebelum proses sintering,dan juga dapat diketahui perubahannya akibat variasi suhu sintering. Dari foto OM yang dihasilkan dapat

17 diketahui apakah terjadi perbesaran butiran atau grain growth, sejauh mana poripori sisa yang terbentuk didalam badan keramik.adapun perbedaan antara SEM dan OM adalah terletak pada perbesaran obyek (resolusi) yang lebih tinggi daripada mikroskop optik.sebenarnya, dalam fungsi perbesaran obyek, SEM juga menggunakan lensa, namun bukan berasal dari jenis gelas sebagaimana pada mikroskop optik, tetapi dari jenis magnet. Sifat medan magnet ini bisa mengontrol dan mempengaruhi elektron yang melaluinya, sehingga bisa berfungsi menggantikan sifat lensa pada mikroskop optik (Tabitaria, 2015) PengujianX-Ray Diffraction(XRD) X-Ray diffractometer adalah alat yang dapat memberikan data-data difraksi dan kuantitas intensitas difraksi pada sudut-sudut difraksi (2θ) dari suatu bahan. Tujuan dilakukannya pengujian analisis struktur kristal adalah untuk mengetahui fase-fase apa saja yang terbentuk selama proses pembuatan sampel uji. Tahap pertama yang dilakukan dalam analisa sinar-x adalah melakukan pemeriksaan terhadap sampel x yang belum diketahui strukturnya.sampel ditempatkan pada titik fokus hamburan sinar-x yaitu tepat ditengah-tengah berukuran sesuai dengan sampel (serbuk) dengan perekat pada sisi baliknya. Skema pengujian XRD diperlihatkan pada Gambar 3.2. Gambar 2.7 Skema Alat uji XRD

18 Secara umum prinsip kerja XRD ditunujkkan oleh gambar 2.7 berikut: 1.Generator tegangan tinggi (A) berfungsi sebagai catu daya, sumber sinar-x (B) 2. Sampel berbentuk pellet (C) diletakkan diatas tatakan (D) yang dapat diatur. 3. Berkas sinar-x didifraksikan oleh sampel dan difokuskan melewati celah (E), kemudian masuk ke alat pencacah berputar sebesar θ 4. Intensitas difraksi sinar-x direkam dalam bentuk kurva terhadap jarak antara bidang d. Untuk mengetahui fasa dan struktur material yang diamati dapat dilakukan dengan cara sederhana, yaitu dengan cara membandingkan nilai d yang terukur dengan nilai d pada data standart. Data standart dapat diperoleh melalui Joint Comitte of Powder Difraction Standard (JCPDS) atau dengan metode hanawalt (Ningsih, 2015) Prinsip dasar penentuan struktur adalah dengan teknik difraksi sinar x karakteristik, dimana berlaku hukum Bragg: 2 d sin = n (2.5) dengan d adalah jarak antar bidang atom-atom dalam kristal (bidang dengan indeks Miller tertentu), q adalah sudut difraksi dan l adalah panjang gelombang sinar X yang dipergunakan. Bila diambil bidang-bidang dengan indeks Miller berbeda maka dengan menggunakan metode analitik, dapat ditentukan sistem dan parameter kisi kristal.teknik perhitungan parameter kisi tergantung pada struktur kristal bahan Pengujian Vibrating Sample Magnetometer (VSM) VSM terdiri dari komponen-komponen tersebut tersusun membentuk satu set perangkat VSM yang menjalankan fungsinya masing-masing. Untuk lebih jelasnya, dapat dilihat pada Gambar 2.7.

19 Gambar 2.8. Komponen Vibrating Sample Magnetometer (VSM) Berdasarkan gambar 2.7, dapat diuraikan beberapa komponen dari Vibrating Sample Magnetometer (VSM), yaitu: 1. Kepala generator, sebagai tempat melekatnya sampel yang dialirkan oleh transduser piezoelectric. 2. Elektromagnet atau kumparan hemholtz, berfungsi untuk menghasilkan medan magnet untuk memagnetisasi sampel dan mengubahnya menjadi arus listrik. Resonansi sampel oleh transduser piezoelectric juga dialirkan ke elektromagnet dengan capaian frekuensi sama dengan 75 Hz. 3. Pick-up coil, berfungsi untuk mengirim sinyal listrik ke amplifier. Sinyal yang telah diinduksi akan ditransfer oleh pickup coil ke input diferensial dari lock-in amplifier. Sinyal dari pick-up coil terdeteksi oleh lock-in amplifier diukur sebagai fungsi dari medan magnet dan untuk mendapatkan loop histeresis dari sampel. Untuk osilasi harmonik dari sampel, sinyal (e) induksi di pick-up coil sebanding dengan amplitudo osilasi (K), frekuensi osilasisampel (ω) dan momen magnet (m) dari sampel yang akan diukur pada Vibrating Sample Magnetometer (VSM). 4. Sensor hall, digunakan untuk mengubah dan mengubah energi dalam medan magnet menjadi tegangan (voltage) yang akan menghasilkan arus listrik. Sensor hall juga digunakan untuk mengukur arus tanpa mengganggu alur arus yang ada pada konduktor. Pengukuran arus ini akan menghubungkan sensor hall dengan teslameter.

20 5. Sensor kapasitas, berfungsi memberikan sinyal sebanding dengan amplitudo osilasi sampel dan persediaan tegangan untuk sistem elektronik yang menghasilkan sinyal referensi dari lock-in amplifier. Output konverter digital akan dikirim ke analog (DAC1out) dan output digital (D1out) dari lock-in akan mengontrol penguat arus yang mengalir melalui elektromagnet dan menunjukkan arahnya masing-masing. Selain itu, VSM juga memiliki beberapa komponen pendukung misalnya teslameter yang berfungsi untuk mengukur medan magnet berdasarkan sinyal yang di transdusi oleh sensor hall. Alat pendukung lainnya yaitu voltmeter yang berfungsi untuk mengukur tegangan listrik yang dikirim oleh pick up koil ke amplifier VSM (Ruth Mentari Hutahaean, 2014).

BAB I PENDAHULUAN 1.1 LATAR BELAKANG

BAB I PENDAHULUAN 1.1 LATAR BELAKANG 1 BAB I PENDAHULUAN 1.1 LATAR BELAKANG Magnet permanen adalah salah satu jenis material maju dengan aplikasi yang sangat luas dan strategis yang perlu dikembangkan di Indonesia. Efisiensi energi yang tinggi

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Pengertian Magnet Magnet atau magnit adalah suatu obyek yang mempunyai suatu medan magnet. Asal kata magnet diduga dari kata magnesia yaitu nama suatu daerah di Asia kecil. Menurut

Lebih terperinci

BAB 1 PENDAHULUAN. Universitas Sumatera Utara

BAB 1 PENDAHULUAN. Universitas Sumatera Utara BAB 1 PENDAHULUAN 1.1 Latar Belakang Bahan magnetik digunakan pada peralatan tradisional dan modern. Magnet permanen telah digunakan manusia selama lebih dari 5000 tahun seperti medium perekam pada komputer

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA BAB 2 TINJAUAN PUSTAKA 2.1. Material Magnet Material magnet merupakan material (bahan) yang mempunyai medan magnet. Kata magnet berasal dari bahasa Yunani, magnitis lithos yang berarti batu Magnesian.

Lebih terperinci

BAB III METODOLOGI PENELITIAN

BAB III METODOLOGI PENELITIAN BAB III METODOLOGI PENELITIAN 3.1. METODE PENELITIAN Penelitian ini menggunakan metode eksperimen yang dilakukan melalui tiga tahap yaitu tahap pembuatan magnet barium ferit, tahap karakterisasi magnet

Lebih terperinci

Gambar 2.1. momen magnet yang berhubungan dengan (a) orbit elektron (b) perputaran elektron terhadap sumbunya [1]

Gambar 2.1. momen magnet yang berhubungan dengan (a) orbit elektron (b) perputaran elektron terhadap sumbunya [1] BAB II TINJAUAN PUSTAKA 2.1. Momen Magnet Sifat magnetik makroskopik dari material adalah akibat dari momen momen magnet yang berkaitan dengan elektron-elektron individual. Setiap elektron dalam atom mempunyai

Lebih terperinci

BAB 2 STUDI PUSTAKA Magnet

BAB 2 STUDI PUSTAKA Magnet BAB 2 STUDI PUSTAKA 2.1. Magnet Magnet atau magnit adalah suatu obyek yang mempunyai suatu medan magnet. Magnet dapat dibuat dari bahan besi, baja, dan campuran logam serta telah banyak dimanfaatkan untuk

Lebih terperinci

BAB I PENDAHULUAN. Magnet keras ferit merupakan salah satu material magnet permanen yang

BAB I PENDAHULUAN. Magnet keras ferit merupakan salah satu material magnet permanen yang BAB I PENDAHULUAN 1.1. LATAR BELAKANG Magnet keras ferit merupakan salah satu material magnet permanen yang berperan penting dalam teknologi listrik, elektronik, otomotif, industri mesin, dan lain-lain.

Lebih terperinci

I. PENDAHULUAN. karakteristik dari pasir besi sudah diketahui, namun penelitian ini masih terus

I. PENDAHULUAN. karakteristik dari pasir besi sudah diketahui, namun penelitian ini masih terus I. PENDAHULUAN 1.1 Latar Belakang Riset pengolahan pasir besi di Indonesia saat ini telah banyak dilakukan, bahkan karakteristik dari pasir besi sudah diketahui, namun penelitian ini masih terus dilakukan

Lebih terperinci

BAB 2 Teori Dasar 2.1 Konsep Dasar

BAB 2 Teori Dasar 2.1 Konsep Dasar BAB 2 Teori Dasar 2.1 Konsep Dasar 2.1.1 Momen Magnet Arus yang mengalir pada suatu kawat yang lurus akan menghasilkan medan magnet yang melingkar di sekitar kawat, dan apabila kawat tersebut dilingkarkan

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA 5 BAB 2 TINJAUAN PUSTAKA 2.1 Pengertian Magnet secara umum Magnet adalah suatu benda yang mempunyai medan magnet dan mempunyai gaya tolak menolak dan tarik menarik terhadap benda-benda tertentu. Efek tarik

Lebih terperinci

KARAKTERISASI SIFAT MAGNETIK DAN SERAPAN GELOMBANG MIKRO BARIUM M-HEKSAFERIT BaFe 12 O 19

KARAKTERISASI SIFAT MAGNETIK DAN SERAPAN GELOMBANG MIKRO BARIUM M-HEKSAFERIT BaFe 12 O 19 KARAKTERISASI SIFAT MAGNETIK DAN SERAPAN GELOMBANG MIKRO BARIUM M-HEKSAFERIT BaFe 12 O 19 NOER AF IDAH 1109201712 DOSEN PEMBIMBING Prof. Dr. Darminto, MSc Pendahuluan: Smart magnetic materials Barium M-Heksaferit

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Mechanical Alloying Paduan mekanik (MA) adalah teknik pengolahan bubuk solid-state yang melibatkan berulang pengelasan dingin, fracturing, dan re-las partikel serbuk dalam energi

Lebih terperinci

PENGARUH KOMPOSISI BAHAN BAKU SECARA STOIKIOMETRI DAN NON STOIKIOMETRI TERHADAP SIFAT FISIS DAN MAGNET PADA PEMBUATAN MAGNET PERMANEN BaO.

PENGARUH KOMPOSISI BAHAN BAKU SECARA STOIKIOMETRI DAN NON STOIKIOMETRI TERHADAP SIFAT FISIS DAN MAGNET PADA PEMBUATAN MAGNET PERMANEN BaO. PENGARUH KOMPOSISI BAHAN BAKU SECARA STOIKIOMETRI DAN NON STOIKIOMETRI TERHADAP SIFAT FISIS DAN MAGNET PADA PEMBUATAN MAGNET PERMANEN BaO.6Fe 2 O 3 Kharismayanti 1, Syahrul Humaidi 1, Prijo Sardjono 2

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA BAB 2 TINJAUAN PUSTAKA 2.1 Magnet Secara Umum Magnet atau magnit adalah suatu obyek yang mempunyai suatu medan magnet. Kata magnet (magnit) berasal dari bahasa Yunani, magnitis lithos yang berarti batu

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA 18 BAB 2 TINJAUAN PUSTAKA 2.1 Pengertian Magnet Secara Umum Magnet adalah suatu benda yang mempunyai medan magnet dan mempunyai gaya tolak menolak dan tarik menarik terhadap benda-benda tertentu. Efek

Lebih terperinci

BAB II STUDI PUSTAKA. Universitas Sumatera Utara

BAB II STUDI PUSTAKA. Universitas Sumatera Utara BAB II STUDI PUSTAKA 2.1.Meteran Air Ada banyak tipe meter air yang dibuat, salah satunya adalah multi jet. Meter air tipe ini digerakkan oleh putaran turbin di dalam rumah meter. Meteran ini bekerja berdasarkan

Lebih terperinci

Bahan Listrik. Bahan Magnet

Bahan Listrik. Bahan Magnet Bahan Listrik Bahan Magnet Sejarah Magnet Kata magnet berasal dari bahasa yunani magnitis lithos yang berarti batu magnesia. Magnesia adalah nama sebuah wilayah di Yunani pada masa lalu yang kini bernama

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar Belakang

BAB I PENDAHULUAN 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Bahan magnetik adalah suatu bahan yang memiliki sifat kemagnetan dalam komponen pembentuknya. Menurut sifatnya terhadap pengaruh kemagnetan, bahan dapat diklasifikasikan

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA BAB 2 TINJAUAN PUSTAKA 2.1 Pengertian Magnet Magnet adalah suatu benda yang dibuat dari material tertentu yang menghasilkan suatu medan magnet. Medan magnet suatu magnet adalah daerah sekeliling magnet

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Latar Belakang

BAB I PENDAHULUAN. 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Saat ini peran nanoteknologi begitu penting dalam pengembangan ilmu pengetahuan dan teknologi untuk kesejahteraan kehidupan manusia. Nanoteknologi merupakan bidang

Lebih terperinci

BAB 1 PENDAHULUAN. Universitas Sumatera Utara

BAB 1 PENDAHULUAN. Universitas Sumatera Utara BAB 1 PENDAHULUAN 1.1 Latar Belakang Kebutuhan akan magnet permanen setiap tahun semakin meningkat terutama untuk kebutuhan hardware komputer dan energi. Suatu magnet permanen harus mampu menghasilkan

Lebih terperinci

Asyer Paulus Mahasiswa Jurusan Teknik Material dan Metalurgi Fakultas Teknologi Industri ITS

Asyer Paulus Mahasiswa Jurusan Teknik Material dan Metalurgi Fakultas Teknologi Industri ITS PENGARUH TEKANAN KOMPAKSI DAN WAKTU PENAHANAN TEMPERATUR SINTERING TERHADAP SIFAT MAGNETIK DAN KEKERASAN PADA PEMBUATAN IRON SOFT MAGNETIC DARI SERBUK BESI Asyer Paulus Mahasiswa Jurusan Teknik Material

Lebih terperinci

BAB 1 PENDAHULUAN 1.1 Latar Belakang

BAB 1 PENDAHULUAN 1.1 Latar Belakang 15 BAB 1 PENDAHULUAN 1.1 Latar Belakang Istilah "anisotropi magnetik" mengacu pada ketergantungan sifat magnetik pada arah dimana mereka diukur. Anisotropi magnetik mempengaruhi sifat magnetisasi dan kurva

Lebih terperinci

BAB I PENDAHULUAN 1.1. Latar Belakang

BAB I PENDAHULUAN 1.1. Latar Belakang BAB I PENDAHULUAN 1.1. Latar Belakang Nanomaterial memiliki sifat unik yang sangat cocok untuk diaplikasikan dalam bidang industri. Sebuah material dapat dikatakan sebagai nanomaterial jika salah satu

Lebih terperinci

BAB 1 PENDAHULUAN. Universitas Sumatera Utara

BAB 1 PENDAHULUAN. Universitas Sumatera Utara BAB 1 PENDAHULUAN 1.1 Latar Belakang Pasir besi umumnya ditambang di areal sungai dasar atau tambang pasir (quarry) di pegunungan, tetapi hanya beberapa saja pegunungan di Indonesia yang banyak mengandung

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA BAB 2 TINJAUAN PUSTAKA 2.1 Pengertian Magnet Magnet atau magnit adalah suatu obyek yang mempunyai suatu medan magnet. Magnet dapat dibuat dari bahan besi, baja, dan campuran logam serta telah banyak dimanfaatkan

Lebih terperinci

BAB 3METODOLOGI PENELITIAN

BAB 3METODOLOGI PENELITIAN BAB 3METODOLOGI PENELITIAN 3.1 Tempat dan Waktu Penelitian 3.1.1 Tempat Penelitian Pusat Penelitian Pengembangan Fisika (P2F) Lembaga Ilmu Pengetahuan Indonesia (LIPI) PUSPIPTEK, Serpong. 3.1.2 Waktu Penelitian

Lebih terperinci

BAB IV HASIL PENELITIAN DAN ANALISIS

BAB IV HASIL PENELITIAN DAN ANALISIS BAB IV HASIL PENELITIAN DAN ANALISIS 4.1 Analisis Hasil Pengujian TGA - DTA Gambar 4.1 memperlihatkan kuva DTA sampel yang telah di milling menggunakan high energy milling selama 6 jam. Hasil yang didapatkan

Lebih terperinci

HASIL DAN PEMBAHASAN Sintesis Partikel Magnetik Terlapis Polilaktat (PLA)

HASIL DAN PEMBAHASAN Sintesis Partikel Magnetik Terlapis Polilaktat (PLA) 10 1. Disiapkan sampel yang sudah dikeringkan ± 3 gram. 2. Sampel ditaburkan ke dalam holder yang berasal dari kaca preparat dibagi dua, sampel ditaburkan pada bagian holder berukuran 2 x 2 cm 2, diratakan

Lebih terperinci

4.2 Hasil Karakterisasi SEM

4.2 Hasil Karakterisasi SEM 4. Hasil Karakterisasi SEM Serbuk yang melewati proses kalsinasi tadi selain dianalisis dengan XRD juga dianalisis dengan menggunakan SEM untuk melihat struktur mikro, sehingga bisa dilihat bentuk dan

Lebih terperinci

Erfan Handoko 1, Iwan Sugihartono 1, Zulkarnain Jalil 2, Bambang Soegijono 3

Erfan Handoko 1, Iwan Sugihartono 1, Zulkarnain Jalil 2, Bambang Soegijono 3 SINTESIS DAN KARAKTERISASI MATERIAL MAGNET HIBRIDA BaFe 12 O 19 - Sm 2 Co 17 Erfan Handoko 1, Iwan Sugihartono 1, Zulkarnain Jalil 2, Bambang Soegijono 3 1 Jurusan Fisika, Fakultas Matematika dan Ilmu

Lebih terperinci

BAB III METODOLOGI PENELITIAN

BAB III METODOLOGI PENELITIAN BAB III METODOLOGI PENELITIAN 3.1 Alat dan Bahan 3.1.1 Alat Alat-alat yang dipergunakan dalam pembuatan magnet permanen adalah : a. Hydraulic press (Hydraulic Jack). Berfungsi untuk menekan pada proses

Lebih terperinci

BAB I PENDAHULUAN 1.1. Latar Belakang

BAB I PENDAHULUAN 1.1. Latar Belakang 1 BAB I PENDAHULUAN 1.1. Latar Belakang Nano material memiliki sifat mekanik, optik, listrik, termal, dan magnetik yang unik. Sifat sifat unik tersebut tidak ditemukan pada material yang berukuran bulk

Lebih terperinci

HASIL DAN PEMBAHASAN. dengan menggunakan kamera yang dihubungkan dengan komputer.

HASIL DAN PEMBAHASAN. dengan menggunakan kamera yang dihubungkan dengan komputer. 10 dengan menggunakan kamera yang dihubungkan dengan komputer. HASIL DAN PEMBAHASAN Hasil sintesis paduan CoCrMo Pada proses preparasi telah dihasilkan empat sampel serbuk paduan CoCrMo dengan komposisi

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA BAB 2 TINJAUAN PUSTAKA 2.1 Magnet Magnet atau magnit adalah suatu obyek yang mempunyai suatu medan magnet. Magnet dapat dibuat dari bahan besi, baja, dan campuran logam serta telah banyak dimanfaatkan

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA BAB 2 TINJAUAN PUSTAKA 2.1 Pengertian magnet Magnet atau magnit adalah suatu obyek yang mempunyai suatu medan magnet. Asal kata magnet diduga dari kata magnesia yaitu nama suatu daerah di Asia kecil. Menurut

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar Belakang

BAB I PENDAHULUAN 1.1 Latar Belakang 1 BAB I PENDAHULUAN 1.1 Latar Belakang Nanoteknologi merupakan penelitian dan pengembangan teknologi pada level atom, molekul dan makromolekul, dengan rentang skala 1-100 nm. Nanoteknologi dikembangkan

Lebih terperinci

Pengaruh Variasi Waktu Milling dan Penambahan Silicon Carbide Terhadap Ukuran Kristal, Remanen, Koersivitas, dan Saturasi Pada Material Iron

Pengaruh Variasi Waktu Milling dan Penambahan Silicon Carbide Terhadap Ukuran Kristal, Remanen, Koersivitas, dan Saturasi Pada Material Iron 1 Pengaruh Variasi Waktu Milling dan Penambahan Silicon Carbide Terhadap Ukuran Kristal, Remanen, Koersivitas, dan Saturasi Pada Material Iron Luthfi Fajriani, Bambang Soegijono Departemen Fisika, Fakultas

Lebih terperinci

BAB III METODOLOGI PENELITIAN. Penelitian yang dilakukan di Kelompok Bidang Bahan Dasar PTNBR-

BAB III METODOLOGI PENELITIAN. Penelitian yang dilakukan di Kelompok Bidang Bahan Dasar PTNBR- BAB III METODOLOGI PENELITIAN Penelitian yang dilakukan di Kelompok Bidang Bahan Dasar PTNBR- BATAN Bandung meliputi beberapa tahap yaitu tahap preparasi serbuk, tahap sintesis dan tahap analisis. Meakanisme

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1. Pengertian Magnet Magnet merupakan benda yang terbuat dari bahan tertentu dengan sifat mampu menarik bahan ferromagnetik dan ferrimagnetik. Nama magnet diambil dari nama daerah

Lebih terperinci

Sifat sifat kemagnetan magnet permanen ( hard ferrite ) dipengaruhi oleh kemurnian bahan, ukuran butir (grain size), dan orientasi kristal.

Sifat sifat kemagnetan magnet permanen ( hard ferrite ) dipengaruhi oleh kemurnian bahan, ukuran butir (grain size), dan orientasi kristal. 2.1 Pengertian Magnet Magnet atau magnit adalah suatu obyek yang mempunyai suatu medan magnet. Magnet dapat dibuat dari bahan besi, baja, dan campuran logam serta telah banyak dimanfaatkan untuk industri

Lebih terperinci

BAB 3 METODOLOGI PENELITIAN

BAB 3 METODOLOGI PENELITIAN 27 BAB 3 METODOLOGI PENELITIAN 3.1 Tempat dan Waktu Penelitian 3.1.1 Tempat Penelitian Penelitian Tugas Akhir ini dilakukan di Laboratorium Magnet Pusat Penelitian Fisika-Lembaga Ilmu Pengetahuan Indonesia

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA BAB 2 TINJAUAN PUSTAKA 2.1 Sintesis Fe 2 O 3 Dari Pasir Besi Dalam rangka meningkatkan nilai ekonomis pasir besi dapat dilakukan dengan pengolahan mineral magnetik (Fe 3 O 4 ) yang diambil dari pasir besi

Lebih terperinci

350 0 C 1 jam C. 10 jam. 20 jam. Pelet YBCO. Uji Konduktivitas IV. HASIL DAN PEMBAHASAN. Ba(NO 3 ) Cu(NO 3 ) 2 Y(NO 3 ) 2

350 0 C 1 jam C. 10 jam. 20 jam. Pelet YBCO. Uji Konduktivitas IV. HASIL DAN PEMBAHASAN. Ba(NO 3 ) Cu(NO 3 ) 2 Y(NO 3 ) 2 Y(NO 3 ) 2 Pelarutan Pengendapan Evaporasi 350 0 C 1 jam 900 0 C 10 jam 940 0 C 20 jam Ba(NO 3 ) Pelarutan Pengendapan Evaporasi Pencampuran Pirolisis Kalsinasi Peletisasi Sintering Pelet YBCO Cu(NO 3

Lebih terperinci

BAB IV HASIL DAN PEMBAHASAN

BAB IV HASIL DAN PEMBAHASAN BAB IV HASIL DAN PEMBAHASAN 4.1. XRD Uji XRD menggunakan difraktometer type Phylips PW3710 BASED dilengkapi dengan perangkat software APD (Automatic Powder Difraction) yang ada di Laboratorium UI Salemba

Lebih terperinci

BAB III METODE PENELITIAN. penelitian ini dilakukan pembuatan keramik komposit CSZ-Ni dengan

BAB III METODE PENELITIAN. penelitian ini dilakukan pembuatan keramik komposit CSZ-Ni dengan 20 BAB III METODE PENELITIAN 3.1 Metode Desain Metode yang digunakan pada penelitian ini adalah eksperimen. Pada penelitian ini dilakukan pembuatan keramik komposit CSZ-Ni dengan menggunakan metode tape

Lebih terperinci

Bab IV Hasil dan Pembahasan

Bab IV Hasil dan Pembahasan Bab IV Hasil dan Pembahasan IV.1 Larutan Garam Klorida Besi dari Pasir Besi Hasil reaksi bahan alam pasir besi dengan asam klorida diperoleh larutan yang berwarna coklat kekuningan, seperti ditunjukkan

Lebih terperinci

BAB I PENDAHULUAN. Telah disadari bahwa kemajuan ilmu pengetahuan dan teknologi harus

BAB I PENDAHULUAN. Telah disadari bahwa kemajuan ilmu pengetahuan dan teknologi harus 1 BAB I PENDAHULUAN 1.1 Latar Belakang Masalah Telah disadari bahwa kemajuan ilmu pengetahuan dan teknologi harus dibayar oleh umat manusia berupa pencemaran udara. Dewasa ini masalah lingkungan kerap

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1. Tinjauan Pustaka Yaghtin (2013), melakukan penelitian tentang efek perlakuan panas terhadap sifat magnetik dari sebuah soft-magnetic composite (SMC-s) dengan dilapisi Al 2 O

Lebih terperinci

SINTESIS SERBUK BARIUM HEKSAFERIT DENGAN METODE KOPRESIPITASI

SINTESIS SERBUK BARIUM HEKSAFERIT DENGAN METODE KOPRESIPITASI SINTESIS SERBUK BARIUM HEKSAFERIT DENGAN METODE KOPRESIPITASI EL INDAHNIA KAMARIYAH 1109201715 JURUSAN FISIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM INSTITUT TEKNOLOGI SEPULUH NOPEMBER SURABAYA

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA 5 BAB 2 TINJAUAN PUSTAKA 2.1 Pengertian Magnet Magnet adalah suatu benda yang mempunyai medan magnet dan mempunyai gaya tolak menolak dan tarik menarik terhadap benda-benda teretentu. Efek tarik menarik

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA 20 BAB II TINJAUAN PUSTAKA 2.1 Barium Ferit Magnet keras (ferit) yang banyak digunakan biasanya memiliki komposisi dari barium atau stronsium dengan oksida besi yang telah dikembangkan sejak 1960. Bahan

Lebih terperinci

PENGARUH WAKTU MILLING TERHADAP SIFAT FISIS, SIFAT MAGNET DAN STRUKTUR KRISTAL PADA MAGNET BARIUM HEKSAFERIT SKRIPSI EKA F RAHMADHANI

PENGARUH WAKTU MILLING TERHADAP SIFAT FISIS, SIFAT MAGNET DAN STRUKTUR KRISTAL PADA MAGNET BARIUM HEKSAFERIT SKRIPSI EKA F RAHMADHANI PENGARUH WAKTU MILLING TERHADAP SIFAT FISIS, SIFAT MAGNET DAN STRUKTUR KRISTAL PADA MAGNET BARIUM HEKSAFERIT SKRIPSI EKA F RAHMADHANI 130801041 DEPARTEMEN FISIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN

Lebih terperinci

Bahan Magnetik. oleh: Ichwan Yelfianhar (dirangkum dari berbagai sumber)

Bahan Magnetik. oleh: Ichwan Yelfianhar (dirangkum dari berbagai sumber) Bahan Magnetik oleh: Ichwan Yelfianhar (dirangkum dari berbagai sumber) Historis Magnet Gejala kemagnetan merupakan cikal bakal berkembangnya pengetahuan tentang kelistrikan. Ditemukan sejak 2000 tahun

Lebih terperinci

PENGARUH WAKTU DRY MILLING TERHADAP KARAKTERISTIK DAN SIFAT MAGNET PERMANEN ND-FE-B

PENGARUH WAKTU DRY MILLING TERHADAP KARAKTERISTIK DAN SIFAT MAGNET PERMANEN ND-FE-B PENGARUH WAKTU DRY MILLING TERHADAP KARAKTERISTIK DAN SIFAT MAGNET PERMANEN ND-FE-B William 1,a), Tua Raja Simbolon 1,b), Herli Ginting 1, Prijo Sardjono 2, Muljadi 2,c) 1 Departemen Fisika, Fakultas Matematika

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang

BAB I PENDAHULUAN Latar Belakang 1 BAB I PENDAHULUAN 1.1. Latar Belakang Material berukuran nano atau yang dikenal dengan istilah nanomaterial merupakan topik yang sedang ramai diteliti dan dikembangkan di dunia sains dan teknologi. Material

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA BAB 2 TINJAUAN PUSTAKA 2.1 Mill Scale Hingga saat ini bahan-bahan oksida besi masih menjadi salah satu fokus kajian penting dalam kegiatan riset. Secara alamiah bahan-bahan tersebut ditemukan dalam bentuk

Lebih terperinci

BAB III METODOLOGI PENELITIAN

BAB III METODOLOGI PENELITIAN 27 BAB III METODOLOGI PENELITIAN 3.1 METODOLOGI PENELITIAN Proses pembuatan sampel dilakukan dengan menggunakan tabung HEM dan mesin MILLING dengan waktu yang bervariasi dari 2 jam dan 6 jam. Tabung HEM

Lebih terperinci

HASIL DAN PEMBAHASAN. Struktur Karbon Hasil Karbonisasi Hidrotermal (HTC)

HASIL DAN PEMBAHASAN. Struktur Karbon Hasil Karbonisasi Hidrotermal (HTC) 39 HASIL DAN PEMBAHASAN Struktur Karbon Hasil Karbonisasi Hidrotermal (HTC) Hasil karakterisasi dengan Difraksi Sinar-X (XRD) dilakukan untuk mengetahui jenis material yang dihasilkan disamping menentukan

Lebih terperinci

BAB III MAGNETISME. Tujuan Penmbelajaran : - Memahami dan mengerti tentang sifat-sifat magnet, bahan dan kegunaannya.

BAB III MAGNETISME. Tujuan Penmbelajaran : - Memahami dan mengerti tentang sifat-sifat magnet, bahan dan kegunaannya. BAB III MAGNETISME Tujuan Penmbelajaran : - Memahami dan mengerti tentang sifat-sifat magnet, bahan dan kegunaannya. Magnetisme (kemagnetan) tercakup dalam sejumlah besar operasi alat listrik, seperti

Lebih terperinci

PENGARUH ADITIF BaCO 3 PADA KRISTALINITAS DAN SUSEPTIBILITAS BARIUM FERIT DENGAN METODA METALURGI SERBUK ISOTROPIK

PENGARUH ADITIF BaCO 3 PADA KRISTALINITAS DAN SUSEPTIBILITAS BARIUM FERIT DENGAN METODA METALURGI SERBUK ISOTROPIK Berkala Fisika ISSN : 1410-9662 Vol. 18, No. 1, Januari 2015, hal 43-50 PENGARUH ADITIF BaCO 3 PADA KRISTALINITAS DAN SUSEPTIBILITAS BARIUM FERIT DENGAN METODA METALURGI SERBUK ISOTROPIK Priska R. Nugraha

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar Belakang

BAB I PENDAHULUAN 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Hasil-hasil penelitian bidang nanoteknologi telah diaplikasikan diberbagai bidang kehidupan, seperti industri, teknologi informasi, lingkungan, pertanian dan kesehatan.

Lebih terperinci

PENGARUH WAKTU DRY MILLING TERHADAP KARAKTERISTIK DAN SIFAT MAGNET PERMANEN ND-FE-B

PENGARUH WAKTU DRY MILLING TERHADAP KARAKTERISTIK DAN SIFAT MAGNET PERMANEN ND-FE-B DOI: doi.org/10.21009/spektra.011.03 PENGARUH WAKTU DRY MILLING TERHADAP KARAKTERISTIK DAN SIFAT MAGNET PERMANEN ND-FE-B William 1,a), Tua Raja Simbolon 1,b), Herli Ginting 1, Prijo Sardjono 2, Muljadi

Lebih terperinci

Bab II Tinjauan Pustaka

Bab II Tinjauan Pustaka Bab II Tinjauan Pustaka II.1 Mineral Magnetik Alamiah Mineral magnetik di alam dapat digolongkan dalam keluarga oksida besi-titanium, sulfida besi dan oksihidroksida besi. Keluarga oksida besi-titanium

Lebih terperinci

BAB III METODE PENELITIAN. penelitian ini dilakukan pembuatan keramik Ni-CSZ dengan metode kompaksi

BAB III METODE PENELITIAN. penelitian ini dilakukan pembuatan keramik Ni-CSZ dengan metode kompaksi 19 BAB III METODE PENELITIAN 3.1 Metode Penelitian Metode yang dilakukan pada penelitian ini adalah eksperimen. Pada penelitian ini dilakukan pembuatan keramik Ni-CSZ dengan metode kompaksi serbuk. 3.2

Lebih terperinci

PEMBUATAN DAN KARAKTERISASI MAGNET PERMANEN BAO.(6-X)FE2O3 DARI BAHAN BAKU LIMBAH FE2O3

PEMBUATAN DAN KARAKTERISASI MAGNET PERMANEN BAO.(6-X)FE2O3 DARI BAHAN BAKU LIMBAH FE2O3 PEMBUATAN DAN KARAKTERISASI MAGNET PERMANEN BAO.(6-X)FE2O3 DARI BAHAN BAKU LIMBAH FE2O3 Sri Handani 1, Sisri Mairoza 1 dan Muljadi 2 1 Jurusan Fisika FMIPA Universitas Andalas 2 Lembaga Ilmu Pengetahuan

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1. Terminologi Kemagnetan Material Material yang diletakkan dalam medan magnet eksternal H akan terpolarisasi magnetik atau termagnetisasi M, yakni proses pensejajaran dipol magnet

Lebih terperinci

BAB III METODOLOGI PENELITIAN. Metode penelitian yang digunakan pada penelitian ini adalah

BAB III METODOLOGI PENELITIAN. Metode penelitian yang digunakan pada penelitian ini adalah BAB III METODOLOGI PENELITIAN 3.1 Metode penelitian Metode penelitian yang digunakan pada penelitian ini adalah eksperimental dan pembuatan keramik film tebal CuFe 2 O 4 dilakukan dengan metode srcreen

Lebih terperinci

PENGARUH ADITIF FERRO BORON (FeB) TERHADAP KARAKTERISTIK SERBUK HEMATIT (α-fe 2 O 3 ) (Skripsi) Oleh. Suci Pangestuti

PENGARUH ADITIF FERRO BORON (FeB) TERHADAP KARAKTERISTIK SERBUK HEMATIT (α-fe 2 O 3 ) (Skripsi) Oleh. Suci Pangestuti PENGARUH ADITIF FERRO BORON (FeB) TERHADAP KARAKTERISTIK SERBUK HEMATIT (α-fe 2 O 3 ) (Skripsi) Oleh Suci Pangestuti 1317041045 JURUSAN FISIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA BAB 2 TINJAUAN PUSTAKA 2.1 Magnet Magnet atau magnit adalah suatu obyek yang mempunyai suatu medan magnet. Magnet dapat dibuat dari bahan besi, baja, dan campuran logam serta telah banyak dimanfaatkan

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA 5 BAB II TINJAUAN PUSTAKA 2.1 Pengertian Magnet Magnet merupakan suatu material yang mempunyai suatu medan magnet B. Magnet dapat dibuat dari bahan besi, baja, dan campuran logam serta telah banyak dimanfaatkan

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA 6 BAB 2 TINJAUAN PUSTAKA 2.1 Pengertian Magnet Secara Umum Kata magnet berasal dari Magnesia, nama suatu kota di kawasan Asia. Di kota inilah orang orang Yunani sekitar tahun 600 SM menemukan sifat magnetik

Lebih terperinci

MAGNET - Materi Ipa Fisika SMP Magnet magnítis líthos Magnet Elementer teori magnet elementer.

MAGNET - Materi Ipa Fisika SMP Magnet magnítis líthos Magnet Elementer teori magnet elementer. MAGNET - Materi Ipa Fisika SMP Magnet merupakan suatu benda yang dapat menimbulkan gejala berupa gaya, baik gaya tarik maupun gaya tolak terhadap jenis logam tertentu), misalnya : besi dan baja. Istilah

Lebih terperinci

BAB IV HASIL DAN PEMBAHASAN. 4.1 Pengaruh Suhu Sinter Terhadap Struktur Kristal

BAB IV HASIL DAN PEMBAHASAN. 4.1 Pengaruh Suhu Sinter Terhadap Struktur Kristal 30 BAB IV HASIL DAN PEMBAHASAN 4.1 Pengaruh Suhu Sinter Terhadap Struktur Kristal Hasil karakterisasi struktur kristal dengan menggunakan pola difraksi sinar- X (XRD) keramik komposit CS- sebelum reduksi

Lebih terperinci

BAB 3 METODOLOGI PENELITIAN

BAB 3 METODOLOGI PENELITIAN 30 BAB 3 METODOLOGI PENELITIAN 3.1 Tempat dan Waktu Penelitian 3.1.1 Tempat Penelitian Penelitian ini dilakukan di Laboratorium Magnet, Pusat Penelitian Fisika Lembaga Ilmu Pengetahuan Indonesia (PPF-LIPI)

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Pengertian Magnet Magnet adalah logam yang dapat menarik besi atau baja dan memiliki medan magnet. Asal kata magnet diduga dari kata magnesia yaitu nama suatu daerah di Asia

Lebih terperinci

BAB I PENDAHULUAN 1.1. Latar Belakang

BAB I PENDAHULUAN 1.1. Latar Belakang 1 BAB I PENDAHULUAN 1.1. Latar Belakang Nanopartikel merupakan suatu partikel dengan ukuran nanometer, yaitu sekitar 1 100 nm (Hosokawa, dkk. 2007). Nanopartikel menjadi kajian yang sangat menarik, karena

Lebih terperinci

Gambar 10. Skema peralatan pada SEM III. METODE PENELITIAN. Untuk melaksanakan penelitian digunakan 2 jenis bahan yaitu

Gambar 10. Skema peralatan pada SEM III. METODE PENELITIAN. Untuk melaksanakan penelitian digunakan 2 jenis bahan yaitu 18 Electron Optical Colw.in Anqcl* Apcftvte High Voitag«E)>clron Gwi Elsctfofi Bern Deflection Coiis- G«aef«tor CftT Oitpliy t Flnjl Aperlur* Oetcdo' Sample Oiiplay Controls Gambar 10. Skema peralatan

Lebih terperinci

BAB 20. KEMAGNETAN Magnet dan Medan Magnet Hubungan Arus Listrik dan Medan Magnet

BAB 20. KEMAGNETAN Magnet dan Medan Magnet Hubungan Arus Listrik dan Medan Magnet DAFTAR ISI DAFTAR ISI...1 BAB 20. KEMAGNETAN...2 20.1 Magnet dan Medan Magnet...2 20.2 Hubungan Arus Listrik dan Medan Magnet...2 20.3 Gaya Magnet...4 20.4 Hukum Ampere...9 20.5 Efek Hall...13 20.6 Quis

Lebih terperinci

BAB III METODE PENELITIAN. Metode yang digunakan pada penelitian ini adalah metode eksperimen

BAB III METODE PENELITIAN. Metode yang digunakan pada penelitian ini adalah metode eksperimen BAB III METODE PENELITIAN 3.1 Metode Penelitian Metode yang digunakan pada penelitian ini adalah metode eksperimen secara langsung. Pada penelitian ini dilakukan pembuatan keramik komposit pelet CSZ-Ni

Lebih terperinci

BAB II DASAR TEORI. Teknik Konversi Energi Politeknik Negeri Bandung

BAB II DASAR TEORI. Teknik Konversi Energi Politeknik Negeri Bandung BAB II DASAR TEORI 2.1 Energi Listrik Energi adalah kemampuan untuk melakukan kerja. Salah satu bentuk energi adalah energi listrik. Energi listrik adalah energi yang berkaitan dengan akumulasi arus elektron,

Lebih terperinci

PENGERTIAN. Kata magnet (magnit) berasal dari bahasa Yunani magnítis líthos yang berarti batu Magnesian. Apakah magnet itu?

PENGERTIAN. Kata magnet (magnit) berasal dari bahasa Yunani magnítis líthos yang berarti batu Magnesian. Apakah magnet itu? KEMAGNETAN PENGERTIAN Apakah magnet itu? Kata magnet (magnit) berasal dari bahasa Yunani magnítis líthos yang berarti batu Magnesian Magnet adalah benda-benda yang dapat menarik besi atau baja yang berada

Lebih terperinci

PEMBUATAN DAN KARAKTERISASI MAGNET STRONSIUM FERIT DENGAN BAHAN DASAR PASIR BESI

PEMBUATAN DAN KARAKTERISASI MAGNET STRONSIUM FERIT DENGAN BAHAN DASAR PASIR BESI PEMBUATAN DAN KARAKTERISASI MAGNET STRONSIUM FERIT DENGAN BAHAN DASAR PASIR BESI SKRIPSI Disusun dalam rangka penyelesaian Studi Strata I Untuk memperoleh gelar Sarjana Sains Oleh : ARIF BILLAH NIM. 4250401002

Lebih terperinci

INDUKSI ELEKTROMAGNETIK

INDUKSI ELEKTROMAGNETIK INDUKSI ELEKTROMAGNETIK Hukum Faraday Persamaan Maxwell Keempat (Terakhir) Induksi Elektromagnetik Animasi 8.1 Fluks Magnet yang Menembus Loop Analog dengan Fluks Listrik (Hukum Gauss) (1) B Uniform (2)

Lebih terperinci

MAGNET. elektronik dan teknik kelistrikan, karena tidak sedikit konstruksi alat-alat listrik

MAGNET. elektronik dan teknik kelistrikan, karena tidak sedikit konstruksi alat-alat listrik MAGNET Dalam kehidupan sehari-hari, kita tidak pernah terlepas dari peralatanperalatan elektronika. Magnet merupakan bagian tak terpisahkan dari alat-alat elektronik dan teknik kelistrikan, karena tidak

Lebih terperinci

BAB V DIAGRAM FASE ISTILAH-ISTILAH

BAB V DIAGRAM FASE ISTILAH-ISTILAH BAB V DIAGRAM FASE ISTILAH-ISTILAH Komponen : adalah logam murni atau senyawa yang menyusun suatu logam paduan. Contoh : Cu - Zn (perunggu), komponennya adalah Cu dan Zn Solid solution (larutan padat)

Lebih terperinci

SINTESIS DAN KARAKTERISASI SIFAT MAGNETIK BARIUM M-HEKSAFERRIT DENGAN DOPING ION Zn PADA VARIASI TEMPERATUR RENDAH

SINTESIS DAN KARAKTERISASI SIFAT MAGNETIK BARIUM M-HEKSAFERRIT DENGAN DOPING ION Zn PADA VARIASI TEMPERATUR RENDAH SINTESIS DAN KARAKTERISASI SIFAT MAGNETIK BARIUM M-HEKSAFERRIT DENGAN DOPING ION Zn PADA VARIASI TEMPERATUR RENDAH ARIZA NOLY KOSASIH 1108 100 025 PEMBIMBING : Dr. M. ZAINURI M,Si LATAR BELAKANG Barium

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA BAB 2 TINJAUAN PUSTAKA 2.1. Fe 2 O 3 dari Pasir Besi Partikel nano magnetik Fe 3 O 4 merupakan salah satu material nano yang telah banyak dikembangkan. Untuk berbagai aplikasi seperti ferrogel, penyerap

Lebih terperinci

BAB I PENDAHULUAN. Universitas Sumatera Utara

BAB I PENDAHULUAN. Universitas Sumatera Utara BAB I PENDAHULUAN 1.1 Latar Belakang Magnet permanen merupakan salah satu material strategis yang memiliki banyak aplikasi terutama dalam bidang konversi energi, sensor, dan elektronika. Dalam hal konversi

Lebih terperinci

PENGARUH ANNEALING DAN KOMPOSISI ADITIF FERRO BORON (FeB) TERHADAP SIFAT FISIS DAN MAGNET DARI BARIUM HEKSAFERIT (BaFe 12 O 19 ) SKRIPSI

PENGARUH ANNEALING DAN KOMPOSISI ADITIF FERRO BORON (FeB) TERHADAP SIFAT FISIS DAN MAGNET DARI BARIUM HEKSAFERIT (BaFe 12 O 19 ) SKRIPSI PENGARUH ANNEALING DAN KOMPOSISI ADITIF FERRO BORON (FeB) TERHADAP SIFAT FISIS DAN MAGNET DARI BARIUM HEKSAFERIT (BaFe 12 O 19 ) SKRIPSI TANIA CHRISTIYANTI 120801068 DEPARTEMEN FISIKA FAKULTAS MATEMATIKA

Lebih terperinci

Pengaruh Holding Time Kalsinasi Terhadap Sifat Kemagnetan Barium M-hexaferrite (BaFe 12-x Zn x O 19 ) dengan ion doping Zn

Pengaruh Holding Time Kalsinasi Terhadap Sifat Kemagnetan Barium M-hexaferrite (BaFe 12-x Zn x O 19 ) dengan ion doping Zn JURNAL SAINS DAN SENI ITS Vol. 1, No. 1, (Sept. 2012) ISSN: 2301-928X B-25 Pengaruh Holding Time Kalsinasi Terhadap Sifat Kemagnetan Barium M-hexaferrite (BaFe 12-x Zn x O 19 ) dengan ion doping Zn Findah

Lebih terperinci

PEMBUATAN DAN KARAKTERISASI Α-FE 2 O 3 BERBASIS LIMBAH BAJA MILL SCALE DENGAN ADITIF FeMo

PEMBUATAN DAN KARAKTERISASI Α-FE 2 O 3 BERBASIS LIMBAH BAJA MILL SCALE DENGAN ADITIF FeMo PEMBUATAN DAN KARAKTERISASI Α-FE 2 O 3 BERBASIS LIMBAH BAJA MILL SCALE DENGAN ADITIF FeMo Eko Arief Setiadi 1, Santa Simanjuntak 2, Achmad M. Soehada 3), Perdamean Sebayang 4) 1, Pusat Penelitian Fisika,

Lebih terperinci

BAB I PENDAHULUAN. magnet permanen generator dan lain-lain. Kebutuhan magnet di Indonesia dari

BAB I PENDAHULUAN. magnet permanen generator dan lain-lain. Kebutuhan magnet di Indonesia dari 1 BAB I PENDAHULUAN 1.1 Latar Belakang Magnet merupakan bahan teknik sebagai bahan pendukung utama dalam peralatan elektronika, seperti magnet speaker, magnet permanen motor listrik, magnet permanen generator

Lebih terperinci

Bab III Metodologi Penelitian

Bab III Metodologi Penelitian Bab III Metodologi Penelitian Penelitian yang dilakukan ini menggunakan metode eksperimen. Eksperimen dilakukan di beberapa tempat yaitu Laboratorium Kemagnetan Bahan, Jurusan Fisika, FMIPA Universitas

Lebih terperinci

BAB 3 METODOLOGI PENELITIAN

BAB 3 METODOLOGI PENELITIAN 23 BAB 3 METODOLOGI PENELITIAN 3.1 Tempat dan Waktu Penelitian 3.1.1 Tempat Penelitian Penelitian ini dilakukan di Laboratorium Pusat Penelitian Fisika- Lembaga Ilmu Pengetahuan Indonesia (PPF-LIPI) Kawasan

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar Belakang Permasalahan

BAB I PENDAHULUAN 1.1 Latar Belakang Permasalahan BAB I PENDAHULUAN 1.1 Latar Belakang Permasalahan Nanoteknologi adalah ilmu dan rekayasa dalam menciptakan material, struktur fungsional, maupun piranti dalam skala nanometer. Perkembangan nanoteknologi

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA 4 BAB 2 TINJAUAN PUSTAKA 2.1 DEFINISI MAGNET SECARA UMUM Magnet dapat dibuat dari bahan besi, baja, dan campuran logam serta telah banyak dimanfaatkan untuk industri otomotif dan lainnya. Sebuah magnet

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar Belakang

BAB I PENDAHULUAN 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Nanoteknologi merupakan ilmu dan rekayasa dalam penciptaan material, struktur fungsional, maupun piranti dalam skala nanometer (Abdullah & Khairurrijal, 2009). Material

Lebih terperinci

Efek Aditiv Al 2 O 3 Terhadap Struktur dan Sifat Fisis Magnet Permanen BaO.6(Fe 2 O 3 )

Efek Aditiv Al 2 O 3 Terhadap Struktur dan Sifat Fisis Magnet Permanen BaO.6(Fe 2 O 3 ) Berkala Fisika ISSN : 141-9662 Vol. 7, No. 2, April 24, hal 69-73 Efek Aditiv Al 2 O 3 Terhadap Struktur dan Sifat Fisis Magnet Permanen BaO.6(Fe 2 O 3 ) Priyono 1), Yuly Astanto 1), Happy Traningsih 1),

Lebih terperinci