(translasi) (translasi) Karena katrol tidak slip, maka a = αr. Dari persamaan-persamaan di atas kita peroleh:

Save this PDF as:
 WORD  PNG  TXT  JPG

Ukuran: px
Mulai penontonan dengan halaman:

Download "(translasi) (translasi) Karena katrol tidak slip, maka a = αr. Dari persamaan-persamaan di atas kita peroleh:"

Transkripsi

1 a Dalam sistem dibawah ini, gesekan antara m 1 dan meja adalah µ. Massa katrol m dan anggap katrol tidak slip. Abaikan massa tali, hitung usaha yang dilakukan oleh gaya gesek selama t detik pertama! Benda m 1 (translasi) m 1 m m 1 µm 1 g = m 1 a Benda m (translasi) a m g = m a m g Katrol (Rotasi) 1 ( 1 )R = Iα I = 1 mr µn N1 µn 1 Karena katrol tidak slip, maka a = αr. Dari persamaan-persamaan di atas kita peroleh: a = ( m µ m1 ) g ( m + m ) + m 1 Jarak yang ditempuh dalam waktu t adalah: S = 1 at. Sehingga usaha yang dilakukan oleh gaya gesek adalah: W = -S = -µm 1 gs W = - µ m 1 ( m µ m 1) gt ( m + m ) + m Sebuah silinder homogen berjari-jari R diputar terhadap sumbunya dengan kecepatan sudut ω 0. Dalam keadaan berputar selinder ini ditempatkan pada sudut suatu ruang. Koeisien gesekan antara dinding/ lantai ruang dengan selinder adalah m. Setelah berapa putaran selinder akan berhenti? N Perhatikan gaya-gaya yang bekerja diatas. N 1 dan N adalah reaksi lantai dan dinding. Untuk menyelesaikan soal ini anda bisa memakai metode gaya. Yaitu dengan menghitung dulu perlambatan sudutnya lalu gunakan rumus ω(t) dan θ(t) untuk mendapatkan banyaknya putaran yang dialami selinder. Cara lain adalah dengan metode energi. Disini usaha yang dilakukan selinder sama dengan perubahan energi kinetik selinder. Mekanika I 79

2 x Energi kinetik awal silinder adalah E k = 1 Iω 0 = mr ω0 4 Energi akhir: E k ' = 0 (selinder diam) sehingga: E k = - mr ω0 4 Karena selinder tidak bertranslasi maka percepatan linearnya nol. N 1 + µn = N = µn 1 Dari persamaan diatas, kita bisa menghitung N 1 dan N. Jika selinder berputar n kali sebelum berhenti, panjang lintasan yang ditempuh suatu titik pada permukaan selinder adalah πnr. Sehingga usaha yang dilakukan oleh gaya gesek adalah: W = -(µn 1 + µn )πnr W = - π nrµ ( 1 + µ ) 1 + µ Karena W = E k maka kita akan peroleh: atau ω π nrµ ( 1 + µ ) = µ mr 0 n = ω R 1 + µ 8πµ g ( 1 + µ ) Sebuah silinder homogen berjari-jari R dan bermassa M dapat berputar bebas pada sumbunya. Seutas tali tipis yang panjangnya l dan massanya m dililitkan pada selinder itu. Hitung percepatan sudut selinder sebagai ungsi panjang bagian tali yang tergantung x! Jika panjang tali total adalah l dan massa tali total adalah m,. maka massa tali yang tergantung adalah m x l Hukum Newton: mx l g = mx l Panjang tali yang masih melilit di katrol adalah (l x) sehingga momen inersia selinder + tali yang melilit adalah: I = 1 MR + m ( l l x ) R (catatan: momen inertia akibat tali dapat dianggap sebagai momen inersia cincin). Katrol (berotasi): Hk. Newton rotasi R = Iα a 80 Mekanika I

3 Dari persamaan diatas kita peroleh: x α = lr ( M + m ) (a = Rα) N = cos α sin α Suatu lingkaran homogen bermassa m dan berjari-jari R menggelinding tanpa slip ke bawah suatu bidang miring dengan sudut miring a. entukan: (a) koeisien gesekan agar lingkaran menggelinding tanpa slip! (b) energi kinetik sebagai ungsi t! (a) Gerak translasi: sin α = ma Gerak rotasi (penyebab gerak rotasi adalah gaya gesek): R = Iα Momen inersia bola: I = 5 mr. Syarat tidak slip (tidak tergelincir): Rα = a Karena µ cos θ maka kita peroleh 5 µg cos α g sin α µg cos α µ 7 tan α (b) Dalam kasus menggelinding tanpa slip: Rα = a. Energi kinetik terdiri dari energi kinetik translasi dan energi kinetik rotasi: E k = 1 mv + 1 Iω = 1 m(at) + 1 ( 5) mr (αt) = ( 7 10)ma t Selanjutnya kita peroleh: E k = 5 14 t sin α Sebuah silinder homogen bermassa m dan jari-jari R diikat oleh dua utas tali yang tergulung. Hitung: (a) tegangan setiap tali dan percepatan sudut silinder; (b) daya sesaat akibat gravitasi sebagai ungsi waktu! (a) Gerak translasi selinder: Gerak rotasi: R = Iα = ma Disini a = percepatan pusat massa Mekanika I 81

4 Momen inersia: I = 1 mr Karena selinder berotasi tanpa slip maka a = Rα. Dari persamaan-persamaan diatas kita peroleh: a = g ; α = g R ; = 6 (b) Kecepatan silinder setelah waktu t adalah v = at = gt Daya sesaat: P = Fv = v atau P = t a Sama seperti soal sebelumnya hanya saja sekarang silinder diletakkan dalam suatu lit yang bergerak ke atas dengan percepatan a 0. entukan percepatan silinder relati terhadap lit dan gaya yang diberikan oleh silinder pada langit-langit (melalui tali)! Gerak translasi (untuk dapat menggunakan hukum Newton maka pengamat harus berada dalam kerangka diam atau inersial. Jadi percepatan diukur terhadap tanah). Gerak rotasi: = ma R = Iα Karena lit bergerak keatas dengan percepatan a 0 maka percepatan selinder terhadap lit adalah: -a = a a 0. Karena panjang tali yang terulur sama dengan jarak yang ditempuh selinder ke bawah maka a = Rα. Dari persamaan-persamaan di atas kita peroleh, a' = ( g + a 0 ) dan = m ( g + a 0 ) Jadi gaya yang diberikan oleh tali pada langit-langit adalah: F = = m ( g + a 0 ) α Sebuah gelondong benang diletakkan pada bidang miring dengan sudut miring α (lihat gambar). Massa gelundung m dan momen inersianya (terhadap sumbunya) I. Jari-jari benang yang tergulung r. Hitung percepatan gelundung ini! (lantai licin) Gerak translasi: Gerak Rotasi: sin α = ma r = Iα 8 Mekanika I

5 N F N Selinder tidak slip: αr = a. Dari persamaan-persamaan di atas kita peroleh, a = g sinα I 1 + mr Sebuah silinder homogen bermassa m diletakkan pada dua papan mendatar. Seutas tali diikat pada silinder. Ujung tali yang tergantung ditarik secara vertikal ke bawah dengan gaya konstan F. Hitung gaya F maksimum yang tidak menyebabkan silinder slip, bila koeisien gesekan antara silinder dan papan-papan µ! Gerak translasi balok pada sumbu y (percepatan linear balok arah y, a y = 0): F + N = 0 Arah mendatar: = ma dimana µn adalah gaya gesek. Gerak rotasi balok: τ = Iα FR R = 1 mr α Gaya maksimum agar balok tidak slip harus memenuhi syarat αr = a dan = µn. Dari persamaan-persamaan di atas kita akan peroleh: dan F = µ µ a = µ g µ R r N Suatu gelendong benang massanya m, diam pada bidang datar kasar. Momen inersia gelendong terhadap sumbunya adalah I = γmr, F dimana γ adalah suatu bilangan, dan R jari-jari luar gelendong. Jarijari tali yang tergulung adalah r. Gelendong kemudian ditarik oleh α gaya konstan F yang arahnya membentuk sudut α dengan bidang datar. entukan: (a) percepatan gelendong arah x; (b) usaha yang dilakukan oleh gaya F selama t detik pertama! F sin α F α F cos α (a) Gerak translasi (arah x): F cos α = ma (gerakan pusat massa) Gerak rotasi: τ = Iα R Fr = γmr α Mekanika I 8

6 Dari persamaan-persamaan di atas kita peroleh: (a = αr) a = r F cosα R m ( γ + 1) (b) Usaha yang dilakukan oleh gaya F sama dengan perubahan energi kinetiknya (perhatikan bahwa gaya gesek dalam gerak rotasi tanpa slip tidak melakukan usaha). W = 1 mv + 1 Iω = 1 mv (1 + γ) atau = 1 m(at) (1 + γ) W = Ft cosα r R m ( γ + 1) R R Pada sistem di bawah ini, massa masing-masing selinder homogen adalah m. Massa tali diabaikan. Hitung tegangan masing-masing tali! Anggap selinder dapat berotasi dengan mudah. Selinder atas (keseimbangan) R = + R adalah gaya reaksi penyangga dan adalah tegangan tali. Selinder atas (rotasi): r = Iα Selinder bawah (translasi): Selinder bawah (rotasi): = ma r = Iα Karena percepatan sudut selinder atas dan bawah masing-masing α, maka percepatan pusat massa selinder bawah (bergerak ke bawah) a = αr (pikirkan mengapa begitu?). Dari persamaan-persamaan diatas kita akan peroleh: = 1 10 N A Dalam gambar di bawah, massa beban A dan katrol B masing-masing m dan M. Momen inersia katrol relati terhadap sumbu katrol I dan jari-jari katrol R dan R. Abaikan massa tali, hitung percepatan benda A! B Katrol (translasi): Mg + = Ma 84 Mekanika I

7 Katrol (rotasi): Benda A (translasi): R + ' R = Iα = ma' ali yang terikat pada selinder berjari-jari R akan terulur dengan percepatan a dan yang terikat pada selinder berjari-jari R akan terulur dengan percepatan αr. Jadi percepatan pusat massa A adalah: a = a+ αr = αr Percepatan pusat massa selinder: a = Rα. Dari persamaan-persamaan di atas kita akan peroleh: a' = ( M + m ) g M + 9m + I R B A O Suatu silinder pejal A yang homogen bermassa m 1 dapat berputar bebas di sekitar sumbunya. Selinder ini dihubungkan dengan bantalan B bermassa m (lihat Gambar). Suatu gaya konstan mendatar F diberikan pada ujung tali yang melilit pada selinder. Abaikan gesekan F antara bantalan dengan bidang datar. entukan: (a) percepatan ujung tali K; (b) energi kinetik sistem setelah t detik! K (a) Anggap x dan x pm adalah perpindahan titik K dan pusat massa silinder A. Jika θ adalah sudut rotasi silinder maka, Dengan demikian x x cm = Rθ a a cm = Rα Disini, a cm adalah percepatan pusat massa silinder A, a adalah percepatan titik K dan α adalah percepatan sudut A. Gerak translasi: Gerak rotasi selinder: F = (m 1 + m )a cm τ = Iα FR = 1 m 1 R α Dari persamaan-persamaan di atas kita akan peroleh: a = F m 1 + m m ( m + m ) 1 1 Mekanika I 85

8 (b) Usaha oleh gaya F sama dengan perbedaan energi kinetik. W = E k 0 F at = E k E k = Ft m 1 + m m ( m + m ) Di atas suatu papan yang bermassa m 1 diletakkan suatu bola homogen bermassa m. Papan diletakkan pada lantai licin dan mendapat gaya mendatar konstan F. Berapa percepatan papan agar bola tidak slip F (tidak tergelincir)? F Papan (translasi) F = m 1 a 1 dimana adalah gaya gesek. Bola (translasi) = m a Dimana a 1 dan a adalah percepatan pusat massa papan dan bola (keduanya relati terhadap tanah sebab hukum Newton harus mengambil acuan sistem yang diam). Bola tidak akan tergelincir (tidak slip) jika percepatan pusat massa bola terhadap papan harus sama dengan percepatan tangensial bola a a 1 = -αr (mengapa? perhatikan tanda minus!). Gerak rotasi Selinder: τ = Iα r = 5 m r α Dari persamaan-persamaan di atas kita peroleh: dan a 1 = a = 7F 7m + m 1 F 7m + m Sebuah silinder pejal homogen mempunyai massa m dan jari-jari R. Ketika sedang berputar dengan kecepatan sudut ω 0, selinder diletakkan ke lantai dan dilepas. Koeisien gesek antara selinder dan bidang datar µ. Hitung: (a) berapa lama silinder akan bergerak disertai slip? (b) usaha total yang dilakukan oleh gaya gesekan! 86 Mekanika I

9 (a) Pada waktu selinder dijatuhkan ke lantai, akibat gaya gesekan, kecepatan sudut selinder akan berkurang. ω = ω 0 αt Gaya gesekan ini akan memberikan kecepatan linear (translasi) pada selinder sehingga selinder bergerak dengan kecepatan v. v = at Kejadian ini berlangsung terus hingga suatu saat selinder bergerak tanpa slip dimana berlaku. v = ωr Percepatan selinder dihitung dari hukum Newton: F = ma µ = ma Percepatan sudut selinder dihitung dari rumus Newton untuk rotasi: τ = Iα µr = 1 mr α Dengan menyelesaikan persamaan-persamaan di atas kita akan peroleh, dan t = ω 0R µ g ω = ω 0 (b) Usaha oleh gaya gesekan sama dengan beda energi kinetik. atau W = 1 mv + 1 Iω 1 Iω 0 W = mr ω 0 A B cos θ 0 θ Sebuah bola A berjari-jari r menggelinding tanpa slip ke bawah dari puncak bola B yang berjari-jari R. Hitung kecepatan sudut bola A ketika meninggalkan bola B! Anggap kecepatan awal bola A nol. N Pusat massa bola A bergerak melingkar dengan jari-jari lintasan (R + r). Ketika bola A berada pada sudut θ, maka dari hukum Newton F = ma kita peroleh: cos θ N = mv R + r Ketika bola A mulai meninggalkan bola B maka N = 0 atau cos θ = mv R + r Mekanika I 87

Energi sistem kekal. Subtitusi persamaan (1) ke (2)

Energi sistem kekal. Subtitusi persamaan (1) ke (2) Contact Person : 0896-5985-681 OSK Fisika 015 Number 1 TUMBUKAN MOBIL BERPEGAS Sebuah mobil massa m bergerak dengan kecepatan v pada saat mendekati mobil lain massa 4m yang sedang dalam keadaan diam. Pada

Lebih terperinci

v adalah kecepatan bola A: v = ωr. Dengan menggunakan I = 2 5 mr2, dan menyelesaikan persamaanpersamaan di atas, kita akan peroleh: ω =

v adalah kecepatan bola A: v = ωr. Dengan menggunakan I = 2 5 mr2, dan menyelesaikan persamaanpersamaan di atas, kita akan peroleh: ω = v adalah kecepatan bola A: v = ωr. ω adalah kecepatan sudut bola A terhadap sumbunya (sebenarnya v dapat juga ditulis sebagai v = d θ dt ( + r), tetapi hubungan ini tidak akan kita gunakan). Hukum kekekalan

Lebih terperinci

Dinamika Rotasi, Statika dan Titik Berat 1 MOMEN GAYA DAN MOMEN INERSIA

Dinamika Rotasi, Statika dan Titik Berat 1 MOMEN GAYA DAN MOMEN INERSIA Dinamika Rotasi, Statika dan Titik Berat 1 MOMEN GAYA DAN MOMEN INERSIA Dalam gerak translasi gaya dikaitkan dengan percepatan linier benda, dalam gerak rotasi besaran yang dikaitkan dengan percepatan

Lebih terperinci

Contoh Soal dan Pembahasan Dinamika Rotasi, Materi Fisika kelas 2 SMA. Pembahasan. a) percepatan gerak turunnya benda m.

Contoh Soal dan Pembahasan Dinamika Rotasi, Materi Fisika kelas 2 SMA. Pembahasan. a) percepatan gerak turunnya benda m. Contoh Soal dan Dinamika Rotasi, Materi Fisika kelas 2 SMA. a) percepatan gerak turunnya benda m Tinjau katrol : Penekanan pada kasus dengan penggunaan persamaan Σ τ = Iα dan Σ F = ma, momen inersia (silinder

Lebih terperinci

SOAL DINAMIKA ROTASI

SOAL DINAMIKA ROTASI SOAL DINAMIKA ROTASI A. Pilihan Ganda Pilihlah jawaban yang paling tepat! 1. Sistem yang terdiri atas bola A, B, dan C yang posisinya seperti tampak pada gambar, mengalami gerak rotasi. Massa bola A, B,

Lebih terperinci

FISIKA XI SMA 3

FISIKA XI SMA 3 FISIKA XI SMA 3 Magelang @iammovic Standar Kompetensi: Menerapkan konsep dan prinsip mekanika klasik sistem kontinu dalam menyelesaikan masalah Kompetensi Dasar: Merumuskan hubungan antara konsep torsi,

Lebih terperinci

K13 Antiremed Kelas 11 Fisika

K13 Antiremed Kelas 11 Fisika K13 Antiremed Kelas 11 Fisika Latihan Campuran 2 Halaman 1 01. Dua buah bola yang dihubungkan dengan kawat (massa kawat diabaikan) disusun seperti gambar berikut: Besar momen inersianya adalah kgm 2. (A)

Lebih terperinci

DINAMIKA ROTASI DAN KESETIMBANGAN

DINAMIKA ROTASI DAN KESETIMBANGAN FIS A. BENDA TEGAR Benda tegar adalah benda yang tidak mengalami perubahan bentuk dan volume selama bergerak. Benda tegar dapat mengalami dua macam gerakan, yaitu translasi dan rotasi. Gerak translasi

Lebih terperinci

4 I :0 1 a :4 9 1 isik F I S A T O R A IK M A IN D

4 I :0 1 a :4 9 1 isik F I S A T O R A IK M A IN D 9:4:04 Posisi, Kecepatan dan Percepatan Angular 9:4:04 Partikel di titik P bergerak melingkar sejauh θ. Besarnya lintasan partikelp (panjang busur) sebanding sebanding dengan: s = rθ Satu keliling lingkaran

Lebih terperinci

momen inersia Energi kinetik dalam gerak rotasi momentum sudut (L)

momen inersia Energi kinetik dalam gerak rotasi momentum sudut (L) Dinamika Rotasi adalah kajian fisika yang mempelajari tentang gerak rotasi sekaligus mempelajari penyebabnya. Momen gaya adalah besaran yang menyebabkan benda berotasi DINAMIKA ROTASI momen inersia adalah

Lebih terperinci

5. Tentukanlah besar dan arah momen gaya yang bekerja pada batang AC dan batang AB berikut ini, jika poros putar terletak di titik A, B, C dan O

5. Tentukanlah besar dan arah momen gaya yang bekerja pada batang AC dan batang AB berikut ini, jika poros putar terletak di titik A, B, C dan O 1 1. Empat buah partikel dihubungkan dengan batang kaku yang ringan dan massanya dapat diabaikan seperti pada gambar berikut: Jika jarak antar partikel sama yaitu 40 cm, hitunglah momen inersia sistem

Lebih terperinci

Karena semua permukaan licin dan tidak ada gaya luar nonkonservatif yang bekerja pada sistem, maka energi mekanik nya kekal. 1

Karena semua permukaan licin dan tidak ada gaya luar nonkonservatif yang bekerja pada sistem, maka energi mekanik nya kekal. 1 Contact Person : OSP Fisika 2014 Number 1 PELURU BERSARANG DI BALOK Balok bermassa 2m mula-mula diam di bagian terbawah bidang miring (massa M dan sudut kemiringan ). Permukaan bidang miring licin dan

Lebih terperinci

DINAMIKA ROTASI DAN KESETIMBANGAN BENDA TEGAR

DINAMIKA ROTASI DAN KESETIMBANGAN BENDA TEGAR DINAMIKA ROTASI DAN KESETIMBANGAN BENDA TEGAR Fisika Kelas XI SCI Semester I Oleh: M. Kholid, M.Pd. 43 P a g e 6 DINAMIKA ROTASI DAN KESETIMBANGAN BENDA TEGAR Kompetensi Inti : Memahami, menerapkan, dan

Lebih terperinci

MODUL PEMBELAJARAN FISIKA

MODUL PEMBELAJARAN FISIKA MODUL PEMBELAJARAN FISIKA Momen Inersia, Momentum Sudut, Pemecahan Masalah Dinamika Rotasi dengan Hukum Kekekalan Energi, Keseimbangan Benda Tegar dan Titik Berat. Bagian Satu Momen Inersia 1. Definisi

Lebih terperinci

Dinamika Rotasi 1. Dua bola bermassa m 1 = 2 kg dan m 2 = 3 kg dihubungkan dengan batang ringan tak bermassa seperti pada gambar.

Dinamika Rotasi 1. Dua bola bermassa m 1 = 2 kg dan m 2 = 3 kg dihubungkan dengan batang ringan tak bermassa seperti pada gambar. 1. Dua bola bermassa m 1 = 2 kg dan m 2 = 3 kg dihubungkan dengan batang ringan tak bermassa seperti pada gambar. 3. Perhatikan gambar berikut. Jika sistem bola diputar pada sumbu di titik a, maka besar

Lebih terperinci

Kumpulan soal-soal level Olimpiade Sains Nasional: solusi:

Kumpulan soal-soal level Olimpiade Sains Nasional: solusi: Kumpulan soal-soal level Olimpiade Sains Nasional: 1. Sebuah batang uniform bermassa dan panjang l, digantung pada sebuah titik A. Sebuah peluru bermassa bermassa m menumbuk ujung batang bawah, sehingga

Lebih terperinci

1. (25 poin) Sebuah bola kecil bermassa m ditembakkan dari atas sebuah tembok dengan ketinggian H (jari-jari bola R jauh lebih kecil dibandingkan

1. (25 poin) Sebuah bola kecil bermassa m ditembakkan dari atas sebuah tembok dengan ketinggian H (jari-jari bola R jauh lebih kecil dibandingkan . (5 poin) Sebuah bola kecil bermassa m ditembakkan dari atas sebuah tembok dengan ketinggian H (jari-jari bola R jauh lebih kecil dibandingkan dengan H). Kecepatan awal horizontal bola adalah v 0 dan

Lebih terperinci

Latihan I IMPULS MOMENTUM DAN ROTASI

Latihan I IMPULS MOMENTUM DAN ROTASI Latihan I IMPULS MOMENTUM DAN ROTASI 1. Bola bergerak jatuh bebas dari ketinggian 1 m lantai. Jika koefisien restitusi = ½ maka tinggi bola setelah tumbukan pertama A. 50 cm B. 25 cm C. 2,5 cm D. 12,5

Lebih terperinci

K 1. h = 0,75 H. y x. O d K 2

K 1. h = 0,75 H. y x. O d K 2 1. (25 poin) Dari atas sebuah tembok dengan ketinggian H ditembakkan sebuah bola kecil bermassa m (Jari-jari R dapat dianggap jauh lebih kecil daripada H) dengan kecepatan awal horizontal v 0. Dua buah

Lebih terperinci

Gambar 7.1 Sebuah benda bergerak dalam lingkaran yang pusatnya terletak pada garis lurus

Gambar 7.1 Sebuah benda bergerak dalam lingkaran yang pusatnya terletak pada garis lurus BAB 7. GERAK ROTASI 7.1. Pendahuluan Gambar 7.1 Sebuah benda bergerak dalam lingkaran yang pusatnya terletak pada garis lurus Sebuah benda tegar bergerak rotasi murni jika setiap partikel pada benda tersebut

Lebih terperinci

BAB DINAMIKA ROTASI DAN KESEIMBANGAN BENDA TEGAR

BAB DINAMIKA ROTASI DAN KESEIMBANGAN BENDA TEGAR BAB DNAMKA OTAS DAN KESEMBANGAN BENDA TEGA. SOA PHAN GANDA. Dengan menetapkan arah keluar bidang kertas, sebagai arah Z positif dengan vektor satuan k, maka torsi total yang bekerja pada batang terhadap

Lebih terperinci

Bab 6 Momentum Sudut dan Rotasi Benda Tegar

Bab 6 Momentum Sudut dan Rotasi Benda Tegar Bab 6 Momentum Sudut dan Rotasi Benda Tegar A. Torsi 1. Pengertian Torsi Torsi atau momen gaya, hasil perkalian antara gaya dengan lengan gaya. r F Keterangan: = torsi (Nm) r = lengan gaya (m) F = gaya

Lebih terperinci

Saat mempelajari gerak melingkar, kita telah membahas hubungan antara kecepatan sudut (ω) dan kecepatan linear (v) suatu benda

Saat mempelajari gerak melingkar, kita telah membahas hubungan antara kecepatan sudut (ω) dan kecepatan linear (v) suatu benda 1 Benda tegar Pada pembahasan mengenai kinematika, dinamika, usaha dan energi, hingga momentum linear, benda-benda yang bergerak selalu kita pandang sebagai benda titik. Benda yang berbentuk kotak misalnya,

Lebih terperinci

Momen inersia yaitu ukuran kelembapan suatu benda untuk berputar. Rumusannya yaitu sebagai berikut:

Momen inersia yaitu ukuran kelembapan suatu benda untuk berputar. Rumusannya yaitu sebagai berikut: Momen Gaya Momen gaya merupakan salah satu bentuk usaha dengan salah satu titik sebagai titik acuan. Momen gaya merupakan hasil kali gaya dan jarak terpendek arah garis kerja terhadap titik tumpu. Momen

Lebih terperinci

SELEKSI OLIMPIADE NASIONAL MIPA PERGURUAN TINGGI (ONMIPA-PT) 2014 TINGKAT UNIVERSITAS MUHAMMADIYAH JAKARTA BIDANG FISIKA

SELEKSI OLIMPIADE NASIONAL MIPA PERGURUAN TINGGI (ONMIPA-PT) 2014 TINGKAT UNIVERSITAS MUHAMMADIYAH JAKARTA BIDANG FISIKA SELEKSI OLIMPIADE NASIONAL MIPA PERGURUAN TINGGI (ONMIPA-PT) 2014 TINGKAT UNIVERSITAS MUHAMMADIYAH JAKARTA BIDANG FISIKA Hari, tanggal: Rabu, 2 April 2014 Waktu: 60 menit Nama: NIM: 1. (50 poin) Sebuah

Lebih terperinci

BAHAN AJAR FISIKA KELAS XI IPA SEMESTER GENAP MATERI : DINAMIKA ROTASI

BAHAN AJAR FISIKA KELAS XI IPA SEMESTER GENAP MATERI : DINAMIKA ROTASI BAHAN AJAR FISIKA KELAS XI IPA SEMESTER GENAP MATERI : DINAMIKA ROTASI Momen gaya : Simbol : τ Momen gaya atau torsi merupakan penyebab benda berputar pada porosnya. Momen gaya terhadap suatu poros tertentu

Lebih terperinci

DINAMIKA GERAK DAN GAYA

DINAMIKA GERAK DAN GAYA DINAMIKA GERAK DAN GAYA FISIKA & KIMIA DASAR 1A INDAH PRASETIYA RINI Hukum Newton Tentang Gerak Hukum Newton Tentang Gerak Hukum I Newton Hukum II Newton Hukum III Newton Hukum I Newton Hukum I Newton

Lebih terperinci

SOAL SOAL FISIKA DINAMIKA ROTASI

SOAL SOAL FISIKA DINAMIKA ROTASI 10 soal - soal fisika Dinamika Rotasi SOAL SOAL FISIKA DINAMIKA ROTASI 1. Momentum Sudut Seorang anak dengan kedua lengan berada dalam pangkuan sedang berputar pada suatu kursi putar dengan 1,00 putaran/s.

Lebih terperinci

PETUNJUK UMUM Pengerjaan Soal Tahap 1 Diponegoro Physics Competititon Tingkat SMA

PETUNJUK UMUM Pengerjaan Soal Tahap 1 Diponegoro Physics Competititon Tingkat SMA PETUNJUK UMUM Pengerjaan Soal Tahap 1 Diponegoro Physics Competititon Tingkat SMA 1. Soal Olimpiade Sains bidang studi Fisika terdiri dari dua (2) bagian yaitu : soal isian singkat (24 soal) dan soal pilihan

Lebih terperinci

Soal-Jawab Fisika Teori OSN 2013 Bandung, 4 September 2013

Soal-Jawab Fisika Teori OSN 2013 Bandung, 4 September 2013 Soal-Jawab Fisika Teori OSN 0 andung, 4 September 0. (7 poin) Dua manik-manik masing-masing bermassa m dan dianggap benda titik terletak di atas lingkaran kawat licin bermassa M dan berjari-jari. Kawat

Lebih terperinci

GERAK BENDA TEGAR. Kinematika Rotasi

GERAK BENDA TEGAR. Kinematika Rotasi GERAK BENDA TEGAR Benda tegar adalah sistem benda yang terdiri atas sistem benda titik yang jumlahnya tak-hinggadan jika ada gaya yang bekerja, jarak antara titik-titik anggota sistem selalu tetap. Gerak

Lebih terperinci

SOAL SELEKSI OLIMPIADE SAINS TINGKAT KABUPATEN/KOTA 2015 CALON TIM OLIMPIADE FISIKA INDONESIA 2016

SOAL SELEKSI OLIMPIADE SAINS TINGKAT KABUPATEN/KOTA 2015 CALON TIM OLIMPIADE FISIKA INDONESIA 2016 HAK CIPTA DILINDUNGI UNDANG-UNDANG SOAL SELEKSI OLIMPIADE SAINS TINGKAT KABUPATEN/KOTA 2015 CALON TIM OLIMPIADE FISIKA INDONESIA 2016 Bidang Fisika Waktu : 180 menit KEMENTERIAN PENDIDIKAN DAN KEBUDAYAAN

Lebih terperinci

Jika resultan dari gaya-gaya yang bekerja pada sebuah benda sama dengan nol

Jika resultan dari gaya-gaya yang bekerja pada sebuah benda sama dengan nol HUKUM I NEWTON Jika resultan dari gaya-gaya yang bekerja pada sebuah benda sama dengan nol ΣF = 0 maka benda tersebut : - Jika dalam keadaan diam akan tetap diam, atau - Jika dalam keadaan bergerak lurus

Lebih terperinci

Hak Cipta Dilindungi Undang-undang SOAL UJIAN SELEKSI CALON PESERTA OLIMPIADE SAINS NASIONAL 2016 TINGKAT KABUPATEN / KOTA FISIKA.

Hak Cipta Dilindungi Undang-undang SOAL UJIAN SELEKSI CALON PESERTA OLIMPIADE SAINS NASIONAL 2016 TINGKAT KABUPATEN / KOTA FISIKA. SOAL UJIAN SELEKSI CALON PESERTA OLIMPIADE SAINS NASIONAL 6 TINGKAT KABUPATEN / KOTA FISIKA Waktu : 3 jam KEMENTERIAN PENDIDIKAN DAN KEBUDAYAAN DIREKTORAT JENDERAL PENDIDIKAN MENENGAH DIREKTORAT PEMBINAAN

Lebih terperinci

Soal Pembahasan Dinamika Gerak Fisika Kelas XI SMA Rumus Rumus Minimal

Soal Pembahasan Dinamika Gerak Fisika Kelas XI SMA Rumus Rumus Minimal Soal Dinamika Gerak Fisika Kelas XI SMA Rumus Rumus Minimal Hukum Newton I Σ F = 0 benda diam atau benda bergerak dengan kecepatan konstan / tetap atau percepatan gerak benda nol atau benda bergerak lurus

Lebih terperinci

Besar vektor kecepatan awal, akhir, dan percepatan benda dapat kita cari dari teorema phytagoras

Besar vektor kecepatan awal, akhir, dan percepatan benda dapat kita cari dari teorema phytagoras Contact Person : 0896-5985-681 OSP Fisika 015 Number 1 KINEMATIKA GERAK Sebuah benda yg bergerak pada bidang dimensi mendapat gaya konstan. Setelah detik pertama, kelajuan benda menjadi 1/3 dari kelajuan

Lebih terperinci

Pembahasan UAS I = 2/3 m.r 2 + m.r 2 = 5/3 m.r 2 = 5/3 x 0,1 x (0,05) 2

Pembahasan UAS I = 2/3 m.r 2 + m.r 2 = 5/3 m.r 2 = 5/3 x 0,1 x (0,05) 2 Pembahasan UAS 2013 1. Sebuah cakram homogen berjari-jari 0,3 m pada titik tengahnya terdapat sebuah poros mendatar dan tegak lurus dengan cakram. Seutas tali dililitkan melingkar pada sekeliling cakram

Lebih terperinci

Gerak rotasi: besaran-besaran sudut

Gerak rotasi: besaran-besaran sudut Gerak rotasi Benda tegar Adalah kumpulan benda titik dengan bentuk yang tetap (jarak antar titik dalam benda tersebut tidak berubah) Gerak benda tegar dapat dipandang sebagai gerak suatu titik tertentu

Lebih terperinci

PHYSICS SUMMIT 2 nd 2014

PHYSICS SUMMIT 2 nd 2014 KETENTUAN UMUM 1. Periksa terlebih dahulu bahwa jumlah soal Saudara terdiri dari 8 (tujuh) buah soal 2. Waktu total untuk mengerjakan tes ini adalah 3 jam atau 180 menit 3. Peserta diperbolehkan menggunakan

Lebih terperinci

MATERI PELATIHAN GURU FISIKA SMA/MA

MATERI PELATIHAN GURU FISIKA SMA/MA MATERI PELATIHAN GURU FISIKA SMA/MA a. Judul: Pembelajaran Gerak Rotasi dan Keseimbangan Benda Tegar Berbasis Koop untuk Meningkatkan Pemahaman Konsep Siswa SMA b. Kompetensi Dasar Setelah berpartisipasi

Lebih terperinci

Dari gamabar diatas dapat dinyatakan hubungan sebagai berikut.

Dari gamabar diatas dapat dinyatakan hubungan sebagai berikut. Pengertian Gerak Translasi dan Rotasi Gerak translasi dapat didefinisikan sebagai gerak pergeseran suatu benda dengan bentuk dan lintasan yang sama di setiap titiknya. gerak rotasi dapat didefinisikan

Lebih terperinci

Fisika Umum (MA101) Kinematika Rotasi. Dinamika Rotasi

Fisika Umum (MA101) Kinematika Rotasi. Dinamika Rotasi Fisika Umum (MA101) Topik hari ini: Kinematika Rotasi Hukum Gravitasi Dinamika Rotasi Kinematika Rotasi Perpindahan Sudut Riview gerak linear: Perpindahan, kecepatan, percepatan r r = r f r i, v =, t a

Lebih terperinci

GuruMuda.Com. Konsep, Rumus dan Kunci Jawaban ---> Alexander San Lohat 1

GuruMuda.Com. Konsep, Rumus dan Kunci Jawaban ---> Alexander San Lohat  1 Indikator 1 : Membaca hasil pengukuran suatu alat ukur dan menentukan hasil pengukuran dengan memperhatikan aturan angka penting. Pengukuran dasar : Pelajari cara membaca hasil pengukuran dasar. dalam

Lebih terperinci

Jika sebuah sistem berosilasi dengan simpangan maksimum (amplitudo) A, memiliki total energi sistem yang tetap yaitu

Jika sebuah sistem berosilasi dengan simpangan maksimum (amplitudo) A, memiliki total energi sistem yang tetap yaitu A. TEORI SINGKAT A.1. TEORI SINGKAT OSILASI Osilasi adalah gerakan bolak balik di sekitar suatu titik kesetimbangan. Ada osilasi yang memenuhi hubungan sederhana dan dinamakan gerak harmonik sederhana.

Lebih terperinci

Jenis Gaya gaya gesek. Hukum I Newton. jenis gaya gesek. 1. Menganalisis gejala alam dan keteraturannya dalam cakupan mekanika benda titik.

Jenis Gaya gaya gesek. Hukum I Newton. jenis gaya gesek. 1. Menganalisis gejala alam dan keteraturannya dalam cakupan mekanika benda titik. gaya yang muncul ketika BENDA BERSENTUHAN dengan PERMUKAAN KASAR. ARAH GAYA GESEK selalu BERLAWANAN dengan ARAH GERAK BENDA. gaya gravitasi/gaya berat gaya normal GAYA GESEK Jenis Gaya gaya gesek gaya

Lebih terperinci

BAB IV DINAMIKA PARTIKEL. A. STANDAR KOMPETENSI : 3. Mendeskripsikan gejala alam dalam cakupan mekanika klasik sistem diskret (partikel).

BAB IV DINAMIKA PARTIKEL. A. STANDAR KOMPETENSI : 3. Mendeskripsikan gejala alam dalam cakupan mekanika klasik sistem diskret (partikel). BAB IV DINAMIKA PARIKEL A. SANDAR KOMPEENSI : 3. Mendeskripsikan gejala alam dalam cakupan mekanika klasik sistem diskret (partikel). B. KOMPEENSI DASAR : 1. Menjelaskan Hukum Newton sebagai konsep dasar

Lebih terperinci

GERAK LURUS Standar Kompetensi Menerapkan konsep dan prinsip dasar kinematika dan dinamika benda titik.

GERAK LURUS Standar Kompetensi Menerapkan konsep dan prinsip dasar kinematika dan dinamika benda titik. GERAK LURUS Standar Kompetensi Menerapkan konsep dan prinsip dasar kinematika dan dinamika benda titik. Kompetensi Dasar Menganalisis besaran fisika pada gerak dengan kecepatan dan percepatan konstan.

Lebih terperinci

a. Hubungan Gerak Melingkar dan Gerak Lurus Kedudukan benda ditentukan berdasarkan sudut θ dan jari jari r lintasannya Gambar 1

a. Hubungan Gerak Melingkar dan Gerak Lurus Kedudukan benda ditentukan berdasarkan sudut θ dan jari jari r lintasannya Gambar 1 . Pengantar a. Hubungan Gerak Melingkar dan Gerak Lurus Gerak melingkar adalah gerak benda yang lintasannya berbentuk lingkaran dengan jari jari r Kedudukan benda ditentukan berdasarkan sudut θ dan jari

Lebih terperinci

SOAL DAN PEMBAHASAN FINAL SESI II LIGA FISIKA PIF XIX TINGKAT SMA/MA SEDERAJAT

SOAL DAN PEMBAHASAN FINAL SESI II LIGA FISIKA PIF XIX TINGKAT SMA/MA SEDERAJAT SOAL DAN PEMBAHASAN FINAL SESI II LIGA FISIKA PIF XIX TINGKAT SMA/MA SEDERAJAT 1. VEKTOR Jika diketahui vektor A = 4i 8j 10k dan B = 4i 3j + 2bk. Jika kedua vektor tersebut saling tegak lurus, maka tentukan

Lebih terperinci

Selanjutnya kita akan mencari hubungan antara variabel v, I, m, r, dan ω. Hubungan kecepatan linier dan kecepatan sudut bola adalah

Selanjutnya kita akan mencari hubungan antara variabel v, I, m, r, dan ω. Hubungan kecepatan linier dan kecepatan sudut bola adalah Contact Person : OSN Fisika 016 Number 1 PERSAMAAN GERAK SEDERHANA BOLA SALJU (SIMPLE SNOW BALL EQUATION) Tinjau sebuah bola salju yang sedang menggelinding. Seperti kita tahu, fenomena menggelindingnya

Lebih terperinci

b. Untuk mendapatkan kecepatan awal benda, kita tinjau kemiringan kurva x(t) pada

b. Untuk mendapatkan kecepatan awal benda, kita tinjau kemiringan kurva x(t) pada Contact Person : OSK Fisika 014 Number 1 ANALISIS GRAFIK 1 Sebuah benda bergerak sepanjang sumbu x dimana posisinya sebagai fungsi waktu t dapat dinyatakan dengan kurva seperti terlihat pada gambar (x

Lebih terperinci

1. Sebuah benda diam ditarik oleh 3 gaya seperti gambar.

1. Sebuah benda diam ditarik oleh 3 gaya seperti gambar. 1. Sebuah benda diam ditarik oleh 3 gaya seperti gambar. Berdasar gambar diatas, diketahui: 1) percepatan benda nol 2) benda bergerak lurus beraturan 3) benda dalam keadaan diam 4) benda akan bergerak

Lebih terperinci

C. Momen Inersia dan Tenaga Kinetik Rotasi

C. Momen Inersia dan Tenaga Kinetik Rotasi C. Momen Inersia dan Tenaga Kinetik Rotasi 1. Sistem Diskrit Tinjaulah sistem yang terdiri atas 2 benda. Benda A dan benda B dihubungkan dengan batang ringan yang tegar dengan sebuah batang tegak yang

Lebih terperinci

BAB 3 DINAMIKA GERAK LURUS

BAB 3 DINAMIKA GERAK LURUS BAB 3 DINAMIKA GERAK LURUS A. TUJUAN PEMBELAJARAN 1. Menerapkan Hukum I Newton untuk menganalisis gaya-gaya pada benda 2. Menerapkan Hukum II Newton untuk menganalisis gerak objek 3. Menentukan pasangan

Lebih terperinci

BAB 3 DINAMIKA ROTASI DAN KESETIMBANGAN BENDA TEGAR

BAB 3 DINAMIKA ROTASI DAN KESETIMBANGAN BENDA TEGAR 85 BAB 3 DINAMIKA ROTASI DAN KESETIMBANGAN BENDA TEGAR Benda tegar adalah benda yang dianggap sesuai dengan dimensi ukuran sesungguhnya di mana jarak antar partikel penyusunnya tetap. Ketika benda tegar

Lebih terperinci

SOAL SELEKSI OLIMPIADE SAINS TINGKAT KABUPATEN/KOTA 2017 CALON TIM OLIMPIADE FISIKA INDONESIA 2018

SOAL SELEKSI OLIMPIADE SAINS TINGKAT KABUPATEN/KOTA 2017 CALON TIM OLIMPIADE FISIKA INDONESIA 2018 HAK CIPTA DILINDUNGI UNDANG-UNDANG SOAL SELEKSI OLIMPIADE SAINS TINGKAT KABUPATEN/KOTA 2017 CALON TIM OLIMPIADE FISIKA INDONESIA 2018 Bidang Fisika Waktu : 180 menit KEMENTERIAN PENDIDIKAN DAN KEBUDAYAAN

Lebih terperinci

GURUMUDA.COM. KONSEP, RUMUS DAN KUNCI JAWABAN ---> ALEXANDER SAN LOHAT 1

GURUMUDA.COM. KONSEP, RUMUS DAN KUNCI JAWABAN ---> ALEXANDER SAN LOHAT 1 GURUMUDA.COM. KONSEP, RUMUS DAN KUNCI JAWABAN ---> ALEXANDER SAN LOHAT 1 Soal UN Fisika sesuai SKL 2012 disertai dengan konsep, rumus dan kunci jawaban. Indikator 1 : Membaca hasil pengukuran suatu alat

Lebih terperinci

K13 Revisi Antiremed Kelas 10 Fisika

K13 Revisi Antiremed Kelas 10 Fisika K13 evisi Antiremed Kelas 10 Fisika Persiapan PTS Semester Genap Doc. Name: K13A10FIS0PTS Version: 017-03 Halaman 1 01. Pada benda bermassa m, bekerja gaya F yang menimbulkan percepatan a. Jika gaya dijadikan

Lebih terperinci

DASAR PENGUKURAN MEKANIKA

DASAR PENGUKURAN MEKANIKA DASAR PENGUKURAN MEKANIKA 1. Jelaskan pengertian beberapa istilah alat ukur berikut dan berikan contoh! a. Kemampuan bacaan b. Cacah terkecil 2. Jelaskan tentang proses kalibrasi alat ukur! 3. Tunjukkan

Lebih terperinci

BENDA TEGAR FISIKA DASAR (TEKNIK SISPIL) Mirza Satriawan. menu. Physics Dept. Gadjah Mada University Bulaksumur, Yogyakarta

BENDA TEGAR FISIKA DASAR (TEKNIK SISPIL) Mirza Satriawan. menu. Physics Dept. Gadjah Mada University Bulaksumur, Yogyakarta 1/36 FISIKA DASAR (TEKNIK SISPIL) BENDA TEGAR Mirza Satriawan Physics Dept. Gadjah Mada University Bulaksumur, Yogyakarta email: mirza@ugm.ac.id Rotasi Benda Tegar Benda tegar adalah sistem partikel yang

Lebih terperinci

Pembahasan UAS I = 2/3 m.r 2 + m.r 2 = 5/3 m.r 2 = 5/3 x 0,1 x (0,05) 2

Pembahasan UAS I = 2/3 m.r 2 + m.r 2 = 5/3 m.r 2 = 5/3 x 0,1 x (0,05) 2 Pembahasan UAS 2014 1. Sebuah cakram homogen berjari-jari 0,3 m pada titik tengahnya terdapat sebuah poros mendatar dan tegak lurus dengan cakram. Seutas tali dililitkan melingkar pada sekeliling cakram

Lebih terperinci

Tarikan/dorongan yang bekerja pada suatu benda akibat interaksi benda tersebut dengan benda lain. benda + gaya = gerak?????

Tarikan/dorongan yang bekerja pada suatu benda akibat interaksi benda tersebut dengan benda lain. benda + gaya = gerak????? DINAMIKA PARTIKEL GAYA Tarikan/dorongan yang bekerja pada suatu benda akibat interaksi benda tersebut dengan benda lain Macam-macam gaya : a. Gaya kontak gaya normal, gaya gesek, gaya tegang tali, gaya

Lebih terperinci

Antiremed Kelas 11 FISIKA

Antiremed Kelas 11 FISIKA Antiremed Kelas 11 FISIKA Keseimbangan dan Dinamika Rotasi Doc Name: K13AR11FIS060 Version : 014-08 halaman 1 01. Perhatikan gambar berikut ini! MA= kg; MB=3kg; MC=4kg; r1=8m; r=6m PQ sejajar r1 dan memotong

Lebih terperinci

MODUL. DINAS PENDIDIKAN PEMUDA DAN OLAHRAGA KOTA MATARAM SMA NEGERI 1 MATARAM JL. PENDIDIKAN NO. 21 TELP/Fax. (0370) MATARAM

MODUL. DINAS PENDIDIKAN PEMUDA DAN OLAHRAGA KOTA MATARAM SMA NEGERI 1 MATARAM JL. PENDIDIKAN NO. 21 TELP/Fax. (0370) MATARAM MODUL OLEH BURHANUDIN, SPd NIP 98 005 00 0 009 DINAS PENDIDIKAN PEMUDA DAN OLAHRAGA KOTA MATARAM SMA NEGERI MATARAM JL PENDIDIKAN NO TELP/ax (070) 665 MATARAM MODUL ISIKA TORSI DAN KESEIMBANGAN SMAN MATARAM

Lebih terperinci

A. Pendahuluan. Dalam cabang ilmu fisika kita mengenal MEKANIKA. Mekanika ini dibagi dalam 3 cabang ilmu yaitu :

A. Pendahuluan. Dalam cabang ilmu fisika kita mengenal MEKANIKA. Mekanika ini dibagi dalam 3 cabang ilmu yaitu : BAB VI KESEIMBANGAN BENDA TEGAR Standar Kompetensi 2. Menerapkan konsep dan prinsip mekanika klasik sistem kontinu dalam menyelesaikan masalah Kompetensi Dasar 2.1 Menformulasikan hubungan antara konsep

Lebih terperinci

PENDALAMAN MATERI FISIKA

PENDALAMAN MATERI FISIKA DAR /Profesional/184/007/018 PENDALAMAN MATERI FISIKA MODUL 7 : DINAMIKA ROTASI DAN KESETIMBANGAN BENDA TEGAR Penulis : Albertus Hariwangsa Panuluh, M.Sc. KEMENTERIAN PENDIDIKAN DAN KEBUDAYAAN KEMENTERIAN

Lebih terperinci

BAB 1 Keseimban gan dan Dinamika Rotasi

BAB 1 Keseimban gan dan Dinamika Rotasi BAB 1 Keseimban gan dan Dinamika Rotasi titik berat, dan momentum sudut pada benda tegar (statis dan dinamis) dalam kehidupan sehari-hari.benda tegar (statis dan Indikator Pencapaian Kompetensi: 3.1.1

Lebih terperinci

Kumpulan Soal UN Materi Hukum Newton

Kumpulan Soal UN Materi Hukum Newton Kumpulan Soal UN Materi Hukum Newton 1. Soal UN 2011/2012 Paket D21 Agar gaya normal yang bekerja pada balok sebesar 20 N, maka besar dan arah gaya luar yang bekerja pada balok adalah... A. 50 N ke bawah

Lebih terperinci

Statika. Pusat Massa Dan Titik Berat

Statika. Pusat Massa Dan Titik Berat Statika Pusat Massa Dan Titik Berat STATIKA adalah ilmu kesetimbangan yang menyelidiki syarat-syarat gaya yang bekerja pada sebuah benda/titik materi agar benda/titik materi tersebut setimbang. PUSAT MASSA

Lebih terperinci

ULANGAN UMUM SEMESTER 1

ULANGAN UMUM SEMESTER 1 ULANGAN UMUM SEMESTER A. Berilah tanda silang (x) pada huruf a, b, c, d atau e di depan jawaban yang benar!. Kesalahan instrumen yang disebabkan oleh gerak brown digolongkan sebagai... a. kesalahan relatif

Lebih terperinci

BAB IV HASIL PENELITIAN

BAB IV HASIL PENELITIAN 37 BAB IV HASIL PENELITIAN A. Deskripsi Objek Penelitian Objek penelitian ini adalah konsep-konsep Fisika pada materi Dinamika Rotasi Benda Tegar yang terdapat dalam 3 buku SMA kelas XI yang diteliti yaitu

Lebih terperinci

Bagian pertama dari pernyataan hukum I Newton itu mudah dipahami, yaitu memang sebuah benda akan tetap diam bila benda itu tidak dikenai gaya lain.

Bagian pertama dari pernyataan hukum I Newton itu mudah dipahami, yaitu memang sebuah benda akan tetap diam bila benda itu tidak dikenai gaya lain. A. Formulasi Hukum-hukum Newton 1. Hukum I Newton Sebuah batu besar di lereng gunung akan tetap diam di tempatnya sampai ada gaya luar lain yang memindahkannya, misalnya gaya tektonisme/gempa, gaya mesin

Lebih terperinci

Antiremed Kelas 10 FISIKA

Antiremed Kelas 10 FISIKA Antiremed Kelas 0 FISIKA Dinamika, Partikel, dan Hukum Newton Doc Name : K3AR0FIS040 Version : 04-09 halaman 0. Gaya (F) sebesar N bekerja pada sebuah benda massanya m menyebabkan percepatan m sebesar

Lebih terperinci

Treefy Education Pelatihan OSN Online Nasional Jl Mangga III, Sidoarjo, Jawa WhatsApp:

Treefy Education Pelatihan OSN Online Nasional Jl Mangga III, Sidoarjo, Jawa  WhatsApp: Treefy Education PEMBAHASAN LATIHAN 1 1.a) Bayangkan bola berada di puncak pipa. Ketika diberikan sedikit dorongan, bola akan bergerak dan menabrak tanah dengan kecepatan. Gerakan tersebut merupakan proses

Lebih terperinci

Gerak Rotasi Vektor Vkt Momentum Sdt Sudut Sistem Partikel Momen Inersia Dalil Sumbu Sejajar. Statika Benda Tegar

Gerak Rotasi Vektor Vkt Momentum Sdt Sudut Sistem Partikel Momen Inersia Dalil Sumbu Sejajar. Statika Benda Tegar BENDA TEGAR Gerak Rotasi Bahan Cakupan Vektor Vkt Momentum Sdt Sudut Sistem Partikel Momen Inersia Dalil Sumbu Sejajar Dinamika Benda Tegar Menggelinding g Hukum Kekekalan Momentum Sudut Benda Tegar Statika

Lebih terperinci

JAWABAN Fisika OSK 2013

JAWABAN Fisika OSK 2013 JAWABAN Fisika OSK 013 1- Jawab: a) pada saat t = s, sehingga m/s pada saat t = 4 s, (dg persamaan garis) sehingga m/s b) pada saat t = 4 s, m/s m/s (kemiringan) sehingga m/s c) adalah luas permukaan di

Lebih terperinci

MEKANIKA UNIT. Pengukuran, Besaran & Vektor. Kumpulan Soal Latihan UN

MEKANIKA UNIT. Pengukuran, Besaran & Vektor. Kumpulan Soal Latihan UN Kumpulan Soal Latihan UN UNIT MEKANIKA Pengukuran, Besaran & Vektor 1. Besaran yang dimensinya ML -1 T -2 adalah... A. Gaya B. Tekanan C. Energi D. Momentum E. Percepatan 2. Besar tetapan Planck adalah

Lebih terperinci

FIsika DINAMIKA ROTASI

FIsika DINAMIKA ROTASI KTS & K- Fsika K e l a s X DNAMKA ROTAS Tujuan embelajaran Setelah mempelajari materi ini, kamu diharapkan memiliki kemampuan berikut.. Memahami konsep momen gaya dan momen inersia.. Memahami teorema sumbu

Lebih terperinci

DINAMIKA (HKM GRK NEWTON) Fisika Dasar / Fisika Terapan Program Studi Teknik Sipil Salmani, ST., MS., MT.

DINAMIKA (HKM GRK NEWTON) Fisika Dasar / Fisika Terapan Program Studi Teknik Sipil Salmani, ST., MS., MT. DINAMIKA (HKM GRK NEWTON) Fisika Dasar / Fisika Terapan Program Studi Teknik Sipil Salmani, ST., MS., MT. HUKUM-HUKUM GERAK NEWTON Beberapa Definisi dan pengertian yang berkaitan dgn hukum gerak newton

Lebih terperinci

Kumpulan soal-soal level seleksi Kabupaten: Solusi: a a k

Kumpulan soal-soal level seleksi Kabupaten: Solusi: a a k Kumpulan soal-soal level selesi Kabupaten: 1. Sebuah heliopter berusaha menolong seorang orban banjir. Dari suatu etinggian L, heliopter ini menurunan tangga tali bagi sang orban banjir. Karena etautan,

Lebih terperinci

Bab VI Dinamika Rotasi

Bab VI Dinamika Rotasi Bab VI Dinamika Rotasi Sumber : Internet : www.trade center.com Adanya gaya merupakan faktor penyebab terjadinya gerak translasi. Bianglala yang berputar terjadi karena kecenderungan untuk mempertahankan

Lebih terperinci

SOAL SELEKSI OLIMPIADE SAINS TINGKAT KABUPATEN/KOTA 2019 CALON TIM OLIMPIADE FISIKA INDONESIA 2020

SOAL SELEKSI OLIMPIADE SAINS TINGKAT KABUPATEN/KOTA 2019 CALON TIM OLIMPIADE FISIKA INDONESIA 2020 HAK CIPTA DILINDUNGI UNDANG-UNDANG SOAL SELEKSI OLIMPIADE SAINS TINGKAT KABUPATEN/KOTA 2019 CALON TIM OLIMPIADE FISIKA INDONESIA 2020 Bidang Fisika Waktu : 180 menit KEMENTERIAN PENDIDIKAN DAN KEBUDAYAAN

Lebih terperinci

Antiremed Kelas 11 FISIKA

Antiremed Kelas 11 FISIKA Antiremed Kelas FISIKA Dinamika Rotasi dan Kesetimbangan Benda egar - Dinamika Rotasi Doc Name: ARFIS070 Version : 0-07 halaman Perhatikan gambar berikut ini! m B Q r m A r 3 r P m C m A = kg; m B = 3kg;

Lebih terperinci

MAKALAH MOMEN INERSIA

MAKALAH MOMEN INERSIA MAKALAH MOMEN INERSIA A. Latar belakang Dalam gerak lurus, massa berpengaruh terhadap gerakan benda. Massa bisa diartikan sebagai kemampuan suatu benda untuk mempertahankan kecepatan geraknya. Apabila

Lebih terperinci

DEPARTMEN IKA ITB Jurusan Fisika-Unej BENDA TEGAR. MS Bab 6-1

DEPARTMEN IKA ITB Jurusan Fisika-Unej BENDA TEGAR. MS Bab 6-1 Jurusan Fisika-Unej BENDA TEGAR Kuliah FI-1101 Fisika 004 Dasar Dr. Linus Dr Pasasa Edy Supriyanto MS Bab 6-1 Jurusan Fisika-Unej Bahan Cakupan Gerak Rotasi Vektor Momentum Sudut Sistem Partikel Momen

Lebih terperinci

HUKUM-HUKUM NEWTON TENTANG GERAK

HUKUM-HUKUM NEWTON TENTANG GERAK HUKUM-HUKUM NEWTON TENTANG GERAK POKOK BAHASAN : Gaya dan Massa Macam-macam Gaya Hukum-hukum Newton Pendahuluan Industri Ilmu Fisika Ilmu mengenai tata aturan alam semesta Pencarian ilmu pengetahuan terbarukan

Lebih terperinci

SOAL SELEKSI OLIMPIADE SAINS TINGKAT KABUPATEN/KOTA 2016 CALON TIM OLIMPIADE FISIKA INDONESIA 2017

SOAL SELEKSI OLIMPIADE SAINS TINGKAT KABUPATEN/KOTA 2016 CALON TIM OLIMPIADE FISIKA INDONESIA 2017 HAK CIPTA DILINDUNGI UNDANG-UNDANG SOAL SELEKSI OLIMPIADE SAINS TINGKAT KABUPATEN/KOTA 2016 CALON TIM OLIMPIADE FISIKA INDONESIA 2017 Bidang Fisika Waktu : 180 menit KEMENTERIAN PENDIDIKAN DAN KEBUDAYAAN

Lebih terperinci

BAB 5: DINAMIKA: HUKUM-HUKUM DASAR

BAB 5: DINAMIKA: HUKUM-HUKUM DASAR BAB 5: DINAMIKA: HUKUM-HUKUM DASAR Dinamika mempelajari pengaruh lingkungan terhadap keadaan gerak suatu sistem. Pada dasarya persoalan dinamika dapat dirumuskan sebagai berikut: Bila sebuah sistem dengan

Lebih terperinci

SOAL UJIAN SELEKSI CALON PESERTA OLIMPIADE SAINS NASIONAL 2015 TINGKAT PROVINSI

SOAL UJIAN SELEKSI CALON PESERTA OLIMPIADE SAINS NASIONAL 2015 TINGKAT PROVINSI HAK CIPTA DILINDUNGI UNDANG-UNDANG SOAL UJIAN SELEKSI CALON PESERTA OLIMPIADE SAINS NASIONAL 2015 TINGKAT PROVINSI BIDANG FISIKA Waktu : 210 menit KEMENTERIAN PENDIDIKAN DAN KEBUDAYAAN DIREKTORAT JENDERAL

Lebih terperinci

DINAS PENDIDIKAN PROVINSI JAWA TENGAH MKKS SMA KOTA SEMARANG TAHUN PELAJARAN 2018/2019 PENILAIAN AKHIR TAHUN

DINAS PENDIDIKAN PROVINSI JAWA TENGAH MKKS SMA KOTA SEMARANG TAHUN PELAJARAN 2018/2019 PENILAIAN AKHIR TAHUN DINS PENDIDIKN PROVINSI JW TENGH MKKS SM KOT SEMRNG THUN PELJRN 018/019 PENILIN KHIR THUN Mata Pelajaran : Fisika Kelas / Program : X / Ilmu Pengetahuan lam Waktu : 10 menit Hari / Tanggal : Selasa / 8

Lebih terperinci

GERAK MELINGKAR B A B

GERAK MELINGKAR B A B Gerak Melingkar 97 B B 5 GEK MELINGK Pernahkah kalian naik roda putar atau roler coaster? Saat kalian naik atau melihatnya tentu berfikir pada saat roler coaster di posisi atas geraknya terbalik, mengapa

Lebih terperinci

GAYA GESEK. Gaya Gesek Gaya Gesek Statis Gaya Gesek Kinetik

GAYA GESEK. Gaya Gesek Gaya Gesek Statis Gaya Gesek Kinetik GAYA GESEK (Rumus) Gaya Gesek Gaya Gesek Statis Gaya Gesek Kinetik f = gaya gesek f s = gaya gesek statis f k = gaya gesek kinetik μ = koefisien gesekan μ s = koefisien gesekan statis μ k = koefisien gesekan

Lebih terperinci

HUKUM - HUKUM NEWTON TENTANG GERAK.

HUKUM - HUKUM NEWTON TENTANG GERAK. Hukum Newton 29 HUKUM - HUKUM NEWTON TENTANG GERAK. GERAK DAN GAYA. Gaya : ialah suatu tarikan atau dorongan yang dapat menimbulkan perubahan gerak. Dengan demikian jika benda ditarik/didorong dan sebagainya

Lebih terperinci

Hukum Newton dan Penerapannya 1

Hukum Newton dan Penerapannya 1 Hukum Newton dan Penerapannya 1 Definisi Hukum I Newton menyatakan bahwa : Materi Ajar Hukum I Newton Setiap benda tetap berada dalam keadaan diam atau bergerak dengan laju tetap sepanjang garis lurus

Lebih terperinci

Kumpulan soal-soal level seleksi provinsi: solusi:

Kumpulan soal-soal level seleksi provinsi: solusi: Kumpulan soal-soal level selesi provinsi: 1. Sebuah bola A berjari-jari r menggelinding tanpa slip e bawah dari punca sebuah bola B berjarijari R. Anggap bola bawah tida bergera sama seali. Hitung ecepatan

Lebih terperinci

SOAL TEST SELEKSI OSN 2006 TINGKAT KABUPATEN FISIKA SMA 120 MENIT

SOAL TEST SELEKSI OSN 2006 TINGKAT KABUPATEN FISIKA SMA 120 MENIT Halaman (1) Halaman () SOAL TEST SELEKSI OSN 006 TINGKAT KABUPATEN FISIKA SMA 10 MENIT 01. Seorang berjalan menuruni sebuah tangga eskalator yang sedang bergerak turun memerlukan waktu 1 menit. Jika kecepatan

Lebih terperinci

BAB 3 DINAMIKA ROTASI DAN KESETIMBANGAN BENDA TEGAR

BAB 3 DINAMIKA ROTASI DAN KESETIMBANGAN BENDA TEGAR 80 BAB 3 DINAMIKA ROTASI DAN KESETIMBANGAN BENDA TEGAR Benda tegar adalah benda yang dianggap sesuai dengan dimensi ukuran sesungguhnya dengan jarak antar partikel penyusunnya tetap. Ketika benda tegar

Lebih terperinci

Untuk nilai α yang cukup kecil berlaku. Solusi a. Gaya hambat pada bola adalah gaya stokes. Maka. b. Persamaan gerak bola. Dari definisi percepatan

Untuk nilai α yang cukup kecil berlaku. Solusi a. Gaya hambat pada bola adalah gaya stokes. Maka. b. Persamaan gerak bola. Dari definisi percepatan 1. Sebuah bola berada bermassa m dan berjari-jari berada di dalam sebuah ruangan berdebu homogen dengan viskositas η. Bola ini dilemparkan dari lantai dengan kecepatan awal v dan membentuk sudut θ dengan

Lebih terperinci

3. (4 poin) Seutas tali homogen (massa M, panjang 4L) diikat pada ujung sebuah pegas

3. (4 poin) Seutas tali homogen (massa M, panjang 4L) diikat pada ujung sebuah pegas Soal Multiple Choise 1.(4 poin) Sebuah benda yang bergerak pada bidang dua dimensi mendapat gaya konstan. Setelah detik pertama, kelajuan benda menjadi 1/3 dari kelajuan awal benda. Dan setelah detik selanjutnya

Lebih terperinci