4 I :0 1 a :4 9 1 isik F I S A T O R A IK M A IN D

Save this PDF as:
 WORD  PNG  TXT  JPG

Ukuran: px
Mulai penontonan dengan halaman:

Download "4 I :0 1 a :4 9 1 isik F I S A T O R A IK M A IN D"

Transkripsi

1 9:4:04

2 Posisi, Kecepatan dan Percepatan Angular 9:4:04 Partikel di titik P bergerak melingkar sejauh θ. Besarnya lintasan partikelp (panjang busur) sebanding sebanding dengan: s = rθ Satu keliling lingkaran panjang busurnya adalah πr, dengan sudut θ=360 =360 o 360 rad = 57, 3 π o

3 Posisiangular adalah besarnya perubahan sudut θ terhadap acuan tertentu 9:4:05 ωpositip jika berlawanan arah jarumjam, jam, dan negatip jika searah jarum jam Perpindahan angular: angular: i θ = θ f θ Kecepatan angular rata-rata: rata: Percepatan angular rata-rata: rata:

4 Persamaan gerak rotasi 9:4:05 Persamaan gerak rotasi memiliki analogi dengan gerak translasi ω= ω o + αt θ= θ o + ω o t + ½ αt ω = ω o + α(θ-θo α θ θ o ) Hubungan kinematika linier dan kinematika rotasi dari partikel yang bergerak melingkar s = θ r v = ds/ = dθ/. r = ωr a t = dv/ = dω/. r = αr ; percepatan tangensial a r = v /r = ω r ; percepatan radial (sentripetal) a a t a r Kecepatan total partikel : a = a r + a t

5 Contoh SebuahCD digunakan untuk menyimpandata, track pertama berada padar=3 mm dantrack terakhir padar=58 mm. dengan kecepatan r=58 mm. Pada pembacaandata CD berputar kecepatan konstan terhadap lensa-laser laser sebesar,3 m/s a. Tentukan kecepatanangular angular saat pembacaan data padatrack pertama dan terakhir (putaran putaran/menit menit) b. JikaCD dapat dipakai untuk menyimpandata lagu selama74 menit33 detik, berapa putaran daricd dalam durasi tersebut c. Berapa lintasantotal total dari putarancd terhadap d. Jika lensa-laser laser dalam durasi tersebut Jika diasumsikan konstan, berapa percepatan angular daricd dalaminterval 74 menit33 detik 9:4:05

6 A. Kecepatan angular DINAMIKA ROTASI Track Pertama Track Terakhir B. Jumlah putarancd dalaminterval waktu74 min 33 s Diubah ke jumlah putaran 9:4:05

7 C. Lintasantotal total dari putarancd D. Percepatanangular, angular, jika diasumsikan konstan 9:4:05 Jika kecepatan putaran tetap,3 m/s

8 9:4:05 Momentum sudut(l) dirumuskan sebagai: L = m r x v, r vektor posisi partikel terhadap sumbu putar = r x mv dan karena mv = p maka L = r x p Dari hukum Newton II dalam bentuk perubahan momentum: F = dp

9 Jika kedua ruas kita kalikan dengan vektor r sebagai berikut: r x F = r x F = r d x dp ( ) r x p Momen gaya / torka : τ = r x F dan karena r x p L, sehingga = τ d L 9:4:05

10 d d DINAMIKA ROTASI ( ) r x p = r x + x p d p dr dr karena = v dan p = ( ) r x p = r x + v x m v d p tetapi v x v = 0 maka d ( ) r x p = r x d p mv 9:4:05

11 Jika yang bekerja pada partikel ini lebih dari satu gaya dimana masingmasing gaya tersebut memberikan momen gaya, maka 9:4:05 = τ d L (Resultan semua momen gaya yang bekerja pada partikel sama dengan kecepatan perubahan momentum sudut partikel tersebut). gerak gerak translasi rotasi : : τ F = = d p d L

12 9:4:05 Jika resultan momen gaya yang bekerja pada partikel tersebut sama dengan nol. τ d L = 0 = 0 d L = 0 d L L = Lakhir L awal = 0 L akhir = Lawal (momentum sudut akhir partikel sama dengan momentum sudut awal partikel) Hukum kekekalan momentum sudut

13 9:4:05 Sebuah bola kecil bermassa m diikat dengan seutas tali. Susunan ini diputar diatas sebuah papan yang licin dengan ujung tali terbuka sebagai titik tumpunya dan berada ditengah papan yang berlubang sehingga sewaktu-waktu jari-jari tali bisa diperpanjang atau diperpendek. Perhatikan gambar. N T w v Bagaimanakah kecepatan putar bola pada saat jarijari putaran diubah-ubah.

14 N τ r DINAMIKA ROTASI 9:4:05 N T Momen gaya oleh gaya berat W : τ W = r x W Momen gaya oleh gaya normal N : τ W τ N = r x N W Momen gaya oleh tegangan tali T : Sehingga τ T W N τ T = r x T = 0 d L τ = τ + τ + = 0 = 0 Berlaku hukum kekekalan momentum sudut: akhir Lawal L =

15 9:4:05 Sehingga jika kita ambil dua kondisi sembarang, misal pada jari-jari putar r dengan kecepatan v dan pada jari-jari putar r dengan kecepatan v, maka pada kedua kondisi tersebut momentum sudut partikel sama. ur L = mr v k ˆ r = r r ˆ v = v θˆ L L = m r x v = m r x v m r ˆ ˆ θ ˆ ˆ r x v = m r r x v θ m r v k ˆ m r v k ˆ = jadi r v r = v

16 Contoh: DINAMIKA ROTASI 9:4:05 Sebuah bola dengan massa 0 gram diikat dengan tali dan diputar dengan kecepatan sudut ω o = 50 rad/s. Ujung tali diikatkan pada telunjuk sehingga memungkinkan tali melilit pada telunjuk saat bola berputar dan jari-jari putar memendek(jari-jariputaranawalr=m). a. Jika gaya gravitasi diabaikan, tentukan kecepatan sudut putar bola pada saat jari-jari putaran menjadi seperempat panjang semula. b. Jika gaya gravitasi diperhitungkan dan tali diikat longgar pada telunjuk sehingga tidak melilit, tentukan kecepatan sudut putar setiap saat yang harus dimiliki bola agar tetap bergerak pada bidang lintasan yang sama (bola tidak turun).

17 9:4:05 a. Karena gaya gravitasi diabaikan, maka yang bekerja pada tali hanyalah gaya tegangan tali saja. T tetapi = r x T = 0 τ = 0 T Momentum sudut tetap : L L = r m r v = mr v d L dan v = ω ω = r r ω r ω r m r m ω = ω r = r 4 ω ω = 800 rad / s

18 b. Gaya gravitasi diperhitungkan. 9:4:05 Tali diikat longgar sehingga tali tidak melilit pada telunjuk dengan demikian panjang tali tidak berubah. r T W v d L τ = τ T +τ W = r x T + r x W = d L r x T = 0 dan = d L d L d ( ) r x mv

19 r x W = d ( ) r x mv Bidang lintasan tidak berubah berarti harus selalu 9:4:05 r W dan r v Sehingga: d ( ) r W = r mg =, v = ω g d r m v ω = r d ω = g Integralkan! = r dω t g ω = t + ω r g r r ω ω = g r ω ( t ) = (0 t + 50) rad / s

20 y Tinjau pada benda diskrit: m m r r ω DINAMIKA ROTASI Benda Tegar ω ω m 3 r 3 x 9:4:05 Jika sistem partikel ini berotasi dengan kecepatan sudut ω (masing-masing partikel berotasi dengan kecepatan sudut yang sama) maka v = ω L = r x p = mr x v = mr x ω x r ( ) x r ( ) ( ) ( ) b x c = b a. c c a b Ingat : a x. ( ) ( ( ) ( ) ω x r = m ω r. r r r. ω = m r maka L = m r x ω sehingga L ω = m r, L = m ω r, L 3 = m 3 ω r 3

21 Momentum sudut total : DINAMIKA ROTASI L = L ( + L + L 3 = m r + m r + m r )ω 3 3 L = I.ω r + m r m 3 r jadi I = m + I N = i = m i r i I MomenInersia 3 Untuk benda kontinue(tegar) : I = N lim r i m 0 i = m i I = r dm 9:4:05

22 9:4:05. Batang(-D) Massa sepanjang dx: dm = ρdx -L/ dx L/ Momen inersia: L Sumbu putar jadi L 3 L I = x dm = x ρ dx = ρ I = 3 L 3 L x ( ρ L ) L L = M massa = L ρ =, ρ ML (momen inersia batang dengan sumbu putar melewati titik pusat massa batang)

23 . Piringan(tipis) DINAMIKA ROTASI Massa seluas da: dm = ρda = ρrdθdr 9:4:05 R Sumbu putar r dθ θ dr da=rdθ dr Momen inersia: I = r dm = R π R r ρ rd π 0 0 R r d dr. θ dr = 3. 3 ρ θ = ρ r dr d 0 0 R 3 4 R = πρ r dr = πρ r = π 0 θ πρ R jadi I = MR, M = ρπr 4

24 9:4:05 Jika sumbu rotasi tidak terletak pada titik pusat massa maka digunakan dalil sumbu sejajar: l jarak sumbu ke titik pusat massa R l Maka momen inersia terhaadap sumbu Stersebut: Sumbu Putar melalui Titik pusat massa sejajar S I = M l + s I pm untuk piringan : I pm = MR sehingga I s = M R + M R = 3 M R

25 Untuk batang: L DINAMIKA ROTASI l = L dan I pm = M L 9:4:05 l Momen inersia batang terhadap sumbu putar Sadalah: Sumbu putar titik pusat massa S I = M l + s I pm = M L + M L sejajar jadi I s = 3 M L

26 9:4:06

27 .. 3. Latihan 9:4:06 Sebuahcakramberputardenganpercepatanangular konstan α= rad/s. Jika cakram tersebut mulai dari keadaan diam, tentukan frekuansi putaran cakram tersebut dan tentukan kecepatan sudut cakram tersebut setelah 0s. Suatu cakram berputar dengan laju 3 putaran/menit. Cakram tersebut dipercepat oleh sebuah mesin sehingga 0s kemudian lajunya menjadi 8 putaran/menit. Tentukan percepatan sudut rata-rata cakram tersebut. Jika terdapat sebuah titik yang terletak 30 cm dari pusat putaran, tentukanlah jarak yang ditempuh titik tersebut dalam selang waktu 0s. Tentukanlah momentum sudut bumi terhadap sumbu rotasinya. Anggap bumisebagaisebuahbola denganmassa6 x 0 4 kg danjari-jarinya6,4 x 0 6 m.

28 Perpaduan Gerak Translasi dan Gerak Rotasi (Gerak Menggelinding) Gerak translasi Pada gerak translasi, titik sentuh bola selalu bergerak terhadap lantai. (bola tergelincir), terjadi jika lantai licin. Gerak rotasi 9:4:06

29 9:4:06 Jika gerak translasi dan gerak rotasi tersebut dimiliki secara bersamaan oleh bola maka menghasilkan gerak berikut: Perpaduan gerak translasi dan rotasi ini yang menghasilkan gerakan bola menggelinding. Proses menggelinding akan terjadi jika titik sentuh bola tidak bergerak / menempel terhadap lantai (bola tidak selip / tergelincir). Dan ini akan terjadi jika lantai kasar.

30 Perhatikan analisa berikut: 9:4:06 v T R pm Q v T =ωr P v pm Kecepatan resultan di kedua titik: V V Q P = V = V = V = V pm pm pm pm + V T +ω R V T ω R Jikatidakselip, titikp relatifdiamterhadaplantaiv P =0 V = V pm ω R = 0 V pm = P ω sehingga V = V pm + ω R V Q = R Q ω R

31 Energi kinetik gerak menggelinding : 9:4:06 K = K translasi + K rotasi K = M v pm + I pm ω Gerak menggelinding (tanpa selip) bisa diperlakukan sebagai gerak rotasi saja tetapi dengan sumbu rotasi di titik P. R P

32 Sehingga momen inersia bola jika bola berotasi dengan sumbu putar dititikp(salahsatutitikpadapermukaanbola)adalah: 9:4:06 p = M l + I pm = M R I I + Dengan demikian energi kinetik gerak menggelinding sama dengan energi kinetik gerak rotasi saja. K = K p = I p ω = ( ) M R + ω jadi I pm pm M R ω + I pm ω, R = V pm = ω K = M V pm + I pm ω

33 Contoh : DINAMIKA ROTASI 9:4:06 Sebuah bola pejal bermassa m dan berjari-jari R diletakkan di atas permukaan bidang miring pada ketinggian h. Jika keadaan awalnya diam, tentukan kecepatan saat tiba di tanah jika a. Permukaan bidang miring licin b. Permukaan bidang miring kasar Jawab: a. Jika permukaan licin maka bola akan tergelincir sehingga ia hanya bergerak translasi saja. h A B E M ( A ) = E M ( B A + K A = U B K U + ) B V B = gh

34 h DINAMIKA ROTASI 9:4:06 b. Permukaan bidang miring kasar. Menyebabkan titik sentuh tidak tergelincir dan terjadi gerak menggelinding. A Permukaan yang kasar memungkinkan titik sentuh bola selalu menempel ke permukaan. Tidak ada gesekan antar bola dan bidang. E M = M ( A ) E ( B ) B Masih berlaku hukum kekekalan energi mekanik. U + A + K A = U B K mgh + 0 = 0 + ω B I s

35 dimana I = m R + s I pm DINAMIKA ROTASI 9:4:07 I s momeninersiaterhadapsumbuyangmenyinggung permukaanbola. I pm momeninersiaterhadapsumbudiameterbola. Dan untuk bola pejal : 5 I pm = m R I s = m R + mr = mr sehingga mgh = mr gh = R ω = ω 7 0 V V = 0gh 7

Dinamika Rotasi, Statika dan Titik Berat 1 MOMEN GAYA DAN MOMEN INERSIA

Dinamika Rotasi, Statika dan Titik Berat 1 MOMEN GAYA DAN MOMEN INERSIA Dinamika Rotasi, Statika dan Titik Berat 1 MOMEN GAYA DAN MOMEN INERSIA Dalam gerak translasi gaya dikaitkan dengan percepatan linier benda, dalam gerak rotasi besaran yang dikaitkan dengan percepatan

Lebih terperinci

FISIKA XI SMA 3

FISIKA XI SMA 3 FISIKA XI SMA 3 Magelang @iammovic Standar Kompetensi: Menerapkan konsep dan prinsip mekanika klasik sistem kontinu dalam menyelesaikan masalah Kompetensi Dasar: Merumuskan hubungan antara konsep torsi,

Lebih terperinci

MATERI PELATIHAN GURU FISIKA SMA/MA

MATERI PELATIHAN GURU FISIKA SMA/MA MATERI PELATIHAN GURU FISIKA SMA/MA a. Judul: Pembelajaran Gerak Rotasi dan Keseimbangan Benda Tegar Berbasis Koop untuk Meningkatkan Pemahaman Konsep Siswa SMA b. Kompetensi Dasar Setelah berpartisipasi

Lebih terperinci

Gambar 7.1 Sebuah benda bergerak dalam lingkaran yang pusatnya terletak pada garis lurus

Gambar 7.1 Sebuah benda bergerak dalam lingkaran yang pusatnya terletak pada garis lurus BAB 7. GERAK ROTASI 7.1. Pendahuluan Gambar 7.1 Sebuah benda bergerak dalam lingkaran yang pusatnya terletak pada garis lurus Sebuah benda tegar bergerak rotasi murni jika setiap partikel pada benda tersebut

Lebih terperinci

GERAK BENDA TEGAR. Kinematika Rotasi

GERAK BENDA TEGAR. Kinematika Rotasi GERAK BENDA TEGAR Benda tegar adalah sistem benda yang terdiri atas sistem benda titik yang jumlahnya tak-hinggadan jika ada gaya yang bekerja, jarak antara titik-titik anggota sistem selalu tetap. Gerak

Lebih terperinci

DEPARTMEN IKA ITB Jurusan Fisika-Unej BENDA TEGAR. MS Bab 6-1

DEPARTMEN IKA ITB Jurusan Fisika-Unej BENDA TEGAR. MS Bab 6-1 Jurusan Fisika-Unej BENDA TEGAR Kuliah FI-1101 Fisika 004 Dasar Dr. Linus Dr Pasasa Edy Supriyanto MS Bab 6-1 Jurusan Fisika-Unej Bahan Cakupan Gerak Rotasi Vektor Momentum Sudut Sistem Partikel Momen

Lebih terperinci

Gerak rotasi: besaran-besaran sudut

Gerak rotasi: besaran-besaran sudut Gerak rotasi Benda tegar Adalah kumpulan benda titik dengan bentuk yang tetap (jarak antar titik dalam benda tersebut tidak berubah) Gerak benda tegar dapat dipandang sebagai gerak suatu titik tertentu

Lebih terperinci

SOAL SOAL FISIKA DINAMIKA ROTASI

SOAL SOAL FISIKA DINAMIKA ROTASI 10 soal - soal fisika Dinamika Rotasi SOAL SOAL FISIKA DINAMIKA ROTASI 1. Momentum Sudut Seorang anak dengan kedua lengan berada dalam pangkuan sedang berputar pada suatu kursi putar dengan 1,00 putaran/s.

Lebih terperinci

Contoh Soal dan Pembahasan Dinamika Rotasi, Materi Fisika kelas 2 SMA. Pembahasan. a) percepatan gerak turunnya benda m.

Contoh Soal dan Pembahasan Dinamika Rotasi, Materi Fisika kelas 2 SMA. Pembahasan. a) percepatan gerak turunnya benda m. Contoh Soal dan Dinamika Rotasi, Materi Fisika kelas 2 SMA. a) percepatan gerak turunnya benda m Tinjau katrol : Penekanan pada kasus dengan penggunaan persamaan Σ τ = Iα dan Σ F = ma, momen inersia (silinder

Lebih terperinci

(translasi) (translasi) Karena katrol tidak slip, maka a = αr. Dari persamaan-persamaan di atas kita peroleh:

(translasi) (translasi) Karena katrol tidak slip, maka a = αr. Dari persamaan-persamaan di atas kita peroleh: a 1.16. Dalam sistem dibawah ini, gesekan antara m 1 dan meja adalah µ. Massa katrol m dan anggap katrol tidak slip. Abaikan massa tali, hitung usaha yang dilakukan oleh gaya gesek selama t detik pertama!

Lebih terperinci

Fisika Umum (MA101) Kinematika Rotasi. Dinamika Rotasi

Fisika Umum (MA101) Kinematika Rotasi. Dinamika Rotasi Fisika Umum (MA101) Topik hari ini: Kinematika Rotasi Hukum Gravitasi Dinamika Rotasi Kinematika Rotasi Perpindahan Sudut Riview gerak linear: Perpindahan, kecepatan, percepatan r r = r f r i, v =, t a

Lebih terperinci

DINAMIKA ROTASI DAN KESETIMBANGAN BENDA TEGAR

DINAMIKA ROTASI DAN KESETIMBANGAN BENDA TEGAR DINAMIKA ROTASI DAN KESETIMBANGAN BENDA TEGAR Fisika Kelas XI SCI Semester I Oleh: M. Kholid, M.Pd. 43 P a g e 6 DINAMIKA ROTASI DAN KESETIMBANGAN BENDA TEGAR Kompetensi Inti : Memahami, menerapkan, dan

Lebih terperinci

BAHAN AJAR FISIKA KELAS XI IPA SEMESTER GENAP MATERI : DINAMIKA ROTASI

BAHAN AJAR FISIKA KELAS XI IPA SEMESTER GENAP MATERI : DINAMIKA ROTASI BAHAN AJAR FISIKA KELAS XI IPA SEMESTER GENAP MATERI : DINAMIKA ROTASI Momen gaya : Simbol : τ Momen gaya atau torsi merupakan penyebab benda berputar pada porosnya. Momen gaya terhadap suatu poros tertentu

Lebih terperinci

momen inersia Energi kinetik dalam gerak rotasi momentum sudut (L)

momen inersia Energi kinetik dalam gerak rotasi momentum sudut (L) Dinamika Rotasi adalah kajian fisika yang mempelajari tentang gerak rotasi sekaligus mempelajari penyebabnya. Momen gaya adalah besaran yang menyebabkan benda berotasi DINAMIKA ROTASI momen inersia adalah

Lebih terperinci

Bab 6 Momentum Sudut dan Rotasi Benda Tegar

Bab 6 Momentum Sudut dan Rotasi Benda Tegar Bab 6 Momentum Sudut dan Rotasi Benda Tegar A. Torsi 1. Pengertian Torsi Torsi atau momen gaya, hasil perkalian antara gaya dengan lengan gaya. r F Keterangan: = torsi (Nm) r = lengan gaya (m) F = gaya

Lebih terperinci

SOAL DINAMIKA ROTASI

SOAL DINAMIKA ROTASI SOAL DINAMIKA ROTASI A. Pilihan Ganda Pilihlah jawaban yang paling tepat! 1. Sistem yang terdiri atas bola A, B, dan C yang posisinya seperti tampak pada gambar, mengalami gerak rotasi. Massa bola A, B,

Lebih terperinci

Pembahasan UAS I = 2/3 m.r 2 + m.r 2 = 5/3 m.r 2 = 5/3 x 0,1 x (0,05) 2

Pembahasan UAS I = 2/3 m.r 2 + m.r 2 = 5/3 m.r 2 = 5/3 x 0,1 x (0,05) 2 Pembahasan UAS 2013 1. Sebuah cakram homogen berjari-jari 0,3 m pada titik tengahnya terdapat sebuah poros mendatar dan tegak lurus dengan cakram. Seutas tali dililitkan melingkar pada sekeliling cakram

Lebih terperinci

Dari gamabar diatas dapat dinyatakan hubungan sebagai berikut.

Dari gamabar diatas dapat dinyatakan hubungan sebagai berikut. Pengertian Gerak Translasi dan Rotasi Gerak translasi dapat didefinisikan sebagai gerak pergeseran suatu benda dengan bentuk dan lintasan yang sama di setiap titiknya. gerak rotasi dapat didefinisikan

Lebih terperinci

Latihan I IMPULS MOMENTUM DAN ROTASI

Latihan I IMPULS MOMENTUM DAN ROTASI Latihan I IMPULS MOMENTUM DAN ROTASI 1. Bola bergerak jatuh bebas dari ketinggian 1 m lantai. Jika koefisien restitusi = ½ maka tinggi bola setelah tumbukan pertama A. 50 cm B. 25 cm C. 2,5 cm D. 12,5

Lebih terperinci

5. Tentukanlah besar dan arah momen gaya yang bekerja pada batang AC dan batang AB berikut ini, jika poros putar terletak di titik A, B, C dan O

5. Tentukanlah besar dan arah momen gaya yang bekerja pada batang AC dan batang AB berikut ini, jika poros putar terletak di titik A, B, C dan O 1 1. Empat buah partikel dihubungkan dengan batang kaku yang ringan dan massanya dapat diabaikan seperti pada gambar berikut: Jika jarak antar partikel sama yaitu 40 cm, hitunglah momen inersia sistem

Lebih terperinci

Momen inersia yaitu ukuran kelembapan suatu benda untuk berputar. Rumusannya yaitu sebagai berikut:

Momen inersia yaitu ukuran kelembapan suatu benda untuk berputar. Rumusannya yaitu sebagai berikut: Momen Gaya Momen gaya merupakan salah satu bentuk usaha dengan salah satu titik sebagai titik acuan. Momen gaya merupakan hasil kali gaya dan jarak terpendek arah garis kerja terhadap titik tumpu. Momen

Lebih terperinci

BAB 3 DINAMIKA ROTASI DAN KESETIMBANGAN BENDA TEGAR

BAB 3 DINAMIKA ROTASI DAN KESETIMBANGAN BENDA TEGAR 80 BAB 3 DINAMIKA ROTASI DAN KESETIMBANGAN BENDA TEGAR Benda tegar adalah benda yang dianggap sesuai dengan dimensi ukuran sesungguhnya dengan jarak antar partikel penyusunnya tetap. Ketika benda tegar

Lebih terperinci

Pembahasan UAS I = 2/3 m.r 2 + m.r 2 = 5/3 m.r 2 = 5/3 x 0,1 x (0,05) 2

Pembahasan UAS I = 2/3 m.r 2 + m.r 2 = 5/3 m.r 2 = 5/3 x 0,1 x (0,05) 2 Pembahasan UAS 2014 1. Sebuah cakram homogen berjari-jari 0,3 m pada titik tengahnya terdapat sebuah poros mendatar dan tegak lurus dengan cakram. Seutas tali dililitkan melingkar pada sekeliling cakram

Lebih terperinci

FIsika DINAMIKA ROTASI

FIsika DINAMIKA ROTASI KTS & K- Fsika K e l a s X DNAMKA ROTAS Tujuan embelajaran Setelah mempelajari materi ini, kamu diharapkan memiliki kemampuan berikut.. Memahami konsep momen gaya dan momen inersia.. Memahami teorema sumbu

Lebih terperinci

BENDA TEGAR FISIKA DASAR (TEKNIK SISPIL) Mirza Satriawan. menu. Physics Dept. Gadjah Mada University Bulaksumur, Yogyakarta

BENDA TEGAR FISIKA DASAR (TEKNIK SISPIL) Mirza Satriawan. menu. Physics Dept. Gadjah Mada University Bulaksumur, Yogyakarta 1/36 FISIKA DASAR (TEKNIK SISPIL) BENDA TEGAR Mirza Satriawan Physics Dept. Gadjah Mada University Bulaksumur, Yogyakarta email: mirza@ugm.ac.id Rotasi Benda Tegar Benda tegar adalah sistem partikel yang

Lebih terperinci

dengan g adalah percepatan gravitasi bumi, yang nilainya pada permukaan bumi sekitar 9, 8 m/s².

dengan g adalah percepatan gravitasi bumi, yang nilainya pada permukaan bumi sekitar 9, 8 m/s². Hukum newton hanya memberikan perumusan tentang bagaimana gaya mempengaruhi keadaan gerak suatu benda, yaitu melalui perubahan momentumnya. Sedangkan bagaimana perumusan gaya dinyatakan dalam variabelvariabel

Lebih terperinci

BAB 3 DINAMIKA ROTASI DAN KESETIMBANGAN BENDA TEGAR

BAB 3 DINAMIKA ROTASI DAN KESETIMBANGAN BENDA TEGAR 85 BAB 3 DINAMIKA ROTASI DAN KESETIMBANGAN BENDA TEGAR Benda tegar adalah benda yang dianggap sesuai dengan dimensi ukuran sesungguhnya di mana jarak antar partikel penyusunnya tetap. Ketika benda tegar

Lebih terperinci

DINAMIKA ROTASI DAN KESETIMBANGAN

DINAMIKA ROTASI DAN KESETIMBANGAN FIS A. BENDA TEGAR Benda tegar adalah benda yang tidak mengalami perubahan bentuk dan volume selama bergerak. Benda tegar dapat mengalami dua macam gerakan, yaitu translasi dan rotasi. Gerak translasi

Lebih terperinci

BAB 1 Keseimban gan dan Dinamika Rotasi

BAB 1 Keseimban gan dan Dinamika Rotasi BAB 1 Keseimban gan dan Dinamika Rotasi titik berat, dan momentum sudut pada benda tegar (statis dan dinamis) dalam kehidupan sehari-hari.benda tegar (statis dan Indikator Pencapaian Kompetensi: 3.1.1

Lebih terperinci

C. Momen Inersia dan Tenaga Kinetik Rotasi

C. Momen Inersia dan Tenaga Kinetik Rotasi C. Momen Inersia dan Tenaga Kinetik Rotasi 1. Sistem Diskrit Tinjaulah sistem yang terdiri atas 2 benda. Benda A dan benda B dihubungkan dengan batang ringan yang tegar dengan sebuah batang tegak yang

Lebih terperinci

Saat mempelajari gerak melingkar, kita telah membahas hubungan antara kecepatan sudut (ω) dan kecepatan linear (v) suatu benda

Saat mempelajari gerak melingkar, kita telah membahas hubungan antara kecepatan sudut (ω) dan kecepatan linear (v) suatu benda 1 Benda tegar Pada pembahasan mengenai kinematika, dinamika, usaha dan energi, hingga momentum linear, benda-benda yang bergerak selalu kita pandang sebagai benda titik. Benda yang berbentuk kotak misalnya,

Lebih terperinci

SP FISDAS I. acuan ) , skalar, arah ( ) searah dengan

SP FISDAS I. acuan ) , skalar, arah ( ) searah dengan SP FISDAS I Perihal : Matriks, pengulturan, dimensi, dan sebagainya. Bisa baca sendiri di tippler..!! KINEMATIKA : Gerak benda tanpa diketahui penyebabnya ( cabang dari ilmu mekanika ) DINAMIKA : Pengaruh

Lebih terperinci

Pelatihan Ulangan Semester Gasal

Pelatihan Ulangan Semester Gasal Pelatihan Ulangan Semester Gasal A. Pilihlah jawaban yang benar dengan menuliskan huruf a, b, c, d, atau e di dalam buku tugas Anda!. Perhatikan gambar di samping! Jarak yang ditempuh benda setelah bergerak

Lebih terperinci

a. Hubungan Gerak Melingkar dan Gerak Lurus Kedudukan benda ditentukan berdasarkan sudut θ dan jari jari r lintasannya Gambar 1

a. Hubungan Gerak Melingkar dan Gerak Lurus Kedudukan benda ditentukan berdasarkan sudut θ dan jari jari r lintasannya Gambar 1 . Pengantar a. Hubungan Gerak Melingkar dan Gerak Lurus Gerak melingkar adalah gerak benda yang lintasannya berbentuk lingkaran dengan jari jari r Kedudukan benda ditentukan berdasarkan sudut θ dan jari

Lebih terperinci

SOAL DAN PEMBAHASAN FINAL SESI II LIGA FISIKA PIF XIX TINGKAT SMA/MA SEDERAJAT

SOAL DAN PEMBAHASAN FINAL SESI II LIGA FISIKA PIF XIX TINGKAT SMA/MA SEDERAJAT SOAL DAN PEMBAHASAN FINAL SESI II LIGA FISIKA PIF XIX TINGKAT SMA/MA SEDERAJAT 1. VEKTOR Jika diketahui vektor A = 4i 8j 10k dan B = 4i 3j + 2bk. Jika kedua vektor tersebut saling tegak lurus, maka tentukan

Lebih terperinci

KINEMATIKA GERAK 1 PERSAMAAN GERAK

KINEMATIKA GERAK 1 PERSAMAAN GERAK KINEMATIKA GERAK 1 PERSAMAAN GERAK Posisi titik materi dapat dinyatakan dengan sebuah VEKTOR, baik pada suatu bidang datar maupun dalam bidang ruang. Vektor yang dipergunakan untuk menentukan posisi disebut

Lebih terperinci

FISIKA UNTUK UNIVERSITAS JILID I ROSYID ADRIANTO

FISIKA UNTUK UNIVERSITAS JILID I ROSYID ADRIANTO FISIKA UNTUK UNIVERSITAS JILID I ROSYID ADRIANTO Departemen Fisika Universitas Airlangga, Surabaya E-mail address, P. Carlson: i an cakep@yahoo.co.id URL: http://www.rosyidadrianto.wordpress.com Puji syukur

Lebih terperinci

Gerak Melingkar Pendahuluan

Gerak Melingkar Pendahuluan Gerak Melingkar Pendahuluan Gerak roda kendaraan, gerak CD, VCD dan DVD, gerak kendaraan di tikungan yang berbentuk irisan lingkaran, gerak jarum jam, gerak satelit mengitari bumi, dan sebagainya adalah

Lebih terperinci

Bab VI Dinamika Rotasi

Bab VI Dinamika Rotasi Bab VI Dinamika Rotasi Sumber : Internet : www.trade center.com Adanya gaya merupakan faktor penyebab terjadinya gerak translasi. Bianglala yang berputar terjadi karena kecenderungan untuk mempertahankan

Lebih terperinci

GuruMuda.Com. Konsep, Rumus dan Kunci Jawaban ---> Alexander San Lohat 1

GuruMuda.Com. Konsep, Rumus dan Kunci Jawaban ---> Alexander San Lohat  1 Indikator 1 : Membaca hasil pengukuran suatu alat ukur dan menentukan hasil pengukuran dengan memperhatikan aturan angka penting. Pengukuran dasar : Pelajari cara membaca hasil pengukuran dasar. dalam

Lebih terperinci

BAB DINAMIKA ROTASI DAN KESEIMBANGAN BENDA TEGAR

BAB DINAMIKA ROTASI DAN KESEIMBANGAN BENDA TEGAR BAB DNAMKA OTAS DAN KESEMBANGAN BENDA TEGA. SOA PHAN GANDA. Dengan menetapkan arah keluar bidang kertas, sebagai arah Z positif dengan vektor satuan k, maka torsi total yang bekerja pada batang terhadap

Lebih terperinci

Dinamika Rotasi 1. Dua bola bermassa m 1 = 2 kg dan m 2 = 3 kg dihubungkan dengan batang ringan tak bermassa seperti pada gambar.

Dinamika Rotasi 1. Dua bola bermassa m 1 = 2 kg dan m 2 = 3 kg dihubungkan dengan batang ringan tak bermassa seperti pada gambar. 1. Dua bola bermassa m 1 = 2 kg dan m 2 = 3 kg dihubungkan dengan batang ringan tak bermassa seperti pada gambar. 3. Perhatikan gambar berikut. Jika sistem bola diputar pada sumbu di titik a, maka besar

Lebih terperinci

MEKANIKA UNIT. Pengukuran, Besaran & Vektor. Kumpulan Soal Latihan UN

MEKANIKA UNIT. Pengukuran, Besaran & Vektor. Kumpulan Soal Latihan UN Kumpulan Soal Latihan UN UNIT MEKANIKA Pengukuran, Besaran & Vektor 1. Besaran yang dimensinya ML -1 T -2 adalah... A. Gaya B. Tekanan C. Energi D. Momentum E. Percepatan 2. Besar tetapan Planck adalah

Lebih terperinci

A. Pendahuluan. Dalam cabang ilmu fisika kita mengenal MEKANIKA. Mekanika ini dibagi dalam 3 cabang ilmu yaitu :

A. Pendahuluan. Dalam cabang ilmu fisika kita mengenal MEKANIKA. Mekanika ini dibagi dalam 3 cabang ilmu yaitu : BAB VI KESEIMBANGAN BENDA TEGAR Standar Kompetensi 2. Menerapkan konsep dan prinsip mekanika klasik sistem kontinu dalam menyelesaikan masalah Kompetensi Dasar 2.1 Menformulasikan hubungan antara konsep

Lebih terperinci

Soal-Jawab Fisika Teori OSN 2013 Bandung, 4 September 2013

Soal-Jawab Fisika Teori OSN 2013 Bandung, 4 September 2013 Soal-Jawab Fisika Teori OSN 0 andung, 4 September 0. (7 poin) Dua manik-manik masing-masing bermassa m dan dianggap benda titik terletak di atas lingkaran kawat licin bermassa M dan berjari-jari. Kawat

Lebih terperinci

GURUMUDA.COM. KONSEP, RUMUS DAN KUNCI JAWABAN ---> ALEXANDER SAN LOHAT 1

GURUMUDA.COM. KONSEP, RUMUS DAN KUNCI JAWABAN ---> ALEXANDER SAN LOHAT 1 GURUMUDA.COM. KONSEP, RUMUS DAN KUNCI JAWABAN ---> ALEXANDER SAN LOHAT 1 Soal UN Fisika sesuai SKL 2012 disertai dengan konsep, rumus dan kunci jawaban. Indikator 1 : Membaca hasil pengukuran suatu alat

Lebih terperinci

GERAK LURUS Standar Kompetensi Menerapkan konsep dan prinsip dasar kinematika dan dinamika benda titik.

GERAK LURUS Standar Kompetensi Menerapkan konsep dan prinsip dasar kinematika dan dinamika benda titik. GERAK LURUS Standar Kompetensi Menerapkan konsep dan prinsip dasar kinematika dan dinamika benda titik. Kompetensi Dasar Menganalisis besaran fisika pada gerak dengan kecepatan dan percepatan konstan.

Lebih terperinci

K13 Revisi Antiremed Kelas 10 Fisika

K13 Revisi Antiremed Kelas 10 Fisika K13 evisi Antiremed Kelas 10 Fisika Persiapan PTS Semester Genap Doc. Name: K13A10FIS0PTS Version: 017-03 Halaman 1 01. Pada benda bermassa m, bekerja gaya F yang menimbulkan percepatan a. Jika gaya dijadikan

Lebih terperinci

1. (25 poin) Sebuah bola kecil bermassa m ditembakkan dari atas sebuah tembok dengan ketinggian H (jari-jari bola R jauh lebih kecil dibandingkan

1. (25 poin) Sebuah bola kecil bermassa m ditembakkan dari atas sebuah tembok dengan ketinggian H (jari-jari bola R jauh lebih kecil dibandingkan . (5 poin) Sebuah bola kecil bermassa m ditembakkan dari atas sebuah tembok dengan ketinggian H (jari-jari bola R jauh lebih kecil dibandingkan dengan H). Kecepatan awal horizontal bola adalah v 0 dan

Lebih terperinci

Nama : Mohammad Syaiful Lutfi NIM : D Kelas : Elektro A

Nama : Mohammad Syaiful Lutfi NIM : D Kelas : Elektro A Nama : Mohammad Saiful Lutfi NIM : D46 Kelas : Elektro A RANGKUMAN MATERI MOMENTUM SUDUT DAN BENDA TEGAR Hukum kekalan momentum linier meruakan salah satu dari beberaa hukum kekalan dalam fisika. Dalam

Lebih terperinci

ULANGAN UMUM SEMESTER 1

ULANGAN UMUM SEMESTER 1 ULANGAN UMUM SEMESTER A. Berilah tanda silang (x) pada huruf a, b, c, d atau e di depan jawaban yang benar!. Kesalahan instrumen yang disebabkan oleh gerak brown digolongkan sebagai... a. kesalahan relatif

Lebih terperinci

JAWABAN Fisika OSK 2013

JAWABAN Fisika OSK 2013 JAWABAN Fisika OSK 013 1- Jawab: a) pada saat t = s, sehingga m/s pada saat t = 4 s, (dg persamaan garis) sehingga m/s b) pada saat t = 4 s, m/s m/s (kemiringan) sehingga m/s c) adalah luas permukaan di

Lebih terperinci

K 1. h = 0,75 H. y x. O d K 2

K 1. h = 0,75 H. y x. O d K 2 1. (25 poin) Dari atas sebuah tembok dengan ketinggian H ditembakkan sebuah bola kecil bermassa m (Jari-jari R dapat dianggap jauh lebih kecil daripada H) dengan kecepatan awal horizontal v 0. Dua buah

Lebih terperinci

Kinematika Gerak KINEMATIKA GERAK. Sumber:

Kinematika Gerak KINEMATIKA GERAK. Sumber: Kinematika Gerak B a b B a b 1 KINEMATIKA GERAK Sumber: www.jatim.go.id Jika kalian belajar fisika maka kalian akan sering mempelajari tentang gerak. Fenomena tentang gerak memang sangat menarik. Coba

Lebih terperinci

Antiremed Kelas 10 FISIKA

Antiremed Kelas 10 FISIKA Antiremed Kelas 0 FISIKA Dinamika, Partikel, dan Hukum Newton Doc Name : K3AR0FIS040 Version : 04-09 halaman 0. Gaya (F) sebesar N bekerja pada sebuah benda massanya m menyebabkan percepatan m sebesar

Lebih terperinci

PETUNJUK UMUM Pengerjaan Soal Tahap 1 Diponegoro Physics Competititon Tingkat SMA

PETUNJUK UMUM Pengerjaan Soal Tahap 1 Diponegoro Physics Competititon Tingkat SMA PETUNJUK UMUM Pengerjaan Soal Tahap 1 Diponegoro Physics Competititon Tingkat SMA 1. Soal Olimpiade Sains bidang studi Fisika terdiri dari dua (2) bagian yaitu : soal isian singkat (24 soal) dan soal pilihan

Lebih terperinci

Uji Kompetensi Semester 1

Uji Kompetensi Semester 1 A. Pilihlah jawaban yang paling tepat! Uji Kompetensi Semester 1 1. Sebuah benda bergerak lurus sepanjang sumbu x dengan persamaan posisi r = (2t 2 + 6t + 8)i m. Kecepatan benda tersebut adalah. a. (-4t

Lebih terperinci

GERAK ROTASI. Hoga saragih. hogasaragih.wordpress.com

GERAK ROTASI. Hoga saragih. hogasaragih.wordpress.com GERAK ROTASI Hoga saragih Benda tegar yang dimaksud adalah benda dengan bentuk tertentu yang tidak berubah, sehinga partikelpartikel pembentuknya berada pada posisi tetap relatif satu sama lain. Tentu

Lebih terperinci

bermassa M = 300 kg disisi kanan papan sejauh mungkin tanpa papan terguling.. Jarak beban di letakkan di kanan penumpu adalah a m c m e.

bermassa M = 300 kg disisi kanan papan sejauh mungkin tanpa papan terguling.. Jarak beban di letakkan di kanan penumpu adalah a m c m e. SOAL : 1. Empat buah gaya masing-masing : F 1 = 100 N F 2 = 50 N F 3 = 25 N F 4 = 10 N bekerja pada benda yang memiliki poros putar di titik P. Jika ABCD adalah persegi dengan sisi 4 meter, dan tan 53

Lebih terperinci

θ t = θ t Secara grafik θ-t : kecepatan sudut dapat ditentukan menggunakan tangen sudut kemiringan grafik terhadap sumbu t dθ dt d dt Gerak Melingkar

θ t = θ t Secara grafik θ-t : kecepatan sudut dapat ditentukan menggunakan tangen sudut kemiringan grafik terhadap sumbu t dθ dt d dt Gerak Melingkar Gerak Melingkar Posisi dari suatu titik yang mengalami gerak melingkar dinyatakan dengan θ yaitu besar sudut yang telah ditempuh dari awal perhitungan. Kecepatan sudut ω Adalah besar sudut yang ditempuh

Lebih terperinci

BAB IX MEKANIKA BENDA TEGAR

BAB IX MEKANIKA BENDA TEGAR BAB IX MEKANIKA BENDA TEGAR MEKANIKA BENDA TEGAR Benda tegar adalah sistem benda yang terdiri dari sistem-sistem benda titik yang tak hingga banyaknya dan jika ada benda yang bekerja padanya jarak antara

Lebih terperinci

Jawaban Soal OSK FISIKA 2014

Jawaban Soal OSK FISIKA 2014 Jawaban Soal OSK FISIKA 4. Sebuah benda bergerak sepanjang sumbu x dimana posisinya sebagai fungsi dari waktu dapat dinyatakan dengan kurva seperti terlihat pada gambar samping (x dalam meter dan t dalam

Lebih terperinci

v adalah kecepatan bola A: v = ωr. Dengan menggunakan I = 2 5 mr2, dan menyelesaikan persamaanpersamaan di atas, kita akan peroleh: ω =

v adalah kecepatan bola A: v = ωr. Dengan menggunakan I = 2 5 mr2, dan menyelesaikan persamaanpersamaan di atas, kita akan peroleh: ω = v adalah kecepatan bola A: v = ωr. ω adalah kecepatan sudut bola A terhadap sumbunya (sebenarnya v dapat juga ditulis sebagai v = d θ dt ( + r), tetapi hubungan ini tidak akan kita gunakan). Hukum kekekalan

Lebih terperinci

MAKALAH MOMEN INERSIA

MAKALAH MOMEN INERSIA MAKALAH MOMEN INERSIA A. Latar belakang Dalam gerak lurus, massa berpengaruh terhadap gerakan benda. Massa bisa diartikan sebagai kemampuan suatu benda untuk mempertahankan kecepatan geraknya. Apabila

Lebih terperinci

Antiremed Kelas 10 Fisika

Antiremed Kelas 10 Fisika Antiremed Kelas Fisika Persiapan UAS Fisika Doc. Name:ARFISUAS Doc. Version: 26-7 halaman. Perhatikan tabel berikut! No Besaran Satuan Dimensi Gaya Newton [M][L][T] 2 2 Usaha Joule [M][L] [T] 3 Momentum

Lebih terperinci

GMBB. SMA.GEC.Novsupriyanto93.wordpress.com Page 1

GMBB. SMA.GEC.Novsupriyanto93.wordpress.com Page 1 1. Sebuah benda bermassa 1 kg berputar dengan kecepatan sudut 120 rpm. Jika jari-jari putaran benda adalah 2 meter percepatan sentripetal gerak benda tersebut adalah a. 32π 2 m/s 2 b. 42 π 2 m/s 2 c. 52π

Lebih terperinci

SELEKSI OLIMPIADE NASIONAL MIPA PERGURUAN TINGGI (ONMIPA-PT) 2014 TINGKAT UNIVERSITAS MUHAMMADIYAH JAKARTA BIDANG FISIKA

SELEKSI OLIMPIADE NASIONAL MIPA PERGURUAN TINGGI (ONMIPA-PT) 2014 TINGKAT UNIVERSITAS MUHAMMADIYAH JAKARTA BIDANG FISIKA SELEKSI OLIMPIADE NASIONAL MIPA PERGURUAN TINGGI (ONMIPA-PT) 2014 TINGKAT UNIVERSITAS MUHAMMADIYAH JAKARTA BIDANG FISIKA Hari, tanggal: Rabu, 2 April 2014 Waktu: 60 menit Nama: NIM: 1. (50 poin) Sebuah

Lebih terperinci

BAB IV HASIL PENELITIAN

BAB IV HASIL PENELITIAN 37 BAB IV HASIL PENELITIAN A. Deskripsi Objek Penelitian Objek penelitian ini adalah konsep-konsep Fisika pada materi Dinamika Rotasi Benda Tegar yang terdapat dalam 3 buku SMA kelas XI yang diteliti yaitu

Lebih terperinci

Antiremed Kelas 11 FISIKA

Antiremed Kelas 11 FISIKA Antiremed Kelas FISIKA Dinamika Rotasi dan Kesetimbangan Benda egar - Dinamika Rotasi Doc Name: ARFIS070 Version : 0-07 halaman Perhatikan gambar berikut ini! m B Q r m A r 3 r P m C m A = kg; m B = 3kg;

Lebih terperinci

3.6.1 Menganalisis momentum sudut pada benda berotasi Merumuskan hukum kekekalan momentum sudut.

3.6.1 Menganalisis momentum sudut pada benda berotasi Merumuskan hukum kekekalan momentum sudut. I. Kompetensi Inti KI 1: Menghayati dan mengamalkan ajaran agama yang dianutnya. KI 2: Menghayati dan mengamalkan perilaku jujur, disiplin, tanggung jawab, peduli (gotong royong, kerja sama, toleran, damai),

Lebih terperinci

Antiremed Kelas 11 FISIKA

Antiremed Kelas 11 FISIKA Antiremed Kelas 11 FISIKA Keseimbangan dan Dinamika Rotasi Doc Name: K13AR11FIS060 Version : 014-08 halaman 1 01. Perhatikan gambar berikut ini! MA= kg; MB=3kg; MC=4kg; r1=8m; r=6m PQ sejajar r1 dan memotong

Lebih terperinci

Statika dan Dinamika

Statika dan Dinamika Statika dan Dinamika Dinamika Dinamika adalah mempelajari tentang gerak dengan menganalisis penyebab gerak tersebut. Dinamika meliputi: Hubungan antara massa dengan gaya : Hukum Newton tentang gerak. Momentum,

Lebih terperinci

SOAL UJIAN SELEKSI CALON PESERTA OLIMPIADE SAINS NASIONAL 2015 TINGKAT PROVINSI

SOAL UJIAN SELEKSI CALON PESERTA OLIMPIADE SAINS NASIONAL 2015 TINGKAT PROVINSI HAK CIPTA DILINDUNGI UNDANG-UNDANG SOAL UJIAN SELEKSI CALON PESERTA OLIMPIADE SAINS NASIONAL 2015 TINGKAT PROVINSI BIDANG FISIKA Waktu : 210 menit KEMENTERIAN PENDIDIKAN DAN KEBUDAYAAN DIREKTORAT JENDERAL

Lebih terperinci

SOAL DAN PEMBAHASAN FINAL SESI I LIGA FISIKA PIF XIX TINGKAT SMA/MA SEDERAJAT PAKET 1

SOAL DAN PEMBAHASAN FINAL SESI I LIGA FISIKA PIF XIX TINGKAT SMA/MA SEDERAJAT PAKET 1 SOAL DAN PEMBAHASAN FINAL SESI I LIGA FISIKA PIF XIX TINGKAT SMA/MA SEDERAJAT PAKET 1 1. Terhadap koordinat x horizontal dan y vertikal, sebuah benda yang bergerak mengikuti gerak peluru mempunyai komponen-komponen

Lebih terperinci

Mengukur Kebenaran Konsep Momen Inersia dengan Penggelindingan Silinder pada Bidang Miring

Mengukur Kebenaran Konsep Momen Inersia dengan Penggelindingan Silinder pada Bidang Miring POSDNG SKF 16 Mengukur Kebenaran Konsep Momen nersia dengan Penggelindingan Silinder pada Bidang Miring aja Muda 1,a), Triati Dewi Kencana Wungu,b) Lilik Hendrajaya 3,c) 1 Magister Pengajaran Fisika Fakultas

Lebih terperinci

KINEMATIKA. Fisika. Tim Dosen Fisika 1, ganjil 2016/2017 Program Studi S1 - Teknik Telekomunikasi Fakultas Teknik Elektro - Universitas Telkom

KINEMATIKA. Fisika. Tim Dosen Fisika 1, ganjil 2016/2017 Program Studi S1 - Teknik Telekomunikasi Fakultas Teknik Elektro - Universitas Telkom KINEMATIKA Fisika Tim Dosen Fisika 1, ganjil 2016/2017 Program Studi S1 - Teknik Telekomunikasi Fakultas Teknik Elektro - Universitas Telkom Sasaran Pembelajaran Indikator: Mahasiswa mampu mencari besaran

Lebih terperinci

BAB. 6 DINAMIKA ROTASI DAN KESETIMBAGAN BENDA TEGAR A. MOMEN GAYA DAN MOMEN INERSIA

BAB. 6 DINAMIKA ROTASI DAN KESETIMBAGAN BENDA TEGAR A. MOMEN GAYA DAN MOMEN INERSIA BAB. 6 DINAMIKA OTASI DAN KESETIMBAGAN BENDA TEGA A. MOMEN GAYA DAN MOMEN INESIA 1. Momen Gaya Benda hanya dapat mengaami perubahan gerak rotasi jika pada benda tersebut diberi momen gaya, dengan adanya

Lebih terperinci

Jika sebuah sistem berosilasi dengan simpangan maksimum (amplitudo) A, memiliki total energi sistem yang tetap yaitu

Jika sebuah sistem berosilasi dengan simpangan maksimum (amplitudo) A, memiliki total energi sistem yang tetap yaitu A. TEORI SINGKAT A.1. TEORI SINGKAT OSILASI Osilasi adalah gerakan bolak balik di sekitar suatu titik kesetimbangan. Ada osilasi yang memenuhi hubungan sederhana dan dinamakan gerak harmonik sederhana.

Lebih terperinci

K13 Antiremed Kelas 11 Fisika

K13 Antiremed Kelas 11 Fisika K13 Antiremed Kelas 11 Fisika Persiapan UTS Semester Genap Halaman 1 01. Balok bermassa 5 kg diletakkan di atas papan, 3 m dari titik A, seperti terlihat pada gambar. Jika massa papan adalah satu kilogram

Lebih terperinci

RENCANA PEMBELAJARAN GERAK ROTASI UNTUK SMU KELAS 2 SEMESTER 2. Disusun Oleh SAEFUL KARIM

RENCANA PEMBELAJARAN GERAK ROTASI UNTUK SMU KELAS 2 SEMESTER 2. Disusun Oleh SAEFUL KARIM RENCANA PEMBELAJARAN GERAK ROTASI UNTUK SMU KELAS 2 SEMESTER 2 Disusun Oleh SAEFUL KARIM JURUSAN PENDIDIKAN FISIKA FPMIPA UPI 2003 RENCANA PEMBELAJARAN GERAK ROTASI Mata Pelajaran Kelas/Semester Satuan

Lebih terperinci

KINEMATIKA. Fisika Dasar / Fisika Terapan Program Studi Teknik Sipil Salmani, ST., MS., MT.

KINEMATIKA. Fisika Dasar / Fisika Terapan Program Studi Teknik Sipil Salmani, ST., MS., MT. KINEMATIKA Fisika Dasar / Fisika Terapan Program Studi Teknik Sipil Salmani, ST., MS., MT. KINEMATIKA LAJU: Besaran Skalar. Bila benda memerlukan waktu t untuk menempuh jarak d, maka laju rata-rata adalah

Lebih terperinci

Berdasarkan lintasannya, benda bergerak dibedakan menjadi tiga yaitu GERAK MELINGKAR BERATURAN

Berdasarkan lintasannya, benda bergerak dibedakan menjadi tiga yaitu GERAK MELINGKAR BERATURAN 3 GEAK MELINGKA BEATUAN Kincir raksasa melakukan gerak melingkar. Sumber: Kompas, 20 Juli 2006 Berdasarkan lintasannya, benda bergerak dibedakan menjadi tiga yaitu benda bergerak pada garis lurus, gerak

Lebih terperinci

Antiremed Kelas 10 Fisika

Antiremed Kelas 10 Fisika Antiremed Kelas 0 Fisika UAS Doc. Name:K3AR0FIS0UAS Doc. Version: 205-0 2 halaman 0. Perhatikan tabel berikut! Diketahui usaha merupakan hasil perkalian gaya denga jarak, sedangkan momentum merupakan hasil

Lebih terperinci

PREDIKSI UAS 1 FISIKA KELAS X TAHUN 2013/ Besaran-besaran berikut yang merupakan besaran pokok adalah a. Panjang, lebar,luas,volume

PREDIKSI UAS 1 FISIKA KELAS X TAHUN 2013/ Besaran-besaran berikut yang merupakan besaran pokok adalah a. Panjang, lebar,luas,volume PREDIKSI UAS 1 FISIKA KELAS X TAHUN 2013/2014 A. PILIHAN GANDA 1. Besaran-besaran berikut yang merupakan besaran pokok adalah a. Panjang, lebar,luas,volume d. Panjang, lebar, tinggi, tebal b. Kecepatan,waktu,jarak,energi

Lebih terperinci

MODUL. DINAS PENDIDIKAN PEMUDA DAN OLAHRAGA KOTA MATARAM SMA NEGERI 1 MATARAM JL. PENDIDIKAN NO. 21 TELP/Fax. (0370) MATARAM

MODUL. DINAS PENDIDIKAN PEMUDA DAN OLAHRAGA KOTA MATARAM SMA NEGERI 1 MATARAM JL. PENDIDIKAN NO. 21 TELP/Fax. (0370) MATARAM MODUL OLEH BURHANUDIN, SPd NIP 98 005 00 0 009 DINAS PENDIDIKAN PEMUDA DAN OLAHRAGA KOTA MATARAM SMA NEGERI MATARAM JL PENDIDIKAN NO TELP/ax (070) 665 MATARAM MODUL ISIKA TORSI DAN KESEIMBANGAN SMAN MATARAM

Lebih terperinci

Satuan dari momen gaya atau torsi ini adalah N.m yang setara dengan joule.

Satuan dari momen gaya atau torsi ini adalah N.m yang setara dengan joule. Gerak Translasi dan Rotasi A. Momen Gaya Momen gaya merupakan salah satu bentuk usaha dengan salah satu titik sebagai titik acuan. Misalnya anak yang bermain jungkat-jungkit, dengan titik acuan adalah

Lebih terperinci

BAB IV DINAMIKA PARTIKEL. A. STANDAR KOMPETENSI : 3. Mendeskripsikan gejala alam dalam cakupan mekanika klasik sistem diskret (partikel).

BAB IV DINAMIKA PARTIKEL. A. STANDAR KOMPETENSI : 3. Mendeskripsikan gejala alam dalam cakupan mekanika klasik sistem diskret (partikel). BAB IV DINAMIKA PARIKEL A. SANDAR KOMPEENSI : 3. Mendeskripsikan gejala alam dalam cakupan mekanika klasik sistem diskret (partikel). B. KOMPEENSI DASAR : 1. Menjelaskan Hukum Newton sebagai konsep dasar

Lebih terperinci

FISIKA GERAK MELINGKAR BERATURAN

FISIKA GERAK MELINGKAR BERATURAN K-13 Kelas X FISIK GEK MELINGK BETUN TUJUN PEMBELJN Setelah mempelajari materi ini, kamu diharapkan memiliki kemampuan berikut. 1. Memahami definisi gerak melingkar beraturan dan ciri-cirinya. 2. Memahami

Lebih terperinci

Osilasi Harmonis Sederhana: Beban Massa pada Pegas

Osilasi Harmonis Sederhana: Beban Massa pada Pegas OSILASI Osilasi Osilasi terjadi bila sebuah sistem diganggu dari posisi kesetimbangannya. Karakteristik gerak osilasi yang paling dikenal adalah gerak tersebut bersifat periodik, yaitu berulang-ulang.

Lebih terperinci

MENERAPKAN HUKUM GERAK DAN GAYA

MENERAPKAN HUKUM GERAK DAN GAYA MENERAPKAN HUKUM GERAK DAN GAYA Menguasai Hukum Neton MUH. ARAFAH, S.Pd. e-mail: muh.arafahsidrap@gmail.com ebsite://arafahtgb.ordpress.com HUKUM-HUKUM GERAK GERAK + GAYA DINAMIKA GAYA ADALAH SESUATU YANG

Lebih terperinci

PEMERINTAH KOTA DUMAI DINAS PENDIDIKAN KOTA DUMAI SMA NEGERI 3 DUMAI TAHUN PELAJARAN 2007/ 2008 UJIAN SEMESTER GENAP

PEMERINTAH KOTA DUMAI DINAS PENDIDIKAN KOTA DUMAI SMA NEGERI 3 DUMAI TAHUN PELAJARAN 2007/ 2008 UJIAN SEMESTER GENAP PEMERINTAH KOTA DUMAI DINAS PENDIDIKAN KOTA DUMAI SMA NEGERI 3 DUMAI TAHUN PELAJARAN 007/ 008 UJIAN SEMESTER GENAP Mata Pelajar Fisika Kelas XI IPA Waktu 0 menit. Besaran yang hanya mempunyai besar atau

Lebih terperinci

BAB III GERAK MELINGKAR BERATURAN DAN GERAK MELINGKAR BERUBAH BERATURAN

BAB III GERAK MELINGKAR BERATURAN DAN GERAK MELINGKAR BERUBAH BERATURAN BAB III GERAK MELINGKAR BERATURAN DAN GERAK MELINGKAR BERUBAH BERATURAN A. KOMPETENSI DASAR : 3.. Memprediksi besaran-besaran fisika pada gerak melingkar beraturan dan gerak melingkar berubah beraturan.

Lebih terperinci

DAFTAR ISI. BAB 2 GRAVITASI A. Medan Gravitasi B. Gerak Planet dan Satelit Rangkuman Bab Evaluasi Bab 2...

DAFTAR ISI. BAB 2 GRAVITASI A. Medan Gravitasi B. Gerak Planet dan Satelit Rangkuman Bab Evaluasi Bab 2... DAFTAR ISI KATA SAMBUTAN... iii KATA PENGANTAR... iv DAFTAR ISI... v BAB 1 KINEMATIKA GERAK... 1 A. Gerak Translasi... 2 B. Gerak Melingkar... 10 C. Gerak Parabola... 14 Rangkuman Bab 1... 18 Evaluasi

Lebih terperinci

KHAIRUL MUKMIN LUBIS IK 13

KHAIRUL MUKMIN LUBIS IK 13 Fakultas Perikanan - KESETIMBANGAN Kondisi benda setelah menerima gaya-gaya luar SEIMBANG : Bila memenuhi HUKUM NEWTON I Resultan Gaya yang bekerja pada benda besarnya sama dengan nol sehingga benda tersebut

Lebih terperinci

Pilihlah jawaban yang paling benar!

Pilihlah jawaban yang paling benar! Pilihlah jawaban yang paling benar! 1. Besarnya momentum yang dimiliki oleh suatu benda dipengaruhi oleh... A. Bentuk benda B. Massa benda C. Luas penampang benda D. Tinggi benda E. Volume benda. Sebuah

Lebih terperinci

PEMERINTAH KOTA DUMAI DINAS PENDIDIKAN KOTA DUMAI SMA NEGERI 3 DUMAI TAHUN PELAJARAN 2008/ 2009 UJIAN SEMESTER GANJIL

PEMERINTAH KOTA DUMAI DINAS PENDIDIKAN KOTA DUMAI SMA NEGERI 3 DUMAI TAHUN PELAJARAN 2008/ 2009 UJIAN SEMESTER GANJIL PEMERINTAH KOTA DUMAI DINAS PENDIDIKAN KOTA DUMAI SMA NEGERI 3 DUMAI TAHUN PELAJARAN 008/ 009 UJIAN SEMESTER GANJIL Mata Pelajar Fisika Kelas XI IPA Waktu 0 menit. Sebuah benda bergerak dengan grafik v

Lebih terperinci

BAB USAHA DAN ENERGI I. SOAL PILIHAN GANDA

BAB USAHA DAN ENERGI I. SOAL PILIHAN GANDA 1 BAB USAHA DAN ENERGI I. SOAL PILIHAN GANDA 01. Usaha yang dilakukan oleh suatu gaya terhadap benda sama dengan nol apabila arah gaya dengan perpindahan benda membentuk sudut sebesar. A. 0 B. 5 C. 60

Lebih terperinci

V. MOMENTUM DAN IMPULS

V. MOMENTUM DAN IMPULS V. MOMENTUM DAN IMPULS Hukum kekekalan energi yang dibahas dalam Bab terdahulu, hanyalah salah satu dari hukum kekekalan di dalam fisika. Kuantitas lain yang ditemukan memiliki sifat kekal adalah momentum

Lebih terperinci

PHYSICS SUMMIT 2 nd 2014

PHYSICS SUMMIT 2 nd 2014 KETENTUAN UMUM 1. Periksa terlebih dahulu bahwa jumlah soal Saudara terdiri dari 8 (tujuh) buah soal 2. Waktu total untuk mengerjakan tes ini adalah 3 jam atau 180 menit 3. Peserta diperbolehkan menggunakan

Lebih terperinci

SILABUS MATA KULIAH FISIKA DASAR

SILABUS MATA KULIAH FISIKA DASAR LAMPIRAN TUGAS Mata Kuliah Progran Studi Dosen Pengasuh : Fisika Dasar : Teknik Komputer (TK) : Fandi Susanto, S. Si Tugas ke Pertemuan Kompetensi Dasar / Indikator Soal Tugas 1 1-6 1. Menggunakan konsep

Lebih terperinci