Jika sebuah sistem berosilasi dengan simpangan maksimum (amplitudo) A, memiliki total energi sistem yang tetap yaitu

Ukuran: px
Mulai penontonan dengan halaman:

Download "Jika sebuah sistem berosilasi dengan simpangan maksimum (amplitudo) A, memiliki total energi sistem yang tetap yaitu"

Transkripsi

1 A. TEORI SINGKAT A.1. TEORI SINGKAT OSILASI Osilasi adalah gerakan bolak balik di sekitar suatu titik kesetimbangan. Ada osilasi yang memenuhi hubungan sederhana dan dinamakan gerak harmonik sederhana. Persamaan gerak harmonik sederhana selalu bisa ditulis dalam bentuk seperti berikut: ma = -kx dengan m adalah ukuran kelembaman benda (misalnya massa), a adalah percepatan benda (bisa juga percepatan sudut), k adalah sebuah konstanta pemulih (misalnya konstanta pegas), dan x adalah besar simpangan (bisa juga simpangan sudut). Tanda negatif menunjukkan bahwa arah gaya berlawanan dengan arah simpangan. Untuk persamaan gerak di atas, bisa didefinisikan sebuah frekuensi sudut ω (bedakan kecepatan sudut pada gerak rotasi): Periode osilasi diberikan oleh: Jika sebuah sistem berosilasi dengan simpangan maksimum (amplitudo) A, memiliki total energi sistem yang tetap yaitu Selama proses osilasi, energi kinetik sistem dan energi potensial sistem berubah ubah, tetapi jumlah totalnya selalu sama. Untuk sistem yang lebih rumit, sering kali persamaan gerak benda dapat direduksi menjadi sama seperti persamaan osilasi harmonik sederhana. Proses ini kadang melibatkan pendekatan sudut kecil atau pengabaian suku yang kecil. Yang perlu diperhatikan hanyalah mengidentifikasi variabel yang menjadi konstanta pemulih dan variabel yang menjadi ukuran kelembaman benda. Dengan mengunakan kenyataan bahwa dalam osilasi harmonik sederhana, total energi sistem tidak berubah terhadap waktu : bisa didapat juga persamaan osilasi harmonik sederhana. 1

2 B.1. CONTOH-CONTOH SOAL OSILASI 1. Sebuah sistem terdiri dari dua buah balok identik, masing-masing bermassa m. Kedua massa dihubungkan dengan pegas tak bermassa yang mempunyai konstanta pegas k. Pegas ditekan turun dari posisi pegas kendur sehingga panjang pegas berkurang sebesar Δl. Setelah itu balok dilepas, sehingga balok atas bisa bergerak dalam arah vertikal. Berapakah besar Δl maksimum agar balok bawah tidak terangkat? SOLUSI Anggap saat balok bergerak ke atas, sampai ketinggian maksimum, balok bawah tetap menyentuh lantai (tidak bergerak). Dalam keadaan ini, seluruh energi potensial awal diubah menjadi energi potensial akhir (tidak ada energi kinetik). Energi potensial mula-mula = (ambil acuan energi potensial gravitasi adalah nol saat massa berada pada posisi pegas kendur. ) Energi potensial akhir = dengan A adalah simpangan maksimum. Syarat agar massa m bawah bisa mulai terangkat adalah gaya pegas (arahnya ke atas) sama atau lebih besar daripada gaya berat balok bawah: mg = ka. Dengan memasukkan syarat ini ke persamaan di atas, dan dengan menggunakan hukum kekekalan energi, didapat Dengan menyelesaikan persamaan di atas, didapat Ambil solusi positif :

3 . Sebuah bandul dengan panjang tali l dan massa m mulanya dijaga diam dengan sudut orientasi θ. Berapakah impuls maksimum dalam arah z (keluar bidang kertas) agar massa m tidak menyentuh atap? (Soal seleksi provinsi 008) SOLUSI Energi mula-mula adalah energi kinetik dan energi potensial: Energi mula-mula: Supaya tidak menyentuh atap, kecepatan akhir hanya dalam arah azimuthal saat θ = π/. Energi akhir: Kekekalan momentum sudut: Dari persamaan-persamaan ini didapat Implus maksimum 3. Suatu pegas memiliki konstanta pegas k dan massa m. Untuk memudahkan perhitungan, pegas ini bisa dimodelkan dengan sebuah sistem yang terdiri dari susunan massa dan pegas. Untuk pendekatan pertama, anggap sistem pegas bermassa ini ekuivalen dengan sistem massa pegas yang terdiri dari massa identik m dan pegas identik tak bermassa dengan konstanta pegas k. Jika kita menambah terus jumlah massa dan pegas dalam model ini, maka model ini akan semakin mendekati pegas sesungguhnya. Untuk selanjutnya, tinjau gerak dalam model seperti pada gambar di atas (terdiri dari massa dan pegas tak bermassa) Gantung pegas dalam keadaan vertikal. Mula-mula sistem dibiarkan pada keadaan setimbang. Panjang pegas menjadi L (panjang pegas dalam keadaan kendur adalah L0). Jika ujung atas A dipotong, berapa percepatan massa bawah menurut model ini? Berapa percepatan massa atas menurut model ini? (percepatan gravitasi adalah g.) 3

4 (Soal seleksi provinsi 007) Solusi: Pertama hitung dulu massa ekuivalen dan juga konstanta pegas ekuivalen dari model: Karena massa total harus sama, maka didapat Untuk menghitung konstanta pegas ekuivalen, letakkan pegas dalam arah horizontal, sehingga tidak ada pengaruh gaya gravitasi. Tarik pegas dengan gaya F. Dalam pegas sejati, pertambahan panjang adalah F/k. Dalam pegas model, pertambahan panjang pegas adalah F/k' +F/k' = F/k'. Karena pertambahan panjang harus sama, maka didapat k = k'. Sekarang tinjau keadaan pegas model dalam posisi vertikal dan keadaan kesetimbangan. Pegas bawah bertambah panjang sebanyak: Pertambahan panjang pegas atas diberikan oleh: Tegangan pegas bawah adalah Tegangan pegas atas adalah Pada saat ujung atas dipotong, gaya total yang bekerja pada massa bawah adalah dan gaya yang bekerja pada massa atas adalah Percepatan massa bawah adalah nol Percepatan massa atas adalah 4

5 4. Sistem yang digambarkan di samping berada pada keadaan kesetimbangan. Pegas bagian kanan (konstanta pegas k) teregang sejauh x1. Koefisien gesek statis antara kedua balok adalah μ. Anggap tidak ada gesekan antara balok dan lantai. Konstanta masing masing pegas adalah 3k dan k, sedangkan massa kedua balok sama, yaitu m. Berapakah simpangan maksimum, A, dari massa m agar kedua balok masih bisa berosilasi bersamasama? Abaikan massa pegas. (Soal seleksi provinsi 005) Solusi: Mula-mula, sebelum diberi gangguan, pegas kanan teregang sejauh x1. Karena sistem dalam keadaan kesetimbangan, maka pegas kiri juga harus teregang sejauh x. Hubungan keduanya diberikan oleh kx 1 = 3kx, atau x 1 = 3x. Ketika kedua balok bergerak bersama-sama, sistem setara dengan sistem massa pegas yang terdiri dari satu massa dengan besar m dan 1 pegas dengan konstanta pegas 4k. Frekuensi sudut sistem diberikan oleh: Simpangan massa atas, relatif terhadap keadaan saat pegas atas kendur diberikan oleh dan simpangan massa bawah, relatif terhadap keadaan saat pegas bawah kendur diberikan oleh Persamaan gerak massa atas diberikan oleh dan persamaan gerak massa bawah diberikan oleh Gunakan salah satu dari dua persamaan ini, misalnya gunakan persamaan untuk massa atas: Nilai maksimum f adalah saat fungsi cos mencapai harga satu. Jadi nilai maksimum diberikan oleh 5

6 Nilai maksimum ini harus selalu lebih kecil atau sama dengan μn = μmg. Jadi sehingga atau Dengan menggunakan persamaan kedua juga akan diperoleh hasil yang sama. 5. Suatu sistem terdiri dari balok (M 1 dan M ) dan 1 pegas, diletakkan di permukaan lantai licin. Balok M 1 menyentuh dinding tetapi tidak merekat. Mula-mula M ditekan sejauh A dari posisi kesetimbangan. Jika massa kedua balok sama (masing-masing m), konstanta pegas k dan panjang mula-mula pegas L, ukuran kedua balok diabaikan (dianggap sebagai massa titik). a. Pada saat t = 0, M dilepas. Setelah t = t 1, ternyata M 1 lepas dari dinding (tidak menyentuh dinding lagi). Hitung t1! b. Selanjutnya ketika t = t, kedua balok berada pada posisi terdekat untuk pertama kalinya. hitung t. c. Berapakah jarak terdekat antara kedua balok itu (pada saat t = t )? d. Berapakah jarak M 1 dari dinding ketika hal ini terjadi (saat t = t )? SOLUSI a). Saat M ditekan, pegas akan memberi gaya pada M. Begitu juga M akan memberi gaya reaksi pada pegas yang akan diteruskan ke M 1 dengan besar yang sama. 6

7 7

8 8

9 9

10 C.1. LATIHAN SOAL OSILASI 1. Seutas tali homogen (massa M, panjang 4L) diikat pada ujung sebuah pegas (konstanta pegas k=m g/l ) yang melekat pada dinding. Ujung bebas tali tergantung ditepi meja dengan posisi awal L. Selanjutnya tali dilepas sehingga ujung bebas tali bergeser sejauh x dari posisi awal tadi dan akhirnya tali berosilasi harmonik sederhana. Asumsikan bahwa tidak ada gesekan sama sekali. Anggap pegas dan tali selalu dijaga dalam keadaan kontak dengan permukaan meja. Tentukan: A. Kecepatan tali v saat tali telah tergeser sejauh x dari posisi awal. B. Periode dan amplitudo osilasi ujung bebas tali.. Dua balok bermassa m1 dan m dihubungkan dengan sebuah pegas tak bermassa dengan konstanta pegas k. Sistem diletakkan dalam bidang datar licin. Balok kemudian ditekan ke kiri sejauh x lalu dilepaskan. Hitung kecepatan pusat massa sistem sesaat setelah balok 1 meninggalkan dinding! 3. Suatu sistem terdiri dari dua kubus identik, masing-masing bermassa m. Kedua kubus ini dihubungkan oleh seutas tali dan suatu pegas tak bermassa yang terkompres/tertekan, yang mempunyai konstanta pegas k. Pada suatu ketika tali penghubung kubus dibakar, hitung berapa besar pegas mula-mula harus tertekan agar kubus yang bawah akan terangkat. Hitung kenaikan pusat massanya, jika pegas mula-mula tertekan sebesar Δl = 7 mg/k! 4. Sistem massa pegas di bawah terdiri dari suatu balok dengan massa m dan dua pegas dengan konstanta pegas k dan 3k. Massa m dapat berosilasi ke atas dan ke bawah, tetapi orientasinya dipertahankan mendatar. Kedua pegas dihubungkan dengan suatu tali tanpa massa melalui suatu katrol licin. Berapakah periode osilasi sistem? (nyatakan dalam: m dan k) 10

11 5. Suatu pegas memiliki konstanta pegas k dan massa m. Untuk memudahkan perhitungan, pegas ini bisa dimodelkan dengan sistem yang terdiri atas susunan massa dan pegas. Untuk pendekatan pertama, anggap system pegas bermassa ini ekuivalen dengan sistem massa-pegas yang terdiri dari dua massa identik m dan dua pegas identik yang tak bermassa dengan konstanta k. Jika kita menambahkan terus jumlah massa dan pegas dalam model ini maka akan semakin mendekati pegas sesungguhnya. Mula-mula sistem dibiarkan pada keadaan setimbang. Panjang pegas menjadi L (panjang kendurnya L 0 ). Jika ujung atas A dipotong, a. Berapa percepatan massa bawah menurut model ini? b. Berapa percepatan massa atas menurut model ini? Asumsikan percepatan gravitasi g tetap. 6. Sistem yang digambarkan di samping berada dalam keadaaan kesetimbangan; pegas bagian kanan teregang sejauh x 1. Koefisien gesekan antara kedua balok μ, dan tidak ada gesekan ntara balok bawah dengan lantai. Konstanta pegas asingmasing 3k dan k. Massa kedua balok masing-masing m. Tentukan simpangan maksimum (amplitudo) osilasi sistem dimana balok atas masih diam relatif terhadap balok bawah. Massa pegas boleh diabaikan. 11

12 Jawaban: 1. Oleh karena tiap partikel dalam tali memiliki kelajuan yang sama, maka energi kinetik tali adalah Pada saat ujung bebas tali sudah tergeser sejauh x dari posisi awal, energi potensial pegas adalah Sementara itu, energi potensial gravitasi tali relatif terhadap posisi awal adalah sehingga energi potensial total sistem adalah A. Persamaan kekekalan energi mekanik E tali adalah Diketahui pada saat awal (t = 0), x = 0, dan v = 0 sehingga E = 0. Dengan demikian (1) B. Selanjutnya dari pers. (1) dapat dihitung derivatif terhadap waktu (t), yaitu sehingga Artinya, persamaan gerak ujung bebas tali untuk pergeseran x adalah yang tidak lain adalah persamaan gerak osilasi harmonik sederhana di sekitar titik x = L. Dengan demikian, besar periode osilasi adalah dan karena v = 0 untuk x = 0 maka amplitudo osilasi adalah L.. Saat balok m dilepaskan maka terjadilah perubahan energi dari energi potensial pegas menjadi energi kinetik dari benda (benda 1 masih diam karena ditahan dinding). Kecepatan pusat massa sistem dapat dicari dengan rumus pusat massa 1

13 3. a) Energi total awal, Energi total akhir sistem (pegas teregang x): Karena energi awal = energi akhir kita akan peroleh, atau, Kubus bawah akan naik, jika atau, atau, b) Mula-mula pegas tertekan sejauh Δl = 7 mg/k. Kita hitung dulu kecepatan benda atas ketika benda bawah hampir naik (telah dihitung pada soal a bahwa saat ini pegas teregang x = mg/k). Disini terjadi perubahan energi pegas pada keadaan tertekan Δl = 7 mg/k menjadi energi potensial benda atas, energi kinetik benda atas dan energi pegas sistem pada keadaan teregang x = mg/k) Kecepatan pusat massa sistem adalah v/. Pusat massa sistem akan naik ke atas. Pada kondisi ini seluruh energi kinetik pusat massa diubah menjadi energi potensial 1/(m)(v/) = (m)gh. Diperoleh : 4. Untuk memudahkan pembahasan, kita akan namakan pegas k sebagai pegas 1 dan pegas 3k sebagai pegas. Tegangan kedua pegas sama, karena dihubungkan lewat satu tali maka : Simpangan massa m = Δx. Dari geometri jelas bahwa, Jadi, Gaya yang bekerja pada massa m : Persamaan gerak sistem: 13

14 Diperoleh: 5. - Hubungan antara m dan m : - Hubungan antara k dengan k : - Pertambahan panjang pegas bawah karena gaya gravitasi, - Tegangan pegas bawah, - Pertambahan panjang pegas atas, - Tegangan pegas atas, Saat sambungan dengan langit-langit dipotong (titik A), - Tegangan pegas atas = nol - Tegangan pegas bawah = mg/ Gaya pada massa bawah : 1. Gaya gravitasi = m g = mg/(arah ke bawah). Gaya dari pegas bawah = mg/ (arah ke atas) Jadi total gaya pada massa bawah = nol, sehingga massa bawah tidak dipercepat. 14

15 Gaya pada massa atas : 1. Gaya gravitasi = m g = mg/(arah ke bawah). Gaya dari pegas bawah = mg/ (arah ke bawah) Jadi total gaya pada massa atas = mg, Percepatan massa atas = mg/m = g 6. Keadaan awal (keseimbangan) : x 1 = 3x Kedua balok akan lebih mudah terlepas, bisa disimpangkan ke kanan! Anggap ada penyimpangan x 0 : Balok bawah : Balok atas : Mereka bergerak bersama jika a 1 = a, atau dimana telah diasumsikan x 0 x 1, atau Saat f = maksimum, f = μ s mg, sehingga 15

16 7. 16

17 A.. TEORI SINGKAT GRAVITASI Menurut hukum gravitasi Newton, gaya tarik menarik antara dua massa m 1 dan m yang berada pada jarak pisah r diberikan oleh dengan G adalah konstanta umum gravitasi ( G = 6,67 x N m /kg ) Jika ada lebih dari dua benda yang berinteraksi, maka gaya pada suatu benda adalah superposisi dari seluruh gaya-gaya gravitasi benda-benda di sekitarnya Besar pecepatan gravitasi di dekat permukaan bumi dapat dianggap konstan, sehingga dapat ditulis Karena gaya gravitasi adalah gaya konservatif, maka dapat didefinisikan sebuah potensial gravitasi sebagai berikut: Jika ada lebih dari dua benda yang berinteraksi, maka energi potensial sistem merupakan jumlah dari energi interaksi setiap pasangan massa. Kepler merumuskan 3 hukum mengenai gerakan planet-planet menggelilingi matahari o Hukum I: Semua planet bergerak dalam lintasan elips dengan matahari berada di pusat elips o Hukum II: Sebuah garis yang menghubungkan sebuah planet dengan matahari akan menyapu luas area yang sama pada selang waktu yang sama. Atau dengan kata lain, laju area yang disapu konstan. o Hukum III: Kuadrat dari periode (T) orbit sebuah planet sebanding dengan pangkat tiga dari panjang sumbu semi mayor (a) dari orbit planet tersebut 17

18 Dalam gerak mengelilingi matahari, momentum sudut planet kekal. B.. CONTOH-CONTOH SOAL GRAVITASI 1. Sebuah planet bermassa M = 1, kg, bergerak mengelilingi Matahari dengan kecepatan v = 3,9 km/s (dalam kerangka matahari). Hitung periode revolusi planet ini! Anggap lintasan planet melingkar. SOLUSI Gaya sentripetal yang menyebabkan planet bergerak melingkar adalah gaya gravitasi, sehingga dengan hukum Newton:. Jika lintasan suatu planet berbentuk ellips, buktikan bahwa T sebanding dengan r 3 (hukum Keppler III), dimana T adalah perioda planet dan r adalah jarak planet ke Matahari! SOLUSI 18

19 3. Periode revolusi Yupiter 1 kali periode revolusi Bumi. Anggap orbit planet melingkar, tentukan: (a) perbandingan jarak Yupiter-Matahari dengan Bumi-Matahari! (b) kecepatan dan percepatan planet Yupiter dalam kerangka matahari! SOLUSI 19

20 b. Percepatan Yupiter mengitari Matahari dapat dicari dengan rumus Newton F = ma. 4. Sebuah benda kecil jatuh pada Matahari dari jarak yang sama dengan jari-jari lintasan Bumi. Kecepatan awal benda nol menurut matahari. Dengan menggunakan Hukum Kepler, tentukan berapa lama benda akan jatuh? SOLUSI Benda yang jatuh ke Matahari dapat dianggap sebagai suatu planet kecil yang lintasan ellipsnya sangat pipih dengan sumbu semi mayornya adalah R/. 0

21 5. Buktikan bahwa energi mekanis total planet bermassa m yang bergerak mengelilingi Matahari sepanjang lintasan elips tergantung hanya pada sumbu semi-mayor ellips a! SOLUSI Anggap jarak minimum dan maksimum planet terhadap matahari adalah r 1 dan r. Dari hukum Newton F = ma kita peroleh, Energi total partikel pada posisi P 1 adalah: Dengan cara yang sama, energi pada posisi P adalah: Dari persamaan diatas kita peroleh, Atau GMm E = a C.. LATIHAN SOAL GRAVITASI 1. Suatu benda mengalami percepatan akibat gravitasi bumi sebesar 6,4 m/s. Hitung ketinggian benda itu jika jari-jari bumi km dan massa bumi 5,98 x 10 4 kg.. Dua bola kecil terbuat dari tembaga bermassa jenis 8,9 g/cm diletakkan sehingga hampir bersinggungan. Jika jari-jari bola 5 cm, hitung gaya tarik menarik antara kedua bola tersebut. R r = R R 3. Hitung gaya tarik menarik antara molekul air yang terpisaj pada jarak 10 6 m! Berat molekul H O adalah 18. Berat molekul menyatakan massa dari sejumlah N A buah molekul air dalam gram. (N A = 6,0 x 10 3, disebut bilangan avogadro) 1

22 4. Periode revolusi Yupiter 1 kali periode revolusi Bumi. Anggap orbit planet melingkar, tentukan: (a) perbandingan jarak Yupiter-Matahari dengan Bumi-Matahari! (b) kecepatan dan percepatan planet Yupiter dalam kerangka matahari! 5. Sebuah benda kecil jatuh pada Matahari dari jarak yang sama dengan jari-jari lintasan Bumi. Kecepatan awal benda nol menurut matahari. Dengan menggunakan Hukum Kepler, tentukan berapa lama benda akan jatuh? 6. Sebuah sistem bintang kembar terdiri dari dua bintang yang bergerak mengelilingi pusat massa sistem akibat gaya gravitasi. Hitung jarak antara kedua bintang dalam sistem ini jika massa total sistem M dan periode revolusi bintang T! 7. Sebuah planet bermassa m bergerak mengitari matahari bermassa M sepanjang lintasan elips sedemikian sehingga jarak maksimum dan minimum dari matahari adalah r 1 dan r. Hitung momentum sudut L planet relatif terhadap pusat Matahari! 8. Pada kutub Bumi sebuah benda dilemparkan ke atas dengan kecepatan v 0. Hitung ketinggian yang dicapai benda jika jari-jari Bumi R dan percepatan jatuh bebas pada permukaan Bumi g! Abaikan hambatan udara. 9. Hitung jari-jari lintasan suatu satelit geostasioner (satelit yang setiap saat berada di atas suatu titik yang sama pada permukaan bumi)! Hitung juga kecepatan dan percepatan satelit itu relatif terhadap Bumi!

23 Jawaban: 1. Soal ini dapat dengan mudah diselesaikan dengan menggunakan rumus: GM g = r Dimana r = R + h (R adalah jari-jari bumi dan h adalah ketinggian benda) Gunakan data yang diberikan : M = 5,98 x 10 4 kg R = 6,375 km = 6,375 x 10 6 m g = 6,4 m/s Hasilnya adalah: ( R + h) ( R + h) ( R + h) g = ( R + h) GM = g = GM 11 4 ( 6,67 x10 )( 5,98 x10 ) = 6,3 x10 13 R + h = 7,894 x10 h = 7,894 x10 = 7,894 x10 = 1,519 x ,4 R 6,375 x10 6 m = 1,519 km. Untuk menyelesaikan soal ini, dicari dahulu massa bola dengan menggunakan rumus m = volume x massa jenis bola lalu gunakan rumus m1m F = G r r merupakan jarak kedua pusat bola r = R = 10 cm Gunakan data berikut: ρ = 8,9 g/cm 3 = 8,9 x 10 3 kg/m 3 R = 5 cm = 0,05 m r = 10 cm = 0,1 m Hasilnya adalah: 4 3 m = Vρ = πr ρ = ( 3,14 )( 0,05 ) ( 8,900 ) 3 = 4,66 kg Gm 1m F = r = 1,45 x10 11 (6,67 x10 ) = 0,1 7 N ( 4,66 ) 3. Yang pertama kali dihitung adalah massa 1 molekul air, kemudian baru hitung gaya tarikmenarik dengan rumus m1m F = G r 3

24 Karena massa N A buah molekul air adalah 18 gram, maka massa 1 molekul air adalah: gram = = 3x10 g 3 N A ( 6,0 x10 ) Gunakan data berikut: m = 3 x 10-3 g = 3 x 10-6 kg d = 10-6 m Hasilnya adalah: Gm 1m F = d = 11 6 ( 6,67 x10 )( 3x10 ) 6 ( 10 ) = 6,0 x10 50 N 4. (a) Anggap suatu planet berputar mengelilingi matahari dengan perioda T dan jari-jari orbit r. Dari hukum Newton (F = ma) kita peroleh: Karena T sebanding dengan r 3 maka atau r Y = 5, r B (b) Percepatan Yupiter mengitari Matahari dapat dicari dengan rumus Newton F = ma. atau karena a = v /r, maka kecepatan planet Yupiter adalah: GM vy = 5,r B 5. Benda yang jatuh ke Matahari dapat dianggap sebagai suatu planet kecil yang lintasan ellipsnya sangat pipih dengan sumbu semi mayornya adalah R/. Menurut Hukum Keppler, T sebanding dengan r 3, sehingga: Waktu jatuh adalah t = T benda /. Sehingga: 3 1 t = T = 65 hari 6. Menurut rumus pusat massa: 4

25 Dari gambar terlihat bahwa: l 1 + l = l Dari kedua persamaan itu kita peroleh, Gaya tarik antara kedua bintang: Karena gaya F 1 ini memberikan gaya sentripetal pada planet M 1, maka Karena ω= π/t, maka kita akan peroleh, T l = GM π Kekekalan momentum sudut (perhatikan bahwa r dan v tegak lurus di titik terjauh dan di titik terdekat): mv 1 r 1 = mv r Kekekalan energi: Selesaikan kedua persamaan di atas, kita akan memperoleh: r 1r L = = 1 mv1r 1 m GM r1 + r 8. Di titik tertinggi kecepatan benda nol, sehingga dengan kekekalan energi kita peroleh: Selesaikan persamaan di atas, kita akan peroleh: Selanjutnya kita bisa tulis: R h = gr 1 v 0 9. Pada satelit geostationer, kecepatan sudut satelit sama dengan kecepatan rotasi bumi. Periodanya adalah T = 4 jam. Anggap r adalah jari-jari lintasan satelit dihitung dari pusat Bumi. GM Karena g = R Jadi, dimana R adalah jari-jari Bumi. 5

26 r = 4, 10 7 m Percepatan satelit adalah percepatan sentripetal: = 0,3 m/s Dari sini kita dapat menghitung kecepatan satelit, yaitu: = 3,1 km/s 6

3. (4 poin) Seutas tali homogen (massa M, panjang 4L) diikat pada ujung sebuah pegas

3. (4 poin) Seutas tali homogen (massa M, panjang 4L) diikat pada ujung sebuah pegas Soal Multiple Choise 1.(4 poin) Sebuah benda yang bergerak pada bidang dua dimensi mendapat gaya konstan. Setelah detik pertama, kelajuan benda menjadi 1/3 dari kelajuan awal benda. Dan setelah detik selanjutnya

Lebih terperinci

K 1. h = 0,75 H. y x. O d K 2

K 1. h = 0,75 H. y x. O d K 2 1. (25 poin) Dari atas sebuah tembok dengan ketinggian H ditembakkan sebuah bola kecil bermassa m (Jari-jari R dapat dianggap jauh lebih kecil daripada H) dengan kecepatan awal horizontal v 0. Dua buah

Lebih terperinci

Uji Kompetensi Semester 1

Uji Kompetensi Semester 1 A. Pilihlah jawaban yang paling tepat! Uji Kompetensi Semester 1 1. Sebuah benda bergerak lurus sepanjang sumbu x dengan persamaan posisi r = (2t 2 + 6t + 8)i m. Kecepatan benda tersebut adalah. a. (-4t

Lebih terperinci

TES STANDARISASI MUTU KELAS XI

TES STANDARISASI MUTU KELAS XI TES STANDARISASI MUTU KELAS XI. Sebuah partikel bergerak lurus dari keadaan diam dengan persamaan x = t t + ; x dalam meter dan t dalam sekon. Kecepatan partikel pada t = 5 sekon adalah ms -. A. 6 B. 55

Lebih terperinci

1. (25 poin) Sebuah bola kecil bermassa m ditembakkan dari atas sebuah tembok dengan ketinggian H (jari-jari bola R jauh lebih kecil dibandingkan

1. (25 poin) Sebuah bola kecil bermassa m ditembakkan dari atas sebuah tembok dengan ketinggian H (jari-jari bola R jauh lebih kecil dibandingkan . (5 poin) Sebuah bola kecil bermassa m ditembakkan dari atas sebuah tembok dengan ketinggian H (jari-jari bola R jauh lebih kecil dibandingkan dengan H). Kecepatan awal horizontal bola adalah v 0 dan

Lebih terperinci

GAYA GESEK. Gaya Gesek Gaya Gesek Statis Gaya Gesek Kinetik

GAYA GESEK. Gaya Gesek Gaya Gesek Statis Gaya Gesek Kinetik GAYA GESEK (Rumus) Gaya Gesek Gaya Gesek Statis Gaya Gesek Kinetik f = gaya gesek f s = gaya gesek statis f k = gaya gesek kinetik μ = koefisien gesekan μ s = koefisien gesekan statis μ k = koefisien gesekan

Lebih terperinci

Benda B menumbuk benda A yang sedang diam seperti gambar. Jika setelah tumbukan A dan B menyatu, maka kecepatan benda A dan B

Benda B menumbuk benda A yang sedang diam seperti gambar. Jika setelah tumbukan A dan B menyatu, maka kecepatan benda A dan B 1. Gaya Gravitasi antara dua benda bermassa 4 kg dan 10 kg yang terpisah sejauh 4 meter A. 2,072 x N B. 1,668 x N C. 1,675 x N D. 1,679 x N E. 2,072 x N 2. Kuat medan gravitasi pada permukaan bumi setara

Lebih terperinci

Soal SBMPTN Fisika - Kode Soal 121

Soal SBMPTN Fisika - Kode Soal 121 SBMPTN 017 Fisika Soal SBMPTN 017 - Fisika - Kode Soal 11 Halaman 1 01. 5 Ketinggian (m) 0 15 10 5 0 0 1 3 5 6 Waktu (s) Sebuah batu dilempar ke atas dengan kecepatan awal tertentu. Posisi batu setiap

Lebih terperinci

PETUNJUK UMUM Pengerjaan Soal Tahap 1 Diponegoro Physics Competititon Tingkat SMA

PETUNJUK UMUM Pengerjaan Soal Tahap 1 Diponegoro Physics Competititon Tingkat SMA PETUNJUK UMUM Pengerjaan Soal Tahap 1 Diponegoro Physics Competititon Tingkat SMA 1. Soal Olimpiade Sains bidang studi Fisika terdiri dari dua (2) bagian yaitu : soal isian singkat (24 soal) dan soal pilihan

Lebih terperinci

Treefy Education Pelatihan OSN Online Nasional Jl Mangga III, Sidoarjo, Jawa WhatsApp:

Treefy Education Pelatihan OSN Online Nasional Jl Mangga III, Sidoarjo, Jawa  WhatsApp: PEMBAHASAN SOAL LATIHAN 2 1. Bola awalnya bergerak dengan lintasan lingkaran hingga sudut sebelum bergerak dengan lintasan parabola seperti sketsa di bawah ini. Koordinat pada titik B adalah. Persamaan

Lebih terperinci

SASARAN PEMBELAJARAN

SASARAN PEMBELAJARAN OSILASI SASARAN PEMBELAJARAN Mahasiswa mengenal persamaan matematik osilasi harmonik sederhana. Mahasiswa mampu mencari besaranbesaran osilasi antara lain amplitudo, frekuensi, fasa awal. Syarat Kelulusan

Lebih terperinci

Osilasi Harmonis Sederhana: Beban Massa pada Pegas

Osilasi Harmonis Sederhana: Beban Massa pada Pegas OSILASI Osilasi Osilasi terjadi bila sebuah sistem diganggu dari posisi kesetimbangannya. Karakteristik gerak osilasi yang paling dikenal adalah gerak tersebut bersifat periodik, yaitu berulang-ulang.

Lebih terperinci

Soal-Jawab Fisika Teori OSN 2013 Bandung, 4 September 2013

Soal-Jawab Fisika Teori OSN 2013 Bandung, 4 September 2013 Soal-Jawab Fisika Teori OSN 0 andung, 4 September 0. (7 poin) Dua manik-manik masing-masing bermassa m dan dianggap benda titik terletak di atas lingkaran kawat licin bermassa M dan berjari-jari. Kawat

Lebih terperinci

Tarikan/dorongan yang bekerja pada suatu benda akibat interaksi benda tersebut dengan benda lain. benda + gaya = gerak?????

Tarikan/dorongan yang bekerja pada suatu benda akibat interaksi benda tersebut dengan benda lain. benda + gaya = gerak????? DINAMIKA PARTIKEL GAYA Tarikan/dorongan yang bekerja pada suatu benda akibat interaksi benda tersebut dengan benda lain Macam-macam gaya : a. Gaya kontak gaya normal, gaya gesek, gaya tegang tali, gaya

Lebih terperinci

K13 Revisi Antiremed Kelas 10 Fisika

K13 Revisi Antiremed Kelas 10 Fisika K13 evisi Antiremed Kelas 10 Fisika Persiapan PTS Semester Genap Doc. Name: K13A10FIS0PTS Version: 017-03 Halaman 1 01. Pada benda bermassa m, bekerja gaya F yang menimbulkan percepatan a. Jika gaya dijadikan

Lebih terperinci

GRAVITASI B A B B A B

GRAVITASI B A B B A B 23 B A B B A B 2 GRAVITASI Sumber: www.google.co.id Pernahkah kalian berfikir, mengapa bulan tidak jatuh ke bumi atau meninggalkan bumi? Mengapa jika ada benda yang dilepaskan akan jatuh ke bawah dan mengapa

Lebih terperinci

SASARAN PEMBELAJARAN

SASARAN PEMBELAJARAN 1 2 SASARAN PEMBELAJARAN Mahasiswa mampu menyelesaikan persoalan gerak partikel melalui konsep gaya. 3 DINAMIKA Dinamika adalah cabang dari mekanika yang mempelajari gerak benda ditinjau dari penyebabnya.

Lebih terperinci

ANTIREMED KELAS 11 FISIKA

ANTIREMED KELAS 11 FISIKA ANTIRMD KLAS 11 FISIKA Persiapan UAS 1 Fisika Doc. Name: AR11FIS01UAS Version : 016-08 halaman 1 01. Jika sebuah partikel bergerak dengan persamaan posisi r = 5t + 1, maka kecepatan rata-rata antara t

Lebih terperinci

BAHAN AJAR PENERAPAN HUKUM KEKEKALAN ENERGI MEKANIK DALAM KEHIDUPAN SEHARI-HARI

BAHAN AJAR PENERAPAN HUKUM KEKEKALAN ENERGI MEKANIK DALAM KEHIDUPAN SEHARI-HARI BAHAN AJAR PENERAPAN HUKUM KEKEKALAN ENERGI MEKANIK DALAM KEHIDUPAN SEHARI-HARI Analisis gerak pada roller coaster Energi kinetik Energi yang dipengaruhi oleh gerakan benda. Energi potensial Energi yang

Lebih terperinci

Antiremed Kelas 11 FISIKA

Antiremed Kelas 11 FISIKA Antiremed Kelas FISIKA Persiapan UAS - Latihan Soal Doc. Name: K3ARFIS0UAS Version : 205-02 halaman 0. Jika sebuah partikel bergerak dengan persamaan posisi r= 5t 2 +, maka kecepatan rata -rata antara

Lebih terperinci

Dinamika Rotasi, Statika dan Titik Berat 1 MOMEN GAYA DAN MOMEN INERSIA

Dinamika Rotasi, Statika dan Titik Berat 1 MOMEN GAYA DAN MOMEN INERSIA Dinamika Rotasi, Statika dan Titik Berat 1 MOMEN GAYA DAN MOMEN INERSIA Dalam gerak translasi gaya dikaitkan dengan percepatan linier benda, dalam gerak rotasi besaran yang dikaitkan dengan percepatan

Lebih terperinci

Latihan I IMPULS MOMENTUM DAN ROTASI

Latihan I IMPULS MOMENTUM DAN ROTASI Latihan I IMPULS MOMENTUM DAN ROTASI 1. Bola bergerak jatuh bebas dari ketinggian 1 m lantai. Jika koefisien restitusi = ½ maka tinggi bola setelah tumbukan pertama A. 50 cm B. 25 cm C. 2,5 cm D. 12,5

Lebih terperinci

Jenis Gaya gaya gesek. Hukum I Newton. jenis gaya gesek. 1. Menganalisis gejala alam dan keteraturannya dalam cakupan mekanika benda titik.

Jenis Gaya gaya gesek. Hukum I Newton. jenis gaya gesek. 1. Menganalisis gejala alam dan keteraturannya dalam cakupan mekanika benda titik. gaya yang muncul ketika BENDA BERSENTUHAN dengan PERMUKAAN KASAR. ARAH GAYA GESEK selalu BERLAWANAN dengan ARAH GERAK BENDA. gaya gravitasi/gaya berat gaya normal GAYA GESEK Jenis Gaya gaya gesek gaya

Lebih terperinci

Kumpulan soal-soal level Olimpiade Sains Nasional: solusi:

Kumpulan soal-soal level Olimpiade Sains Nasional: solusi: Kumpulan soal-soal level Olimpiade Sains Nasional: 1. Sebuah batang uniform bermassa dan panjang l, digantung pada sebuah titik A. Sebuah peluru bermassa bermassa m menumbuk ujung batang bawah, sehingga

Lebih terperinci

MENERAPKAN HUKUM GERAK DAN GAYA

MENERAPKAN HUKUM GERAK DAN GAYA MENERAPKAN HUKUM GERAK DAN GAYA Menguasai Hukum Neton MUH. ARAFAH, S.Pd. e-mail: muh.arafahsidrap@gmail.com ebsite://arafahtgb.ordpress.com HUKUM-HUKUM GERAK GERAK + GAYA DINAMIKA GAYA ADALAH SESUATU YANG

Lebih terperinci

Materi dan Soal : USAHA DAN ENERGI

Materi dan Soal : USAHA DAN ENERGI Materi dan Soal : USAHA DAN ENERGI Energi didefinisikan sebagai besaran yang selalu kekal. Energi tidak dapat diciptakan dan dimusnahkan. Energi hanya dapat berubah dari satu bentuk ke bentuk lainnya.

Lebih terperinci

K13 Revisi Antiremed Kelas 10 Fisika

K13 Revisi Antiremed Kelas 10 Fisika K13 Revisi Antiremed Kelas 10 Fisika Persiapan Penilaian Akhir Semester (PAS) Genap Halaman 1 01. Dalam getaran harmonik, percepatan getaran... (A) selalu sebanding dengan simpangannya (B) tidak bergantung

Lebih terperinci

BAHAN AJAR FISIKA GRAVITASI

BAHAN AJAR FISIKA GRAVITASI BAHAN AJAR FISIKA GRAVITASI OLEH SRI RAHMAWATI, S.Pd SMA NEGERI 5 MATARAM Pernahkah kalian berfikir, mengapa bulan tidak jatuh ke bumi atau meninggalkan bumi? Mengapa jika ada benda yang dilepaskan akan

Lebih terperinci

Treefy Education Pelatihan OSN Online Nasional Jl Mangga III, Sidoarjo, Jawa WhatsApp:

Treefy Education Pelatihan OSN Online Nasional Jl Mangga III, Sidoarjo, Jawa  WhatsApp: Treefy Education PEMBAHASAN LATIHAN 1 1.a) Bayangkan bola berada di puncak pipa. Ketika diberikan sedikit dorongan, bola akan bergerak dan menabrak tanah dengan kecepatan. Gerakan tersebut merupakan proses

Lebih terperinci

GERAK HARMONIK SEDERHANA

GERAK HARMONIK SEDERHANA GERAK HARMONIK SEDERHANA Gerak harmonik sederhana adalah gerak bolak-balik benda melalui suatu titik kesetimbangan tertentu dengan banyaknya getaran benda dalam setiap sekon selalu konstan. Gerak harmonik

Lebih terperinci

PHYSICS SUMMIT 2 nd 2014

PHYSICS SUMMIT 2 nd 2014 KETENTUAN UMUM 1. Periksa terlebih dahulu bahwa jumlah soal Saudara terdiri dari 8 (tujuh) buah soal 2. Waktu total untuk mengerjakan tes ini adalah 3 jam atau 180 menit 3. Peserta diperbolehkan menggunakan

Lebih terperinci

BAB 3 DINAMIKA GERAK LURUS

BAB 3 DINAMIKA GERAK LURUS BAB 3 DINAMIKA GERAK LURUS A. TUJUAN PEMBELAJARAN 1. Menerapkan Hukum I Newton untuk menganalisis gaya-gaya pada benda 2. Menerapkan Hukum II Newton untuk menganalisis gerak objek 3. Menentukan pasangan

Lebih terperinci

Jawaban Soal OSK FISIKA 2014

Jawaban Soal OSK FISIKA 2014 Jawaban Soal OSK FISIKA 4. Sebuah benda bergerak sepanjang sumbu x dimana posisinya sebagai fungsi dari waktu dapat dinyatakan dengan kurva seperti terlihat pada gambar samping (x dalam meter dan t dalam

Lebih terperinci

BAB USAHA DAN ENERGI I. SOAL PILIHAN GANDA

BAB USAHA DAN ENERGI I. SOAL PILIHAN GANDA 1 BAB USAHA DAN ENERGI I. SOAL PILIHAN GANDA 01. Usaha yang dilakukan oleh suatu gaya terhadap benda sama dengan nol apabila arah gaya dengan perpindahan benda membentuk sudut sebesar. A. 0 B. 5 C. 60

Lebih terperinci

LATIHAN USAHA, ENERGI, IMPULS DAN MOMENTUM

LATIHAN USAHA, ENERGI, IMPULS DAN MOMENTUM LATIHAN USAHA, ENERGI, IMPULS DAN MOMENTUM A. Menjelaskan hubungan usaha dengan perubahan energi dalam kehidupan sehari-hari dan menentukan besaran-besaran terkait. 1. Sebuah meja massanya 10 kg mula-mula

Lebih terperinci

Karakteristik Gerak Harmonik Sederhana

Karakteristik Gerak Harmonik Sederhana Pertemuan GEARAN HARMONIK Kelas XI IPA Karakteristik Gerak Harmonik Sederhana Rasdiana Riang, (5B0809), Pendidikan Fisika PPS UNM Makassar 06 Beberapa parameter yang menentukan karaktersitik getaran: Amplitudo

Lebih terperinci

KARAKTERISTIK GERAK HARMONIK SEDERHANA

KARAKTERISTIK GERAK HARMONIK SEDERHANA KARAKTERISTIK GERAK HARMONIK SEDERHANA Pertemuan 2 GETARAN HARMONIK Kelas XI IPA Karakteristik Gerak Harmonik Sederhana Rasdiana Riang, (15B08019), Pendidikan Fisika PPS UNM Makassar 2016 Beberapa parameter

Lebih terperinci

GRAVITASI. Gambar 1. Gaya gravitasi bekerja pada garis hubung kedua benda.

GRAVITASI. Gambar 1. Gaya gravitasi bekerja pada garis hubung kedua benda. GAVITASI Pernahkah anda berfikir, mengapa bulan tidak jatuh ke bumi atau meninggalkan bumi? engapa jika ada benda yang dilepaskan akan jatuh ke bawah dan mengapa satelit tidak jatuh? Lebih jauh anda dapat

Lebih terperinci

SOAL REMEDIAL KELAS XI IPA. Dikumpul paling lambat Kamis, 20 Desember 2012

SOAL REMEDIAL KELAS XI IPA. Dikumpul paling lambat Kamis, 20 Desember 2012 NAMA : KELAS : SOAL REMEDIAL KELAS XI IPA Dikumpul paling lambat Kamis, 20 Desember 2012 1. Sebuah partikel mula-mula dmemiliki posisi Kemudian, partikel berpindah menempati posisi partikel tersebut adalah...

Lebih terperinci

Fisika Umum (MA101) Kinematika Rotasi. Dinamika Rotasi

Fisika Umum (MA101) Kinematika Rotasi. Dinamika Rotasi Fisika Umum (MA101) Topik hari ini: Kinematika Rotasi Hukum Gravitasi Dinamika Rotasi Kinematika Rotasi Perpindahan Sudut Riview gerak linear: Perpindahan, kecepatan, percepatan r r = r f r i, v =, t a

Lebih terperinci

J U R U S A N T E K N I K S I P I L UNIVERSITAS BRAWIJAYA. TKS-4101: Fisika. Hukum Newton. Dosen: Tim Dosen Fisika Jurusan Teknik Sipil FT-UB

J U R U S A N T E K N I K S I P I L UNIVERSITAS BRAWIJAYA. TKS-4101: Fisika. Hukum Newton. Dosen: Tim Dosen Fisika Jurusan Teknik Sipil FT-UB J U R U S A N T E K N I K S I P I L UNIVERSITAS BRAWIJAYA TKS-4101: Fisika Hukum Newton Dosen: Tim Dosen Fisika Jurusan Teknik Sipil FT-UB 1 Mekanika Kinematika Mempelajari gerak materi tanpa melibatkan

Lebih terperinci

Materi Pendalaman 01:

Materi Pendalaman 01: Materi Pendalaman 01: GETARAN & GERAK HARMONIK SEDERHANA 1 L T (1.) f g Contoh lain getaran harmonik sederhana adalah gerakan pegas. Getaran harmonik sederhana adalah gerak bolak balik yang selalu melewati

Lebih terperinci

Momen Inersia. distribusinya. momen inersia. (karena. pengaruh. pengaruh torsi)

Momen Inersia. distribusinya. momen inersia. (karena. pengaruh. pengaruh torsi) Gerak Rotasi Momen Inersia Terdapat perbedaan yang penting antara masa inersia dan momen inersia Massa inersia adalah ukuran kemalasan suatu benda untuk mengubah keadaan gerak translasi nya (karena pengaruh

Lebih terperinci

Contoh Soal dan Pembahasan Dinamika Rotasi, Materi Fisika kelas 2 SMA. Pembahasan. a) percepatan gerak turunnya benda m.

Contoh Soal dan Pembahasan Dinamika Rotasi, Materi Fisika kelas 2 SMA. Pembahasan. a) percepatan gerak turunnya benda m. Contoh Soal dan Dinamika Rotasi, Materi Fisika kelas 2 SMA. a) percepatan gerak turunnya benda m Tinjau katrol : Penekanan pada kasus dengan penggunaan persamaan Σ τ = Iα dan Σ F = ma, momen inersia (silinder

Lebih terperinci

1. a) Kesetimbangan silinder m: sejajar bidang miring. katrol licin. T f mg sin =0, (1) tegak lurus bidang miring. N mg cos =0, (13) lantai kasar

1. a) Kesetimbangan silinder m: sejajar bidang miring. katrol licin. T f mg sin =0, (1) tegak lurus bidang miring. N mg cos =0, (13) lantai kasar 1. a) Kesetimbangan silinder m: sejajar bidang miring katrol licin T f mg sin =0, (1) tegak lurus bidang miring N mg cos =0, (2) torka terhadap pusat silinder: TR fr=0. () Dari persamaan () didapat T=f.

Lebih terperinci

SP FISDAS I. acuan ) , skalar, arah ( ) searah dengan

SP FISDAS I. acuan ) , skalar, arah ( ) searah dengan SP FISDAS I Perihal : Matriks, pengulturan, dimensi, dan sebagainya. Bisa baca sendiri di tippler..!! KINEMATIKA : Gerak benda tanpa diketahui penyebabnya ( cabang dari ilmu mekanika ) DINAMIKA : Pengaruh

Lebih terperinci

SOAL UJIAN SELEKSI CALON PESERTA OLIMPIADE SAINS NASIONAL 2015 TINGKAT PROPINSI

SOAL UJIAN SELEKSI CALON PESERTA OLIMPIADE SAINS NASIONAL 2015 TINGKAT PROPINSI SOAL UJIAN SELEKSI CALON PESERTA OLIMPIADE SAINS NASIONAL 05 TINGKAT PROPINSI FISIKA Waktu : 3,5 jam KEMENTERIAN PENDIDIKAN DAN KEBUDAYAAN DIREKTORAT JENDERAL PENDIDIKAN MENENGAH DIREKTORAT PEMBINAAN SEKOLAH

Lebih terperinci

DINAMIKA BENDA LANGIT

DINAMIKA BENDA LANGIT DINAMIKA BENDA LANGIT CHATIEF KUNJAYA KK A S T R O N O M I, I N S T I T U T T E K N O L O G I B A N D U N G TPOA, Kunjaya 2014 KOMPETENSI DASAR X.3.3 Menganalisis besaran-besaran fisis pada gerak lurus

Lebih terperinci

PETUNJUK UMUM Pengerjaan Soal Tahap 1 Diponegoro Physics Competititon Tingkat SMA

PETUNJUK UMUM Pengerjaan Soal Tahap 1 Diponegoro Physics Competititon Tingkat SMA PETUNJUK UMUM Pengerjaan Soal Tahap 1 Diponegoro Physics Competititon Tingkat SMA 1. Soal Olimpiade Sains bidang studi Fisika Tingkat SMA terdiri dari dua (2) bagian yaitu : soal isian singkat dan soal

Lebih terperinci

LATIHAN SOAL MENJELANG UJIAN TENGAH SEMESTER STAF PENGAJAR FISIKA TPB

LATIHAN SOAL MENJELANG UJIAN TENGAH SEMESTER STAF PENGAJAR FISIKA TPB LATIHAN SOAL MENJELANG UJIAN TENGAH SEMESTER STAF PENGAJAR FISIKA TPB Soal No. 1 Seorang berjalan santai dengan kelajuan 2,5 km/jam, berapakah waktu yang dibutuhkan agar ia sampai ke suatu tempat yang

Lebih terperinci

Pilihan ganda soal dan impuls dan momentum 15 butir. 5 uraian soal dan impuls dan momentum

Pilihan ganda soal dan impuls dan momentum 15 butir. 5 uraian soal dan impuls dan momentum Pilihan ganda soal dan impuls dan momentum 15 butir. 5 uraian soal dan impuls dan momentum A. Pilihlah salah satu jawaban yang paling tepat! 1. Sebuah mobil bermassa 2.000 kg sedang bergerak dengan kecepatan

Lebih terperinci

ULANGAN UMUM SEMESTER 1

ULANGAN UMUM SEMESTER 1 ULANGAN UMUM SEMESTER A. Berilah tanda silang (x) pada huruf a, b, c, d atau e di depan jawaban yang benar!. Kesalahan instrumen yang disebabkan oleh gerak brown digolongkan sebagai... a. kesalahan relatif

Lebih terperinci

Fisika Umum (MA-301) Topik hari ini: Getaran dan Gelombang Bunyi

Fisika Umum (MA-301) Topik hari ini: Getaran dan Gelombang Bunyi Fisika Umum (MA-301) Topik hari ini: Getaran dan Gelombang Bunyi Getaran dan Gelombang Hukum Hooke F s = - k x F s adalah gaya pegas k adalah konstanta pegas Konstanta pegas adalah ukuran kekakuan dari

Lebih terperinci

BAB IV DINAMIKA PARTIKEL. A. STANDAR KOMPETENSI : 3. Mendeskripsikan gejala alam dalam cakupan mekanika klasik sistem diskret (partikel).

BAB IV DINAMIKA PARTIKEL. A. STANDAR KOMPETENSI : 3. Mendeskripsikan gejala alam dalam cakupan mekanika klasik sistem diskret (partikel). BAB IV DINAMIKA PARIKEL A. SANDAR KOMPEENSI : 3. Mendeskripsikan gejala alam dalam cakupan mekanika klasik sistem diskret (partikel). B. KOMPEENSI DASAR : 1. Menjelaskan Hukum Newton sebagai konsep dasar

Lebih terperinci

BAB 5: DINAMIKA: HUKUM-HUKUM DASAR

BAB 5: DINAMIKA: HUKUM-HUKUM DASAR BAB 5: DINAMIKA: HUKUM-HUKUM DASAR Dinamika mempelajari pengaruh lingkungan terhadap keadaan gerak suatu sistem. Pada dasarya persoalan dinamika dapat dirumuskan sebagai berikut: Bila sebuah sistem dengan

Lebih terperinci

Xpedia Fisika DP SNMPTN 05

Xpedia Fisika DP SNMPTN 05 Xpedia Fisika DP SNMPTN 05 Doc. Name: XPFIS9910 Version: 2012-06 halaman 1 Sebuah bola bermassa m terikat pada ujung sebuah tali diputar searah jarum jam dalam sebuah lingkaran mendatar dengan jari-jari

Lebih terperinci

HUKUM NEWTON TENTANG GRAVITASI DAN GERAK PLANET

HUKUM NEWTON TENTANG GRAVITASI DAN GERAK PLANET HUKUM NEWTON TENTANG GRAVITASI DAN GERAK PLANET HUKUM NEWTON TENTANG GRAVITASI DAN GERAK PLANET Kompetensi Dasar 3.2 Mengevaluasi pemikiran dirinya terhadap keteraturan gerak planet dalam tatasurya berdasarkan

Lebih terperinci

PETUNJUK UMUM Pengerjaan Soal Tahap II Semifinal Diponegoro Physics Competititon Tingkat SMA

PETUNJUK UMUM Pengerjaan Soal Tahap II Semifinal Diponegoro Physics Competititon Tingkat SMA PETUNJUK UMUM Pengerjaan Soal Tahap II Semifinal Diponegoro Physics Competititon Tingkat SMA 1. Soal Olimpiade Sains bidang studi Fisika Tingkat SMA yaitu dalam bentuk Essay panjang. 2. Soal essay panjang

Lebih terperinci

BIDANG STUDI : FISIKA

BIDANG STUDI : FISIKA BERKAS SOAL BIDANG STUDI : MADRASAH ALIYAH SELEKSI TINGKAT PROVINSI KOMPETISI SAINS MADRASAH NASIONAL 013 Petunjuk Umum 1. Silakan berdoa sebelum mengerjakan soal, semua alat komunikasi dimatikan.. Tuliskan

Lebih terperinci

SOAL DINAMIKA ROTASI

SOAL DINAMIKA ROTASI SOAL DINAMIKA ROTASI A. Pilihan Ganda Pilihlah jawaban yang paling tepat! 1. Sistem yang terdiri atas bola A, B, dan C yang posisinya seperti tampak pada gambar, mengalami gerak rotasi. Massa bola A, B,

Lebih terperinci

SOAL UJIAN SELEKSI CALON PESERTA OLIMPIADE SAINS NASIONAL 2015 TINGKAT PROVINSI

SOAL UJIAN SELEKSI CALON PESERTA OLIMPIADE SAINS NASIONAL 2015 TINGKAT PROVINSI HAK CIPTA DILINDUNGI UNDANG-UNDANG SOAL UJIAN SELEKSI CALON PESERTA OLIMPIADE SAINS NASIONAL 2015 TINGKAT PROVINSI BIDANG FISIKA Waktu : 210 menit KEMENTERIAN PENDIDIKAN DAN KEBUDAYAAN DIREKTORAT JENDERAL

Lebih terperinci

r 21 F 2 F 1 m 2 Secara matematis hukum gravitasi umum Newton adalah: F 12 = G

r 21 F 2 F 1 m 2 Secara matematis hukum gravitasi umum Newton adalah: F 12 = G Gaya gravitasi antara dua benda merupakan gaya tarik menarik yang besarnya berbanding lurus dengan massa masing-masing benda dan berbanding terbalik dengan kuadrat jarak antara keduanya Secara matematis

Lebih terperinci

Hukum Newton Tentang Gravitasi

Hukum Newton Tentang Gravitasi Hukum Newton Tentang Gravitasi Kalian tentu sering mendengar istilah gravitasi. Apa yang kalian ketahui tentang gravitasi? Apa pengaruhnya terhadap planet-planet dalam sistem tata surya? Gravitasi merupakan

Lebih terperinci

Kumpulan Soal UN Materi Hukum Newton

Kumpulan Soal UN Materi Hukum Newton Kumpulan Soal UN Materi Hukum Newton 1. Soal UN 2011/2012 Paket D21 Agar gaya normal yang bekerja pada balok sebesar 20 N, maka besar dan arah gaya luar yang bekerja pada balok adalah... A. 50 N ke bawah

Lebih terperinci

SOAL TRY OUT FISIKA 2

SOAL TRY OUT FISIKA 2 SOAL TRY OUT FISIKA 2 1. Dua benda bermassa m 1 dan m 2 berjarak r satu sama lain. Bila jarak r diubah-ubah maka grafik yang menyatakan hubungan gaya interaksi kedua benda adalah A. B. C. D. E. 2. Sebuah

Lebih terperinci

SOAL DAN PEMBAHASAN FINAL SESI II LIGA FISIKA PIF XIX TINGKAT SMA/MA SEDERAJAT

SOAL DAN PEMBAHASAN FINAL SESI II LIGA FISIKA PIF XIX TINGKAT SMA/MA SEDERAJAT SOAL DAN PEMBAHASAN FINAL SESI II LIGA FISIKA PIF XIX TINGKAT SMA/MA SEDERAJAT 1. VEKTOR Jika diketahui vektor A = 4i 8j 10k dan B = 4i 3j + 2bk. Jika kedua vektor tersebut saling tegak lurus, maka tentukan

Lebih terperinci

Hukum Newton dan Penerapannya 1

Hukum Newton dan Penerapannya 1 Hukum Newton dan Penerapannya 1 Definisi Hukum I Newton menyatakan bahwa : Materi Ajar Hukum I Newton Setiap benda tetap berada dalam keadaan diam atau bergerak dengan laju tetap sepanjang garis lurus

Lebih terperinci

BAB MOMENTUM DAN IMPULS

BAB MOMENTUM DAN IMPULS BAB MOMENTUM DAN IMPULS I. SOAL PILIHAN GANDA 0. Dalam sistem SI, satuan momentum adalah..... A. N s - B. J s - C. W s - D. N s E. J s 02. Momentum adalah.... A. Besaran vektor dengan satuan kg m B. Besaran

Lebih terperinci

Soal Pembahasan Dinamika Gerak Fisika Kelas XI SMA Rumus Rumus Minimal

Soal Pembahasan Dinamika Gerak Fisika Kelas XI SMA Rumus Rumus Minimal Soal Dinamika Gerak Fisika Kelas XI SMA Rumus Rumus Minimal Hukum Newton I Σ F = 0 benda diam atau benda bergerak dengan kecepatan konstan / tetap atau percepatan gerak benda nol atau benda bergerak lurus

Lebih terperinci

SOAL DAN PEMBAHASAN FINAL SESI I LIGA FISIKA PIF XIX TINGKAT SMA/MA SEDERAJAT PAKET 1

SOAL DAN PEMBAHASAN FINAL SESI I LIGA FISIKA PIF XIX TINGKAT SMA/MA SEDERAJAT PAKET 1 SOAL DAN PEMBAHASAN FINAL SESI I LIGA FISIKA PIF XIX TINGKAT SMA/MA SEDERAJAT PAKET 1 1. Terhadap koordinat x horizontal dan y vertikal, sebuah benda yang bergerak mengikuti gerak peluru mempunyai komponen-komponen

Lebih terperinci

Laporan Kegiatan Pembinaan Olimpiade Fisika di SMA Negeri 8 Yogyakarta Tahun Oleh: Wipsar Sunu Brams Dwandaru NIP

Laporan Kegiatan Pembinaan Olimpiade Fisika di SMA Negeri 8 Yogyakarta Tahun Oleh: Wipsar Sunu Brams Dwandaru NIP Laporan Kegiatan Pembinaan Olimpiade Fisika di SMA Negeri 8 Yogyakarta Tahun 2012 Oleh: Wipsar Sunu Brams Dwandaru NIP. 19800129200501 1 003 JURUSAN PENDIDIKAN FISIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN

Lebih terperinci

BAB USAHA DAN ENERGI

BAB USAHA DAN ENERGI BAB USAHA DAN ENERGI. Seorang anak mengangkat sebuah kopor dengan gaya 60 N. Hitunglah usaha yang telah dilakukan anak tersebut ketika: (a anak tersebut diam di tempat sambail menyangga kopor di atas kepalanya.

Lebih terperinci

PREDIKSI UAS 1 FISIKA KELAS X TAHUN 2013/ Besaran-besaran berikut yang merupakan besaran pokok adalah a. Panjang, lebar,luas,volume

PREDIKSI UAS 1 FISIKA KELAS X TAHUN 2013/ Besaran-besaran berikut yang merupakan besaran pokok adalah a. Panjang, lebar,luas,volume PREDIKSI UAS 1 FISIKA KELAS X TAHUN 2013/2014 A. PILIHAN GANDA 1. Besaran-besaran berikut yang merupakan besaran pokok adalah a. Panjang, lebar,luas,volume d. Panjang, lebar, tinggi, tebal b. Kecepatan,waktu,jarak,energi

Lebih terperinci

Antiremed Kelas 10 FISIKA

Antiremed Kelas 10 FISIKA Antiremed Kelas 0 FISIKA Dinamika, Partikel, dan Hukum Newton Doc Name : K3AR0FIS040 Version : 04-09 halaman 0. Gaya (F) sebesar N bekerja pada sebuah benda massanya m menyebabkan percepatan m sebesar

Lebih terperinci

DASAR PENGUKURAN MEKANIKA

DASAR PENGUKURAN MEKANIKA DASAR PENGUKURAN MEKANIKA 1. Jelaskan pengertian beberapa istilah alat ukur berikut dan berikan contoh! a. Kemampuan bacaan b. Cacah terkecil 2. Jelaskan tentang proses kalibrasi alat ukur! 3. Tunjukkan

Lebih terperinci

GERAK HARMONIK SEDERHANA. Program Studi Teknik Pertambangan

GERAK HARMONIK SEDERHANA. Program Studi Teknik Pertambangan GERAK HARMONIK SEDERHANA Program Studi Teknik Pertambangan GERAK HARMONIK SEDERHANA Dalam mempelajari masalah gerak pada gelombang atau gerak harmonik, kita mengenal yang namanya PERIODE, FREKUENSI DAN

Lebih terperinci

HUKUM NEWTON TENTANG GERAK DINAMIKA PARTIKEL 1. PENDAHULUAN

HUKUM NEWTON TENTANG GERAK DINAMIKA PARTIKEL 1. PENDAHULUAN HUKUM NEWTON TENTANG GERAK DINAMIKA PARTIKEL 1. PENDAHULUAN Pernahkah Anda berpikir; mengapa kita bisa begitu mudah berjalan di atas lantai keramik yang kering, tetapi akan begitu kesulitan jika lantai

Lebih terperinci

D. 6,25 x 10 5 J E. 4,00 x 10 6 J

D. 6,25 x 10 5 J E. 4,00 x 10 6 J 1. Besarnya usaha untuk menggerakkan mobil (massa mobil dan isinya adalah 1000 kg) dari keadaan diam hingga mencapai kecepatan 72 km/jam adalah... (gesekan diabaikan) A. 1,25 x 10 4 J B. 2,50 x 10 4 J

Lebih terperinci

BAB 3 DINAMIKA. Tujuan Pembelajaran. Bab 3 Dinamika

BAB 3 DINAMIKA. Tujuan Pembelajaran. Bab 3 Dinamika 25 BAB 3 DINAMIKA Tujuan Pembelajaran 1. Menerapkan Hukum I Newton untuk menganalisis gaya pada benda diam 2. Menerapkan Hukum II Newton untuk menganalisis gaya dan percepatan benda 3. Menentukan pasangan

Lebih terperinci

HUKUM NEWTON B A B B A B

HUKUM NEWTON B A B B A B Hukum ewton 75 A A 4 HUKUM EWTO Sumber : penerbit cv adi perkasa Pernahkah kalian melihat orang mendorong mobil yang mogok? Perhatikan pada gambar di atas. Ada orang ramai-ramai mendorong mobil yang mogok.

Lebih terperinci

Hukum Kekekalan Energi Mekanik

Hukum Kekekalan Energi Mekanik Hukum Kekekalan Energi Mekanik Konsep Hukum Kekekalan Energi Dalam kehidupan kita sehari-hari terdapat banyak jenis energi. Selain energi potensial dan energi kinetik pada benda-benda biasa (skala makroskopis),

Lebih terperinci

GETARAN DAN GELOMBANG

GETARAN DAN GELOMBANG GEARAN DAN GELOMBANG Getaran dapat diartikan sebagai gerak bolak balik sebuah benda terhadap titik kesetimbangan dalam selang waktu yang periodik. Dua besaran yang penting dalam getaran yaitu periode getaran

Lebih terperinci

MODUL FISIKA SMA Kelas 10

MODUL FISIKA SMA Kelas 10 SMA Kelas 0 A. Pengaruh Gaya Terhadap Gerak Benda Dinamika adalah ilmu yang mempelajari gerak suatu benda dengan meninjau penyebabnya. Buah kelapa jatuh dan pohon kelapa dan bola menggelinding di atas

Lebih terperinci

MEKANIKA BENDA LANGIT MARIANO N., S.SI.

MEKANIKA BENDA LANGIT MARIANO N., S.SI. MEKANIKA BENDA LANGIT MARIANO N., S.SI. MEKANIKA BENDA LANGIT Adalah ilmu yang mempelajari gerakan benda-benda langit secara kinematika maupun dinamika : Posisi Kecepatan Percepatan Interaksi Gaya Energi

Lebih terperinci

Kumpulan soal-soal level seleksi provinsi: solusi:

Kumpulan soal-soal level seleksi provinsi: solusi: Kumpulan soal-soal level selesi provinsi: 1. Sebuah bola A berjari-jari r menggelinding tanpa slip e bawah dari punca sebuah bola B berjarijari R. Anggap bola bawah tida bergera sama seali. Hitung ecepatan

Lebih terperinci

KEMENTERIAN PENDIDIKAN DAN KEBUDAYAAN

KEMENTERIAN PENDIDIKAN DAN KEBUDAYAAN SOAL UJIAN SELEKSI CALON PESERTA OLIMPIADE SAINS NASIONAL 06 TINGKAT PROPINSI FISIKA Waktu : 3,5 jam KEMENTERIAN PENDIDIKAN DAN KEBUDAYAAN DIREKTORAT JENDERAL PENDIDIKAN DASAR DAN MENENGAH DIREKTORAT PEMBINAAN

Lebih terperinci

SEKOLAH MENENGAH ATAS (SMA) NEGERI 78 JAKARTA

SEKOLAH MENENGAH ATAS (SMA) NEGERI 78 JAKARTA J A Y A R A Y A PEMERINTAH PROVINSI DAERAH KHUSUS IBUKOTA JAKARTA DINAS PENDIDIKAN SEKOLAH MENENGAH ATAS (SMA) NEGERI 78 JAKARTA Jalan Bhakti IV/1 Komp. Pajak Kemanggisan Telp. 5327115/5482914 Website

Lebih terperinci

UM UGM 2017 Fisika. Soal

UM UGM 2017 Fisika. Soal UM UGM 07 Fisika Soal Doc. Name: UMUGM07FIS999 Version: 07- Halaman 0. Pada planet A yang berbentuk bola dibuat terowongan lurus dari permukaan planet A yang menembus pusat planet dan berujung di permukaan

Lebih terperinci

3. MEKANIKA BENDA LANGIT

3. MEKANIKA BENDA LANGIT 3. MEKANIKA BENDA LANGIT 3.1. ELIPS Sebelum belajar Mekanika Benda Langit lebih lanjut, terlebih dahulu perlu diketahui salah satu bentuk irisan kerucut yaitu tentang elips. Gambar 3.1. Geometri Elips

Lebih terperinci

SOAL SELEKSI PENERIMAAN MAHASISWA BARU (BESERA PEMBAHASANNYA) TAHUN 1984

SOAL SELEKSI PENERIMAAN MAHASISWA BARU (BESERA PEMBAHASANNYA) TAHUN 1984 SOAL SELEKSI PENERIMAAN MAHASISWA BARU (BESERA PEMBAHASANNYA) TAHUN 1984 BAGIAN KEARSIPAN SMA DWIJA PRAJA PEKALONGAN JALAN SRIWIJAYA NO. 7 TELP (0285) 426185) 1. Besarnya usaha untuk menggerakkan mobil

Lebih terperinci

Xpedia Fisika. Soal Mekanika

Xpedia Fisika. Soal Mekanika Xpedia Fisika Soal Mekanika Doc Name : XPPHY0199 Version : 2013-04 halaman 1 01. Tiap gambar di bawah menunjukkan gaya bekerja pada sebuah partikel, dimana tiap gaya sama besar. Pada gambar mana kecepatan

Lebih terperinci

MOMENTUM - TUMBUKAN FISIKA DASAR (TEKNIK SISPIL) (+GRAVITASI) Mirza Satriawan. menu

MOMENTUM - TUMBUKAN FISIKA DASAR (TEKNIK SISPIL) (+GRAVITASI) Mirza Satriawan. menu FISIKA DASAR (TEKNIK SISPIL) 1/34 MOMENTUM - TUMBUKAN (+GRAVITASI) Mirza Satriawan Physics Dept. Gadjah Mada University Bulaksumur, Yogyakarta email: mirza@ugm.ac.id Sistem Partikel Dalam pembahasan-pembahasan

Lebih terperinci

6. Berapakah energi kinetik seekor nyamuk bermassa 0,75 mg yang sedang terbang dengan kelajuan 40 cm/s? Jawab:

6. Berapakah energi kinetik seekor nyamuk bermassa 0,75 mg yang sedang terbang dengan kelajuan 40 cm/s? Jawab: 1. Sebuah benda dengan massa 5kg meluncur pada bidang miring licin yang membentuk sudut 60 0 terhadap horizontal. Jika benda bergeser sejauh 5 m, berapakh usaha yang dilakukan oleh gaya berat jawab: 2.

Lebih terperinci

Laporan kegiatan Pembinaan Olimpiade Sains Nasional di SMA Negeri 1 Wonogiri Tahun Oleh: Wipsar Sunu Brams Dwandaru NIP

Laporan kegiatan Pembinaan Olimpiade Sains Nasional di SMA Negeri 1 Wonogiri Tahun Oleh: Wipsar Sunu Brams Dwandaru NIP Laporan kegiatan Pembinaan Olimpiade Sains Nasional di SMA Negeri 1 Wonogiri Tahun 2012 Oleh: Wipsar Sunu Brams Dwandaru NIP. 19800129200501 1 003 JURUSAN PENDIDIKAN FISIKA FAKULTAS MATEMATIKA DAN ILMU

Lebih terperinci

Olimpiade Sains Nasional F i s i k a

Olimpiade Sains Nasional F i s i k a Olimpiade Sains Nasional 2012 Tingkat Kabupaten/Kotamadya Bidang F i s i k a Ketentuan Umum: 1- Periksa lebih dulu bahwa jumlah soal Saudara terdiri dari 8 (delapan) buah soal. 2- Waktu total untuk mengerjakan

Lebih terperinci

(translasi) (translasi) Karena katrol tidak slip, maka a = αr. Dari persamaan-persamaan di atas kita peroleh:

(translasi) (translasi) Karena katrol tidak slip, maka a = αr. Dari persamaan-persamaan di atas kita peroleh: a 1.16. Dalam sistem dibawah ini, gesekan antara m 1 dan meja adalah µ. Massa katrol m dan anggap katrol tidak slip. Abaikan massa tali, hitung usaha yang dilakukan oleh gaya gesek selama t detik pertama!

Lebih terperinci

Fisika Umum suyoso Hukum Newton HUKUM NEWTON

Fisika Umum suyoso Hukum Newton HUKUM NEWTON HUKUM EWTO Hukun ewton menghubungkan percepatan sebuah benda dengan massanya dan gaya-gaya yang bekerja padanya. Ada tiga hukum ewton tentang gerak, yaitu Hukum I ewton, Hukum II ewton, dan Hukum III ewton.

Lebih terperinci

DINAMIKA. Rudi Susanto, M.Si

DINAMIKA. Rudi Susanto, M.Si DINAMIKA Rudi Susanto, M.Si DINAMIKA HUKUM NEWTON I HUKUM NEWTON II HUKUM NEWTON III MACAM-MACAM GAYA Gaya Gravitasi (Berat) Gaya Sentuh - Tegangan tali - Gaya normal - Gaya gesekan DINAMIKA I (tanpa gesekan)

Lebih terperinci

Wardaya College. Tes Simulasi Ujian Nasional SMA Berbasis Komputer. Mata Pelajaran Fisika Tahun Ajaran 2017/2018. Departemen Fisika - Wardaya College

Wardaya College. Tes Simulasi Ujian Nasional SMA Berbasis Komputer. Mata Pelajaran Fisika Tahun Ajaran 2017/2018. Departemen Fisika - Wardaya College Tes Simulasi Ujian Nasional SMA Berbasis Komputer Mata Pelajaran Fisika Tahun Ajaran 2017/2018-1. Hambatan listrik adalah salah satu jenis besaran turunan yang memiliki satuan Ohm. Satuan hambatan jika

Lebih terperinci

Bagian pertama dari pernyataan hukum I Newton itu mudah dipahami, yaitu memang sebuah benda akan tetap diam bila benda itu tidak dikenai gaya lain.

Bagian pertama dari pernyataan hukum I Newton itu mudah dipahami, yaitu memang sebuah benda akan tetap diam bila benda itu tidak dikenai gaya lain. A. Formulasi Hukum-hukum Newton 1. Hukum I Newton Sebuah batu besar di lereng gunung akan tetap diam di tempatnya sampai ada gaya luar lain yang memindahkannya, misalnya gaya tektonisme/gempa, gaya mesin

Lebih terperinci