BAB 2 LANDASAN TEORI

Save this PDF as:
 WORD  PNG  TXT  JPG

Ukuran: px
Mulai penontonan dengan halaman:

Download "BAB 2 LANDASAN TEORI"

Transkripsi

1 BAB 2 LANDASAN TEORI Pada bagian ini diberikan beberapa konsep dasar yang menjadi landasan berpikir dalam penelitian ini, seperti pengertian persediaan, metode program linier Persediaan Pengertian Persediaan Persediaan adalah sumber daya menganggur (idle resources) yang menunggu proses lebih lanjut. Yang dimaksud dengan proses lebih lanjut adalah berupa kegiatan produksi pada sistem manufaktur, kegiatan pemasaran pada sistem distribusi ataupun kegiatan konsumsi pangan pada sistem rumah tangga (Nasution, 2008). Setiap perusahaan perlu mengadakan persediaan untuk menjamin kelangsungan hidup usahanya. Untuk mengadakan persediaan, dibutuhkan sejumlah uang yang diinvestasikan dalam persediaan tersebut. Oleh karena itu, setiap perusahaan haruslah dapat mempertahankan suatu jumlah persediaan optimum yang dapat menjamin kebutuhan bagi kelancaran kegiatan perusahaan dalam jumlah dan mutu yang tepat dengan biaya yang serendah-rendahnya. Keberadaan persediaan atau sumber daya menganggur ini dalam suatu sistem mempunyai suatu tujuan tertentu. Alasan utamanya adalah karena sumber daya tertentu tidak bisa didatangkan ketika sumber daya tersebut dibutuhkan. Sehingga, untuk menjamin tersedianya sumber daya tersebut perlu adanya persediaan yang siap digunakan ketika dibutuhkan. Adanya persediaan menimbulkan konsekuensi berupa resiko-resiko tertentu yang harus ditanggung perusahaan akibat adanya persediaan tersebut. Persediaan yang disimpan

2 perusahaan bisa saja rusak sebelum digunakan. Selain itu perusahaan juga harus menanggung biaya-biaya yang timbul akibat adanya persediaan tersebut Jenis-jenis Persediaan Persediaan diklasifikasikan sebagai berikut: 1. Persediaan barang dagang Barang yang ada di gudang dibeli oleh pengecer atau perusahaan dagang untuk dijual kembali. Barang yang diperoleh untuk dijual kembali diperoleh secara fisik tidak diubah kembali, barang tersebut tetap dalam bentuk yang telah jadi ketika meninggalkan pabrik pembuatnya. 2. Persediaan manufaktur a. Persediaan bahan baku Barang berwujud yang dibeli atau diperoleh dengan cara lain (misalnya dengan menambang) dan disimpan untuk penggunaan langsung dalam membuat barang untuk dijual kembali. Bagian dari suku cadang yang diproduksi sebelum digunakan kadang-kadang diklasifikasikan sebagai persediaan komponen suku cadang. b. Persediaan barang dalam proses Barang yang membutuhkan proses lebih lanjut sebelum penyelesaian. c. Barang jadi Barang yang sudah selesai diproses dan siap untuk dijual.

3 3. Persediaan rupa-rupa Barang seperti perlengkapan kantor kebersihan dan pengiriman, persediaan ini biasanya dicatat sebagai beban penjualan umum Fungsi Persediaan Berdasarkan fungsinya, persediaan dapat dikelompokkan dalam 4 jenis, yaitu (Herjanto, 1999): 1. Stok Fluktuasi (Fluctuation Stock) Merupakan persediaan untuk menjaga terjadinya fluktuasi permintaan yang tidak dapat diperkirakan sebelumnya, dan untuk mengatasi jika terjadi kesalahan/penyimpangan dari perkiraan penjualan, waktu produksi, atau waktu pengiriman barang. 2. Stok Antisipasi (Anticipation Stock) Merupakan persediaan yang dibutuhkan untuk menghadapi permintaan yang diramalkan, misalnya pada saat jumlah permintaan besar, tetapi kapasitas produksi tidak mampu memenuhi permintaan tersebut. Jumlah permintaan yang besar ini diakibatkan oleh sifat musiman dari suatu produk. Persediaan ini juga menjaga kemungkinan sukarnya diperoleh bahan baku, agar proses produksi tidak berhenti. 3. Persediaan dalam Jumlah Besar (Lot Size Inventory) Merupakan persediaan yang diadakan dalam jumlah yang lebih besar daripada kebutuhan saat itu. Persediaan jenis ini dilakukan untuk mendapatkan potongan harga (discount) karena pembelian barang dalam jumlah besar. Persediaan jenis ini juga dapat menghemat biaya pengangkutan karena memperkecil frekuensi pengiriman barang dan biaya per unit pengangkutannya lebih murah.

4 4. Pipa Persediaan (Pipeline/ Transit Inventory) Merupakan persediaan yang sedang dalam proses pengiriman dari tempat asal ke tempat di mana barang itu akan digunakan. Persediaan ini timbul karena jarak dari tempat asal ke tempat tujuan cukup jauh dan bisa memakan waktu beberapa hari atau beberapa minggu Permintaan Pengertian Permintaan Permintan adalah banyaknya jumlah barang yang diminta pada suatu pasar tertentu dengan tingkat harga tertentu pada tingkat pendapatan tertentu dan dalam periode tertentu Teori Permintaan Dapat dinyatakan: Perbandingan lurus antara permintaan terhadap harganya yaitu apabila permintaan naik, maka harga relatif akan naik, sebaliknya bila permintaan turun, maka harga relatif akan turun Hukum Permintaan Hukum permintaan pada hakikatnya merupakan suatu hipotesis yang menyatakan: Hubungan antara barang yang diminta dengan harga barang tersebut dimana hubungan berbanding terbalik yaitu ketika harga meningkat atau naik maka jumlah barang yang diminta akan menurun dan sebaliknya apabila harga turun jumlah barang meningkat.

5 2.3. Program Linier Program Linier adalah suatu cara untuk menyelesaikan persoalan pengalokasian sumber-sumber yang terbatas di antara beberapa aktivitas yang bersaing, dengan cara yang terbaik yang mungkin dilakukan. Misalnya pengalokasian fasilitas produksi, sumber daya nasional untuk kebutuhan domestik, penjadwalan produksi dan lain-lain Karakteristik-karakteristik Dalam Program Linier Dalam membangun model dari formulasi di atas akan digunakan karakteristikkarakteristik yang biasa digunakan dalam persoalan program linier yaitu: 1. Variabel Keputusan Variabel keputusan adalah variabel yang menguraikan secara lengkap keputusan-keputusan yang akan dibuat. 2. Fungsi Tujuan Fungsi tujuan merupakan fungsi dari variabel keputusan yang akan dimaksimumkan (untuk pendapatan atau keuntungan) atau diminimumkan (untuk ongkos). Fungsi ini merupakan bentuk hubungan antara variabel keputusan. 3. Pembatas Pembatas merupakan kendala yang dihadapi sehingga kita tidak bisa menentukan harga-harga variabel keputusan secara sembarang.

6 Asumsi Dalam Program Linier Dalam menggunakan model program linear, diperlukan beberapa asumsi sebagai berikut: 1. Asumsi kesebandingan (proposionality) a. Kontribusi setiap variabel keputusan terhadap fungsi tujuan adalah sebanding dengan nilai variabel keputusan. b. Kontribusi suatu variabel keputusan terhadap ruas kiri dari setiap pembatas juga sebanding dengan nilai variabel keputusan itu. 2. Asumsi penambahan (additivity) a. Kontribusi setiap variabel keputusan terhadap fungsi tujuan tidak bergantung pada nilai dari variabel keputusan yang lain. b. Kontribusi suatu variabel keputusan terhadap ruas kiri dari setiap pembatas bersifat tidak bergantung pada nilai dari variabel keputusan yang lain. 3. Asumsi pembagian (divisibility) Dalam persoalan program linear, variabel keputusan boleh diasumsikan berupa bilangan pecahan. 4. Asumsi kepastian (certainty) Setiap parameter, yaitu koefisien fungsi tujuan, ruas kanan, dan koefisien teknologi, diasumsikan dapat diketahui secara pasti. Setelah masalah diidentifikasikan, tujuan ditetapkan, langkah selanjutnya adalah formulasi model matematik yang meliputi tiga tahap, sebagai berikut: 1. Tentukan variabel keputusan dan nyatakan dalam simbol matematik. 2. Membentuk fungsi tujuan yang ditunjukkan sebagai suatu hubungan linier (bukan perkalian) dari variabel keputusan.

7 3. Menentukan semua kendala masalah tersebut dan mengekspresikan dalam persamaan atau pertidaksamaan yang juga merupakan hubungan linier dari variabel keputusan yang mencerminkan keterbatasan sumber daya masalah itu. Bentuk baku model Program Linier: Fungsi tujuan : Maksimumkan atau minimumkan Z = c 1 X 1 + c 2 X c n X n Fungsi pembatas : a 11 X 11 + a 12 X a 1n X 1n b 1 a 21 X 21 + a 22 X a 2n X 2n b a m1 X m1 + a m2 X m2 + + a mn X mn b m dan X 1 0, X 2 0,, X Metode Simpleks Program linier yang melibatkan lebih dari 2 atau banyak variabel sulit diselesaikan dengan metode grafik. Dalam keadaan ini kebutuhan metode yang lebih umum menjadi nyata. Metode umum itu dikenal dengan nama Metode Simpleks yang dirancang untuk menyelesaikan masalah Program Linier, baik yang melibatkan dua atau lebih dari 2 variabel.

8 Perhatikan model Program Linier: Fungsi tujuan : Maksimumkan atau minimumkan Z = c 1 X 1 + c 2 X c n X n Fungsi pembatas : a 11 X 11 + a 12 X a 1n X 1n b 1 a 21 X 21 + a 22 X a 2n X 2n b a m1 X m1 + a m2 X m2 + + a mn X mn b m dan X 1 0, X 2 0,, X 3 0 Jika didefinisikan: a a A.. a m1 a a a m a1 n a 2n.. a mn ; X x1 x2.. x n ; b1 b2 B.. b n maka pembatas dari model tersebut dapat dituliskan ke dalam bentuk sistem persamaan AX = B. Perhatikan suatu sistem AX = B dari persamaan linear dalam n variabel (n > m). Definisi: 1. Solusi basis Solusi basis untuk AX = B adalah solusi di mana terdapat sebanyak-banyaknya m variabel berharga bukan nol. Untuk mendapatkan solusi basis dari AX = B maka sebanyak (n m) variabel harus dinolkan. Variabel-variabel yang

9 dinolkan ini disebut variabel nonbasis (NBV). Selanjutnya, dapatkan harga dari n (n m) = m variabel lainnya yang memenuhi AX = B, yang disebut variabel basis (BV). 2. Solusi basis fisibel Jika solusi variabel pada suatu solusi basis berharga nonnegatif, maka solusi itu disebut solusi basis fisibel (BFS). 3. Solusi feasibel titik ekstrem Yang dimaksud dengan solusi feasibel titik ekstrem atau titik sudut ialah solusi feasibel yang tidak terletak pada suatu segmen garis yang menghubungkan dua solusi feasibel lainnya. Untuk menyelesaikan persoalan program linier maksimasi dengan menggunakan metode simpleks, lakukanlah langkah-langkah berikut: 1. Konversikan formulasi persoalan ke dalam bentuk standar. 2. Cari Solusi Basis Fisibel (BFS). 3. Jika seluruh NBV mempunyai koefisien nonnegatif (artinya berharga positif atau nol) pada baris fungsi tujuan [baris persamaan z yang biasa disebut baris 0 atau baris (z j c j )], maka BFS sudah optimal. Jika pada baris 0 masih ada variabel dengan koefisien negatif, pilihlah salah satu variabel yang mempunyai paling negatif pada baris 0 itu. Variabel ini akan memasuki status variabel basis, karena itu variabel ini disebut sebagai variabel yang masuk basis (entering variable, disingkat EV). 4. Hitung rasio dari (Ruas kanan) / (Koefisien EV) pada setiap baris di mana EVnya mempunyai koefisien positif. Variabel basis pada baris pembatas dengan rasio positif terkecil akan berubah status menjadi variabel nonbasis. Variabel

10 ini kemudian disebut sebagai variabel yang meninggalkan basis atau leaving variable, disingkat LV Teknik M (Metode pinalti) Program linier dengan sistem batasan yang mengandung tanda ( ) atau (=), diselesaikan dengan menambahkan variabel buatan atau variabel fiktif. Variabel ini akan terbuang dari tabel simpleks segera ia menjadi variabel nonbasis. Penambahan variabel ini akan merusak sistem batasan. Akan tetapi kesulitan ini dapat diatasi dengan menciptakan situasi di mana variabel ini menjadi nol pada penyelesaian akhir. Hal ini dapat dicapai dengan membuat suatu bilangan besar M sebagai harga variabel buatan tersebut dalam fungsi tujuan. Dalam kasus memaksimumkan, M bertanda negatif (-M) dan dalam kasus meminimumkan M bertanda positif (M) Teknik Dua Fase Dengan digunakannya konstanta M yang merupakan bilangan positif yang sangat besar sebagai penalty, maka bisa terjadi kesalahan perhitungan, terutama apabila perhitungan itu dilakukan dengan menggunakan komputer. Kesalahan itu bisa terjadi karena koefisien fungsi tujuan relatif sangat kecil dibandingkan dengan harga M, sehingga komputer akan memperlakukannya sebagai koefisien yang berharga nol. Kesulitan ini bisa dikurangi dengan menggunakan teknik kedua fase. Di sini konstanta M dihilangkan dengan cara menyelesaikan persoalan dalam dua fase (dua tingkatan) sebagai berikut:

11 Fase I: Fase ini digunakan untuk menguji apakah persoalan yang kita hadapi memiliki solusi fisibel atau tidak. Pada fase ini fungsi tujuan semula diganti dengan meminimumkan jumlah variabel artifisialnya. Jika nilai minimum fungsi tujuan baru ini berharga nol (artinya seluruh variabel artifisial berharga nol), berarti persoalan memiliki solusi fisibel, lanjutkan ke fase 2. Tetapi, jika nilai minimum fungsi tujuan baru ini berharga positif, maka persoalan tidak memiliki solusi fisibel. Fase II: Gunakan solusi basis optimum dari fase I sebagai solusi awal bagi persoalan semula. Dalam hal ini ubahlah bentuk fungsi tujuan fase I dengan mengembalikannya pada fungsi tujuan persoalan semula. Pemecahan persoalan dilakukan dengan cara seperti biasa Teori Dualitas Teori Dualitas merupakan salah satu konsep program linear yang penting dan menarik ditinjau dari segi teori dan praktisnya. Ide dasar yang melatarbelakangi teori ini adalah bahwa setiap persoalan programa linear mempunyai suatu programa linear lain yang saling berkaitan yang disebut dual, sedemikian sehingga solusi pada persoalan semula (yang disebut primal) juga memberi solusi pada dualnya. Hubungan antara primal dengan dual sebagai berikut: 1. Koefisien fungsi tujuan primal menjadi konstanta ruas kanan bagi dual, sedangkan konstanta ruas kanan primal menjadi koefisien fungsi tujuan dual. 2. Untuk setiap pembatas primal ada satu variabel dual, dan untuk setiap variabel primal ada satu pembatas dual. 3. Tanda ketidaksamaan pada pembatas akan bergantung pada fungsi tujuannya.

12 4. Fungsi tujuan berubah bentuk (maksimasi menjadi minimasi dan sebaliknya). 5. Setiap kolom pada primal berkorespondensi dengan baris (pembatas) pada dual. 6. Setiap baris (pembatas) pada primal berkorespondensi dengan kolom pada dual. 7. Dual dari dual adalah primal Metode Dual Simpleks Apabila pada suatu iterasi kita mendapat persoalan program linear yang sudah optimum (berdasarkan kondisi optimalitas), tetapi belum fisibel (ada pembatas nonnegatif yang tidak terpenuhi), maka persoalan tersebut harus diselesaikan dengan menggunakan metode dual simpleks. Syarat digunakannya metode ini adalah bahwa seluruh pembatas harus merupakan ketidaksamaan yang bertanda ( ), sedangkan fungsi tujuan bisa berupa maksimasi atau minimasi. Pada dasarnya metode dual simpleks ini menggunakan tabel yang sama seperti metode simpleks pada primal, tetapi leaving dan entering variable-nya ditentukan sebagai berikut: 1. Leaving variable (kondisi fisibilitas) Yang menjadi leaving variable pada dual simpleks adalah variabel basis yang memiliki harga negatif terbesar. Jika semua variabel basis telah berharga positif atau nol, berarti keadaan fisibel telah tercapai. 2. Entering variable (kondisi optimalitas) a. Tentukan perbandingan (ratio) antara koefisien persamaan z dengan koefisien persamaan leaving variable. Abaikan penyebut yang positif atau nol. Jika semua penyebut berharga positif atau nol, berarti persoalan yang bersangkutan tidak memiliki solusi fisibel.

13 b. Untuk persoalan minimasi, entering variable adalah variabel dengan rasio terkecil, sedangkan persoalan maksimasi, entering variable adalah variabel dengan rasio absolut terkecil.

BAB VI PROGRAMA LINIER : DUALITAS DAN ANALISIS SENSITIVITAS

BAB VI PROGRAMA LINIER : DUALITAS DAN ANALISIS SENSITIVITAS BAB VI PROGRAMA LINIER : DUALITAS DAN ANALISIS SENSITIVITAS 6.1 Teori Dualitas Teori dualitas merupakan salah satu konsep programa linier yang penting dan menarik ditinjau dari segi teori dan praktisnya.

Lebih terperinci

METODE SIMPLEKS MATAKULIAH RISET OPERASIONAL Pertemuan Ke-3. Riani Lubis Program Studi Teknik Informatika Universitas Komputer Indonesia

METODE SIMPLEKS MATAKULIAH RISET OPERASIONAL Pertemuan Ke-3. Riani Lubis Program Studi Teknik Informatika Universitas Komputer Indonesia METODE SIMPLEKS MATAKULIAH RISET OPERASIONAL Pertemuan Ke-3 Riani Lubis Program Studi Teknik Informatika Universitas Komputer Indonesia 1 Pendahuluan (1) Metode simpleks merupakan sebuah prosedur matematis

Lebih terperinci

Team Dosen Riset Operasional Program Studi Teknik Informatika Universitas Komputer Indonesia

Team Dosen Riset Operasional Program Studi Teknik Informatika Universitas Komputer Indonesia Team Dosen Riset Operasional Program Studi Teknik Informatika Universitas Komputer Indonesia 1 Metode simpleks merupakan sebuah prosedur matematis berulang untuk menemukan penyelesaian optimal soal programa

Lebih terperinci

Riset Operasional LINEAR PROGRAMMING

Riset Operasional LINEAR PROGRAMMING Bahan Kuliah Riset Operasional LINEAR PROGRAMMING Oleh: Darmansyah Tjitradi, MT. PROGRAM MAGISTER TEKNIK SIPIL UNLAM 25 1 ANALISA SISTEM Agar lebih mendekati langkah-langkah operasional, Hall & Dracup

Lebih terperinci

TEORI DUALITAS. Pertemuan Ke-9. Riani Lubis JurusanTeknik Informatika Universitas Komputer Indonesia

TEORI DUALITAS. Pertemuan Ke-9. Riani Lubis JurusanTeknik Informatika Universitas Komputer Indonesia TEORI DUALITAS MATAKULIAH RISET OPERASIONAL Pertemuan Ke-9 Riani Lubis JurusanTeknik Informatika Universitas Komputer Indonesia 1 PENGANTAR Diperlukan sebagai dasar interpretasi ekonomis suatu persoalan

Lebih terperinci

METODE SIMPLEKS MATAKULIAH RISET OPERASIONAL Pertemuan Ke-5

METODE SIMPLEKS MATAKULIAH RISET OPERASIONAL Pertemuan Ke-5 METODE SIMPLEKS MATAKULIAH RISET OPERASIONAL Pertemuan Ke-5 Riani Lubis JurusanTeknik Informatika Universitas Komputer Indonesia 1 Pendahuluan (1) Metode simpleks merupakan sebuah prosedur matematis berulang

Lebih terperinci

Pengubahan Model Ketidaksamaan Persamaan

Pengubahan Model Ketidaksamaan Persamaan METODA SIMPLEKS Metoda Simpleks Suatu metoda yang menggunakan prosedur aljabar untuk menyelesaikan programa linier. Proses penyelesaiannya dengan melakukan iterasi dari fungsi pembatasnya untuk mencapai

Lebih terperinci

kita menggunakan variabel semu untuk memulai pemecahan, dan meninggalkannya setelah misi terpenuhi

kita menggunakan variabel semu untuk memulai pemecahan, dan meninggalkannya setelah misi terpenuhi Lecture 4: (B) Supaya terdapat penyelesaian basis awal yang fisibel, pada kendala berbentuk = dan perlu ditambahkan variabel semu (artificial variable) pada ruas kiri bentuk standarnya, untuk siap ke tabel

Lebih terperinci

Konsep Primal - Dual

Konsep Primal - Dual Konsep Primal - Dual Teori Dualitas Persoalan Primal dan Dual Persoalan Primal (asli) Persoalan Dual (kebalikan dari primal) PRIMAL DUAL A. Fungsi Tujuan A. Fungsi Tujuan 1. Maksimisasi Laba 1. Minimisasi

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Program Linier Program linier merupakan suatu model matematika untuk mendapatkan alternatif penggunaan terbaik atas sumber-sumber yang tersedia. Kata linier digunakan untuk menunjukkan

Lebih terperinci

BAB V PROGRAMA LINIER : METODE SIMPLEKS

BAB V PROGRAMA LINIER : METODE SIMPLEKS BAB V PROGRAMA LINIER : METODE SIMPLEKS 5.1 Metode Simpleks Metode simpleks ialah suatu cara penyelesaian masalah programa linier yang diperkenalkan pertama kali oleh Dantzig pada tahun 1947, yakni suatu

Lebih terperinci

Teori permainan mula-mula dikembangkan oleh ilmuan Prancis bernama Emile Borel, secara umum digunakan untuk menyelesaikan masalah yang

Teori permainan mula-mula dikembangkan oleh ilmuan Prancis bernama Emile Borel, secara umum digunakan untuk menyelesaikan masalah yang BAB 2 LANDASAN TEORI 2.1 Strategi Pemasaran Strategi pemasaran adalah pola pikir pemasaran yang akan digunakan untuk mencapai tujuan pemasarannya. Strategi pemasaran berisi strategi spesifik untuk pasar

Lebih terperinci

BAB 2 LANDASAN TEORI 2.1 Perencanaan Produksi

BAB 2 LANDASAN TEORI 2.1 Perencanaan Produksi BAB 2 LANDASAN TEORI 21 Perencanaan Produksi Produksi yang dalam bahasa inggris disebut production adalah keseluruhan proses yang dilakukan untuk menghasilkan produk atau jasa Produk yang dihasilkan sebagai

Lebih terperinci

BAB 2 LANDASAN TEORI. 2.1 Pengertian Program Linier (Linear Programming)

BAB 2 LANDASAN TEORI. 2.1 Pengertian Program Linier (Linear Programming) BAB 2 LANDASAN TEORI 2.1 Pengertian Program Linier (Linear Programming) Menurut Sri Mulyono (1999), Program Linier (LP) merupakan metode matematik dalam mengalokasikan sumber daya yang langka untuk mencapai

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Program Linier Menurut Aminudin (2005), program linier merupakan suatu model matematika untuk mendapatkan alternatif penggunaan terbaik atas sumber-sumber yang tersedia. Kata linier

Lebih terperinci

BAB 2 LANDASAN TEORI. 2.1 Pengertian Model dan Metode Transportasi

BAB 2 LANDASAN TEORI. 2.1 Pengertian Model dan Metode Transportasi 34 BAB 2 LANDASAN TEORI 2.1 Pengertian Model dan Metode Transportasi Hamdy A Taha (1996) mengemukakan bahwa dalam arti sederhana, model transportasi berusaha menentukan sebuah rencana transportasi sebuah

Lebih terperinci

Metode Simpleks M U H L I S T A H I R

Metode Simpleks M U H L I S T A H I R Metode Simpleks M U H L I S T A H I R PENDAHULUAN Metode Simpleks adalah metode penentuan solusi optimal menggunakan simpleks didasarkan pada teknik eliminasi Gauss Jordan. Penentuan solusi optimal dilakukan

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Program Linier Program linier adalah suatu cara untuk menyelesaikan persoalan pengalokasian sumber-sumber yang terbatas di antara beberapa aktivitas yang bersaing, dengan cara

Lebih terperinci

Fungsi kendala tidak hanya dibentuk oleh pertidaksamaan tetapi juga oleh pertidaksamaan dan/atau persamaan =. Fungsi kendala dengan pertidaksamaan

Fungsi kendala tidak hanya dibentuk oleh pertidaksamaan tetapi juga oleh pertidaksamaan dan/atau persamaan =. Fungsi kendala dengan pertidaksamaan Fungsi kendala tidak hanya dibentuk oleh pertidaksamaan tetapi juga oleh pertidaksamaan dan/atau persamaan =. Fungsi kendala dengan pertidaksamaan mempunyai variabel surplus, tidak ada variabel slack.

Lebih terperinci

ALGORITMA METODE SIMPLEKS (PRIMAL)

ALGORITMA METODE SIMPLEKS (PRIMAL) ALGORITMA METODE SIMPLEKS (PRIMAL) Artificial Variable Algoritma Simpleks Metode M (Method of penalty) Metode dua fase Tabel Simpleks dalam bentuk matriks Artificial Variable (AV) Apabila terdapat satu

Lebih terperinci

BahanKuliahKe-3 Penelitian Operasional VARIABEL ARTIFISIAL. (Metode Penalty & Teknik Dua Fase) Oleh: Darmansyah Tjitradi, MT.

BahanKuliahKe-3 Penelitian Operasional VARIABEL ARTIFISIAL. (Metode Penalty & Teknik Dua Fase) Oleh: Darmansyah Tjitradi, MT. BahanKuliahKe-3 Penelitian Operasional VARIABEL ARTIFISIAL (Metode Penalty & Teknik Dua Fase) Oleh: Darmansyah Tjitradi, MT. PROGRAM MAGISTER TEKNIK SIPIL UNLAM 2006 1 TEKNIK VARIABEL ARTIFISIAL Dalam

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 21 Perencanaan Produksi 211 Arti dan Pentingnya Perencanaan Produksi Perencanaan produksi merupakan aktifitas untuk menetapkan produk yang akan diprodksi untuk periode selanjutnyatujuan

Lebih terperinci

Team Dosen Riset Operasional Program Studi Teknik Informatika Universitas Komputer Indonesia

Team Dosen Riset Operasional Program Studi Teknik Informatika Universitas Komputer Indonesia Team Dosen Riset Operasional Program Studi Teknik Informatika Universitas Komputer Indonesia 1 1. Linier Programming adalah suatu cara untuk menyelesaikan persoalan pengalokasian sumbersumberdaya yang

Lebih terperinci

BAB III SOLUSI GRAFIK DAN METODE PRIMAL SIMPLEKS

BAB III SOLUSI GRAFIK DAN METODE PRIMAL SIMPLEKS BAB III SOLUSI GRAFIK DAN METODE PRIMAL SIMPLEKS A. Metode Simpleks Metode simpleks yang sudah kita pelajari, menunjukkan bahwa setiap perpindahan tabel baru selalu membawa semua elemen yang terdapat dalam

Lebih terperinci

Bentuk Standar. max. min

Bentuk Standar. max. min Teori Dualitas 2 Konsep Dualitas Setiap permasalahan LP mempunyai hubungan dengan permasalahan LP lain Masalah dual adalah sebuah masalah LP yang diturunkan secara matematis dari satu model LP primal 3

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Pengertian Manajemen Produksi dan Operasi Menurut Heizer dan Render (2006:4) manajemen operasi (operation management-om) adalah serangkaian aktivitas yang menghasilkan nilai

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1. Permintaan 2.1.1 Pengertian Permintaan Permintaan adalah banyaknya jumlah barang yang diminta pada suatu pasar tertentu dengan tingkat harga tertentu pada tingkat pendapatan tertentu

Lebih terperinci

Ada beberapa kasus khusus dalam simpleks. Kadangkala kita akan menemukan bahwa iterasi tidak berhenti, karena syarat optimalitas atau syarat

Ada beberapa kasus khusus dalam simpleks. Kadangkala kita akan menemukan bahwa iterasi tidak berhenti, karena syarat optimalitas atau syarat Muhlis Tahir Ada beberapa kasus khusus dalam simpleks. Kadangkala kita akan menemukan bahwa iterasi tidak berhenti, karena syarat optimalitas atau syarat kelayakan tidak pernah dapat terpenuhi. Adakalanya

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Sistem Distribusi Distribusi merupakan proses pemindahan barang-barang dari tempat produksi ke berbagai tempat atau daerah yang membutuhkan. Kotler (2005) mendefinisikan bahwa

Lebih terperinci

Bab 2 LANDASAN TEORI. 2.1 Pengantar Proses Stokastik

Bab 2 LANDASAN TEORI. 2.1 Pengantar Proses Stokastik Bab 2 LANDASAN TEORI Pada bab ini akan diberikan penjelasan singkat mengenai pengantar proses stokastik dan rantai Markov, yang akan digunakan untuk analisis pada bab-bab selanjutnya. 2.1 Pengantar Proses

Lebih terperinci

BAB II KAJIAN PUSTAKA. pemrograman nonlinear, fungsi konveks dan konkaf, pengali lagrange, dan

BAB II KAJIAN PUSTAKA. pemrograman nonlinear, fungsi konveks dan konkaf, pengali lagrange, dan BAB II KAJIAN PUSTAKA Kajian pustaka pada bab ini akan membahas tentang pengertian dan penjelasan yang berkaitan dengan fungsi, turunan parsial, pemrograman linear, pemrograman nonlinear, fungsi konveks

Lebih terperinci

BAB 2 PROGRAM LINEAR

BAB 2 PROGRAM LINEAR BAB 2 PROGRAM LINEAR 2.1. Pengertian Program Linear Pemrograman Linier disingkat PL merupakan metode matematik dalam mengalokasikan sumber daya yang terbatas untuk mencapai suatu tujuan seperti memaksimumkan

Lebih terperinci

BAB II LANDASAN TEORI. A. Sistem Persamaan Linear dan Sistem Pertidaksamaan Linear

BAB II LANDASAN TEORI. A. Sistem Persamaan Linear dan Sistem Pertidaksamaan Linear 5 BAB II LANDASAN TEORI A Sistem Persamaan Linear dan Sistem Pertidaksamaan Linear Persamaan linear adalah bentuk kalimat terbuka yang memuat variabel dengan derajat tertinggi adalah satu Sedangkan sistem

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Program Linier Program linier adalah suatu teknik penyelesaian optimal atas suatu problema keputusan dengan cara menentukan terlebih dahulu fungsi tujuan (memaksimalkan atau meminimalkan)

Lebih terperinci

BAB I PENDAHULUAN. besar dan mampu membantu pemerintah dalam mengurangi tingkat pengangguran.

BAB I PENDAHULUAN. besar dan mampu membantu pemerintah dalam mengurangi tingkat pengangguran. BAB I PENDAHULUAN 1.1 Latar Belakang Masalah Dalam menghadapi globalisasi dunia saat ini mendorong persaingan diantara para pelaku bisnis yang semakin ketat. Di Indonesia sebagai negara berkembang, pembangunan

Lebih terperinci

Dual Pada Masalah Maksimum Baku

Dual Pada Masalah Maksimum Baku Dual Pada Masalah Maksimum aku Setiap masalah program linear terkait dengan masalah dualnya. Kita mulai dengan motivasi masalah ekonomi terhadap dual masalah maksimum baku. Sebuah industri rumah tangga

Lebih terperinci

contoh soal metode simplex dengan minimum

contoh soal metode simplex dengan minimum contoh soal metode simplex dengan minimum Perusahaan Maju Terus merencanakan untuk menginvestasikan uang paling banyak $ 1.200.000. uang ini akan ditanamkan pada 2 buah cabang usaha yaitu P dan Q. setiap

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Matriks 2.1.1 Definisi Matriks Matriks adalah suatu kumpulan angka-angka (elemen-elemen) yang disusun menurut baris dan kolom sehingga berbentuk empat persegi panjang, di mana

Lebih terperinci

MODEL TRANSPORTASI MATAKULIAH RISET OPERASIONAL Pertemuan Ke-12 & 13. Riani Lubis Jurusan Teknik Informatika Universitas Komputer Indonesia

MODEL TRANSPORTASI MATAKULIAH RISET OPERASIONAL Pertemuan Ke-12 & 13. Riani Lubis Jurusan Teknik Informatika Universitas Komputer Indonesia MODEL TRANSPORTASI MATAKULIAH RISET OPERASIONAL Pertemuan Ke-12 & 13 Riani Lubis Jurusan Teknik Informatika Universitas Komputer Indonesia 1 2 PENGANTAR Terdapat bermacam-macam network model. Network :

Lebih terperinci

BAB II KAJIAN PUSTAKA

BAB II KAJIAN PUSTAKA BAB II KAJIAN PUSTAKA A. Perencanaan Produksi 1. Pengertian Perencanaan Produksi Perencanaan produksi merupakan perencanaan tentang produk apa dan berapa yang akan diproduksi oleh perusahaan yang bersangkutan

Lebih terperinci

PROGRAM LINIER METODE SIMPLEKS

PROGRAM LINIER METODE SIMPLEKS PROGRAM LINIER METODE SIMPLEKS Merupakan metode yang biasanya digunakan untuk memecahkan setiap permasalahan pada pemrogramman linear yang kombinasi variabelnya terdiri dari tiga variabel atau lebih. Metode

Lebih terperinci

Teknik Riset Operasi. Oleh : A. AfrinaRamadhani H. Teknik Riset Operasi

Teknik Riset Operasi. Oleh : A. AfrinaRamadhani H. Teknik Riset Operasi Oleh : A. AfrinaRamadhani H. 1 PERTEMUAN 7 2 METODE BIG M Sering kita menemukan bahwa fungsi kendala tidak hanya dibentuk oleh pertidaksamaan tapi juga oleh pertidakasamaan dan/atau persamaan (=). Fungsi

Lebih terperinci

mempunyai tak berhingga banyak solusi.

mempunyai tak berhingga banyak solusi. Lecture 4: A. Introduction Jika suatu masalah LP hanya melibatkan 2 kegiatan (variabel keputu-san) saja, maka dapat diselesaikan dengan metode grafik. Tetapi, jika melibatkan lebih dari 2 kegiatan, maka

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Pengertian Produk Menurut Daryanto (2011:49) produk adalah segala sesuatu yang dapat ditawarkan ke pasar untuk mendapatkan perhatian, dibeli, dipergunakan atau dikonsumsi dan

Lebih terperinci

PEMROGRAMAN LINEAR I KOMANG SUGIARTHA

PEMROGRAMAN LINEAR I KOMANG SUGIARTHA PEMROGRAMAN LINEAR I KOMANG SUGIARTHA DEFINISI PEMROGRAMAN LINEAR Pemrograman Linear merupakan metode matematik dalam mengalokasikan sumber daya yang terbatas untuk mencapai suatu tujuan seperti memaksimumkan

Lebih terperinci

III KERANGKA PEMIKIRAN

III KERANGKA PEMIKIRAN III KERANGKA PEMIKIRAN 3.1 Kerangka Pemikiran Teoritis 3.1.1 Produksi Menurut Salvatore (2001), produksi merujuk pada transformasi dari berbagai input atau sumberdaya menjadi output berupa barang atau

Lebih terperinci

METODE BIG M. Metode Simpleks, oleh Hotniar Siringoringo, 1

METODE BIG M. Metode Simpleks, oleh Hotniar Siringoringo, 1 METODE BIG M Sering kita menemukan bahwa fungsi kendala tidak hanya dibentuk oleh pertidaksamaan tapi juga oleh pertidakasamaan dan/atau persamaan (=). Fungsi kendala dengan pertidaksamaan mempunyai surplus

Lebih terperinci

PROGRAM LINEAR: METODE SIMPLEX

PROGRAM LINEAR: METODE SIMPLEX PROGRAM LINEAR: METODE SIMPLEX Latar Belakang Sulitnya menggambarkan grafik berdimensi banyak atau kombinasi lebih dari dua variabel. Metode grafik tidak mungkin dapat dilakukan untuk menyelesaikan masalah

Lebih terperinci

BAB 4 HASIL DAN PEMBAHASAN

BAB 4 HASIL DAN PEMBAHASAN 65 BAB 4 HASIL DAN PEMBAHASAN 4.1 Hasil Pengumpulan Data 4.1.1 Data Kebutuhan Komponen Dalam pembuatan cat, diperlukan beberapa komponen yang menyusun terbentuknya cat tersebut menjadi produk jadi. Data

Lebih terperinci

BAB II METODE SIMPLEKS

BAB II METODE SIMPLEKS BAB II METODE SIMPLEKS 2.1 Pengantar Salah satu teknik penentuan solusi optimal yang digunakan dalam pemrograman linier adalah metode simpleks. Penentuan solusi optimal menggunakan metode simpleks didasarkan

Lebih terperinci

BAB 2. PROGRAM LINEAR

BAB 2. PROGRAM LINEAR BAB 2. PROGRAM LINEAR 2.1. Pengertian Program Linear Pemrograman Linier disingkat PL merupakan metode matematik dalam mengalokasikan sumber daya yang terbatas untuk mencapai suatu tujuan seperti memaksimumkan

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Pengertian Manajemen Produksi dan Operasi Manajemen Produksi dan Operasi terdiri dari kata manajemen, produksi dan operasi. Terdapat beberapa pengertian untuk kata manajemen

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Matriks 2.1.1 Pengertian Matriks Matriks adalah susunan segi empat siku-siku dari bilangan bilangan. Bilanganbilangan dalam susunan tersebut dinamakan entri dalam matriks (Anton,

Lebih terperinci

BAB II KAJIAN PUSTAKA

BAB II KAJIAN PUSTAKA BAB II KAJIAN PUSTAKA A. Efektivitas Efektivitas berasal dari kata efektif, yang merupakan kata serapan dari bahasa Inggris yaitu effective yang artinya berhasil. Menurut kamus ilmiah popular, efektivitas

Lebih terperinci

BAB IV. METODE SIMPLEKS

BAB IV. METODE SIMPLEKS BAB IV. METODE SIMPLEKS Penentuan solusi optimal menggunakan simpleks didasarkan pada teknik eliminasi Gauss Jordan. Penentuan solusi optimal dilakukan dengan memeriksa titik ekstrim (ingat kembali solusi

Lebih terperinci

METODE dan TABEL SIMPLEX

METODE dan TABEL SIMPLEX METODE dan TABEL SIMPLEX Mengubah bentuk baku model LP ke dalam bentuk tabel akan memudahkan proses perhitungan simplex. Langkah-langkah perhitungan dalam algoritma simplex adalah :. Berdasarkan bentuk

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1. Manajemen Produksi dan Operasi Manajeman (management) merupakan proses kerja dengan menggunakan orang dan sumber daya yang ada untuk mencapai tujuan (Bateman, Thomas S. : 2014)

Lebih terperinci

Bab 2 LANDASAN TEORI

Bab 2 LANDASAN TEORI Bab 2 LANDASAN TEORI 2.1 Persediaan 2.1.1 Definisi Persediaan Persediaan adalah bahan atau barang yang disimpan yang akan digunakan untuk memenuhi tujuan tertentu, misalnya untuk proses produksi atau perakitan,

Lebih terperinci

Bab 2 LANDASAN TEORI

Bab 2 LANDASAN TEORI Bab 2 LANDASAN TEORI 2.1 Linear Programming Linear Programming (LP) merupakan metode yang digunakan untuk mencapai hasil terbaik (optimal) seperti keuntungan maksimum atau biaya minimum dalam model matematika

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2. Tinjauan Teori dan Konsep 2.. Pengertian Manajemen Produksi/Operasi Sebelum membahas lebih jauh mengenai metode transportasi, perlu diuraikan terlebih dahulu mengenai pengertian

Lebih terperinci

BEBERAPA FORMULA PENTING DALAM solusi PROGRAM LINEAR FITRIANI AGUSTINA, MATH, UPI

BEBERAPA FORMULA PENTING DALAM solusi PROGRAM LINEAR FITRIANI AGUSTINA, MATH, UPI BEBERAPA FORMULA PENTING DALAM solusi PROGRAM LINEAR Bentuk Standar Masalah PL Maksimasi : dengan pembatas linear () dan pembatas tanda c n n c c z m n mn m m n n n n b a a a b a a a b a a a n j j,,,,

Lebih terperinci

MODEL TRANSPORTASI - I MATAKULIAH RISET OPERASIONAL Pertemuan Ke-7. Riani Lubis Program Studi Teknik Informatika Universitas Komputer Indonesia

MODEL TRANSPORTASI - I MATAKULIAH RISET OPERASIONAL Pertemuan Ke-7. Riani Lubis Program Studi Teknik Informatika Universitas Komputer Indonesia MODEL TRANSPORTASI - I MATAKULIAH RISET OPERASIONAL Pertemuan Ke-7 Riani Lubis Program Studi Teknik Informatika Universitas Komputer Indonesia 1 2 PENGANTAR Terdapat bermacam-macam network model. Network

Lebih terperinci

Taufiqurrahman 1

Taufiqurrahman 1 PROGRAM LINEAR: METODE SIMPLEX Latar Belakang Sulitnya menggambarkan grafik berdimensi banyak atau kombinasi lebih dari dua variabel. Metode grafik tidak mungkin dapat dilakukan untuk menyelesaikan masalah

Lebih terperinci

MATEMATIKA SISTEM INFORMASI 2 [KODE/SKS : IT / 2 SKS]

MATEMATIKA SISTEM INFORMASI 2 [KODE/SKS : IT / 2 SKS] MATA KULIAH MATEMATIKA SISTEM INFORMASI 2 [KODE/SKS : IT011215 / 2 SKS] LINIER PROGRAMMING Formulasi Masalah dan Pemodelan Pengertian Linear Programming Linear Programming (LP) adalah salah satu teknik

Lebih terperinci

MODEL TRANSPORTASI - I MATAKULIAH RISET OPERASIONAL Pertemuan Ke-6

MODEL TRANSPORTASI - I MATAKULIAH RISET OPERASIONAL Pertemuan Ke-6 MODEL TRANSPORTASI - I MATAKULIAH RISET OPERASIONAL Pertemuan Ke-6 Riani Lubis Jurusan Teknik Informatika Universitas Komputer Indonesia 1 2 PENGANTAR Terdapat bermacam-macam network model. Network : Suatu

Lebih terperinci

BAB III. METODE SIMPLEKS

BAB III. METODE SIMPLEKS BAB III. METODE SIMPLEKS 3.1. PENGANTAR Metode grafik tidak dapat menyelesaikan persoalan linear program yang memilki variabel keputusan yang cukup besar atau lebih dari dua, maka untuk menyelesaikannya

Lebih terperinci

METODE SIMPLEKS. Obyektif 1. Memahami cara menyelesaikan permasalahan menggunakan solusi grafik 2. Mengetahui fungsi kendala dan fungsi tujuan

METODE SIMPLEKS. Obyektif 1. Memahami cara menyelesaikan permasalahan menggunakan solusi grafik 2. Mengetahui fungsi kendala dan fungsi tujuan METODE SIMPLEKS 2 Obyektif 1. Memahami cara menyelesaikan permasalahan menggunakan solusi grafik 2. Mengetahui fungsi kendala dan fungsi tujuan Untuk menggunakan Metode Simpleks dalam masalah Program Linier

Lebih terperinci

Bab 2 LANDASAN TEORI

Bab 2 LANDASAN TEORI Bab 2 LANDASAN TEORI 2.1 Perencanaan Produksi Perencanaan produksi merupakan perencanaan tentang produk apa dan berapa yang akan diproduksi oleh perusahaan yang bersangkutan dalam satu periode yang akan

Lebih terperinci

TUGAS PROGRAM LINEAR MODEL TRANSPORTASI

TUGAS PROGRAM LINEAR MODEL TRANSPORTASI TUGAS PROGRAM LNEAR MODEL TRANSPORTAS 1. Untuk permasalahan model tansportasi ini diperoleh informasi bahwa mempunyai: 3 daerah penambangan minyak (sumber), yaitu: a. (S 1 ) dengan kapasitas produksi 600.000

Lebih terperinci

Model umum metode simpleks

Model umum metode simpleks Model umum metode simpleks Fungsi Tujuan: Z C X C 2 X 2 C n X n S S 2 S n = NK FungsiPembatas: a X + a 2 X 2 + + a n X n + S + S 2 + + S n = b a 2 X + a 22 X 2 + + a 2n X n + S + S 2 + + S n = b 2 a m

Lebih terperinci

PEMROGRAMAN LINIER. Metode Simpleks

PEMROGRAMAN LINIER. Metode Simpleks PEMROGRAMAN LINIER Metode Simpleks Metode Simpleks Metode simpleks digunakan untuk memecahkan permasalahan PL dengan dua atau lebih variabel keputusan. Prosedur Metode Simpleks: Kasus Maksimisasi a. Formulasi

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang BAB 1 PENDAHULUAN 1.1 Latar Belakang Konsep program linier ditemukan dan diperkenalkan pertamakali oleh George Dantzig yang berupa metode mencari solusi masalah program linier dengan banyak variabel keputusan.

Lebih terperinci

Metode Simpleks dengan Big M dan 2 Phase

Metode Simpleks dengan Big M dan 2 Phase Metode Simpleks dengan Big M dan 2 Phase Metode Simpleks Vs. Simpleks Big-M Perbedaan metode simpleks dengan metode simpleks Big-M adalah munculnya variabel artificial (variabel buatan), sedangkan metode

Lebih terperinci

CCR314 - Riset Operasional Materi #2 Ganjil 2015/2016 CCR314 RISET OPERASIONAL

CCR314 - Riset Operasional Materi #2 Ganjil 2015/2016 CCR314 RISET OPERASIONAL Materi #2 CCR314 RISET OPERASIONAL Definisi LP 2 Linear Programming/LP (Program Linear) merupakan salah satu teknik dalam Riset Operasional (Operation Research) yang paling luas digunakan dan dikenal dengan

Lebih terperinci

Z = 5X1 + 6X2 + 0S1 + 0S2 + MA1 + MA2. Persoalan Primal (asli) Persoalan Dual (kebalikan dari primal)

Z = 5X1 + 6X2 + 0S1 + 0S2 + MA1 + MA2. Persoalan Primal (asli) Persoalan Dual (kebalikan dari primal) Perbedaan metode simpleks dengan metode simpleks Big-M adalah munculnya variabel artificial (variabel buatan), sedangkan metode atau langkah-langkahnya sama. Saat membuat bentuk standar : Jika kendala

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2. Program linier (Linier Programming) Pemrograman linier merupakan metode matematik dalam mengalokasikan sumber daya yang terbatas untuk mencapai suatu tujuan seperti memaksimumkan

Lebih terperinci

LINEAR PROGRAMMING. Pembentukan model bukanlah suatu ilmu pengetahuan tetapi lebih bersifat seni dan akan menjadi dimengerti terutama karena praktek.

LINEAR PROGRAMMING. Pembentukan model bukanlah suatu ilmu pengetahuan tetapi lebih bersifat seni dan akan menjadi dimengerti terutama karena praktek. LINEAR PROGRAMMING Formulasi Model LP Masalah keputusan yang biasa dihadapi para analis adalah alokasi optimum sumber daya yang langka. Sumber daya dapat berupa modal, tenaga kerja, bahan mentah, kapasitas

Lebih terperinci

CCR-314 #2 Pengantar Linear Programming DEFINISI LP

CCR-314 #2 Pengantar Linear Programming DEFINISI LP PENGANTAR LINEAR PROGRAMMING DEFINISI LP Linear Programming/LP (Program Linear) merupakan salah satu teknik dalam Riset Operasional (Operation Research) yang paling luas digunakan dan dikenal dengan baik.

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Persediaan pada Supply Chain Persediaan adalah bahan atau barang yang disimpan yang akan digunakan untuk memenuhi tujuan tertentu, misalnya untuk proses produksi atau perakitan,

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1. Program Linier Para ahli mendefinisikan program linier sebagai sebuah teknik analisa yang digunakan untuk memecahkan segala persoalan atau masalah-masalah keputusan yang ada

Lebih terperinci

ANALISIS SENSITIVITAS MATAKULIAH RISET OPERASIONAL Pertemuan Ke-11. Riani Lubis Jurusan Teknik Informatika Universitas Komputer Indonesia

ANALISIS SENSITIVITAS MATAKULIAH RISET OPERASIONAL Pertemuan Ke-11. Riani Lubis Jurusan Teknik Informatika Universitas Komputer Indonesia ANALISIS SENSITIVITAS MATAKULIAH RISET OPERASIONAL Pertemuan Ke-11 Riani Lubis Jurusan Teknik Informatika Universitas Komputer Indonesia 1 Pengantar Merupakan analisis yang dilakukan untuk mengetahui akibat/pengaruh

Lebih terperinci

PERTEMUAN 6 Analisis Primal - Dual

PERTEMUAN 6 Analisis Primal - Dual PERTEMUAN 6 Analisis Primal - Dual Setiap persoalan program linier selalu mempunyai dua macam analisis, yaitu : analisis primal dan analisis dual yang biasanya disebut analisis primal-dual. Untuk menjelaskan

Lebih terperinci

BAB II LANDASAN TEORI. Pemrograman linear (PL) ialah salah satu teknik dari riset operasi untuk

BAB II LANDASAN TEORI. Pemrograman linear (PL) ialah salah satu teknik dari riset operasi untuk BAB II LANDASAN TEORI A. Pemrograman Linear Pemrograman linear (PL) ialah salah satu teknik dari riset operasi untuk memecahkan persoalan optimasi (maksimum atau minimum) dengan menggunakan persamaan dan

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 21 Teori Himpunan Fuzzy Pada himpunan tegas (crisp), nilai keanggotaan suatu item x dalam himpunan A, yang sering ditulis dengan memiliki dua kemungkinan, yaitu: 1 Nol (0), yang berarti

Lebih terperinci

OPTIMALISASI PRODUKSI MENGGUNAKAN MODEL LINEAR PROGRAMMING (Studi Kasus : Usaha Kecil Menengah Kue Semprong)

OPTIMALISASI PRODUKSI MENGGUNAKAN MODEL LINEAR PROGRAMMING (Studi Kasus : Usaha Kecil Menengah Kue Semprong) OPTIMALISASI PRODUKSI MENGGUNAKAN MODEL LINEAR PROGRAMMING (Studi Kasus : Usaha Kecil Menengah Kue Semprong) Ai Nurhayati 1, Sri Setyaningsih 2,dan Embay Rohaeti 2. Program Studi Matematika Fakultas Matematika

Lebih terperinci

Pemodelan dalam RO. Sesi XIV PEMODELAN. (Modeling)

Pemodelan dalam RO. Sesi XIV PEMODELAN. (Modeling) Mata Kuliah :: Riset Operasi Kode MK : TKS 4019 Pengampu : Achfas Zacoeb Sesi XIV PEMODELAN (Modeling) e-mail : zacoeb@ub.ac.id www.zacoeb.lecture.ub.ac.id Hp. 081233978339 Pemodelan dalam RO Outline:

Lebih terperinci

BAB II KAJIAN TEORI. yang diapit oleh dua kurung siku sehingga berbentuk empat persegi panjang atau

BAB II KAJIAN TEORI. yang diapit oleh dua kurung siku sehingga berbentuk empat persegi panjang atau BAB II KAJIAN TEORI Pada bab ini akan diberikan kajian teori mengenai matriks dan operasi matriks, program linear, penyelesaian program linear dengan metode simpleks, masalah transportasi, hubungan masalah

Lebih terperinci

Pemrograman Linier (2)

Pemrograman Linier (2) Solusi model PL dengan metode simpleks Ahmad Sabri Universitas Gunadarma, Indonesia 2 Bentuk umum model PL Ingat kembali bentuk umum model PL maksimum Maks Z = c x + c 2 x 2 +... + c n x n Dengan kendala:

Lebih terperinci

BAB I PENGANTAR PROGRAM LINIER

BAB I PENGANTAR PROGRAM LINIER BAB I PENGANTAR PROGRAM LINIER Pengertian Program linier merupakan kata benda dari pemogramman linier (linear programming), muncul dalam penelitian operasional (operational research) Menurut George B Dantzing

Lebih terperinci

BAB II KAJIAN PUSTAKA. Pada bab ini akan diberikan landasan teori tentang optimasi, fungsi, turunan,

BAB II KAJIAN PUSTAKA. Pada bab ini akan diberikan landasan teori tentang optimasi, fungsi, turunan, BAB II KAJIAN PUSTAKA Pada bab ini akan diberikan landasan teori tentang optimasi, fungsi, turunan, pemrograman linear, metode simpleks, teorema dualitas, pemrograman nonlinear, persyaratan karush kuhn

Lebih terperinci

MODEL TRANSPORTASI - II MATAKULIAH RISET OPERASIONAL Pertemuan Ke-9. Riani Lubis Program Studi Teknik Informatika Universitas Komputer Indonesia

MODEL TRANSPORTASI - II MATAKULIAH RISET OPERASIONAL Pertemuan Ke-9. Riani Lubis Program Studi Teknik Informatika Universitas Komputer Indonesia MODEL TRANSPORTASI - II MATAKULIAH RISET OPERASIONAL Pertemuan Ke-9 Riani Lubis Program Studi Teknik Informatika Universitas Komputer Indonesia 1 Menentukan Entering Variable & Leaving Variable Tahap selanjutnya

Lebih terperinci

BAB 3 METODE PENELITIAN

BAB 3 METODE PENELITIAN BAB 3 METODE PENELITIAN Pada bab ini, akan dijelaskan metode-metode yang penulis gunakan dalam penelitian ini. Adapun metode yang akan digunakan dalam penelitian ini adalah Metode Simpleks dan Metode Branch

Lebih terperinci

TEKNIK RISET OPERASIONAL

TEKNIK RISET OPERASIONAL DIKTAT TEKNIK RISET OPERASIONAL Oleh: Ir. Rizani Teguh, MT. Ir. Sudiadi, M.M.A.E. PROGRAM STUDI SISTEM INFORMASI SEKOLAH TINGGI MANAJEMEN INFORMATIKA GI MDP PALEMBANG 2014 i KATA PENGANTAR Puji syukur

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Program Linier Program linier merupakan model umum yang dapat digunakan untuk menyelesaikan persoalan pengalokasian sumber-sumber yang terbatas di antara beberapa aktivitas yang

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Optimasi Menurut Nash dan Sofer (1996), optimasi adalah sarana untuk mengekspresikan model matematika yang bertujuan memecahkan masalah dengan cara terbaik. Untuk tujuan bisnis,

Lebih terperinci

Bab 2 LANDASAN TEORI

Bab 2 LANDASAN TEORI Bab 2 LANDASAN TEORI 2.1 Program Linear Menurut Sitorus, Parlin (1997), Program Linier merupakan suatu teknik penyelesaian optimal atas suatu problema keputusan dengan cara menentukan terlebih dahulu suatu

Lebih terperinci

III. KERANGKA PEMIKIRAN

III. KERANGKA PEMIKIRAN III. KERANGKA PEMIKIRAN 3.1 Kerangka Pemikiran Teoritis 3.1.1 Produksi Menurut Salvatore (2002), produksi merujuk pada transformasi dari berbagai input atau sumberdaya menjadi output berupa barang atau

Lebih terperinci

MENENTUKAN JUMLAH PRODUKSI BATIK DENGAN MEMAKSIMALKAN KEUNTUNGAN MENGGUNAKAN METODE LINEAR PROGRAMMING PADA BATIK HANA

MENENTUKAN JUMLAH PRODUKSI BATIK DENGAN MEMAKSIMALKAN KEUNTUNGAN MENGGUNAKAN METODE LINEAR PROGRAMMING PADA BATIK HANA MENENTUKAN JUMLAH PRODUKSI BATIK DENGAN MEMAKSIMALKAN KEUNTUNGAN MENGGUNAKAN METODE LINEAR PROGRAMMING PADA BATIK HANA Indrayanti, S.T, M.Kom 1 Program Studi Manajemen Informatika,STMIK Widya Pratama Jl.

Lebih terperinci

RENCANA PROGRAM KEGIATAN PERKULIAHAN SEMESTER (RPKPS)

RENCANA PROGRAM KEGIATAN PERKULIAHAN SEMESTER (RPKPS) RENCANA PROGRAM KEGIATAN PERKULIAHAN SEMESTER (RPKPS) Kode / Nama Mata Kuliah : E124303 / Optimisasi Revisi 4 Satuan Kredit Semester : 3 SKS Tgl revisi : 16 Juli 2015 Jml Jam kuliah dalam seminggu : 3

Lebih terperinci

DEFINISI LP FUNGSI-FUNGSI DALAM PL MODEL LINEAR PROGRAMMING. Linear Programming Taufiqurrahman 1

DEFINISI LP FUNGSI-FUNGSI DALAM PL MODEL LINEAR PROGRAMMING. Linear Programming Taufiqurrahman 1 DEFINISI LP PENGANTAR LINEAR PROGRAMMING Linear Programming/LP (Program Linear) merupakan salah satu teknik dalam Riset Operasional (Operation Research) yang paling luas digunakan dan dikenal dengan baik.

Lebih terperinci