BAB 2 TINJAUAN PUSTAKA

Ukuran: px
Mulai penontonan dengan halaman:

Download "BAB 2 TINJAUAN PUSTAKA"

Transkripsi

1 BAB 2 TINJAUAN PUSTAKA 2.1 Magnet Magnet atau magnit adalah suatu obyek yang mempunyai suatu medan magnet. Magnet dapat dibuat dari bahan besi, baja, dan campuran logam serta telah banyak dimanfaatkan untuk industri otomotif dan lainnya. Sebuah magnet terdiri atas magnet-magnet kecil yang memiliki arah yang sama (tersusun teratur), magnet- magnet kecil ini disebut magnet elementer. Pada logam yang bukan magnet, magnet elementernya mempunyai arah sembarangan (tidak teratur) sehingga efeknya saling meniadakan, yang mengakibatkan tidak adanya kutub-kutub magnet pada ujung logam. Setiap magnet memiliki dua kutub, yaitu: utara dan selatan. Kutub magnet adalah daerah yang berada pada ujung-ujung magnet dengan kekuatan magnet yang paling besar berada pada kutub-kutubnya (Siregar, Seri D. 2013). Magnet dapat menarik benda lain, beberapa benda bahkan tertarik lebih kuat dari yang lain, yaitu bahan logam. Namun tidak semua logam mempunyai daya tarik yang sama terhadap magnet. Besi dan baja adalah dua contoh materi yang mempunyai daya tarik yang tinggi oleh magnet. Sedangkan oksigen cair adalah contoh materi yang mempunyai daya tarik yang rendah oleh magnet. Satuan intensitas magnet menurut sistem metrik Satuan Internasional (SI) adalah Tesla dan SI unit untuk total fluks magnetik adalah weber (1 weber/m 2 = 1 tesla) yang mempengaruhi luasan satu meter persegi (Theresya, 2014). 2.2 Pengertian Medan Magnet Medan magnet adalah daerah disekitar magnet yang masih merasakan adanya gaya magnet. Jika sebatang magnet diletakkan dalam suatu ruang, maka terjadi perubahan dalam ruang ini yaitu dalam setiap titik dalam ruang akan terdapat medan magnetik. Arah medan magnetik di suatu titik didefenisikan sebagai arah yang ditunjukkan oleh kutub utara jarum kompas ketika ditempatkan pada titik tersebut.

2 2.2.1 Momen Magnetik Bila terdapat dua buah kutub magnet yang berlawanan +m dan m terpisah sejauh l, maka besarnya momen magnetiknya ( ) adalah: = mlrˆ (2.1) dengan adalah sebuah vektor dalam arah vektor unit rˆ berarah dari kutub negatif ke kutub positif. Arah momen magnetik dari atom bahan non magnetik adalah acak sehingga momen magnetik resultannya menjadi nol. Sebaliknya di dalam bahan-bahan magnetik, arah momen magnetik atom-atom bahan itu teratur sehingga momen magnetik resultan tidak nol. Momen magnet mempunyai satuan dalam cgs adalah gauss.cm3 atau emu dan dalam SI mempunyai satuan A.m Induksi Magnetik Definisi induksi magnet, Induksi magnet adalah kuat medan magnet akibat adanya arus listrik yang mengalir dalam konduktor. Adanya kuat medan magnetic disekitar konduktor berarus listrik diselidiki pertama kali oleh Hans Christian (Denmark, ). Jika jarum kompas diletakkan sejajar dengan konduktor itu dialiri arus listrik.bila arah arus dibalik, maka penyimpangannya juga berbalik. Suatu bahan magnetik yang diletakkan dalam medan luar akan menghasilkan medan tersendiri yang menigkatkan nilai total medan magnetic bahan tersebut. Induksi magnetik yang didefinisikan sebagai medan total bahan ditulis sebagai : + (2.2) Hubungan medan sekunder = 4, satuan dalam cgs adalah gauss, sedangkan dalam geofisika eksplorasi dipakai satuan gamma (g) dan dalam SI adalah tesla (T) atau nanotesla (nt) Kuat Medan Magnetik Kuat medan magnetik disuatu titik adalah gaya magnetik yang dialami tiap satu-satuan kuat kutub magnet utara disuatu titik yang berada didalam medan magnetik magnet lain. Kuat medan magnetik yang disebabkan oleh arus listrik disebut dengan induksi magnetik.kuat medan magnet pada suatu titik yang

3 berjarak r dari m1 didefinisikan sebagai gaya persatuan kuat kutub magnet, dapat dituliskan sebagai: (oersted) (2.3) Dengan : F = Gaya (Newton) = Kuat medan magnet luar (Gauss) m 1,m 2 = Kuat kutub magnet 1 dan 2 (Ampere meter) r 1,r 2 = Jarak titik ke kutub magnet µ = Permeabilitas ruang hampa (4 x 10-7 H/m)/udara (1 H/m) (Afza,Erini. 2011). 2.3 Macam Macam Magnet Berdasarkan sifat kemagnetannya magnet dapat dibedakan menjadi dua macam, yaitu: Magnet Permanen Suatu magnet permanen harus mampu menghasilkan fluks magnet yang tinggi dari suatu volume magnet tertentu, stabilitas magnetik yang baik terhadap efek temperatur dan waktu, serta memiliki ketahanan yang tinggi terhadap pengaruh demagnetisasi. Pada prinsipnya, suatu magnet permanen haruslah memiliki karakteristik minimal dengan sifat kemagnetan remanen, Br dan koersivitas intrinsik, Hc serta temperatur Curie, Tc yang tinggi. (Azwar Manaf, 2013) Magnet Remanen Magnet remanen adalah suatu bahan yang hanya dapat menghasilkan medan magnet yang bersifat sementara. Medan magnet remanen dihasilkan dengan cara mengalirkan arus listrik atau digosok dengan magnet alam secara berulang-ulang. Bila suatu bahan pengantar dialiri arus listrik, besarnya medan magnet yang dihasilkan tergantung pada besar arus listrik yang dialirkan. Medan magnet remanen yang digunakan dalam praktek kebanyakan dihasilkan oleh arus dalam kumparan yang berinti besi. Agar medan magnet yang dihasilkan cukup kuat, kumparan diisi dengan besi atau bahan sejenis besi dan sistem ini dinamakan electromagnet. Keuntungan electromagnet adalah bahwa

4 kemagnetannya dapat dibuat sangat kuat, tergantung dengan arus yang dialirkan. Dan kemagnetannya dapat dihilangkan dengan memutuskan arus listriknya. (Afza, Erini. 2011). 2.4 Klasifikasi Material Magnetik Material magnetik adalah material yang mempunyai sifat magnetik. Sifat magnetik adalah fenomena suatu bahan menarik atau menolak material lain yang berada di dekatnya. Berdasarkan nilai suseptibilitas material magnetik dibedakan menjadi 3 yaitu diamagnetik, paramagnetik, dan ferromagnetik (Theresya, 2014) Diamagnetik Bahan diamagnetik merupakan bahan yang memiliki nilai suseptibilitas negatif dan sangat kecil. Sifat diamagnetik ditemukan oleh Faraday pada tahun 1846 ketika sekeping bismuth ditolak oleh kedua kutub magnet, hal ini memperlihatkan bahwa medan induksi dari magnet tersebut menginduksi momen magnetik pada bismuth pada arah berlawan dengan medan induksi pada magnet (Tipler, 1991). Bahan diamagnetik tidak mempunyai momen dipol magnet permanen. Jika bahan diamagnetik dibalik diberi medan magnet luar, maka elektron-elektron dalam atom akan berubah gerakannya sedemikian hingga menghasilkan resultan medan magnet atomis yang arahnya berlawanan. Sifat diamagnetik bahan ditimbulkan oleh gerak orbital elektron sehingga semua bahan bersifat diamagnetik karena atomnya mempunyai elektron orbital. Bahan dapat bersifat magnet apabila susunan atom dalam bahan tersebut mempunyai spin elektron yang tidak berpasangan. Dalam bahan diamagnetik hampir semua spin elektron berpasangan, akibatnya bahan ini tidak menarik garis gaya. Permeabilitas bahan diamagnetik adalah μ < μ0 dan susepbtibilitas magnetiknya < 0. Contoh bahan diamagnetik yaitu bismut, perak, emas, tembaga dan seng. ( J.D. Kraus, 1998) Paramagnetik Material paramagnetik mempunyai nilai suseptibilitas positif di mana magnetisasi M paralel dengan medan luar. Material yang termasuk dalam paramagnetik adalah

5 logam transisi dan ion logam tanah jarang (rare-earth ions). Ion-ion ini mempunyai kulit atom yang tidak terisi penuh yang berisi momen magnet permanen. Momen magnet permanen terjadi karena adanya gerak orbital dan elektron (Theresya, 2014). Setiap elektron berperilaku seperti magnet kecil yang pada medan magnet memiliki salah satu orientasi yaitu searah atau berlawanan arah dengan medan magnet tergantung dengan arah spin elektron. Ketika tidak ada medan luar orientasi momen magnet acak, tetapi ketika medan luar diterapkan maka orientasi momen magnetik sebagian mengarah ke medan luar. Gambar 2.1 Orientasi momen magnetik bahan paramagnetik (a) Tanpa adanya medan luar, (b) Dengan adanya medan luar (Theresya, 2014) Dalam bahan ini hanya sedikit spin elektron yang tidak berpasangan, sehingga bahan ini sedikit menarik garis-garis gaya. Dalam bahan paramagnetik, medan B yang dihasilkan akan lebih besar dibanding dengan nilainya dalam hampa udara. Suseptibilitas magnet dari bahan paramagnetik adalah positif dan berada dalam rentang 10-5 sampai 10-3 m3/kg, sedangkan permeabilitasnya adalah μ > μ 0.Contoh bahan paramagnetik : alumunium, magnesium dan wolfram (Theresya, 2014) Ferromagnetik Ferromagnetik merupakan bahan yang memiliki nilai suseptibilitas magnetik positif yang sangat tinggi. Dalam bahan ini sejumlah kecil medan magnetik luar dapat menyebabkanderajat penyearahan yang tinggi pada momen dipol magnetik atomnya. Dalam beberapa kasus, penyearahan ini dapat bertahan sekalipun medan kemagnetannya telah hilang. Hal ini terjadi karena momen dipol

6 magnetik atom dari bahan bahan ferromagnetik ini mengarahkan gaya-gaya yang kuat pada atom disebelahnya. Sehingga dalam daerah ruang yang sempit, momen ini disearahkan satu sama lain sekalipun medan luarnya tidak ada lagi. Daerah ruang tempat momen dipol magnetik yang disearahkan ini disebut daerah magnetik. Dalam daerah ini, semua momen magnetik disearahkan, tetapi arah penyearahnya beragam dari daerah sehingga momen magnetik total dari kepingan mikroskopi bahan ferromagnetik ini adalah nol dalam keadaan normal (Tipler, 1991). 2.5 Material Magnet Lunak dan Magnet Keras Material magnetik diklasifikasikan menjadi dua yaitu material magnetik lemah atau soft magnetic materials maupun material magnetik kuat atau hard magneticmaterials. Penggolongan ini berdasarkan kekuatan medan koersifnya dimana soft magnetic atau material magnetik lemah memiliki medan koersif yang lemah sedangkan material magnetik kuat atau hard magnetic materials memiliki medan koersif yang kuat. Hal ini lebih jelas digambarkan dengan diagram histerisis atau hysteresis loop sebagai loop. Gambar 2.2 Histeris material magnet (a) Material lunak, (b) Material keras Gambar 2.2 menunjukkan kurva histeresis untuk material magnetic lunak pada bagian (a) dan material magnetik keras pada bagian (b). H merupakan medan magnetik yang diperlukan untuk menginduksi medan berkekuatan B dalam

7 material. Setelah medan H ditiadakan, dalam specimen tersisa magnetisme residual Br, yang disebut residual remanen, dan diperlukan medan magnet Hc yang disebut gaya koersif, yang harus diterapkan dalam arah berlawanan untuk meniadakannya. Magnet lunak mudah dimagnetisasi serta mudah pula mengalami demagnetisasi, seperti tampak pada Gambar 2.2 Nilai H yang rendah sudah memadai untuk menginduksi medan B yang kuat dalam logam, dan diperlukan medan Hc yang kecil untuk menghilangkannya. Magnet keras adalah material yang sulit dimagnetisasi dan sulit di demagnetisasi. Karena hasil kali medan magnet (A/m) dan induksi (V.det/m2) merupakan energi per satuan volume, luas daerah hasil integrasi di dalam loop histerisis adalah sama dengan energi yang diperlukan untuk satu siklus magnetisasi mulai dari 0 sampai +H hingga H sampai 0. energi yang dibutuhkan magnet lunak dapat dapat diabaikan; medan magnet keras memerlukan energi lebih banyak sehingga pada kondisi-ruang, demagnetisasi dapat diabaikan. Dikatakan, magnetisasi permanen (Afza, Erini. 2011). 2.6 Magnet Komposit Pengertian magnet komposit terdiri dari dua bahan yang berbeda yang digabung atau dicampur secara makroskopis. Pada umumnya magnet komposit terdiri dari dua unsur, yaitu serbuk bahan magnet dan bahan pengikat serbuk yang disebut matrik. Magnet komposit ini dibuat dengan pencampuran serbuk bahan magnet dengan pengikat bahan bukan magnet, seperti semen portland, polimer, dengan komposisi yang diinginkan didalam alat pencampur (Karokaro, 2002). Pada serbuk magnet inilah yang akan menentukan karakterisasi dari magnet komposit, seperti sifat kekerasan, kekuatan serta sifat mekanik yang lainnya. Sedangkan jumlah elemen serbuk magnet didalam komposit akan sangat menentukan kekuatan medan magnet dari magnet komposit, karena banyak sedikitnya bahan pengikatnya akan mempengaruhi sifat magnet (LihJiun Yu, 2012). Pada magnet komposit, sifat-sifat struktur yang dibentuknya masih terlihat jelas. Pada magnet komposit dapat dibuat menjadi rigid atau elastis,

8 tergantung pada bahan campuran yang digunakan. Sifat-sifat yang dapat diatur oleh perbandingan campuran adalah kekuatan dan kedap air. Apabila bahan campuran pada magnet komposit yang bersifat elastis seperti karet alam, maka akan didapatkan magnet komposit yang bersifat elastis(sudirman, 2002). Pada dasarnya magnet komposit yang memiliki sifat rigit mempunyai kelebihan dalam sifat mekaniknya yang tidak mudah pecah, sedangkan magnet komposit yang memiliki sifat elastis mempunyai kelebihan dalam sikap mekaniknya adalah memiliki kekuatan tarik yang tinggi. Dimana keunggulan yang dimiliki oleh magnet komposit adalah pengabunggan dari sifatsifat unggul masing-masing pembentuknya(hadi, 2000). Dengan sifat ferit yang dimiliki, menunjukkan bahwa sifat struktural dan magnetik nanocomposites tergantung pada baik isi ferit dan komposisi karet alam atau plastik di nanocomposites. Semua nanocomposites menunjukkan pertukaran bias seperti fenomena yang dihasilkan dari kopling pertukaran berputar pada antarmuka antara daerah inti magnet ferit dan keteraturan permukaan wilayah nanopartikel (Mokhtar, 2012) 2.7 Magnet Permanen Ferrit Magnet permanen ferrit juga dikenal sebagai magnet keramik dikembangkan pada tahun 1950-an sebagai suatu hasil dari teori Stoner Wohlfarth yang mengindikasikan bahwa koersivitas dari sistem pada partikel bidang tunggal sebanding terhadap anisotropi. Magnet ferrit yang banyak dipakai yaitu Barium Ferrit BaO.6(Fe 2 O 3 ) disamping SrO.6(Fe 2 O 3 ) dan PbO.6 (Fe 2 O 3 ). Magnet Ferrit mempunyai sifat mekanik yang kuat dan tidak mudah terkorosi. Disamping itu magnet ferrit mempunyai koersivitas yang tinggi dengan tingkat kestabilan yang tinggi terhadap pengaruh medan luar serta temperatur (Culity, 1972) Barium Heksaferit Barium Heksaferit merupakan magnet keramik yang banyak digunakan dalam berbagai aplikasi. Barium Heksaferit memiliki beberapa keunggulan antara lain ketersediaan bahan bakunya yang melimpah dan pembuatannya yang relatif

9 mudah. Barium Heksaferit dapat disintesis dengan beberapa metode seperti kristalisasi gas, presipitasi hidrotermal, sol-gel, aerosol, pemanduan mekanik dan kopresipitasi (Tubitak,2011). Magnet keramik yang merupakan magnet permanen mempunyai struktur Hexagonal close-packed. Dalam hal ini bahan yang sering digunakan adalah Barium Heksaferit (BaO.6Fe 2 O 3 ). Dapat juga barium digantikan bahan yang menyerupai (segolongan) dengannya, yaitu seperti stronsium (Ade Fathurohman, 2011). Material magnet oksida BaO(6Fe 2 O 3 ) merupakan jenis keramik yang banyak dijumpai disamping material magnet lain, seperti SrO.6(Fe 2 O 3 ) dan PbO.6(Fe 2 O 3 ). Pengembangan material BaFe 12 O 19 (M-type feritte hexagonal) sebagai bahan magnetik sangat dibutuhkan dalam berbagai bidang aplikasi, karena memiliki karakteristik : temperatur Curie yang relative tinggi, nilai koersifitas, saturasi magnetik dan anisotropi magnetik tinggi pula serta stabilitas kimia yang sangat baik (Simbolon, Silviana, 2013). Salah satu aplikasi material magnet permanen barium heksaferit yang menjadi perhatian saat ini adalah sebagai alat penyerap gelombang mikro (RAM). Hal ini karena sifat listrik dan magnetik dari material ferrimagnetik ini sangat mendukung dalam aplikasi tersebut, yaitu memiliki permeabilitas dan resistivitas yang tinggi. Material oksida magnet tersebut memiliki sifat mekanik yang sangat kuat dan tidak mudah terkorosi. Namun material tersebut sangat rentan terhadap proses perlakuan panas sehingga mempunyai pengaruh yang cukup signifikan dan memiliki dampak negatif terhadap sifat kemagnetan, tetapi proses ini tidak dapat dihindarkan dalam proses metalurgi serbuk untuk membuat magnet menjadi kuat dan dapat dimanfaatkan dalam teknologi (Simbolon, Silviana, 2013). Barium heksferit BaO.6Fe 2 O 3 yang memiliki parameter kisi a = 5,8920 Angstrom, dan c = 23,1830 Angstrom memiliki srtuktrur kristal yang sama seperti namanya yaitu struktur heksagonal. Gambar struktur kristal barium heksaferit BaO.6Fe 2 O 3 diperlihatkan pada Gambar 2.3

10 Gambar 2.3 Struktur kristal heksagonal BaO.6Fe 2 O 3 [Moulson A.J, et all., 1985]. 2.8 Unsur Pemadu Pada Aditif Ferro Boron Besi (Fe) Besi adalah unsur kimia dengan simbol Fe (dari bahasa Latin: zat besi). Dan nomor atom 26 Ini merupakan logam dalam transisi deret pertama. Besi merupakan logam transisi yang paling banyak dipakai karena relatif melimpah dibumi. Ini adalah massa elemen paling umum di Bumi, membentuk banyak inti luar dan dalam bumi. Gambar 2.4 Struktur Atom Unsur Besi

11 Besi juga diketahui sebagai unsur yang paling banyak membentuk dibumi, yaitu kira-kira 4,7 5 % pada kerak bumi. Kebanyakan besi terdapat dalam batuan dan tanah sebagai oksidasi besi, seperti oksida besi magnetit( Fe 3 O 4 ). Dari mineralmineral bijih besi magnetite adalah mineral dengan kandungan Fe paling tinggi, terdapat dalam jumlah kecil. Sementara hematite merupakan mineral bijih utama yang dibutuhkan dalam industri besi.(syukri, 1999). Tabel 2.1 Informasi Dasar Unsur Besi/Iron Nama Unsur Besi Simbol Fe Nomor Atom 26 Massa Atom g/mol Titik Didih 3143 K Titik Lebur 1811 K Struktur Kristal BCC Warna Perak keabu-abuan Konfigurasi Elektron [Ar] 3d 6 4s Boron (B) Boron merupakan unsur yang sangat keras dan menunjukkan sifat semikonduktor, dan sangat tahan terhadap panas. Boron dalam bentuk kristal yang sangat reaktif. Boron adalah unsur golongan 13 dengan nomor atom lima. Boron memiliki sifat diantara logam dan nonlogam (Semimetalik). Boron juga merupakan unsur metaloid dan banyak ditemukan dalam biji borax. Unsur ini tidak pernah ditemukan dialam bebas. Gambar 2.5 Strukur Atom Unsur Boron

12 Tabel 2.2 Informasi Dasar Unsur Boron Nama Unsur Boron Simbol B Nomor Atom 5 Massa Atom g/mol Titik Didih 4200 K Titik Lebur 2349 K Struktur Kristal Trigonal Warna Hitam Konfigurasi Elektron [He] 2s 2 2p Sillicone Rubber Silicone rubber (SiR) adalah bahan yang tahan terhadap temperatur tinggi, yang biasanya digunakan untuk isolasi kabel dan bahan isolator tegangan tinggi. Sifat fisik bahan ini dapat diperbaiki dengan mencampurkan bahan pengisi seperti pasirsilika. Silicone rubber aman digunakan pada temperatur -55º sampai 200º C. Bahan ini memiliki hambatan yang baik terhadap ozone, korona, air, dan memiliki ketahanan yang baik terhadap alkohol, garam, dan minyak.(asy ari, 2008) Silicone rubber merupakan elastomer (sama halnya dengan material karet) polimer berupa silikon, dimana silikon tersebut mengandung karbon, hidrogen, dan oksigen. Karet silikon banyak digunakan dalam industri dan beberapa formulasi. Karet silikon biasanya terdiri dari satu atau dua bagian polimer dan berisi pengisi untuk meningkatkan sifat atau mengurangi biaya. Karena sifat-sifat kemudahan pembuatan dan pembentukan, karet silikon dapat ditemukan dalam berbagai macam produk, termasuk aplikasi otomotif, memasak, bahan pengembang, dan penyimpanan produk (seperti penyimpan makanan, pakaian olahraga, alas kaki, elektronik, peralatan medis dan implan), dan dalam perbaikan rumah serta perangkat keras dengan produk seperti silikon sealants. Struktur kimia sillicone rubber yang terdiri dari suatu punggung silikon yang lebih fleksibel dibandingkan polimer lainnya. Jarak ikatan Si O sekitar 1,64 A yang lebih panjang dibandingkan jarak ikatan C C sekitar 1,5ºA yang banyak ditemukan pada polimer organik. Kemudian susunan ikatan Si O Si

13 (180 ) 143º lebih terbuka dibandingkan dengan ikatan tetrahedral biasa (~110 ) yang berperan untuk meningkatkan keseimbangan, dengan demikian rantai mampu melakukan suatu bentuk yang rapat ketika dalam keadaan tergulung acak, dan rantai silikon yang terdapat gugus metil mampu meluruskan sendiri untuk bersekutu menghasilkan hidrofobik pada permukaannya. Silicone rubber memiliki sifat isolasi sangat baik seperti loss tangen (tan δ 3 3 x 10 3 ), konstanta dielektrik, ε r = 2 4, tahanan jenis ρ = Ωm dalam keadaan tanpa bahan pengisi, tahanan terhadap cahaya pada daerah > 300 nm gugus metilnya menyerap sinar dan stabil hingga suhu 250 C dengan mempertahankan sifat kenyalnya pada suhu rendah karena memiliki temperatur transisi gelas sampai 120 C (stabilitas termalnya panjang). Namun, dalam kaitan ini kekuatan mekanik silicone rubber tanpa bahan pengisi memiliki kekuatan yang rendah karena gaya antar molekulnya yang rendah. Untuk meningkatkan kekuatan tarik dan kekerasan, dapat ditambah bahan silika. Sedangkan untuk meningkatkan ketahanan erosi dan keretakan (tracking) dapat dikombinasikan dengan bahan pengisi dan jenis aluminatrihydrate. Dibandingkan dengan karet organik, karet silikon memiliki kekuatan tarik yang sangat rendah. Bahan silikon ini juga sangat sensitif terhadap kelelahandari beban siklik. Karet silikon merupakan bahan yang sangat inert dan tidak bereaksi dengan sebagian besar bahan kimia (Keller et al., 2007). Sifat-sifat fisik dan mekanik silicone rubber dapat dilihat pada Tabel 2.3. Tabel 2.3.Sifat Fisik dan Mekanik Silicone Rubber Densitas (g/cm 3 ) *1 0,8 T ( ) * Kuat tarik (MPa) *3 4,4 9 Kuat tekan (MPa) * Hardness Vickers (VHN) *5 15 Sumber: *1 Stuart, 2003; *2 Asy ari, 2008; *3 Product Information Silastic Liquid Silicone Rubber, 2002; *4 Azom.com The A to Z of Materials, 2013; *5 Liquid RTV Silicone Rubber, 2013

14 Selama proses pembuatan silicone rubber, panas sangat diperlukan untuk vulkanisir (mengatur dan memperbaiki) silikon ke dalam bentuk seperti karet. Hal ini biasanya dilakukan dalam dua proses pada titik pembuatan ke dalam bentuk yang diinginkan. Dalam hal ini dapat dilakukan proses injeksi (injection molded). Pada suhu ekstrim, kekuatan tarik, elongasi, kekuatan sobek, dan kompresi dapat jauh lebih unggul daripada karet konvensional, meskipun relatif lebih rendah untuk bahan lainnya, sedangkan karet silikon merupakan salah satu pilihan jenis elastomer untuk lingkungan yang ekstrim (Keller et al., 2007) Karakterisasi Material Magnet Untuk mengetahui sifat-sifat dan kemampuan suatu material maka perlu dilakukan pengujian dan analisis. Beberapa jenis pengujian dan analisis yang dibahas untuk keperluan penelitian ini antara lain : pengujian sifat fisis (densitas(true density dan bulk density)), analisa struktur dan ukuran diameter partikel menggunakan OM (Optical Microscope),analisa struktur kristal menggunakan alat uji XRD (X-Ray Diffraction), analisis sifat magnet dari mateial menggunakan VSM (Vibrating Sample Magnetometer), analisa perubahan fasa sampel bila diberi suhu tinggi menggunakan DTA/TG (Diferential Thermal Analysis/Thermogravimetric Analysis) dan pengujian kuat tarik sampel komposit yang dicampur dengan silicone rubber Densitas Densitas merupakan ukuran kepadatan dari suatu material atau densitas didefenisikan sebagai massa per satuan volum. Jika suatu bahan yang materialnya homogen bermassa m memiliki volume v, densitasnya ρ adalah: (kg/m 3 ). Secara umum, densitas suatu bahan tergantung pada faktor lingkungan seperti suhu dan tekanan (Siregar, Seri D. 2013). Dalam pelaksanaannya kadang-kadang sampel yang diukur mempunyai ukuran bentuk yang tidak teratur sehingga untuk menentukan volumenya menjadi sulit, akibatnya nilai kerapatan yang diperoleh tidak akurat. Untuk menentukan rapat massa (bulk density) dari suatu bahan mengacu pada standar (ASTM C373).

15 Oleh karena itu untuk menghitung nilai densitas suatu material yang memiliki bentuk yang tidak teratur (bulk density) digunakan metode Archimedes yang persamaannya sebagai berikut: ` (2.4) Dimana : ρ = Densitas sampel (kg/m³) ρ air m k m b = Densitas air (kg/m³) = Massa sampel setelah kering (kg) = Massa sampel setelah direndam 3 menit di dalam aquades (kg) XRD (X-Ray Diffraction) Sinar X merupakan gelombang elektromagnetik yang dapat digunakan untuk mengetahui struktur kristal dan fasa suatu dengan sudut datang sebesar,maka sebagian sinar dihamburkan oleh bidang atom dalam kristal. Berkas sinar x yang dihamburkan dalam arah-arah tertentu akan menghasilkan puncak-puncak difraksi yang dapat diamati dengan peralatan X-Ray Diffraction (Cullity,1978). Fenomena interaksi dan difraksi sudah dikenal pada ilmu optik. Standart pengujian laboratorium fisika adalah untuk menentukan jarak antara dua gelombang dengan mengetahui panjang gelombang sinar, dengan mengukur sudut berkas sinar yang terdifraksi. Pengujian ini merupakan aplikasi langsung dari pemakaian sinar-x untuk menentukan jarak antar atom adalam kristal.

16 Gambar 2.6 Difraksi Bidang Atom Gambar 2.6 menunjukkan suatu berkas sinar X dengan panjang gelombang λ jatuh pada sudut θ pada sekumpulan bidang atom berjarak d. Sinar yang dipantulkan dengan sudut θ hanya dapat yang berdekatan, dan menempuhkan jarak sesuai dengan perbedaan kisi yaitu sama dengan panjang gelombang n λ. Menurut syarat terjadinya difraksi, beda lintasan merupakan kelipatan bilangan bulat dari panjang, sehingga hal tersebut dirumuskan W.L.Brag dengan : nλ = 2d sinθ (2.4) n = orde difraksi (n = bilangan bulat) λ = panjang sinar X gelombang (m) d = jarak antar bidang (m) θ = sudut difraksi ( o ) Untuk mengetahui fasa dan struktur material yang diamati dapat dilakukan dengan cara sederhana, yaitu dengan cara membandingkan nilai d yang terukur dengan nilai d pada data standart. Data d standart dapat diperoleh melalui Joint Commitee On Powder Difraction Standart (JCPDS) atau dengan metode Hanawalt file. (Cullity,1978) VSM (Vibrating Sample Magnetometer) Vibrating Sample Magnetometer (VSM) merupakan salah satu jenis peralatan yang digunakan untuk mempelajari sifat magnetik bahan. Dengan alat ini akan dapat diperoleh informasi mengenai besaran besaran sifat magnetik sebagai akibat perubahan medan magnet luar yang digambarkan dalan kurva histeresis, sifat magnetik bahan sebagai akibat perubahan suhu, dan sifat-sifat magnetik sebagai fungsi sudut pengukuran atau kondisi anisotropik bahan.

17 Gambar 2.7 Peralatan VSM (Vibrating Sample Magnetometer) (P2F LIPI) Salah satu keistimewaan VSM adalah merupakan vibratorelektrodinamik yang dikontrol menggunakan arus balik. Sampel dimagnetisasi dengan medan magnet homogen. Jika sampel bersifat magnetik, maka medan magnet akan memagnetisasi sampel dengan meluruskan domain magnet. Momen dipol magnet sampel akan menciptakan medan magnet di sekitar sampel, yang biasa disebut magnetic stray field. Ketika sampel bergetar, magnetic stray field dapat ditangkap oleh coil. Medan magnet tersebar tersebut akan menginduksi medan listrik dalam coil yang sebanding dengan momen magnetik sampel. Semakin besar momen magnetik, maka akan menginduksi arus yang semakin besar. Dengan mengukur arus sebagai fungsi medan magnet luar, suhu maupun orientasi sampel, berbagai sifat magnetik bahan dapat dipelajari. Dalam penelitian ini, nilai magnetisasi diukur selain untuk mengetahui kemampuan magnetik nanosfer yang dihasilkan juga untuk mendapatkan informasi komposisi nanosfer. Karakterisasi sifat magnetik dengan VSM, data yang diperoleh dari karakterisasi sifat magnet berupa kurva histeresis dengan sumbu x merupakan medan magnet yang menginduksi sampel dalam satuan Tesla dan sumbu y merupakan magnetisasi sampel dalam satuan emu/gram. (Thresya,2014) Pengujian Kuat Tarik (Tensile Strength) Uji tarik adalah salah satu uji tegangan-regangan mekanik yang bertujuan mengetahui kekuatan bahan terhadap gaya tarik. Dengan melakukan uji tarik kita mengetahui bagaimana bahan tersebut bereaksi terhadap tenaga tarikan dan mengetahui sejauh mana material bertambah panjang. Bila kita terus menarik suatu bahan sampai putus, kita akan mendapatkan profil tarikan yang lengkap berupa kurva. Kurva ini menunjukkan hubungan antara gaya tarikan dengan perubahan panjang. Bentuk sampel uji secara umum digambarkan seperti Gambar 2.8 berikut :

18 Gambar 2.8 Uji tarik ASTM D 412 Tipe D Pengujian dilakukan sampai sampel uji patah, maka pada saat yang sama diamati pertambahan panjang yang dialami sampel uji. Kekuatan tarik diukur dari besarnya beban maksimum (F maks ) yang digunakan untuk memutuskan atau mematahkan spesimen bahan dengan luas awal A 0. Umumnya kekuatan tarik polimer lebih rendah dari baja 70 MPa. Hasil pengujian adalah grafik beban versus perpanjangan (elongasi). Tegangan (ζ) : (2.5) F maks = Beban yang diberikan arah tegak lurus terhadap penampang spesimen (N) A 0 = Luas penampang mula-mula spesimen sebelum diberikan pembebanan (m 2 ) ζ = Enginering Stress (Nm -2 ) Regangan (ε): (2.6) ε = Enginering Strain = Panjang mula-mula spesimen sebelum pembebanan Δl = Pertambahan panjang Hubungan antara tegangan dan regangan dirumuskan: (2.7) E = Modulus Elastisitas atau Modulus Young (Nm -2 ) ζ = Enginering Stress (Nm -2 ) ε = Enginering Strain DTA/TG (Differential Thermal Analysis/Thermo Gravimetric) DTA merupakan salah satu metode analisis termal untuk mengukur perubahan kandungan panas (entalpi) suatu material terhadap suhu. Pada analisis DTA sampel dan pembanding diberikan kalor dengan jumlah yang tetap. Pada saat sampel mengalami perubahan termal, maka akan terjadi penyerapan atau

19 pembebasan panas, maka akan terjadi perubahan suhu. Perbedaan suhu sampel dan pembanding diukur secara kontinu seiring dengan waktu T = T sampel - T pembanding (2.8) Kurva yang didapat merupakan plot antara suhu dengan perubahan panas. Pada proses endotermik (penyerapan panas) maka akan menyebabkan kurva membelok ke bawak (membentuk lembah), sedangkan pada proses eksotermik (pembebasan panas) akan menyebabkan kurva membentuk puncak (Daniels, 1973) Analisis TG berdasarkan pengukuran perubahan berat suatu material jika temperatur dinaikkan secar linear. Hasil yang didapat berupa kurva termogram temperatur dengan perubahan berat atau persen berat. Pengukuran dengan TGA umumnya digunakan untuk mengetahui suhu optimum pengeringan zat pada analisa gravimetri. Selain itu, analisis dengan TGA juga digunakan untuk memperkirakan reaksi dekomposisi yang berlangsung selama pemanasan. Pada penelitian ini, analisis DTA/TG digunakan untuk menentukan suhu kalsinasi serta ttransformasifasa pada hasil mixing (Daniels, 1973).

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA BAB 2 TINJAUAN PUSTAKA 2.1 Magnet Magnet atau magnit adalah suatu obyek yang mempunyai suatu medan magnet. Magnet dapat dibuat dari bahan besi, baja, dan campuran logam serta telah banyak dimanfaatkan

Lebih terperinci

BAB 2 STUDI PUSTAKA Magnet

BAB 2 STUDI PUSTAKA Magnet BAB 2 STUDI PUSTAKA 2.1. Magnet Magnet atau magnit adalah suatu obyek yang mempunyai suatu medan magnet. Magnet dapat dibuat dari bahan besi, baja, dan campuran logam serta telah banyak dimanfaatkan untuk

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA BAB 2 TINJAUAN PUSTAKA 2.1. Material Magnet Material magnet merupakan material (bahan) yang mempunyai medan magnet. Kata magnet berasal dari bahasa Yunani, magnitis lithos yang berarti batu Magnesian.

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Pengertian Magnet Magnet atau magnit adalah suatu obyek yang mempunyai suatu medan magnet. Asal kata magnet diduga dari kata magnesia yaitu nama suatu daerah di Asia kecil. Menurut

Lebih terperinci

KARAKTERISASI SIFAT MAGNETIK DAN SERAPAN GELOMBANG MIKRO BARIUM M-HEKSAFERIT BaFe 12 O 19

KARAKTERISASI SIFAT MAGNETIK DAN SERAPAN GELOMBANG MIKRO BARIUM M-HEKSAFERIT BaFe 12 O 19 KARAKTERISASI SIFAT MAGNETIK DAN SERAPAN GELOMBANG MIKRO BARIUM M-HEKSAFERIT BaFe 12 O 19 NOER AF IDAH 1109201712 DOSEN PEMBIMBING Prof. Dr. Darminto, MSc Pendahuluan: Smart magnetic materials Barium M-Heksaferit

Lebih terperinci

Gambar 2.1. momen magnet yang berhubungan dengan (a) orbit elektron (b) perputaran elektron terhadap sumbunya [1]

Gambar 2.1. momen magnet yang berhubungan dengan (a) orbit elektron (b) perputaran elektron terhadap sumbunya [1] BAB II TINJAUAN PUSTAKA 2.1. Momen Magnet Sifat magnetik makroskopik dari material adalah akibat dari momen momen magnet yang berkaitan dengan elektron-elektron individual. Setiap elektron dalam atom mempunyai

Lebih terperinci

Bahan Magnetik. oleh: Ichwan Yelfianhar (dirangkum dari berbagai sumber)

Bahan Magnetik. oleh: Ichwan Yelfianhar (dirangkum dari berbagai sumber) Bahan Magnetik oleh: Ichwan Yelfianhar (dirangkum dari berbagai sumber) Historis Magnet Gejala kemagnetan merupakan cikal bakal berkembangnya pengetahuan tentang kelistrikan. Ditemukan sejak 2000 tahun

Lebih terperinci

BAB I PENDAHULUAN 1.1 LATAR BELAKANG

BAB I PENDAHULUAN 1.1 LATAR BELAKANG 1 BAB I PENDAHULUAN 1.1 LATAR BELAKANG Magnet permanen adalah salah satu jenis material maju dengan aplikasi yang sangat luas dan strategis yang perlu dikembangkan di Indonesia. Efisiensi energi yang tinggi

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA BAB 2 TINJAUAN PUSTAKA 2.1 Pengertian Magnet Magnet atau magnit adalah suatu obyek yang mempunyai suatu medan magnet. Magnet dapat dibuat dari bahan besi, baja, dan campuran logam serta telah banyak dimanfaatkan

Lebih terperinci

BAB 2 Teori Dasar 2.1 Konsep Dasar

BAB 2 Teori Dasar 2.1 Konsep Dasar BAB 2 Teori Dasar 2.1 Konsep Dasar 2.1.1 Momen Magnet Arus yang mengalir pada suatu kawat yang lurus akan menghasilkan medan magnet yang melingkar di sekitar kawat, dan apabila kawat tersebut dilingkarkan

Lebih terperinci

BAB 1 PENDAHULUAN. Universitas Sumatera Utara

BAB 1 PENDAHULUAN. Universitas Sumatera Utara BAB 1 PENDAHULUAN 1.1 Latar Belakang Bahan magnetik digunakan pada peralatan tradisional dan modern. Magnet permanen telah digunakan manusia selama lebih dari 5000 tahun seperti medium perekam pada komputer

Lebih terperinci

Sifat sifat kemagnetan magnet permanen ( hard ferrite ) dipengaruhi oleh kemurnian bahan, ukuran butir (grain size), dan orientasi kristal.

Sifat sifat kemagnetan magnet permanen ( hard ferrite ) dipengaruhi oleh kemurnian bahan, ukuran butir (grain size), dan orientasi kristal. 2.1 Pengertian Magnet Magnet atau magnit adalah suatu obyek yang mempunyai suatu medan magnet. Magnet dapat dibuat dari bahan besi, baja, dan campuran logam serta telah banyak dimanfaatkan untuk industri

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1. Pengertian Magnet Magnet merupakan benda yang terbuat dari bahan tertentu dengan sifat mampu menarik bahan ferromagnetik dan ferrimagnetik. Nama magnet diambil dari nama daerah

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA 18 BAB 2 TINJAUAN PUSTAKA 2.1 Pengertian Magnet Secara Umum Magnet adalah suatu benda yang mempunyai medan magnet dan mempunyai gaya tolak menolak dan tarik menarik terhadap benda-benda tertentu. Efek

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA BAB 2 TINJAUAN PUSTAKA 2.1 Pengertian Magnet Magnet adalah suatu benda yang dibuat dari material tertentu yang menghasilkan suatu medan magnet. Medan magnet suatu magnet adalah daerah sekeliling magnet

Lebih terperinci

I. PENDAHULUAN. karakteristik dari pasir besi sudah diketahui, namun penelitian ini masih terus

I. PENDAHULUAN. karakteristik dari pasir besi sudah diketahui, namun penelitian ini masih terus I. PENDAHULUAN 1.1 Latar Belakang Riset pengolahan pasir besi di Indonesia saat ini telah banyak dilakukan, bahkan karakteristik dari pasir besi sudah diketahui, namun penelitian ini masih terus dilakukan

Lebih terperinci

BAB III METODOLOGI PENELITIAN

BAB III METODOLOGI PENELITIAN BAB III METODOLOGI PENELITIAN 3.1. METODE PENELITIAN Penelitian ini menggunakan metode eksperimen yang dilakukan melalui tiga tahap yaitu tahap pembuatan magnet barium ferit, tahap karakterisasi magnet

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar Belakang

BAB I PENDAHULUAN 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Bahan magnetik adalah suatu bahan yang memiliki sifat kemagnetan dalam komponen pembentuknya. Menurut sifatnya terhadap pengaruh kemagnetan, bahan dapat diklasifikasikan

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1. Tinjauan Pustaka Yaghtin (2013), melakukan penelitian tentang efek perlakuan panas terhadap sifat magnetik dari sebuah soft-magnetic composite (SMC-s) dengan dilapisi Al 2 O

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang

BAB I PENDAHULUAN Latar Belakang 1 BAB I PENDAHULUAN 1.1. Latar Belakang Material berukuran nano atau yang dikenal dengan istilah nanomaterial merupakan topik yang sedang ramai diteliti dan dikembangkan di dunia sains dan teknologi. Material

Lebih terperinci

BAHAN AJAR 1 MEDAN MAGNET MATERI FISIKA SMA KELAS XII

BAHAN AJAR 1 MEDAN MAGNET MATERI FISIKA SMA KELAS XII BAHAN AJAR 1 MEDAN MAGNET MATERI FISIKA SMA KELAS XII MEDAN MAGNET 1. Kemagnetan ( Magnetostatika ) Benda yang dapat menarik besi disebut MAGNET. Macam-macam bentuk magnet, antara lain : magnet batang

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Latar Belakang

BAB I PENDAHULUAN. 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Saat ini peran nanoteknologi begitu penting dalam pengembangan ilmu pengetahuan dan teknologi untuk kesejahteraan kehidupan manusia. Nanoteknologi merupakan bidang

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA BAB 2 TINJAUAN PUSTAKA 2.1 Sintesis Fe 2 O 3 Dari Pasir Besi Dalam rangka meningkatkan nilai ekonomis pasir besi dapat dilakukan dengan pengolahan mineral magnetik (Fe 3 O 4 ) yang diambil dari pasir besi

Lebih terperinci

BAB II STUDI PUSTAKA. Universitas Sumatera Utara

BAB II STUDI PUSTAKA. Universitas Sumatera Utara BAB II STUDI PUSTAKA 2.1.Meteran Air Ada banyak tipe meter air yang dibuat, salah satunya adalah multi jet. Meter air tipe ini digerakkan oleh putaran turbin di dalam rumah meter. Meteran ini bekerja berdasarkan

Lebih terperinci

BAB I PENDAHULUAN. Magnet keras ferit merupakan salah satu material magnet permanen yang

BAB I PENDAHULUAN. Magnet keras ferit merupakan salah satu material magnet permanen yang BAB I PENDAHULUAN 1.1. LATAR BELAKANG Magnet keras ferit merupakan salah satu material magnet permanen yang berperan penting dalam teknologi listrik, elektronik, otomotif, industri mesin, dan lain-lain.

Lebih terperinci

BAB IV HASIL DAN PEMBAHASAN

BAB IV HASIL DAN PEMBAHASAN BAB IV HASIL DAN PEMBAHASAN 4.1. XRD Uji XRD menggunakan difraktometer type Phylips PW3710 BASED dilengkapi dengan perangkat software APD (Automatic Powder Difraction) yang ada di Laboratorium UI Salemba

Lebih terperinci

MAGNET - Materi Ipa Fisika SMP Magnet magnítis líthos Magnet Elementer teori magnet elementer.

MAGNET - Materi Ipa Fisika SMP Magnet magnítis líthos Magnet Elementer teori magnet elementer. MAGNET - Materi Ipa Fisika SMP Magnet merupakan suatu benda yang dapat menimbulkan gejala berupa gaya, baik gaya tarik maupun gaya tolak terhadap jenis logam tertentu), misalnya : besi dan baja. Istilah

Lebih terperinci

HASIL DAN PEMBAHASAN Sintesis Partikel Magnetik Terlapis Polilaktat (PLA)

HASIL DAN PEMBAHASAN Sintesis Partikel Magnetik Terlapis Polilaktat (PLA) 10 1. Disiapkan sampel yang sudah dikeringkan ± 3 gram. 2. Sampel ditaburkan ke dalam holder yang berasal dari kaca preparat dibagi dua, sampel ditaburkan pada bagian holder berukuran 2 x 2 cm 2, diratakan

Lebih terperinci

Asyer Paulus Mahasiswa Jurusan Teknik Material dan Metalurgi Fakultas Teknologi Industri ITS

Asyer Paulus Mahasiswa Jurusan Teknik Material dan Metalurgi Fakultas Teknologi Industri ITS PENGARUH TEKANAN KOMPAKSI DAN WAKTU PENAHANAN TEMPERATUR SINTERING TERHADAP SIFAT MAGNETIK DAN KEKERASAN PADA PEMBUATAN IRON SOFT MAGNETIC DARI SERBUK BESI Asyer Paulus Mahasiswa Jurusan Teknik Material

Lebih terperinci

BAB II TINJAUAN PUSTAKA. sama yaitu isolator. Struktur amorf pada gelas juga disebut dengan istilah keteraturan

BAB II TINJAUAN PUSTAKA. sama yaitu isolator. Struktur amorf pada gelas juga disebut dengan istilah keteraturan 5 BAB II TINJAUAN PUSTAKA 2.1. Material Amorf Salah satu jenis material ini adalah gelas atau kaca. Berbeda dengan jenis atau ragam material seperti keramik, yang juga dikelompokan dalam satu definisi

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Magnet Keramik Bahan keramik yang bersifat magnetik umumnya adalah golongan ferit, yang merupakan oksida yang disusun oleh hematit sebagai komponen utamanya. Bahan ini menunjukkan

Lebih terperinci

Bahan Listrik. Bahan Magnet

Bahan Listrik. Bahan Magnet Bahan Listrik Bahan Magnet Sejarah Magnet Kata magnet berasal dari bahasa yunani magnitis lithos yang berarti batu magnesia. Magnesia adalah nama sebuah wilayah di Yunani pada masa lalu yang kini bernama

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA BAB 2 TINJAUAN PUSTAKA 2.1 Magnet Secara Umum Magnet atau magnit adalah suatu obyek yang mempunyai suatu medan magnet. Kata magnet (magnit) berasal dari bahasa Yunani, magnitis lithos yang berarti batu

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA 4 BAB 2 TINJAUAN PUSTAKA 2.1 DEFINISI MAGNET SECARA UMUM Magnet dapat dibuat dari bahan besi, baja, dan campuran logam serta telah banyak dimanfaatkan untuk industri otomotif dan lainnya. Sebuah magnet

Lebih terperinci

HASIL DAN PEMBAHASAN. dengan menggunakan kamera yang dihubungkan dengan komputer.

HASIL DAN PEMBAHASAN. dengan menggunakan kamera yang dihubungkan dengan komputer. 10 dengan menggunakan kamera yang dihubungkan dengan komputer. HASIL DAN PEMBAHASAN Hasil sintesis paduan CoCrMo Pada proses preparasi telah dihasilkan empat sampel serbuk paduan CoCrMo dengan komposisi

Lebih terperinci

MEDAN MAGNET KEMAGNETAN ( MAGNETOSTATIKA )

MEDAN MAGNET KEMAGNETAN ( MAGNETOSTATIKA ) MEDAN MAGNET KEMAGNETAN ( MAGNETOSTATIKA ) Benda yang dapat menarik besi disebut MAGNET. Macam-macam bentuk magnet, antara lain : magnet batang magnet ladam magnet jarum Magnet dapat diperoleh dengan cara

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA BAB 2 TINJAUAN PUSTAKA 2.1 Pengertian magnet Magnet atau magnit adalah suatu obyek yang mempunyai suatu medan magnet. Asal kata magnet diduga dari kata magnesia yaitu nama suatu daerah di Asia kecil. Menurut

Lebih terperinci

ILMU BAHAN LISTRIK_edysabara. 1 of 6. Pengantar

ILMU BAHAN LISTRIK_edysabara. 1 of 6. Pengantar ILMU BAHAN LISTRIK_edysabara. 1 of 6 Pengantar Bahan listrik dalam sistem tanaga listrik merupakan salah satu elemen penting yang akan menentukan kualitas penyaluran energi listrik itu sendiri. Bahan listrik

Lebih terperinci

HASIL DAN PEMBAHASAN. Struktur Karbon Hasil Karbonisasi Hidrotermal (HTC)

HASIL DAN PEMBAHASAN. Struktur Karbon Hasil Karbonisasi Hidrotermal (HTC) 39 HASIL DAN PEMBAHASAN Struktur Karbon Hasil Karbonisasi Hidrotermal (HTC) Hasil karakterisasi dengan Difraksi Sinar-X (XRD) dilakukan untuk mengetahui jenis material yang dihasilkan disamping menentukan

Lebih terperinci

Fisika Ujian Akhir Nasional Tahun 2003

Fisika Ujian Akhir Nasional Tahun 2003 Fisika Ujian Akhir Nasional Tahun 2003 UAN-03-01 Perhatikan tabel berikut ini! No. Besaran Satuan Dimensi 1 Momentum kg. ms 1 [M] [L] [T] 1 2 Gaya kg. ms 2 [M] [L] [T] 2 3 Daya kg. ms 3 [M] [L] [T] 3 Dari

Lebih terperinci

KEMAGNETAN. Setelah mempelajari topik ini Anda dapat :

KEMAGNETAN. Setelah mempelajari topik ini Anda dapat : KEMAGNETAN a. Tujuan kegiatan pembelajaran Setelah mempelajari topik ini Anda dapat : Menjelaskan medan magnet yang mengelilingi sebuah magnet. Menjelaskan bagaimana sebuah batang besi dibuat magnet dengan

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA BAB 2 TINJAUAN PUSTAKA 2.1 Mill Scale Hingga saat ini bahan-bahan oksida besi masih menjadi salah satu fokus kajian penting dalam kegiatan riset. Secara alamiah bahan-bahan tersebut ditemukan dalam bentuk

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA 5 BAB 2 TINJAUAN PUSTAKA 2.1 Pengertian Magnet secara umum Magnet adalah suatu benda yang mempunyai medan magnet dan mempunyai gaya tolak menolak dan tarik menarik terhadap benda-benda tertentu. Efek tarik

Lebih terperinci

LISTRIK STATIS. Listrik statis adalah energi yang dikandung oleh benda yang bermuatan listrik.

LISTRIK STATIS. Listrik statis adalah energi yang dikandung oleh benda yang bermuatan listrik. KELISTRIKAN DAN KEMAGNETAN SITI MAESYAROH STKIP INVADA 2015 LISTRIK adalah adalah sesuatu yang memiliki muatan positif (proton) dan muatan negatif (elektron) yang mengalir melalui penghantar (konduktor)

Lebih terperinci

BAB I PENDAHULUAN 1.1. Latar Belakang

BAB I PENDAHULUAN 1.1. Latar Belakang 1 BAB I PENDAHULUAN 1.1. Latar Belakang Nanopartikel merupakan suatu partikel dengan ukuran nanometer, yaitu sekitar 1 100 nm (Hosokawa, dkk. 2007). Nanopartikel menjadi kajian yang sangat menarik, karena

Lebih terperinci

d) Dipol magnet merupakan sebuah magnet dipol, akselerator partikel, magnet yang dibangun untuk menciptakan medan magnet homogen dari jarak tertentu.

d) Dipol magnet merupakan sebuah magnet dipol, akselerator partikel, magnet yang dibangun untuk menciptakan medan magnet homogen dari jarak tertentu. Tugas Perbaikan Mid Sifat Magnetik Batuan Soal : 1. Jelaskan tentang : a) Magnetisasi b) Permeabilitas Magnetic c) Suseptibilitas Magnetik d) Dipol Magnetik e) Suhu Curie f) Histeresis 2. Ceritakanlah

Lebih terperinci

Jurusan Teknik Pertambangan Universitas Vetran Republik Indonesia

Jurusan Teknik Pertambangan Universitas Vetran Republik Indonesia Jurusan Teknik Pertambangan Universitas Vetran Republik Indonesia Sub Pokok Bahasan : Magnet Bumi Medan Magnet Luar Akuisisi dan Reduksi Data Pengolahan Data MetodaInterpretasi Metode Geomagnetik didasarkan

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar Belakang

BAB I PENDAHULUAN 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Nanoteknologi merupakan ilmu dan rekayasa dalam penciptaan material, struktur fungsional, maupun piranti dalam skala nanometer (Abdullah & Khairurrijal, 2009). Material

Lebih terperinci

PENGARUH WAKTU MILLING TERHADAP SIFAT FISIS, SIFAT MAGNET DAN STRUKTUR KRISTAL PADA MAGNET BARIUM HEKSAFERIT SKRIPSI EKA F RAHMADHANI

PENGARUH WAKTU MILLING TERHADAP SIFAT FISIS, SIFAT MAGNET DAN STRUKTUR KRISTAL PADA MAGNET BARIUM HEKSAFERIT SKRIPSI EKA F RAHMADHANI PENGARUH WAKTU MILLING TERHADAP SIFAT FISIS, SIFAT MAGNET DAN STRUKTUR KRISTAL PADA MAGNET BARIUM HEKSAFERIT SKRIPSI EKA F RAHMADHANI 130801041 DEPARTEMEN FISIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN

Lebih terperinci

Bab II Tinjauan Pustaka

Bab II Tinjauan Pustaka Bab II Tinjauan Pustaka II.1 Mineral Magnetik Alamiah Mineral magnetik di alam dapat digolongkan dalam keluarga oksida besi-titanium, sulfida besi dan oksihidroksida besi. Keluarga oksida besi-titanium

Lebih terperinci

BAB I PENDAHULUAN 1.1. Latar Belakang

BAB I PENDAHULUAN 1.1. Latar Belakang BAB I PENDAHULUAN 1.1. Latar Belakang Nanomaterial memiliki sifat unik yang sangat cocok untuk diaplikasikan dalam bidang industri. Sebuah material dapat dikatakan sebagai nanomaterial jika salah satu

Lebih terperinci

19/11/2016. MAGNET Benda yang memiliki sifat dapat menarik besi atau baja Penggolongan bahan secara makroskopik. Sifat-sifat magnet.

19/11/2016. MAGNET Benda yang memiliki sifat dapat menarik besi atau baja Penggolongan bahan secara makroskopik. Sifat-sifat magnet. MAGNET Benda yang memiliki sifat dapat menarik besi atau baja Penggolongan bahan secara makroskopik Magnetik Non Magnetik KEMAGNETAN Penggolongan bahan secara mikroskopik Bila ditinjau secara mikroskopik

Lebih terperinci

BAB I PENDAHULUAN I.1 Latar Belakang Masalah

BAB I PENDAHULUAN I.1 Latar Belakang Masalah BAB I PENDAHULUAN I.1 Latar Belakang Masalah Perkembangan nanoteknologi telah mendapat perhatian besar dari para ilmuwan dan peneliti. Nanoteknologi secara umum dapat didefinisikan sebagai teknologi perancangan,

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA BAB 2 TINJAUAN PUSTAKA 2.1Pengertian Magnet Magnet adalah suatu materi yang mempunyai suatu medan magnet. Magnet juga merupakan material maju yang sangat penting untuk beragam aplikasi teknologi canggih,

Lebih terperinci

BAB 1 PENDAHULUAN. Universitas Sumatera Utara

BAB 1 PENDAHULUAN. Universitas Sumatera Utara BAB 1 PENDAHULUAN 1.1 Latar Belakang Kebutuhan akan magnet permanen setiap tahun semakin meningkat terutama untuk kebutuhan hardware komputer dan energi. Suatu magnet permanen harus mampu menghasilkan

Lebih terperinci

SINTESIS DAN KARAKTERISASI XRD MULTIFERROIK BiFeO 3 DIDOPING Pb

SINTESIS DAN KARAKTERISASI XRD MULTIFERROIK BiFeO 3 DIDOPING Pb SINTESIS DAN KARAKTERISASI XRD MULTIFERROIK BiFeO 3 DIDOPING Pb Oleh: Tahta A 1, Darminto 1, Malik A 1 Jurusan Fisika Fakultas Matematika dan Ilmu Pengetahuan Alam Institut Teknologi Sepuluh Nopember Surabaya,

Lebih terperinci

PENGARUH KOMPOSISI BAHAN BAKU SECARA STOIKIOMETRI DAN NON STOIKIOMETRI TERHADAP SIFAT FISIS DAN MAGNET PADA PEMBUATAN MAGNET PERMANEN BaO.

PENGARUH KOMPOSISI BAHAN BAKU SECARA STOIKIOMETRI DAN NON STOIKIOMETRI TERHADAP SIFAT FISIS DAN MAGNET PADA PEMBUATAN MAGNET PERMANEN BaO. PENGARUH KOMPOSISI BAHAN BAKU SECARA STOIKIOMETRI DAN NON STOIKIOMETRI TERHADAP SIFAT FISIS DAN MAGNET PADA PEMBUATAN MAGNET PERMANEN BaO.6Fe 2 O 3 Kharismayanti 1, Syahrul Humaidi 1, Prijo Sardjono 2

Lebih terperinci

KEMAGNETAN. Magnet. Dapat dibedakan menjadi. Cara membuat bentuk Cara membuat

KEMAGNETAN. Magnet. Dapat dibedakan menjadi. Cara membuat bentuk Cara membuat KEMAGNETAN PETA KONSEP Magnet Dapat dibedakan menjadi Magnet Tetap Magnet Sementara Cara membuat bentuk Cara membuat Besi/ baja digosok dengan magnet Aliran arus listrik Induksi Magnetik Batang Silinder

Lebih terperinci

Karya Tulis Ilmiah MAGNET

Karya Tulis Ilmiah MAGNET Karya Tulis Ilmiah MAGNET Ditulis oleh : Dina Kurnia Putri 1231120065 POLITEKNIK NEGERI MALANG JURUSAN TEKNIK ELEKTRO PROGRAM STUDI TEKNIK LISTRIK MALANG 2013 1 DAFTAR ISI Daftar Isi...2 Kata Pengantar...3

Lebih terperinci

Bab IV Hasil dan Pembahasan

Bab IV Hasil dan Pembahasan Bab IV Hasil dan Pembahasan IV.1 Larutan Garam Klorida Besi dari Pasir Besi Hasil reaksi bahan alam pasir besi dengan asam klorida diperoleh larutan yang berwarna coklat kekuningan, seperti ditunjukkan

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA 5 BAB 2 TINJAUAN PUSTAKA 2.1 Pengertian Magnet Magnet adalah suatu benda yang mempunyai medan magnet dan mempunyai gaya tolak menolak dan tarik menarik terhadap benda-benda teretentu. Efek tarik menarik

Lebih terperinci

Bab IV Hasil dan Pembahasan

Bab IV Hasil dan Pembahasan Bab IV Hasil dan Pembahasan IV.1 Serbuk Awal Membran Keramik Material utama dalam penelitian ini adalah serbuk zirkonium silikat (ZrSiO 4 ) yang sudah ditapis dengan ayakan 400 mesh sehingga diharapkan

Lebih terperinci

MAGNET. Benda yang memiliki sifat dapat menarik besi atau baja Penggolongan bahan secara makroskopik

MAGNET. Benda yang memiliki sifat dapat menarik besi atau baja Penggolongan bahan secara makroskopik MAGNET Benda yang memiliki sifat dapat menarik besi atau baja Penggolongan bahan secara makroskopik Magnetik Non Magnetik Penggolongan bahan secara mikroskopik Bila ditinjau secara mikroskopik ( atom )

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar Belakang

BAB I PENDAHULUAN 1.1 Latar Belakang 1 BAB I PENDAHULUAN 1.1 Latar Belakang Nanoteknologi merupakan penelitian dan pengembangan teknologi pada level atom, molekul dan makromolekul, dengan rentang skala 1-100 nm. Nanoteknologi dikembangkan

Lebih terperinci

MATA PELAJARAN WAKTU PELAKSANAAN PETUNJUK UMUM

MATA PELAJARAN WAKTU PELAKSANAAN PETUNJUK UMUM MATA PELAJARAN Mata Pelajaran Jenjang Program Studi : Fisika : SMA/MA : IPA Hari/Tanggal : Kamis, 3 April 009 Jam : 08.00 0.00 WAKTU PELAKSANAAN PETUNJUK UMUM. Isikan identitas Anda ke dalam Lembar Jawaban

Lebih terperinci

MATA PELAJARAN WAKTU PELAKSANAAN PETUNJUK UMUM

MATA PELAJARAN WAKTU PELAKSANAAN PETUNJUK UMUM MATA PELAJARAN Mata Pelajaran Jenjang Program Studi : Fisika : SMA/MA : IPA Hari/Tanggal : Kamis, 3 April 009 Jam : 08.00 0.00 WAKTU PELAKSANAAN PETUNJUK UMUM. Isikan identitas Anda ke dalam Lembar Jawaban

Lebih terperinci

01 : STRUKTUR MIKRO. perilaku gugus-gugus atom tersebut (mungkin mempunyai struktur kristalin yang teratur);

01 : STRUKTUR MIKRO. perilaku gugus-gugus atom tersebut (mungkin mempunyai struktur kristalin yang teratur); 01 : STRUKTUR MIKRO Data mengenai berbagai sifat logam yang mesti dipertimbangkan selama proses akan ditampilkan dalam berbagai sifat mekanik, fisik, dan kimiawi bahan pada kondisi tertentu. Untuk memanfaatkan

Lebih terperinci

MEDAN MAGNET SUGIYO,S.SI.M.KOM

MEDAN MAGNET SUGIYO,S.SI.M.KOM MEDAN MAGNET SUGIYO,S.SI.M.KOM PENDAHULUAN Magnet dalam teknologi terapan KEMAGNETAN Macam macam bentuk magnet Magnet batang, U bulat jarum 6.2 HUKUM COLUMB 6.3 PENGERTIAN MEDAN MAGNET Ruangan disekitar

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA 20 BAB II TINJAUAN PUSTAKA 2.1 Barium Ferit Magnet keras (ferit) yang banyak digunakan biasanya memiliki komposisi dari barium atau stronsium dengan oksida besi yang telah dikembangkan sejak 1960. Bahan

Lebih terperinci

MEDAN MAGNET OLEH: ANDI SULIANA (15B08050) Program Studi Pendidikan Fisika Program Pascasarjana UNM 2016

MEDAN MAGNET OLEH: ANDI SULIANA (15B08050) Program Studi Pendidikan Fisika Program Pascasarjana UNM 2016 MEDAN MAGNET OLEH: ANDI SULIANA (15B08050) Program Studi Pendidikan Fisika Program Pascasarjana UNM 2016 Magnet dapat Menarik Benda-benda dari Bahan tertentu Asal-usul Kemagnetan Kata magnet berasal dari

Lebih terperinci

SINTESIS DAN KARAKTERISASI SIFAT MAGNETIK BARIUM M-HEKSAFERRIT DENGAN DOPING ION Zn PADA VARIASI TEMPERATUR RENDAH

SINTESIS DAN KARAKTERISASI SIFAT MAGNETIK BARIUM M-HEKSAFERRIT DENGAN DOPING ION Zn PADA VARIASI TEMPERATUR RENDAH SINTESIS DAN KARAKTERISASI SIFAT MAGNETIK BARIUM M-HEKSAFERRIT DENGAN DOPING ION Zn PADA VARIASI TEMPERATUR RENDAH ARIZA NOLY KOSASIH 1108 100 025 PEMBIMBING : Dr. M. ZAINURI M,Si LATAR BELAKANG Barium

Lebih terperinci

MEDAN MAGNET DAN ELEKTROMAGNET

MEDAN MAGNET DAN ELEKTROMAGNET BAB II MEDAN MAGNET DAN ELEKTROMAGNET Kompetensi dasar : Mengenal gejala kemagnetan Indikator Oersted : - Konsep medan magnet oleh arus listrik didapatkan dari percobaan - Konsep magnet dan medan magnet

Lebih terperinci

BAB I PENDAHULUAN 1.1. Latar Belakang

BAB I PENDAHULUAN 1.1. Latar Belakang 1 BAB I PENDAHULUAN 1.1. Latar Belakang Nano material memiliki sifat mekanik, optik, listrik, termal, dan magnetik yang unik. Sifat sifat unik tersebut tidak ditemukan pada material yang berukuran bulk

Lebih terperinci

IR. STEVANUS ARIANTO 1

IR. STEVANUS ARIANTO 1 8/7/17 OLEH : STEVANUS ARIANTO DEFINISI DAN MACAM MAGNET KUTU MAGNET GARIS GAYA MAGNET RAPAT GARIS GAYA DAN KUAT MEDAN DIAMAGNETIK DAN PARAMAGNETIK MEDAN MAGNETIK DISEKITAR ARUS LISTRIK POLA GARIS GAYA

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA BAB 2 TINJAUAN PUSTAKA 2.1. Fe 2 O 3 dari Pasir Besi Partikel nano magnetik Fe 3 O 4 merupakan salah satu material nano yang telah banyak dikembangkan. Untuk berbagai aplikasi seperti ferrogel, penyerap

Lebih terperinci

BAB IV HASIL PENELITIAN DAN ANALISIS

BAB IV HASIL PENELITIAN DAN ANALISIS BAB IV HASIL PENELITIAN DAN ANALISIS 4.1 Analisis Hasil Pengujian TGA - DTA Gambar 4.1 memperlihatkan kuva DTA sampel yang telah di milling menggunakan high energy milling selama 6 jam. Hasil yang didapatkan

Lebih terperinci

PEMERINTAH KABUPATEN LOMBOK UTARA DINAS PENDIDIKAN PEMUDA DAN OLAHRAGA MUSYAWARAH KERJA KEPALA SEKOLAH (MKKS) SMA TRY OUT UJIAN NASIONAL 2010

PEMERINTAH KABUPATEN LOMBOK UTARA DINAS PENDIDIKAN PEMUDA DAN OLAHRAGA MUSYAWARAH KERJA KEPALA SEKOLAH (MKKS) SMA TRY OUT UJIAN NASIONAL 2010 PEMERINTAH KABUPATEN LOMBOK UTARA DINAS PENDIDIKAN PEMUDA DAN OLAHRAGA MUSYAWARAH KERJA KEPALA SEKOLAH (MKKS) SMA TRY OUT UJIAN NASIONAL 200 Mata Pelajaran : Fisika Kelas : XII IPA Alokasi Waktu : 20 menit

Lebih terperinci

BAB I PENDAHULUAN 1.1. Latar Belakang

BAB I PENDAHULUAN 1.1. Latar Belakang 1 BAB I PENDAHULUAN 1.1. Latar Belakang Riset bidang material skala nanometer sangat pesat dilakukan di seluruh dunia saat ini. Jika diamati, hasil akhir dari riset tersebut adalah mengubah teknologi yang

Lebih terperinci

SIMAK UI Fisika

SIMAK UI Fisika SIMAK UI 2016 - Fisika Soal Halaman 1 01. Fluida masuk melalui pipa berdiameter 20 mm yang memiliki cabang dua pipa berdiameter 10 mm dan 15 mm. Pipa 15 mm memiliki cabang lagi dua pipa berdiameter 8 mm.

Lebih terperinci

Medan Magnet 1 MEDAN MAGNET

Medan Magnet 1 MEDAN MAGNET Medan Magnet 1 MEDAN MAGNET KEMAGNETAN ( MAGNETOSTATKA ) Benda yang dapat menarik besi disebut MAGNET. Macam-macam bentuk magnet, antara lain : magnet batang magnet ladam magnet jarum Magnet dapat diperoleh

Lebih terperinci

Magnet Rudi Susanto 1

Magnet Rudi Susanto 1 Magnet Rudi Susanto 1 MAGNET Sifat kemagnetan telah dikenal ribuan tahun yang lalu ketika ditemukan sejenis batu yang dapat menarik besi Dengan semakin berkembangnya ilmu pengetahuan, orang telah dapat

Lebih terperinci

BAB 1 PENDAHULUAN. Universitas Sumatera Utara

BAB 1 PENDAHULUAN. Universitas Sumatera Utara BAB 1 PENDAHULUAN 1.1 Latar Belakang Pasir besi umumnya ditambang di areal sungai dasar atau tambang pasir (quarry) di pegunungan, tetapi hanya beberapa saja pegunungan di Indonesia yang banyak mengandung

Lebih terperinci

TOPIK 8. Medan Magnetik. Fisika Dasar II TIP, TP, UGM 2009 Ikhsan Setiawan, M.Si.

TOPIK 8. Medan Magnetik. Fisika Dasar II TIP, TP, UGM 2009 Ikhsan Setiawan, M.Si. TOPIK 8 Medan Magnetik Fisika Dasar II TIP, TP, UGM 2009 Ikhsan Setiawan, M.Si. ikhsan_s@ugm.ac.id Pencetak sidik jari magnetik. Medan Magnetik Medan dan Gaya Megnetik Gaya Magnetik pada Konduktor Berarus

Lebih terperinci

D. I, U, X E. X, I, U. D. 5,59 x J E. 6,21 x J

D. I, U, X E. X, I, U. D. 5,59 x J E. 6,21 x J 1. Bila sinar ultra ungu, sinar inframerah, dan sinar X berturut-turut ditandai dengan U, I, dan X, maka urutan yang menunjukkan paket (kuantum) energi makin besar ialah : A. U, I, X B. U, X, I C. I, X,

Lebih terperinci

Mata Pelajaran : FISIKA

Mata Pelajaran : FISIKA Mata Pelajaran : FISIKA Kelas/ Program : XII IPA Waktu : 90 menit Petunjuk Pilihlah jawaban yang dianggap paling benar pada lembar jawaban yang tersedia (LJK)! 1. Hasil pengukuran tebal meja menggunakan

Lebih terperinci

Erfan Handoko 1, Iwan Sugihartono 1, Zulkarnain Jalil 2, Bambang Soegijono 3

Erfan Handoko 1, Iwan Sugihartono 1, Zulkarnain Jalil 2, Bambang Soegijono 3 SINTESIS DAN KARAKTERISASI MATERIAL MAGNET HIBRIDA BaFe 12 O 19 - Sm 2 Co 17 Erfan Handoko 1, Iwan Sugihartono 1, Zulkarnain Jalil 2, Bambang Soegijono 3 1 Jurusan Fisika, Fakultas Matematika dan Ilmu

Lebih terperinci

BAB III METODOLOGI PENELITIAN

BAB III METODOLOGI PENELITIAN BAB III METODOLOGI PENELITIAN 3.1 Alat dan Bahan 3.1.1 Alat Alat-alat yang dipergunakan dalam pembuatan magnet permanen adalah : a. Hydraulic press (Hydraulic Jack). Berfungsi untuk menekan pada proses

Lebih terperinci

02 03 : CACAT KRISTAL LOGAM

02 03 : CACAT KRISTAL LOGAM 02 03 : CACAT KRISTAL LOGAM 2.1. Cacat Kristal Diperlukan berjuta-juta atom untuk membentuk satu kristal. Oleh karena itu, tidak mengherankan bila terdapat cacat atau ketidakteraturan dalam tubuh kristal.

Lebih terperinci

FISIKA IPA SMA/MA 1 D Suatu pipa diukur diameter dalamnya menggunakan jangka sorong diperlihatkan pada gambar di bawah.

FISIKA IPA SMA/MA 1 D Suatu pipa diukur diameter dalamnya menggunakan jangka sorong diperlihatkan pada gambar di bawah. 1 D49 1. Suatu pipa diukur diameter dalamnya menggunakan jangka sorong diperlihatkan pada gambar di bawah. Hasil pengukuran adalah. A. 4,18 cm B. 4,13 cm C. 3,88 cm D. 3,81 cm E. 3,78 cm 2. Ayu melakukan

Lebih terperinci

PR ONLINE MATA UJIAN: FISIKA (KODE A07)

PR ONLINE MATA UJIAN: FISIKA (KODE A07) PR ONLINE MATA UJIAN: FISIKA (KODE A07) 1. Gambar di samping ini menunjukkan hasil pengukuran tebal kertas karton dengan menggunakan mikrometer sekrup. Hasil pengukurannya adalah (A) 4,30 mm. (D) 4,18

Lebih terperinci

Fisika EBTANAS Tahun 1996

Fisika EBTANAS Tahun 1996 Fisika EBTANAS Tahun 1996 EBTANAS-96-01 Di bawah ini yang merupakan kelompok besaran turunan A. momentum, waktu, kuat arus B. kecepatan, usaha, massa C. energi, usaha, waktu putar D. waktu putar, panjang,

Lebih terperinci

BAB I PENDAHULUAN. (Guimaraes, 2009).

BAB I PENDAHULUAN. (Guimaraes, 2009). BAB I PENDAHULUAN 1.1. Latar Belakang Nanoteknologi adalah teknologi pembuatan dan penggunaan material yang memiliki ukuran nanometer dengan skala (1-100 nm). Perubahan ukuran bulk ke nanomaterial mengakibatkan

Lebih terperinci

Magnet dapat menarik benda-benda dari bahan tertentu

Magnet dapat menarik benda-benda dari bahan tertentu BENDA MAGNET Magnet dapat menarik benda-benda dari bahan tertentu MAGNET BUATAN MAGNET BUMI Kemagnetan Material Ada 2 macam sifat magnet yang dipunyai benda / material : 1) buatan dan 2) alamiah. Magnet

Lebih terperinci

LATIHAN UJIAN NASIONAL

LATIHAN UJIAN NASIONAL LATIHAN UJIAN NASIONAL 1. Seorang siswa menghitung luas suatu lempengan logam kecil berbentuk persegi panjang. Siswa tersebut menggunakan mistar untuk mengukur panjang lempengan dan menggunakan jangka

Lebih terperinci

BAB 3METODOLOGI PENELITIAN

BAB 3METODOLOGI PENELITIAN BAB 3METODOLOGI PENELITIAN 3.1 Tempat dan Waktu Penelitian 3.1.1 Tempat Penelitian Pusat Penelitian Pengembangan Fisika (P2F) Lembaga Ilmu Pengetahuan Indonesia (LIPI) PUSPIPTEK, Serpong. 3.1.2 Waktu Penelitian

Lebih terperinci

LOGO. STUDI EKSPANSI TERMAL KERAMIK PADAT Al 2(1-x) Mg x Ti 1+x O 5 PRESENTASI TESIS. Djunaidi Dwi Pudji Abdullah NRP

LOGO. STUDI EKSPANSI TERMAL KERAMIK PADAT Al 2(1-x) Mg x Ti 1+x O 5 PRESENTASI TESIS. Djunaidi Dwi Pudji Abdullah NRP LOGO PRESENTASI TESIS STUDI EKSPANSI TERMAL KERAMIK PADAT Al 2(1-x) Mg x Ti 1+x O 5 Djunaidi Dwi Pudji Abdullah NRP. 1109201006 DOSEN PEMBIMBING: Drs. Suminar Pratapa, M.Sc, Ph.D. JURUSAN FISIKA FAKULTAS

Lebih terperinci

BAB II MOTOR ARUS SEARAH. searah menjadi energi mekanis yang berupa putaran. Pada prinsip

BAB II MOTOR ARUS SEARAH. searah menjadi energi mekanis yang berupa putaran. Pada prinsip BAB II MOTOR ARUS SEARAH 2.1. Umum Motor arus searah (DC) adalah mesin yang mengubah energi listrik arus searah menjadi energi mekanis yang berupa putaran. Pada prinsip pengoperasiannya, motor arus searah

Lebih terperinci

MOTTO DAN PERSEMBAHAN...

MOTTO DAN PERSEMBAHAN... DAFTAR ISI HALAMAN JUDUL... i HALAMAN PENGESAHAN... ii PERNYATAAN... iii MOTTO DAN PERSEMBAHAN... iv PRAKATA... v DAFTAR ISI... vii DAFTAR GAMBAR... ix DAFTAR TABEL... xii INTISARI... xiii ABSTRACT...

Lebih terperinci

PENGERTIAN. Kata magnet (magnit) berasal dari bahasa Yunani magnítis líthos yang berarti batu Magnesian. Apakah magnet itu?

PENGERTIAN. Kata magnet (magnit) berasal dari bahasa Yunani magnítis líthos yang berarti batu Magnesian. Apakah magnet itu? KEMAGNETAN PENGERTIAN Apakah magnet itu? Kata magnet (magnit) berasal dari bahasa Yunani magnítis líthos yang berarti batu Magnesian Magnet adalah benda-benda yang dapat menarik besi atau baja yang berada

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar Belakang Masalah

BAB I PENDAHULUAN 1.1 Latar Belakang Masalah BAB I PENDAHULUAN 1.1 Latar Belakang Masalah Nanoteknologi adalah ilmu dan rekayasa dalam penciptaan material dan struktur fungsional dalam skala nanometer. Perkembangan nanoteknologi selalu dikaitkan

Lebih terperinci